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ABSTRACT 

The results obtained in part I of the paper are specialized to the case of discrete fuzzy 
random variables. A more intuitive interpretation is given of the notion of fuzzy random 
variables. Algorithms are derived for determinin g expectations, fuzzy probabilities, fuzzy 
conditional expectations and fuzzy conditional probabilities related to discrete fuzzy random 
variables. These algorithms are applied to illustrative examples. A sample application to a 
medical diagnosis problem is briefly discussed. 

1. INTRODUCTION 

In part I of this paper [I], a rather abstract definition of fuzzy random 
variables was given, and a number of results were proved. In the present paper, 
the definition and results will be made more concrete for discrete fuzzy 
random variables. Algorithms will be given for the determination of expecta- 
tions and fuzzy probabilities connected to fuzzy random variables. 

Fuzzy random variables are random variables whose values are not real 
numbers, as usually is the case, but fuzzy numbers. Fuzzy numbers are 
numbers whose values are only vaguely defined. A fuzzy number may assume 
different real values, with each of which a degree of acceptability is associated. 
These degrees of acceptability are considered as truth values, and are handled 
according to the rules of fuzzy logic, as explained in part I of the paper. 

As an example of a (discrete) fuzzy random variable, let us consider the 
results of the opinion poll discussed in Sec. 1 of part I of the paper. The 
response to a question concerning the opinion of the person interviewed about 
the weather in Europe during a particular summer is summarized in Table 1. It 
is assumed that the three responses “very warm,” “warm,” and “no opinion” 
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TABLE 1 
Results of an Opinion Poll 

Fraction of 
respondents Response 

0.4 Very warm 
0.5 Warm 
0.1 No opinion 

may be characterized as fuzzy numbers with members~p functions as sketched 
in Fig. 1. 

The choice of these membership functions is a problem by itself and will 
not be discussed here. It is only noted that the membership function for “no 
opinion” was obtained from the other two membership functions as follows. 
The left side is the left side of the membership function for “warm,” and the 
right side that of the membership function for “very warm,” while the 
intermediate section was obtained by assuming all intermediate values to be 
fully plausible. This appears to lead to an unprejudiced choice of the member- 
ship function for “no opinion.” 

We shall use this example to illustrate various notions introduced in part I 
of the paper. 

no opinion 
I 
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degree 
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temperature ( C I - 

Fig. I. Membership functions of “warm,” “very warm,” and “no opinion.” 
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2. DISCRETE FUZZY RANDOM VARIABLES 

A fuzzy random variable X defined on a probability space (~,‘3’,9’) is 
characterized by a map X : f&S such that 

where S is the space of all piecewise continuous functions R+[O, I]. Each 
element of the space S is the membership function of a fuzzy number. The 
map X has to satisfy certain measurability conditions specified in part I of the 
paper. 

The fuzzy random variable X is said to be discrete if 52 is a countable set. 
When we are dealing with a single discrete fuzzy random variable X we may as 
well take D = N, with N the set of natural numbers, and 9 the sigma algebra of 
subsets of N. We shall denote 9’(( i}) =pi, i EN, and 

i15Xi for all i EN. 

When we deal with two discrete fuzzy random variables X and Y, both defined 
on the probability space (a, ‘3,9), we take St= N X N such that 

(iJ) t% Xi and (i,j) A Yj, 

and denote Y({(i,j)})=p, for all (i,j) E N X N. 
This means that a single discrete fuzzy random variable X is essentially 

characterized by the set of pairs (pi, Xi), i= 1,2,. . . , where pi, i = 1,2,. . . , are 
probabilities, adding up to one, and Xi, i = 1,2,. . . , are membership functions, 
characterizing the fuzzy values assumed by the fuzzy random variable. Simi- 
larly, two jointly discrete fuzzy random variables X and Y are characterized by 
the triples (pii,Xi,Yi), i=l,2 ,..., j-1,2 ,..., with the pii probabilities and the 
Xi and Yj membership functions characterizing fuzzy values. 

The results of the opinion poll described in the preceding section may be 
considered as an example of a discrete fuzzy random variable. The probabili- 
ties arep,=0.4,p,=0.5,p,=0.1,pi=0 for i>4, while X’, X2 and X3 are the 
three membership functions for respectively “very warm,” “warm” and “no 
opinion” depicted in Fig. 1. 

In Part I of $e paper a f?y random variable was eventually defined as a 
fuzzy set X=(%,X), where % is the set of “originals” of the fuzzy random 
variable. An or$inal is an ordinary random variable 0, defined on a probabil- 
ity space (a,%, 9) = (ST x G', 963 9', 9 BY '), measurable with respect to a(X)@ 
5’. Here (Q’, s’, 9’) is an auxiliary probability space, while a(X) is the sigma 
algebra generated by X, as explained in part I. 
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In the case of a single discrete fuzzy random variable X, an original of X is 
a o(X)@ Y-measurable random variable 0 defined on N X Q'. We shall denote 
the value assumed by 0 at the point ($o’) E N X3 as oili( The degree of 
membership of 0 in the fuzzy set X=(%,X) is given by 

inf inf Xi( Qw’)). 
iEN W’EQ 

(2.1) 

We now give the following interpretation of the introduction of the aux- 
iliary probability space (Q’, $I’, 9’). We consider the original sample space N as 
representative of a population divided into disjoint groups, successively num- 
bered 1,2,.... The (fuzzy) value Xi assumed by the fuzzy random variable 
corresponding to the ith group represents the (fuzzy) opinion of the group 
regarding the issue at hand. Thus, the acceptability that the ith group endorses 
a real number u as the opinion of the group (in the example: concerning the 
temperature) is X’(u). 

The introduction of the auxiliary probability space (!G?‘, %‘, 9”) allows for a 
divided opinion within each group. Thus, for fixed i, the random variable 
Q(o), w’ EC, represents a certain division of opinions over the ith group. The 
acceptability that oi(J), w’ EC!‘, actually represents the opinion of the. ith 
group is inf,,,cX’( G(w’)). The acceptability that 0 represents the distribution 
of opinions over all groups hence is given by (2.1). 

To continue this discussion, let us consider the definition of the expectation 
of a fuzzy discrete random variable X. Suppose that the random variable 0 as 
described above is a possible description for the distribution of opinions. The 
acceptability that 0 represents the opinions of the groups is given by (2.1). The 
corresponding average opinion is Eo. Since there are many distributions of 
opinions 0 leading to a given average opinion x, the acceptability that the 
average opinion is x is given by 

sup inf inf Xi(Q(w’)). 
fiE%:Efi-X 

iEN o’EO 

If we define the fuzzy number EX as the fuzzy set (R,(EX),s), with s(x) the 
statement “the average opinion is x,” (2.2) gives the degree of membership 
t(s(x))=(EX)(x). E_X simply is the image of the fuzzy set X=(%,X) in R 
under the map E : YAR. This is the way EX was defined in part I of the 
paper. 

Other concepts relating to fuzzy random variables, such as probabilities and 
conditional expectations, are defined completely analogously. The precise 
definitions are given in part I. 

Throughout this paper, we assume that each discrete fuzzy random variable 
X we consider satisfies the following conditions, already stipulated in part I. 
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We require that for each p E (0, I] and each i E N, 

(2.3) 

(2.4) 

while 

The first two conditions imply that for each i the function X’ must have finite 
support. The third condition is satisfied if for each i the function X’ is upper 
semicontinuous, i.e., for each p ~(0, I] the set {x E R IX’(x) > p} is closed. The 
requirement of a finite support somewhat restricts the generality of the theory, 
although in concrete cases the support can probably always be chosen large 
enough to suit all purposes. The semicontinuity condition does not appear to 
impose any real restriction, 

In addition to these conditions, we require that each random variable X we 
consider should be normal. This means that for each i there exists an xi E R 
such that X’(x,)= 1. 

3. EXPECTATION OF A DISCRETE FUZZY RANDOM VARIABLE 

In this section we shall give algorithms for determining the (fuzzy) expecta- 
tion of a fuzzy random variable. The clue to these algorithms is to find the 
family of level sets corresponding to a given fuzzy set. If these level sets are 
known, the fuzzy set is completely characterized. Suppose that (M,m) is a 
fuzzy set, defined on the basic space M, with m: M-+0,1] its membership 
function. Then for each ~LE[O, 11, the set 

c,=(aEMp?z(a)>~} (3.1) 

is called a level set. Given the family of level sets C, , the membership function 
m may be recovered with the aid of the formula 

m(a)=sup{ p.E[oJ]l~q}, UEM. (3.2) 

In general (though not always) the algorithms that will be presented only 
allow the evaluation of the level sets Cfi at discrete values of p in the interval 
[0, 1 J. Although these level sets may be determined exactly, the inherent 
discretization of the variable p will only allow an appro~mate evaluation of 
the membership function m with the aid of (3.2). 
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We now consider the determination of the level sets of the expectation EX 
of a discrete fuzzy random variable X characterized by the pairs (p,,X’), 
i=1,2,... . 

ALGORITHM 3.1 (Level sets of EX). 

Step 1. Choose a level p E [0, 11. 
Step 2. Determine for each i = 1,2,. . . the numbers 

Step 3. Determine the level set C, = {x E R j(EX)(x) > p} as 

Step 4. Repeat steps 1 through 3 for a sufficient number of values of p. 
Step 5. Determine the level set D,,= {x E R I(EX)(x) > 0} as 

x Pi@, ~Pid”’ 3 i i 1 
where 

Proof. The representation of the level set C,, given in Step 3 is demonstrated 
in the proof of Theorem 5.2 of part I of the paper. The representation of the 
level set Do given in Step 5 follows similarly. n 

Step 5 serves to establish the support D, of the membership function (EX). 
The shape of (EX) may be traced from the level sets obtained in Step 3 with 
the aid of (3.2). 

EXAMPLE 3.1. By way of example we consider the expectation of the fuzzy 
random variable defined by Table 1 and the membership functions of Fig. 1. 
For different values of p, the level sets of EX are found by easy calculations 
following Algorithm 3.1. Using the formula (3.2), the membership function of 
EX may easily be sketched as in Fig. 2. We observe that average temperatures 
between 27 and 27.5”C are fully plausible, while the plausibility decreases to 
zero as the temperatures decrease to 22°C or increase to 32.5”C. 
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Fig. 2. Membership function of EX for Example 3.1 

4. FUZZY PROBABILITIES 

In this section we consider an algorithm to determine the fuzzy probability 
Pr(XEA), with A a Bore1 set in R, of the discrete fuzzy random variable X, 
characterized by the set of pairs (p,,X’), i = 42,. . . . 

ALGORITHM 4.1 (for Pr(X 64)). 

Step 1. Determine for each i= 1,2,..., the numbers 

r; = sup Xi(x), ri”= sup Xi(x), 
XEA XEAC 

with the superscript c denoting the complement. 
Step 2. Determine the levels k, k =0, 42, . . . , assumed by PI@ E A), with 

/.+,=I, and A, k=1,2 ,..., the distinct values different from 1 assumed by 
min(r;,$), i= I,2 ,.... It is useful to order the ,.& so that 1 = h >pr >k > * - . . 

Step 3. Determine for k = 0, 1,2,. . , , and q E [0, l] the function 

! l M(4) = 
0 otherwise. 

Step 4. Finally, determine for qE[O, l] 
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Proof. According to Theorem 7.3 of part I of the paper, Pr(X&4)= EIXEA, 
where IXEA is the indicator function of the event X E A. The indicator function 
is a reduced fuzzy random variable with membership function as given in 
Theorem 7.2 of part I. Transposed to the present context, PEA is a discrete 
fuzzy random variable, characterized by the pairs (pi, Ii), i = 1,2,. . . , where for 
each i the membership function I’ is given by 

for rr=O, 

I’(%) = min(ri,rf”) for O<s< 1, 
r: for 71=1, (4.1) 

0 elsewhere. 

The numbers r,! and r,f’, i = 1,2,. . . , ae as obtained in step 1 of the present 
algorithm. We now determine BIX”” according to Algorithm 3.1. It follows 
from (4.1) that the quantities u:( EL) and uF*( ~1) occuring in Step 2 of Algo- 
rithm 3.1 are given by 

ui*“( EL)= 
i 

0 if y >rj, 
1 if p<r,‘. 

Note that in establishing these relationships we need the assumption that X 
is normal, which implies that for each i either r,! = 1 or r/’ = 1. Using this, it 
immediately follows from Step 3 of Algorithm 3.1 that the left- and right-hand 
limits of the level set C,= {qE[O, l]I(Pr(XEA))(q) 2~) are respectively given 

by 

2 pi and xpi=l- Cpi, 
i:$p<p i:r/>p i:r;‘<p 

(4.3) 

These expressions show that the number of different levels assumed by 
Pr(X E A) is at most denumerable; the possible values of the levels are the 
numbers b determined in Step 2 of the present algorithm. This leads with the 
aid of (3.2) to the result of Step 4 of the present algorithm. II 

EXAMPLE 4.1. We shall compute the fuzzy probability Pr(X >z), with z a 
real number, for the fuzzy random variable introduced in Sec. 1 and also 
discussed in Example 3.1. We first discuss the interpretation of the fuzzy 
probability Pr(x B z). For given z and cl, the number (Pr(X >z))(q) is the 
acceptability that a fraction q of the respondents agree with the proposition 
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z -25 z=26 2~27 

'r'-;p-J:;pj 

0.L 1 0 4.5 1 0 A.5 1 

cl-+ q-t q--t 

z =2a z =29 z=30 

;"m;m'nJ 

0 A.5 1 0 A.5 1 0 .5 1 

9-c q- 9- 

Fig. 3. Fuzzy probabilities Pr(X >I) for various values of z for Example 4.1. 

that the temperature was over z”C. Using Algorithm 4.1, Pr(X >z) may easily 
be determined for any given value of z. Figure 3 depicts the appearance of 
Pr(X >z) for z =25, 26, 27, 28, 29 and 30°C. It is seen that the fuzzy 
probabilities gradually shift from Pr(X > 25) = “at least 4” to Pr(X > 30) = “not 
more than .5”, with Pr(X > 27) and Pr(X > 28) both not very different from 
“more or less .5”. 

5. FUZZY CONDITIONAL EXPECTATION 

In this section we deal with two jointly discrete fuzzy random variables X 
and Y. These fuzzy random variables are defined by the set of joint probabili- 
tiespv, i= 1,2 ,..., j= 1,2 ,..., the set of fuzzy values of X characterized by the 
membership functions Xi, i = 1,2,. . ., and the set of fuzzy values of Y char- 
acterized by the membership functions Yj,j = 1,2,. . . . We shall state and prove 
an algorithm to determine the fuzzy conditional expectation E(XIY EB), with 
B a Bore1 set in R. This conditional expectation is described and discussed in 
Sec. 8 of part I of this paper. 
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ALGORITHM 5.1 [Level sets of E(XIY E B)]. 

Step 1. Determine for j = 1,2,. , . the numbers 

s;= sup YQ), sj”= sup Y’(y). 
YEB YEBC 

Step 2. Determine the levels b, k = 0, 1,2,. . . , as the distinct values assumed 
by I and min(~~,s~), k=1,2 ,_.. . It is useful to order the pk so that 1 = k >p, > 
F2>“‘. 

Step 3. Choose a value p E[O, 11. It is best to take g first equal to h, 
k=O 1 > ,a.., then p = 0, and finally intermediate values. 

Step 4. Determine the sets 

J;={jENls;<~}, J;={jENlsi”<p}, 

J;‘= {jEN]si’=G /&>, J;={jENI$‘Q}. 

Step 5. For i=l,2,... determine the numbers 

u,*(y)=inf{xERIX’(x),y}, 

ui**(/.&)=SUp{XEfi]X~(X)>~}. 

Step 6. Determine the numbers 

(VjdjE) ?E[O, 1], gj=O ifjEJi, n;= 1 ifjEJZ’ . 

i 
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Step 7. Define 

and 

D, = {z E R I(E(XlYE B))(z) B/-L}, 

and set 

Step 8. Return to Step 3. 

Before we prove this algorithm, we comment on it as follows. For p#h, 
k-1 2 9 ,***9 we have J; = ji and JL = Ji, and hence aI = a,, and b, = /I,. As we 
shall see in the example at the end of the section, the membership function of 
E(XJY E B) has a terraced shape. The determination of both the sets C, and Dp 
at p = ~41 serves to determine the extent of the terrace as well as the points 

where the membership function rises away from the terrace. The determination 
of 4, b,,, ap and /3,, as given in Step 6 requires the solution of a fractional 
interval programming problem of a special type, for which an algorithm is 

given in the Appendix. Finally, once the level sets of E(XJY EB) have been 

obtained at a sufficient number of levels, the membership function may be 
recovered (approximately) with the aid of the decomposition formula (3.2). 

Proof of Algorithm 5.1. According to Theorem 8.3 of part I of the paper, 

(E(XIY E B))(z) = sup 

where F is the unimodalized version of Xi (see Sec. 5 of part I), and where I is 

the characteristic function of YE B. It immediately follows that C,, as defined 
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in Step 7 is given by C, =[a,,!+], where 
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2 pgy,**( IJ) 

b,=sup i’ 

1 
EPpiiT 

(vjj’E)00+1,z+r_J>E, ) (5.3) 

ij 1 

with uF( II) and uF*( p) as defined in Step 4. It is easily verified that the 
condition Zj(rrj) > p is equivalent to rj =0 ifjE.Zi, T= 1 ifjEJ;, and0 GVQ Q 1 
otherwise. This yields the expressions for up and b,, as given in Step 6. The 
representation of Dp is proved similarly. n 

EXAMPLE 5.1. Suppose that the individuals of the population that was polled 
in Sec. 1 about the weather in Europe are also asked whether they had a good 
vacation during that season. We assume that the possible answers are “good,” 
“fair,” and “no opinion.” The membership functions representing these re- 
sponses are defined on an assumed scale ranging from zero (absolutely no 
satisfaction) to one (complete satisfaction). Figure 4 depicts the assumed 
membership functions. 

no opinion 
I 

deo4’ee 
membership 

f 

.5 

0 .2 .L .6 .0 1 

degree of 
satistaction- 

good 

Fig. 4. Membership functions for “good,” “ fair” and “no opinion” in J&ample 5.1. 
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TABLE 2 Probabilities of Occurrencepti of the Joint Responses 
Xi and Yi 

I Y' Y* Y3 
Good vacation Fair vacation No opinion 

x’ 
Very wann 

X2 

Warn 

X3 
No opinion 

.3 .I 0 

.2 .25 .05 

0 .OS .05 

In Table 2 we summarize the responses obtained to the two questions. The 
table defines two jointly fuzzy discrete random variables X and Y, with X 
referring to the question concerning the weather, and Y to the vacations. By 
way of example, the conditional expectation E(X]Y E B) has been calculated 
with B = [.8,1]. 

In words, we wish to determine the conditional expectation of an indi- 
vidual’s perception of the temperature during this summer, given that his 
satisfaction with his vacation is between .8 and 1. Using the algorithm, it is not 
difficult to find that h= 1, ~1~ = .5, k=O, while C,=[27.5,28], D,s=(25,30.5), 

C,, = [22.5,30.5], and Do = (20,33). The determination of C, for some values of 
p between .5 and 1 and between 0 and .5 completes the picture of E(X]Y E B), 

which is sketched in Fig. 5. 
It is of some interest to take note of the conditional expectation E(X]Y E B) 

for B = [0, 11, i.e., each degree of satisfaction on which the individual’s satisfac- 
tion with his vacation is conditioned is equally and fully acceptable. We find 
here b= 1 and pi =O, while Ci =[25,28] and D,-,=(20,32.5). At the inter- 
mediate value p = .5 we have C., = [22.5,30.5], D,s = (22.5,30.5). The member- 
ship function of E(X(Y E B) is also sketched in Fig. 5. Comparing with the 
membership function of EX as sketched in Fig. 2, we observe a remarkable 
difference. 

6. FUZZY CONDITIONAL PROBABILITY 

We continue in this section with an algorithm for the determination of the 
fuzzy conditional probability Pr(X EA ]Y E B), with A and B Bore1 sets con- 
tained in R, and X and Y jointly discrete fuzzy random variables, characterized 
by the joint probabilities pii, i EN, jE N, and the membership functions X’, 
iEN, and Yj, jEN. 



266 HUIBERT KWARERNAAK 

1 
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Fig. 5. Membership functions of E(XIY E 3) for two different sets 3 for Example 5.1. 

ALGORITHM 6.1 [for Pr(X EA IY E B)]. 

Step 1. Determine for each i E N and j EN the numbers 

r,f= sup Xi(x), r;= sup F(x)* 
XEA XEAC 

a$= sup Y’(y), sr” = sup Y’(y). 
_vEB yEBC 
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Step 2. Determine the levels h, k =O, 1,. . . , assumed by (Pr(X E A IY E B)) 
as the distinct values assumed by 1, min(r,‘,+), I’EN, and min(Q”),jE N. It 
isusefultoorderthehsothat 1=~>~,>~2>*-*. 

Step 3. Determine for k = 0, 1, . . . the integer sets 

Step 4. Determine for k = 0, 1, . . . the function 

where 

Step 5. Finally, determine for qE[O, l] 

(Pr(XEAIYEB))(q)= swxk(4h 

Proof: According to (8.26) 
present context for qE[O, I] 

k 

of part I of the paper, we may write in the 
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Here I’, i EN, are the membership functions of the characteristic function 
IXEA, and Jj, j E N, are those of I YEB. We now define the level set C, = {q E 

[0, l]((Pr(X f A IY f B))(q) > ,LL}. Then for lo E[O, I] we have C, = [a,, 6,], where 

with 

With the aid of (4.1) it is easily found that 

wP>= 
i 

0 if r: Zp, 

1 if ry<f_c, 

( 

0 if r: <p, 
lcI:*(c)= I if r(z~ 

I . 

Furthermore the condition Ji(q) > p implies if sj<p, 
if $’ <p, 

otherwise. 

(6.5) 

(6.6) 

We conclude from the expressions given that as a function of c the level set 
C,, only changes at the levels A, k =O, 1,2,. . . , indicated in Step 2 of the 
algorithm. Defining a& = q,$ and b& = qc*, it is straightforward to obtain the 
two expressions given in Step 4, using the integer sets introduced in Step 3. The 
final expression given in Step 5 for (Pr(X E A \Y E B)) follows from the general 
expression (3.2). n 

The determination of q$ and q$* in Step 4 requires the solution of a 
fractional interval programmin g problem, for which an algorithm is given in 
the Appendix. 
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EXAMPLE 6.1. We consider the jointly distributed fuzzy random variables X 
and Y of Example 5.1, and compute the fuzzy conditional probability Pr@ E 
A III E B), with A = [z, co) and B =[.8,1]. Thus we compute the ftmzy condi- 
tional probability that an individual perceives the temperature as having been 
greater than z, given that his satisfaction with his vacation was between .8 and 
1. Application of the algorithm given in this section is straightforward. For 
z=27”C, for example, we find k= I, pI=.6, &=.5, ~~=.4, p4=O+ The integer 
sets are I’- o-(2}, I;=(l), J;=(2), J;=(l), 1;=0, I;=(l), Ji={2}, J;‘= 
{I), z;-0,z;‘={l}, Ji={2}, q=0, z;-0, z;,=0, J;=(2), J;‘=0, z;=z; 
==Ji=J[=0. From this we obtain C,=[.5,.6], C.,=[.5, I], C,j=C.4=Cg= 

[O, ! 1, 
The results of the computation for a number of values of z are given in Fig. 

6. Comparison with Fig. 3 shows that conditioning on Y E[.S, I] does not 
greatly influence the various probabilities. 

Before passing on to the next section, we generalize the results of the 
present section by extending the notion of fuzzy conditional probability to the 
case where the sets A and B are themselves fuzzy. Thus, let A denote a fuzzy 
set defined on the space Q of Bore1 sets in R, such that the degree of 
membership of A E 91 in A is given by a(A), where a! : '43 -10, 11. Similarly, let 

z-25 Z-26 z-27 

q- 

z - 28 
1 .- 

.6 
I I 

.L FL 
I 

i 
0 .a- 

q- 

Fig. 6. Fuzzy conditional probabilities for various values of z. 
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B denote a Fuzzy set defined on 33 such that B E 93 has degree of membership 
p(B) in B, where /I: 53 -#I, 11. Then we define Pr(XEAIY EB) as a fuzzy 
number with membership function 

(fr(XEA]Y EB))(-)= SUP mig(fifX~-+= ~))(~),~(~),B(~)]. WV 
A,BEJ 

ALGORITHM 6.2 (for Pr(X E AIY E B)). 

Step 1. Determine for each i E N and j E N the numbers 

ri - ‘- A”zi min[a(sl), sup X’(X)], 
XEA 

“(A), sup Xi(x) , 
xEAC I 

Steps 2 through 4. As in Algorithm 6.1. 

Step 5. Finally, determine for q E[O, 1 J 

Thus, Algorithm 6.2 is practically the same as Algorithm 6.1, except that the 
expressions for r;, ry, %! and $’ in Step 1 are modified. The proof of this is not 
difficult. 

7. APPLICATION TO A SIMPLE DECISION PROBLEM 

In this section we discuss a hypothetical application to a simple decision 
problem, related to medical diagnosis. Suppose that a certain medical test is 
applied to determine whether a given individual suffers from a certain disease. 
By studying a large number of cases, statistical notation is available 
relating the result of the test to the presence of the disease. 

Imprecision arises because the result of the test is difficult to analyze, and 
cannot be expressed by a single number. We assume that the results of the test 
are classified as positive, inconclusive and negative, which are represented by 
membership functions un an underlying scale ranging from 0 to 1 as depicted 
in Fig. 7. The reason that the membe~~p functions partially overlap is the 
possible presence of ambiguities. In a more realistic application, presumably a 
larger assortment of possible classifications (strongly positive, moderately 
positive, weakly positive, strongly negative, etc.) would be admitted. 
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Similarly, there is impreciseness in the characterization of the extent to 
which a patient has contracted the disease. We assume that the three allowed 
characterizations-strongly diseased, mildly diseased and not diseased-may 
be represented by membership functions as given in Fig. 8. 

The statistical evidence, relating the presence of disease to the results of the 
test, is collected in Table 3. As the table shows, the degree of diseasedness is 
represented by the fuzzy random variable X, and the result of the test by the 
fuzzy random variable Y. 

TABLE 3 
Relation between Results of Test and Diseasedness 

Result of test 

x’ 
Not diseased 

X= 
Mildly diseased 

X3 
Strongly diseased 

Y' Y2 
Negative Inconclusive 

Y3 
Positive 

.78 .07 .05 

.a? .02 .Ol 

0 .Ol .04 

Suppose now that the result of the test applied to a given patient is 
diagnosed as negative to inconclusive. This is taken to mean that the strength 
of evidence of the result of the test lies in a fuzzy Bore1 set B, with membership 
function characterized by P(B) = o(a) if B = [0, a], and P(B) =O otherwise. The 
membership function u is sketched in Fig. 9. 

0 .2 .4 .6 .B 1 
a- 

Fig. 9. The membership function (I. 
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We now compute the fuzzy probabilities Pr(XEA,]Y EB), i= 1,2,3, with 

A, = [O, .3), A2 = [ .3, .7), A,=[.7,1]. 

We classify the event XE A, as “not seriously diseased,” X E A2 as “mod- 
erately diseased,” and XEA, as “seriously diseased.” The three membership 
functions may be obtained with the aid of Algorithm 6.2. They are pictured in 
Fig. 10. The graphs show that the conditional probability that the patient is not 
seriously diseased, given the results of his test, is between .944 and .975 with 
full plausibility; other values have plausibility $ or less. On the other hand, the 
conditional probability that the individual is seriously diseased, given the result 
of the test, is with full plausibility between .Olll and .0556, while other 
probabilities have a plausibility of f or less. These results indicate fairly 
conclusively that the individual has not contracted the disease with a high 
probability. 

It is interesting to note that the observed result of the test in this particular 
example, “negative to inconclusive,” is not one of the test results used in 
compiling the statistics (“negative, ” “inconclusive” and “positive”). Neverthe- 
less we are able to derive (vague) conclusions. This is done by attributing the 
result of the test partly to the outcome “negative” and partly to the outcome 
“inconclusive,” following the rules of fuzzy logic. 

8. CONCLUSIONS 

In this paper the mathematical theory of fuzzy random variables has been 
further developed. In particular we have given algorithms for the determina- 
tion of expectations and probabilities connected with discrete fuzzy random 
variables. The technique of developing these and other algorithms in fuzzy set 
theory consists of delimiting the level sets associated with any fuzzy set to be 
determined. The numerical efforts required in applying the algorithms that 
were obtained are modest. For not too extensive problems a pocket calculator 
is more than sufficient. 

Fuzzy random variables may be used to describe and characterize situations 
where we have to deal with statistical data that are imprecise. By using ideas 
from fuzzy set theory, this impreciseness is described in a “possibilistic” sense 
[2]. This means that all possible alternatives are kept track of, while associating 
with each possibility a degree of acceptability. The degree of acceptability of 
combined possibilities is obtained following the rules of fuzzy logic. 

The results of this paper (parts I and II) show that this approach leads to 
manageable and consistent results. Well-known results from the theory of 
random variables generalize in plausible way. Many other results from the 
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theory of random variables and statistics may no doubt be generalized equally 
plausibly. 

In the present paper numerical examples have been given illustrating the 
theory and the algorithms. The outcomes of these examples are sometimes 
slightly surprising but never counterintuitive. One somewhat surprising result 
was noted in Sec. 7, where it was concluded that it is possible to define and 
determine conditional probabilities given events that are not among the 
original observations. The solution to this apparent contradiction is that the 
event on which the con~tio~g takes place is still allowed as a possibility by 
the original observations. 

Although in the present context the fuzzy approach leads to a consistent 
theory, it is not certain that this theory is a good model for certain aspects of 
reality. Here much work remains to be done, possibly extending to the realm 
of psychology. 

Verifying the plausibility of the axioms of a theory is one approach to 
validating this theory. Another approach is to study applications of the theory, 
and to see whether the results stand up to the tests of plausibility, intuitiveness 
and consistency. In this respect the author feels encouraged by the results of 
the present paper and some previous work in the area of fuzzy sets f3]. 

The sample application discussed in Sec. 7 of the paper relates to medical 
diagnosis. Another area of application might be found in the statistical 
evaluation of the results of opinion polls admitting partly or totally uncom- 
mitted or ambiguous responses. 

APPENDIX-TWO ALGORITHMS FOR FRACTIONAL INTERVAL 
PROGRAMMING PROBLEMS 

In this appendix we formulate algorithms for four different fractional- 
interval progr amming problems that occur in the determination of fuzzy 
expectations and ~ndition~ probab~ities. The problem is to determine 

h*= min 
j=, 

n,EIO, 11, 
j==l,2,...,n i b,nj+b,’ 
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where we distinguish the two following sets of assumptions: 

(l)~~>O~d~~O,j=l,2 ,..., n; 

(2) a,= b,=O and +>O,j=1,2,. . . ,n. 

We state two algorithms covering these cases. More general fractional interval 
programming problems are treated by Chames, Granot and Granot [4]. 

ALGORITHM A.1 (for X* and p* with b,>O and b>O,j=1,2,...,n). 

Step 1. Without loss of generality, renumber the variables so that 

Step 2. Compute for k =0, 1, . . . , n the numbers 

i: bj+bo 
j-1 

2 bj+b, 
j=k+l 

We adopt the convention that a summation vanishes if the lower limit 
exceeds the upper limit. 

Step 3. Determine 

x*=m;inh, and p*=mkak. 

Proof. We only consider the proof for the determination of the minimum; 
the proof of the algorithm for the maximum is similar. Since the region over 
which the minimum is sought is finite and closed, there always exists a point 
where the ~imum (which by the assumptions b,> 0, 4 z 0, j = 1,2,. . . ,n, is 
finite) is assumed. Denoting such a point as n,O, j- 1,2,. . . ,n, we have 

2 77jaj + a, i $aj + a0 
j-l / j-1 - ” n 
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for a11 75E[O, 11, j= 1,2,. . . , n. Equivalently this condition may be written in 
the form 

or 

Clearly, a necessary and sufficient condition for 9, j = 1,2,. . . ,n, to be 
optimal is that 

ai 
P* 

if $ = 0, 

9 
F <A* if 7r,g= 1, 

J 

(A-5) 

It will be shown that the latter possibility can be ruled out, i.e., there always 
exists an optimizing solution such that r,” is either 0 or 1 for eachj. To prove 
this,letqO,j=1,2 ,..., n, be an optimizing solution such that W: E (0,l) for some 
k. Consider the effect of varying n, while keeping T=$-’ for j+k. Since 

ad& =A*, it easily follows by substituting X&rj + a,- (a,/b,J(+$‘~ f bo) 
that for all k E[O, l] 

This proves that the function to be minimized does not depend on ?rk, and 
hence that we may as well choose $= 0 or a$‘= 1. Thus necessary and 
sufficient conditions for 5” E { 0, 1 }, j = 1,2,. . . , n, to be an optimizing solution 
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1 if t+/bj<h*, 

0 if aj/bj>X*. (A-7) 

Assuming that the numbers q/b are ordered as in Step 1 of the algorithm, it is 
clear that there must exist a k E (0, 1,. . . ,n} such that 

1 for j=1,2 ,..., k, 
0 for j=k+l,k+2 ,..., n, (A.8) 

and consequently, h* =&, with X, as defined in Step 2. The correct value of k 
is most easily found by minimizing X, with respect to k. n 

The second algorithm applies to a slightly different situation, and is even 
simpler. 

ALGORITHM A.2 (for X* and h* with aO=bO=O and 4 >O, j= 1,2;. . ,n). 
Determine 

Proof. Suppose that minj(~/bJ is assumed for j= k. Then 

which proves that X* = ~~~(~/~). The result for p* is proved similarly. n 
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