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We prove two fundamental results in teletraffic theory. The first is the frequently conjectured convexity of the analytic 
continuation B(z, a) of the classical Erlang loss function as a function of x, x ~ 0. The second is the uniqueness of the 
solution of the basic set of equations associated wilh the 'equivalent random method'. 

convexity* complete monotonicity* Erlang loss function * equivalent random method* peakedness factor * tele~raffic theory. 

I. Introduction and results 

This paper focuses on the functions 

a(x, a)-- a e-"'(1 + t)  , 

m(x, ~)---aB(x, a) 

and 

z(x, a)~ l-m(x, a)-I a 

(1) 

(2) 

x + l + m ( x ,  a ) - a "  

(3) 
For a > 0 a n d  x a non-negative integer B(x,  a) is 
easily seen to equal Erlang's loss function, 

B(x, . ) =  ~. T., x--." (4) iffi0 

which may be interpreted as the probability that 
an arriving customer finds all servers busy in an 
x-server loss system in equilibrium, where service 
times are exponentially distributed with mean p-t ,  
say, and where inter-arrival times are expoacn~ 
tially distributed with mea 9 (m,) -z. In the same 
context re(x, a) and z(x ,  a) are the mean and 
peakedness factor (variance-to-mean ratio), re- 
spectively, of the stream of blocked customers (see 
Cooper [3] or Wilkinson [17]); as is usual in tele- 
traffic theory these quantities refer to the distribu- 
tion of the number of busy servers in an infinite 
server system to which the stream of blocked 
customers is offered. 

In several teletraffic studies the need arose to 
extend the definition of the Erlang loss function to 
non-integral values of x. We mention approxima- 
tion techniques like the 'equivalent random 
method' (Wilkinson [17]), 'Haywards approxima- 
tion' (Fredericks [6]) and the 'decomposition 
method' (Saaders et al. [13]), and network dimen- 
sioning algorithms as in Rapp [12], Akimura et al. 
[2] and Kortanek et al. [9], where often also de- 
rivatives of B(x,  a) with respect to x and a are 
needed. Depending on the application one has in 
mind there are various ways to perform the inter- 
polation: a simple linear approach was adopted in 
[9], while Rapp [12] introduced a parabolic inter- 
polation. However, the most co2nmonly used ex- 
tension is the analytic continuation (1) of the 
Erlang loss function; cf. Jagerman [7, 8]. 

In this paper we shall prove mine properlies of 
the' (continued) Erlang loss function whic:~ are 
generally believed to be valid but for which ao 
proofs seem to exist in the fiterature. Our most 
significant result, given in Section 2, is a proof of 
the following theorem, the validity of which has 
frequently been conjectured (Smllh and Whirr 
1 1 4 1 ) .  • ........................ 

Theorem 1. B(x ,  a) is a convex function of x in the 
interval [0, ~ )  for eve,,y a > 0 . . . . .  

We remark that Syski [15, p. 603] claims con- 
vexity if a < 1, but offers no proof nor any refer- 
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enee substantiating his claim. If one restricts the 
domain of x to the non-negative integers, how- 
ever, then several proofs for the convexity of B(x, 
a) exist (~ee Messerli [10] and references therein). 

A nice application of Theorem 1 is that it 
enables one to give a very short proof of the 
efficiency of resource sharing for M / M / s  loss 
systems; the argument is given in the appendix of 
[14]. 

Our second result, given in Section 3, is a proof 
of the following. 

Tlg~a'em 2. If IJ > 0 and ~ >_ I, then there is a 
unique solution x > O, a > 0 to the system of equa- 
tions tt = re(x, a), ~ --- z(x, a). 

Solving the system of equations mentioned in 
this theorem is an essential step in Wilkinson's 
'equivalent random method' [17]. It is obvious 
that in general there will be no solution with 
integral x, so that an extension of the Erlang loss 
function to non.integral values of x is called for. 
In Wilkinson's original paper [17] this extension is 
not made explicit. In studies like [8], where ex- 
plier use is made ~t' the mJalytic continuation (1) 
of Erlang's loss fo ~,,ction, the existence of a unique 
solution is tacitl:, assumed. 

As a by-pro:c, z of the proof of Theorem 2 we 
will show the 'v~ ~dity of the next result. 

Theorem 3. i: x > 0 and a > O, then z(x, a) > 1. 

Again t~.~s result is well known for positive 
integral v, ',ues of x; different proofs were given by 
Franke~ ,5], Pearce [11] and Van Doom [16]. 

2. Proof of Theorem I 

We start with a simple auxiliary lemma. 

Lemma !. Let y >__ O, p(u) > 0 and both p(u) and 
q(u) be increasing functions of u for u > O. Then 
f~p(u)q(u)du >_ 0 as soon as f~q(u)du > O. 

Proof. Let fo y q(u)du > O. Choose Yo ¢ [0, y] such 
that q(u)<_O for u~[0,  Yo) and q(u)>O for 
u ~ (Yo, Y]. Then/oYp(u)q(u)du >__p(:yo)f~q(u)du 
>0. t2 

Let h denote any increasing, concave and con- 
tinuoasly differentiahle function on [0, oo) satisfy- 

ing h(O) = 0 and h(t) = Oft) as t - .  oo. For a > 0, 
.~ ~ 0 we define 

f ( x ,  a) =- f °°exp(-a t  + xh(t))dt (5) 
Jo 

and 

6(x,  a ) - :  2(f ' (x ,  a ) ) a - f ( x ,  a) f"(x ,  a), (6) 

where a prime indicates differentiation with re- 
spect to x. The conditions imposed on h imply 
that these derivatives exist and that 

f~")(x, a )= fo°°h(t)" e x p ( - a t + x h ( t ) ) d t  (7) 

for n = 0, 1, 2 ..... From now on we shall tacitly 
assume that x > 0 and a > 0. 

Proposition I. ~(x, a) is a completely monotone 
function of a. 

Proof. By (6) and (7) and the convolution theorem 
for Laplace transforms q,(x, a) = f~e-a'g( x, t )dt, 
where 

g(x, t)=-fot(2h(u)h(t - u ) -  h(,)2) 

xexp(x(h(u)  + h ( t -  u)))du. 

By symmetry arguments, 

g(x, t) = f0'/2(~ h ( u ) h ( t -  u) 

- ( h ( , ) -  h(t  - ~))') 

xexp( x( h(u) + h( t -  u)))du. 

To prove the proposition we mast show that g(x, 
t) >_ 0 for all x, t >_ 0 (see Feller [4, Sect. XIIIA]). 
Now, since h is concave, h ( u ) + h ( t - u )  is in- 
creasing in u for 0 <_ u .~ t/2, and hence, so is 
p(u) -- exp(x(h(u) + h(t - u))). The same is valid 
for - (h(u) - h(t -u) ) :  and 2h(u)h(t - u), as is 
easily verified. Therefore Lemma 1 applies and it 
suffices to show that g(0, t) > 0 for t _> 0. By (6), 
(7) and integration by parts we obtain 

fo°°e-"'g(O, t)dt=q,(O, a) 

= 2{fo®e-a'h(t)dt}2-a- ' fo~e-a'h(t):dt  

oo 2 

-2a-2  fo°°e-%~(t)h'(t)dt, 



wt,,ere we have used the initial and final conditions 
on h. F~nally using the convolution theorem as,~n 
we ge,* 

½a~g(O, t) = foth'(u)h'(t - u)du- h(t)h'(t) 

= fo'h'lu)(h'(t- u) - h'(t))dt >>. O, 

since h'(t - u) ~ h'(t) by the concavity of h. [] 

The next proposition, acc, unterpart to Proposi- 
tion 1, is a direct consequence of h(u)" + h ( t -  
u) ~ - 2h(u)hi t  - u) ffi lb.(u) - h(t - u)): > O. 

Prolazs~tion 2. I f  ~(x,  a ) - f ( x ,  a) f" (x ,  a ) -  
( f ' (  x, a )) ~, then ~k( x, a) is a completely monotone 

fi¢nction of a. 

Thus not only ( -a /~a ) ' q , ( x ,  a)>__O but also 
( -O/Oa)"¢(x ,  a) > 0 for n = 0, 1 . . . . .  In particu- 
lar for n = 0, 

(if(x, a))2 < f(x, a)f"(x, a)<_ 2(f'(x, a)) 2. 
(8) 

In passing we note that the easy part of (8) - the 
inequality on the left, which corresponds to 6(x, 
a) _> 0 - is just a Cauchy-Schwarz inequality. Our 
next result follows at once from O/~x)2[(x, a)-l 
--= ~(x, a ) f (x ,  a) -3 >_ 0 and (0/Ox)'-log f ( x ,  a) 

= ~k(x, a ) f (x ,  a) -~ > O. 

Corollary. (i) f ( x, a) - ~ is a convex function oJ",. 
( ii ) f ( x, a) is a log.convex function of x. 

Choosing h(t)  = log(1 + t), a concave increas- 
ing function with h(0)= 0, (i) above gives Theo- 
rem 1, while (ii) states that B(x,  a) -1 is a log- 
convex function of x, the latter result being well 
known [71. 

3. Proof of Theorems 2 and 3 

Let h(t)  ffi log(1 + t). Tllen, in particular, f ( x ,  
a) = mix ,  a) -Z by (1), (2) and (5). Our problem is 
to detelmine the number of solutions {x. a), with 
x >_. 0 and a > 0, of the ,.wo simultaneous equa- 
tions 

s,--m(~, ~.), ~'=z(.~, a). (9) 
We observe that f(0, a) = a -I  and f i x ,  a)~ oo 

as x ~ oo. Accordingly, m(0, a) = a and re(x, 
a)~,0 as x -~ oo. Also z(0, a ) =  1. 

[,emma 7,. Let x > 0 and a > O. Then, 

max{0, a - x  } < re(x,  a ) < a  (10) 

and 

I <re(x, ,,) + z(x, ,~5 <"+ I. (11) 

Proof. Clearly, O < re(x, a) < a = re(O, a) :'or 
x > 0. Suppose a > x > 0. Then re(x, a) -~ = 
f(x, a) ffi /~exp(- (a - x)/)ex~ - xit - h(t)))dt 
<f(a--':, 0)= (o---x) -I, since t > hit) for t > 0. 
This establishes (105. But also x + I + re(x, a} - a 
> I, so that (II) follows from i3). 12 

From Lemma 2 we conclude that (95 has no 
solution if/ t  -g 0 or !,. + ~ _< 1. So from now on we 
suppose that g > 0 and g + ~" > 1. Note a~so that if 
(x, a), x >_ 0 and a > O, is a solution of (95, then 
a _>/t and a + 1 ~_ ~ + ~" with equality if and only 
if x = 0 .  

We put p ffi (~ + ~)/(~t + ~" - 1), q -- it~ + 1)/p 
and observe that p > 1 a~:d 

Solv;.ng for x it. ~" = zix,  a) we get x = ap - m - 1 
= p i n - - q ) ,  by virtue of (3). So we can refor- 
mulate our problem as that of determining the 
number of solutions a, with a >__ q, of the single 
equation 

F ( a )  ~ - ' ,  (13) 

where F(a) • / ( p ( a  - q), a). 

Lemma 3. F(q) = q-  ~, F is convex cn [ q, oo) and 
F( a ) ~  oo as a--, oo. 

Pnm¢, / ' (q)  -- f(0, q ) _ q - l .  Furthermore, F"ia) 
= ] ~ ( - t  +ph(t ) )  2 e x p ( - a t  + p ( a  - q)hit))Rlt 
> 0 and F(a) >//~°exp(a(ph(t) - t)) exp(-p,th- 
(t))dt, where t o > 0 is chosen such that ph(t)  - t 
> 0 for 0 < t < t o, which is possible since p > 1. 
Obviously, this last integral tends to o¢ as a ~ oo. 
[] 

If ~" > 1, there, in view of (12), p - i  > q-~ = F(q). 
Hence (13) has at most one solution a >_ q, since F 
is convex on [q, oo), and at least one, since F(a) 
---, oo as a --* ~o. This establishes Theorem 2 apart 
from the case ~" ffi 1. 

To prove Theorem 3 and the remainder of 
Theorem 2 we observe :he following. 



Lenana 4. f f  ~" ~ 1, then F'( q ) > O. 

Proof. By integration by par,~ a~d [1, (5.1.1-0)I we 
have q2F' (q)  = q2[~°(-t. + p h ( t ) ) e x p ( - q t ) d t  

:-, - 1  + p q f ~ ! i ' ( t ) e x p ( - q t )  d t  = - 1 + pqeq f~ t  - i  

e x ~ - q t ) d t  > - 1 + p q / ( q  + 1) = ( m  - q ) / ( q  + i )  
> 0, as required, in view of (12~. [] 

It now follows with (12) that if g '= 1, then 
I~-I ,~ q - i  = F(q) < F(a) fo:r all a > q, so  a = # is 
the only solution to (13) in [q, ~ ) ,  which com- 
pletes the proof of Theorem 2. 

From (12) and Lemma 4 we also see that if 
~" < 1, then # - i  < q - i  = F ( q )  ¢_. F ( a )  for all a > q, 
so there is no solution to (13) in [q, c¢). This, 
together with Theorem 2 and the observation that 
x = 0 if z(x,  a)  = 1 and re(x ,  a)  > 0, establishes 
the proof of  Theorem 3. 
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