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We prove two fundamental results in teletraffic theory. The first is the frequently conj

ity of the analyti

continuation B(x, a) of the classical Erlang loss function as a function of x, x > 0. The second is the uniqueness of the
solution of the basic set of equations associated with the ‘equivalent random method’,

convexity *complete monotonicity » Erfang loss function » equivalent random method » peakedness factor  teletraffic theory.

1. Introduction and results

This paper focuses on the functions

B(x,a)= {ajowe'“'(l + t)‘dt}_l, (1)
m(x, a)=aB(x, a) (2)
and

a
2(x,a)=1-m(x, a) +x_+_lv-—l-m—(x_a)-—_a‘

3
For a> 0 and x a non-negative integer B(x, a) is
easily seen to equal Erlang’s loss function,
-1

X i X
B(x, a)={2?—'} ?,T’ @
i=0"" :

which may be interpreted as the probability that
an arriving customer finds all servers busy in an
x-server loss system in equilibrium, where service
times are exponentially distributed with mean »~',
say, and where inter-arrival times are expoiica-
tiaily distributed with mean (av)'. In the same
context m(x, a) and z{x, a) are the mean and
peakedness factor (variance-to-mean ratio), re-
spectively, of the stream: of blocked customers (see
Cooper [3} or Wilkinson [17]); as is usual in tele-
traffic theory these quantities refer to the distribu-
tion of the number of busy servers in an infinite
server system to which the stream of blocked
customers is offered.

In several teletraffic studies the need arose to
extend the definition of the Erlang loss function to
non-integral values of x. We mention approxima-
tion techniques like the ‘equivalent random
method” (Wilkinson [17]), ‘Haywards approxima-
tion” (Fredericks [6]) and the ‘decomposition
method’ {Sanders et al. {13]), and network dimen-
sioning algorithms as in Rapp [12], Akimura et al.
[2] and Kortanek et al. [9], where often also de-
rivatives of B(x, a) with respect to x and a are
needed. Depending on the application one has in
mind there are various ways to perform the inter-
polation: a simple linear approach was adopted in
[9], while Rapp [12] introduced a parabolic inter-
polation. However, the most coinmonly used ex-
tension is the analytic continuation (1) of the
Erlang loss function; cf. Jagerman [7, 8].

In this paper we shall prove some properties of
the (continued) Erlang loss function whica are
generally believed to be valid but for which no
proofs seem to exist in the literature. Our most
significant result, given in Section 2, is a proof of
the following theorem, the validity of which has
frequently been conjectured (Smiih and Whitt
[14]). [

Theoremn 1. B(x, a) is a convex function of x in the
interval [0, oc) for every a>0. . .-

We remark that Syski [15, p. 603] claims con-
vexity if @ <1, but ofiers no proof nor any refer-
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ence substantiating lus claim. If one restricts the
domain of x to the non-negative integers, how-
ever, then several proofs for the convexity of B(x,
a) exist (see Messerli [10] and references therein).

A nice application of Theorem 1 is that it
enables one to give a very short proof of the
efficiency of resource sharing for M/M/s loss
systems; the argument is given in the appendix of
114j.

Our second result, given in Section 3, is a proof
of the following.

Theorem 2. If p>0 and §>1, then there is a
unique solution x 20, a>0 to the system of equa-
tions p=m(x, a), § = z{x, a).

Solving the system of equations mentioned in
this theorem is an essential step in Wilkinson’s
‘equivalent random method’ [17). It is obvious
that in general tnere will be no solution with
integral x, so that an extension of the Erlang loss
funciion to non-integral values of x is called for.
In Wilkinson's original paper [17] this extension is
not made explicit. In studies like [8], where ex-
plicit use is made of the analytic continuation (1)
of Erlang’s loss furction, the existence of a unique
solution is tacith assumed.

As a by-proris ¢ of the proof of Theorem 2 we
will show the 2. dity of the next result.

Theorem 3. if x>0 and a> 0, then z(x, a)> 1.

Again this result is well known for positive
integral v, .ues of x; different proofs were given by
Franker. 5], Pearce [11] and Van Doorn [16].

2. Proof of Theorem 1
We start with a simple auxiliary lemma.

Lemma L. Let y >0, p(u) =0 and both p(u) and
q{u) be increasing funciions of u for u> 0. Then
J3p(udg{u)du = 0 as soon as [Jq(u)du=0.

Proof. Let [ g(u)du > 0. Choose y, € [0, y] such
that g(u)<0 for u€f0, y)) and q(u)=0 for

4 € (3p, v} Then [$p(u)q(u)du 2 p(vo)[gq(u)du
0. O

Let h denote any increasing, concave and con-
tinwously differentiable function on [0, %0) satisfy-
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ing h{0}=0and h(:)=0{t) as t » o, For >0,
x = 0 we define ’

f(x, a)= fo exp(—at + xh(1))dt )
and

{ 7 2 "
¢(x. a)=2(f"(x, a))" - f(x, a)f"(x, a), (6)
where a prime indicates differentiation with re-
spect to x. The conditions imposed on h imply
that these derivatives exist and that

f(x.a)=[ “h(t)" exp(—at +xh(1))dr  (7)

for n=0, 1, 2,.... From now on we shall tacitiy
assume that x>0 and a>0.

Proposition 1. ¢(x, a) is a completely monotone
function of a.

Proof. By (6) and (7) and the convolution thecrem
for Laplace transforms ¢(x, a) = 5%~ “g(x, t)dt,
where

g(x, 1) E]J(Zh(u)h(t— u) —h( «)2)
xexp(x(h(u) +h{t—u)))du.
By symmetry arguments,

g(x, t)=f0'”(2h(u)h(r-u)

~ (h(u) = k(s ~u))')

xexp(x{h(u) + h(t - u)))du.
To prove the proposition we must show that g(x,
t) 2 0 for all x, ¢ >0 (sec Feller [4, Sect. XIIL4]).
Now, since h is concave, h(u)+h(t—u) is in-
creasing in u for 0 <u<1t/2, and hence, so is
p(u)=exp(x(h(u) + h(t - u))). The same is valid
for — (h(u) = h(t — u))* and 2h(u)h(t —u), as is
easily verified. Therefore Lemma 1 applies and it
suffices to show that g(0, ¢) = 0 for ¢ > 0. By (6),
(7) and integration by parts we obiain

fo Ze=ag(0, 1)dr = (0, a)
=2{f0°°e“"‘h(r)dt}z —a“Lwe‘“‘h(t)zdt

= 2a"{ fo °oe“"h’(t)cit}2

-2 Ter () (),
0 .



wlhiere we have used the initial and final conditions
on #. Finally using the convolution theorem again
we get

1a%(0, 1) =fo'h'(u)h'(: - u)du— h{t)h'(1)
=fwuxwu-u)~wu»mzo
since h'(t — u) = h'(t) by the concavity of h. O

The next proposition, a counterpart to Proposi-
tion 1, is a direct consequence of h{u)*+ h(s—
u)? = 2h(uyh(t — w)=(h(u) — h{r — u))* 2 0.

Proposition 2. If ¢(x, a)=f(x, a)f"(x, a)—
(f(x, @))%, then y(x, a) is a completely monotone
Junction of a.

Thus not only (—38/9a)"$(x, a)=0 but also
(—-9/0a)"y(x, a) 20 for n=0, 1,.... In particu-
lar for n=0,

(f(x, @) <f(x, a)f"(x, a) < 2 f'(x, a))*.(
8)

In passing we note that the easy part of (8) — the
incquality on the left, which corresponds to ¥(x,
a) = 0 - is just a Cauchy-Schwarz inequality. Our
next result follows at once from (3/8x)%f(x, a)~!
=¢(x, @)f(x, )" 20 and (3/8x)*log f(x, a)
=P(x, a)f(x, a)"220.

Corollary. (i) f(x, a)™" is a convex function of .
(i) f(x, a) is a log-convex function of x.

Choosing h(¢)=log(l +t), a concave increas-
ing function with h(0)=0, (i) above gives Theo-
rem 1, while (ii) states that B(x, a)~' is a log-
convex function of x, the latter result being well
known (7).

3. Proof of Theorems 2 and 3

Let h(t)=1log(l + t). Then, in particular, f(x,
a)=m(x, @)! by (1), (2) and (5}. Qur problem is
to deteiinine the number of solutions (x. a), with
x20 and a> 0, of the two simultaneous equa-
tions

w=m(x,e), ¢{~=z2(x a). %)
We observe that f(0, a)=a"* and f(x, 2)t 0

as x— o0, Accordingly, m(0, a)=a and m(x,
a)l0 as x - o0. Also (0, a)=1.

Lemma 2. Let x > 0 and a > 0. Then,

max{0,a-x} <m{x,a)<a (10)
and
1<m(x,a)+z(x,a)<a+1. (1)

Proof. Clearly, 0 <m(x. a)<a=m(0, a) for
x>0, Suppose a>x>0. Then m{x, )™=
f(x, a)=[exp(~(a— x)i)exp(—x(t — h(1)))dr
<fia - x, 0)y={a--x)"", since t > h(1) for > 0.
This establishes (10). But alsc x + 1 + m(x, a) — @
> 1, so that (11) follows from (3). O

From Lemma 2 we conclude that (9) has no
solution if p< 0 or p+ ¢ <1. So from now on we
suppose that > 0 and g+ { > 1. Note also that if
(x, a), x>0 and a>{, is a solution of (9), thea
a>p and a+12p+{ with equality if and only
ifx=0

Weput p=(p+8)/(g+5-1), g=(a+1)/p
and observe that p > 1 and

{31eqZe (12)
Solving for x i { = z(x, a) weget x=ap—m -1
=p(a-qj, by virtue of (3). So we can refor-
mulate our problem as that of determining the

number of solutions a, with a > g, of the single
equation

F(a)=‘u,_l, (13)
where F(a}=f(p(a—q), a).

Lemma 3. F(q)=q"*, F is convex ¢n lg, %) and
F(a)— o0 as a— oo.

Proof. F(q)= £, q)= g~ ". Furthermore, F'(a)
= [(=1 + ph(t))* exp(—at + p(a — g)a(1))dt
>0 and F(a)> [yexp(a( ph(t) — 1)) exp(—pyh-
(1))d?, where ty > 0 is chosen such that ph(t)—t
>0 for 0 <t<t¢,, which is possible since p>1.
Obviously, this last integral tends to oc as @ — oo,
]

If{>1,then, inviewof (12), p~' > ¢~ = F(q).
Hence {13) has at most one solution & > ¢, since F
is convex on [g, ), and at least one, since F(a)
— 00 as a — oo. This establishes Theorem 2 apart
from the case { = 1.

To prove Theorem 3 and the remainder of
Theorein 2 we observe the foliowing.
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Lemma d. If { <1, then F'(g)> 0.

Proof. By integration by paris and [1, (5.1.19)) we
have  q*F(q) = qHZ(—1 + ph(1))exp(— gt )it
= -1 +qu°°hu)exp( gtydt= —1+ pgedfrr!
exp(—giidt> ~1+pg/(q+1)=(m—q)/(q+1)
> 0, as required, in view of (12\. O

It now follows with (12) that if {=1, then
pl=g '=F(g)<F(e)forall a>gq, 50 a=pis
the only solution to (13) in [g, c0), which com-
pletes the proof of Theorem 2.

From (12) and Lemma 4 we also see that if
t<lthenp'<q '=F(q)< Fa)forallazgq,
so there is no solution to (13) in fgq, o). This,
together with Theorem 2 and the observation that
x=0if z(x, a)=1 and m(x, a)> 0, establishes
the proof of Theorem 3.
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