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Abstract. In this paper the following Markov chairis are considered: the state space is the set of 
vertices of a connected graph, and for each vertex the transition is always to an adjacenlt vertex, 
such that each of the adjacent vertices has the same probability. Detailed results are given on the 
expectation of recurrence times, of first-entrance times, and of symmetrized first-entrance times 
(caIIed commuting times). The problem of characterizing all connected graphs for which the 
commuting time is constant over ail pairs of adjacent vertices is solved almost completely. 

balanced graph 
block (of a graph) 
first entrance time 

random walk 
tree-wise join 

1. Preliminaries 

1.1. Intuitive introduction and summary 

Consider the graph of Fig. 1 .l . At A we start a random walk along the 
edges. After one step we are at the vertex B. The next step is either BA or 
BC. We assign probability 4 to each. of the two possibilities. Once we are 
at C, there are three possibilities for the next step: CB, CD or CE. To 
each we assign probability 5. We agree to stop as soon as we are at D. The 

Fig. 1.1. simple maze. 
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expected number of steps in this random walk, to be denoted by 6,,, can 
be easily calculated: 8,, = 11. The analogous quantity 6,, has the value 
13. If i and j are two vertices of the above graph, we may consider yV de- 
fined by 

A simple calculation shows that 

TAB = yBc = ?TcD = TcE = 8, 

hence 7 has the same value for all edges of the graph. Such a graph is 
called balanced. 

More generally, we may consider a fairly arbitrary grayh and invesri- 
gate quantities like the above 6’s and y’s. ln this paper we present some 
of our findings. Section 1.2 contains graph-theoretic preliminaries; in 
Section 1.3 we give rigorous definitions of the random walks and cf 
most of the quantities we iare interested in. In Section 3 we treat the 
special subject of balanced gratphs. 

The origin of our work was the question: “How long will it take to 
reach the goal of a maze if I move at random through the maze?” In the 
obvious model suggested by the above example, the sequence of succes- 
sive vertices is of course a Markov chain with a finite state space. Al- 
though detailed results for such ch;.ins are available in the literature, we 
believe that the specific findings collected in this paper may be of inter- 
est , 

3.2. Graphs 

Let G be a finite, connected, undirected graph without loops and, un- 
les; stated otherwise, without multiple edges. Whenever we use the word 
gra.ph, we tacitly assume that it has all the above properties; we use-the 
word multigraph if all the conditions are fulfilled with the last as a pos- 
sible exception. Often we write (X, I’) instead o G, denoting by X the 
set of vertices of G and by I’ the set of edges. By I‘ a multivalued mapping 
from X into X (to be denoted by I’ as well) is defined in such a way that, 
if x E X, rX is the set of ally E X adjacent to x. 

As usual, UxEs ‘Y-Y will be denoted by IV3 if B is a subset of X. Since 
G has no multiple edges, G is uniquely determined by X and the mapping 
I’* Usually, we shall denote 1x1 by yt and lrl by r. The valency (or degree) ux 
of x CE X is by definition equal to 1rXl; the index x will be dropped fre- 
quently when no confusion is possible, e.g. when all valencies are equal. 
Note that ZxE~u~ = 2r. 
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If Y is a subset of X, then the subgraph generated by Y is by defini- 
tion the subgraph with vertex set Y, h&e the graph with vertex set I’ 
and which has as edges all edges of X with both end points in Y. 

The vertices of G are usually supposed to be labeled 1,2, ..a, n or 

Q, 1 , .*., n-l. 

The adjacency matrix of G is the y1 X yt matrix A = [AJ, with 

Aij = 1 ifiE’I”jandAij = 0 otherwise. Note that A is a symmetric ma- 
trix with zeros on the diagonal and that 

c Aij = CAji = vj. 
i i 

A bridge of G = (X, r) is an edge e such that (X, r - {e)) is not con- 
nected. A cut-point of G is a vertex x such that the subgrapbh generated 
by X - {x} is not connected. A block is a graph without cutpoints. 

Let G = (X, I’) and H = (Y, A) be graphs, and x E X, y E Y. The tree- 
wise join of G and H (at x and y) is the graph obtained by just mutually 
identifying x and y. 

The straight distance mxy of two vertices x and y of a gr;iph G is the 
smallest number k such that x E rky (where I’k is the kfh iIterate of F). 

Some special graphs, which we need in the sequel, are the follo*wing: 
(a) The complete graph on n vertices, K,,, which is the graph with 

(!) edges. 
(b) The complete bipartite graph K,,,. , where X = A + B with A and 

B disjoint, IAl = m, 181 = ~1, and 

(c) The cyclic graph Cn, where X = (0, 1, 2, . . . . n-l}, and 

r = {{i, i + 1) 1 i = 0, . . . . n-2) u ((0, n-1)) 

(d) The linear graph L,, where X = (0, 1,2, . . . . n--l}, and 

r = {{i, i + 1) I i = 0, .,., n-2). 

If G is a graph, then G k, the k-fold multigraph correCsponding to G is 
defined as the multigraph which can be obtained from G by replacing 
each edge with k edges (k > 1, G” = G). See Fig. 1.2. 

If G and H are graphs and x and y are two distinct equivalent vertices 
of H, then we denote by (x, y, H) + Gk (or if x, y are fi::ed, by H+ 
the graph which can be obtained from Gk by replacing each ed 
with a copy of H such a way that x :G 
respectively, if i a j are neighbours in 
Note that (0,3, &) + Ci can also be olbtained as (0,3, C61\ + Cia 
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Fig. 1.2. A graph and its 24old multigraph. 

Fig. 1.3. An example of substitution. 

I. 3. Random walks and related quantities 

Let G = (X, r) be a graph; to a\*oid trivialities we assume 1x1 > 1. Let 
i E X. A ranhm walk on G startirfg at i is a random sequence x0, xl, x2, . . . 
of vertices of G such that: 

(a) P[xo = i] = 1, 
[x,+l=klxo =i,x, =il,...,x,_l=im_l,x,=jl= 

= Pr-x,+l = k I x, . 

Hencexo, x1, x2, . . . 
= j J = ul~l if k E I)-, and = 0 otherwise. 

is a Markov chain with stationary transition proba- 
bilities and with finite state space .X. The chain is irreducible (since G is 
connected) and either aperiodic 07, if G is bipartite, periodic with period 2. 

Let i and i be elements of X. We define the stochastic variable dij to 
be identically 0 if i ~1. If i # i, then we say that dij assumes the value k 
if and on:Iy if in a random walk starting at i we have 

. . . , x&l+ j, xk =j= 

ence dij is the number of steps to reach i from i for the first time. The 
expectation of ii is denoted by 6ij. rom our assu ptions it follows 
that every two states communicate, and, since X is finite, it follows that 
6, < *. 
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If i E X, then ei is the recurrence time of i, i.e. ei = k > 0 if and only if 

#k = i, xk_1 # i, . . . . x1 + i, x() = i. 

The expectation ei} is denoted by Ei* Note that ei C 00. 
The quantities 6ii and Ei satisfy the two closely related recursions 

‘i 
=I+u. -l 

I 
c 6 

k~ri ki’ (1.2) 

These can be easily proved by considering the conditional expectations, 
given the outcome of the first step, in a random walk starting at i. In 
terms of matrices, (1.1) and (1.2) can be written as 

where 6 is the yt X n matrix with entries 6ij, E is the diagonal n X n ma- 
trix with ei on the diagonal, E consists of l’s, and P is the transition pro- 
bability matrix. Note that P can be written as P = VA, wh.ere v is the 
diagonal matrix with uil on the diagonal and A is the adjacency matrix. 

Several important results on dii and ei can be obtained from equations 
like (1.1) by simple manipulations from linear algebra. For example, eq. 
(1.1) can be solved in terms of the so-called fundamental matrix [ 3,, 
Theorem 4.4.71. Also, according to [ 3, Theorem 4.4.41 we have EiAi = 1, 

a result to be explained and exploited presently. For further examples, 
see [ 3, chs. IV, V]. 

Theorem ? ., 71. I’ G = (X, I’) and i E X, then Ei = 2r/Ui. 

Proof. A finite irreducible Markov chain has a stationary distribution, 
say Ri (i = 1, 2, . ..). which is the unique solution of 

22 ~ipij = ~~, i = l, 2, ...) C*i = 1, 

where pii are the transition probabilities. By substitution one easily veri- 
fies that 

ni = iU,lrp i = 1, rL, . . . 9 

constitute a solution 0 the above system, and the result follo 

Ei = 7q-? n 
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Corollary 1.X If Vj = V for 4211 i, then Ej = n for Cdl i. 

mark 1.3. Theorem 1.1 and Corollary 1.2 are also true when 4; is a 
multigraph; the proof is virtually the same. 

Proposition 1.4. If { 1) U 9‘1 = (2) U r2, then 

6 = 12 62, = 2rl(u, + 1). 

Proof. Apply (1.1) with i = l,j=2,and(1.2)withi=2.D 

If i and 1 are elements of X, the commuting time Cij is defined as the 
number of steps in a random walk from i to i and back. Hence Cij has the 
same distribution as dij + djiw The expectation E{Ci$ is denoted by Tij. 
Lf i and j are joined by an edge e of I’, then. Tij may be alternatively de- 
noted by ye. 

Consider a random walk which starts at i and which stops as soon as 
k is reached. The number of times the vertex j is left during this random 
walk will be denoted by bijk , antd its expectation by flijk. We define biji z 0 
and biii = 0 for all i, i, The quantities bijk satisfy the recurrence relations 

(1.3) 

where S{ is the Kronecker delta. The proof of (1.3) is similar to that of 
(1.1) and (1.2). 

In terms of matrices, (1.3) reads 

(1.4) 
where & is the (n-l) X (n-l ) matrix with entries flijk (i f k, i # k), 
Z is the identity matrix and Pk the matrix obtained from P by deleting the 
kth row and kth column The formal solution of (1.4) is . 

flk = (I- Pk)-’ = ii pfk . 
t=O 

(13 

For a proof of the existence of the inverse, the convergence of the series 
and several other results we refer to [3, ch. III]. From the definitions it 
is clear that dij has the same distribution as 
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and hence 

6.. = c 
81 kEX &kj’ 

This breakdown of 6ij coincides with [3, Theorem 3.3.Sl. 

W-0 

Example 1.5. Let G = Cn, labeled in the usual way. Let 0 < j < II, and 
let the vertex 0 alternatively be denoted by n. Then (1.3) takes the 
form 

P -1. 
ijn - ‘z P i+l,j,n+fPi_l,j,n forQ#i+tj, 

P jjnzl+iOj_ljn+fflj+ljnm 
9 I -9 9 

(1 l w 
(1.9) 

From these relations and from the boundary conditions flojn = fiajn = 0, 
we obtain 

P ijn = 2i(n-j)/n, 0 < i G i, 

P ijn = 2j(n-i)/n, j < i < n. 

Or, in one formula: 

P ijn = 2 { min(i, j) - ij/n}. (1.10) 

A remarkable property is the symmetry of the @ijn, viz. flijn :I, Piin. This 
is not a specific property of Cn, as is shown by the following proposi#tion. 

Proposition 1.6. flik,j/Uk - @kij/Vi for iZ?ly gFdZp!Z G. 

PrOOf* By (1 l 5), fl? “’ (I - Pi> T -l,, Furthermore, if Vj is obtained from V, 
as pi from P, by deleting the jth 
Hence /37 = 

ITOW and column, then PT = V”“P’jVj* 
Vj”flj Vj, Or ?‘# = flj v and SO P,ikj/Vk = Pkij/Vi (at first only 

for (i # j and k # j). 0 

1.4. Time reversal 

In general, if P is the transition matrix of a finite ergodic Markov 
chain, the reverse Markov chain is a Markov chain with transition matrix 
p given by P = EP% -‘. A Markov chain is called reversible 

finitions 5.3.1, 53.21. early P = P he 
V-l by Theorem 1.1. send tially fmn 

was derived, and indeed this very proposition can be used to transform 
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the forward recursion (1.3) 

into a backjvard recursion: 

(1.11) 

A more direct proof follows from (1.4), noting that, since pi is invert- 
ible, pi = I + Pipi iff pi = I + @Pj. 

Formula (1.11) has a nice interpretation, which may also serve as an 
alternative proof. Namely, flik//Uk is the expected number of times a di- 
rected edge (/c, X) is traversed in a random walk from i to j. Hence 

is the expected number of arrivals at k, while fiikj is, by definition, the 
expected number of departures from k. 

By considering the final step of a random walk from i to j, the same 
interpretation yields the following supplement to (1.11): 

1 = C (P,j/Us), i % i. (1.12) 
SE rj 

Or, (1.11) and (1.12) combined: 

(1.13) 

for all i, j, k. 

2. Results 

2. I. The stwhastic triangle inequality and other general theorems 

efinition 21. If x *ind y are two random variables with distribution 
functions F and H , zspectively, then we say that x is stochastically less 
than or equal to y (notation: x GS y) iff IQ) > H(x) for all x. 

Clearly, if x Gs y and jo Gs , then x e y. 
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Let G = {X, F} be a graph. 

2.2. If i,j@ k E A’, we say that k lies between i and j if k = i or 
k = j or every path from i to j contains k. (Hence k is a cut point in the 
last case). 

(a) dij Gs dik + dkj 
(b) dij 2 dik + dkj iff k lies between i and i. 
(C) ei 6’ Cik. 

(d) ei 2 cik iff IV = {k). 

A proof can be given with the aid of Chung’s decomposition theorem 
[ 1, p. 46’1. cl 

From the well-known result 

E{x}=${l --F(x)) d.x 
0 

for an arbitrary non-negative random variable x with distribution func- 
tion T;(x), we have the following corollaries. 

Corollary 2.4. 
(a) 6ijG 8ik +6kj. 

Cb) 6ij 
= 6ik -I- Skj iff k &S between i and j. 

Cc) ei G Tik* 
(d) ei = rik iff Fi = (k}. 

From (a) we have Tit G rik += @Ykj, and since 7 is symmetric, a graph 
is a metric space with respect to the distance 7. 

Theorem 2.5. 

(a) c {i j)E r (&kj $- piki)lvk = n-1m 
(b) z e;r re = 2r(n- 1). 

Proof. According to Proposition 1.6 and formula (P.l2), 

From this, (a) foilows by sum.mation over j, and then (b) from (a) by 
summation over k. 0 
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roposition.&& All quantities which are derived from the Markov chain 
related to G, such as ‘y, 6, E, etc., we the same for G and Gk. 

roof. Note that P G = PGk, the transition probabilities being the same. Cl 

Theorem 2.7. Suppose G and Hare graphs, x and y are distinct equivalent 
vertices of H, and K is lx, y, N) + Gk !Iet i and j be vertices of G, em- 
bedded in the natural way into K. Tkl;n 

Proof (outline). Let X be the vertex set of G, embedded in the natural 
way into K. Consider the random walk in K starting at i, which stops as 
soon as j is reached. Now for each realization (x0 = i, x1, x2, . ..} of this 
random walk, we define an interval (of length a) as a subsequence of the 

foam {Xs, XS+~P Xs+2, l **9 X,+-a } which satisfies the following conditions: 

(a) xs E XS Xs+a E X, xs + Xs+a; 
(b) .yp E X with s < p < s + a implies xp = x,. 

Note that each realisation is uniquely partitioned into intervals. Let N 
be the number of intervals in {x0 = i, x1, x2:, . ..). and tm the length of 
the mffi interval (m = 1, 2, . . . . N). For the corresponding random variables 
N and tm we hilve 

dij = t, + t, + . . . + tlv, 

and hence 

6 ij = E(tl + . ..+ tlv> = E (tl +...+$ IN=NJ 

= E(t,) E(N) = E{dfj,} E{d;} = “Fy i3;, 

where we have made use of the fact that tl and df’ have the same dis- 
tribution, as iwe I1 as N and dt. 0 

2.2 . Decomposition theorems 

mma 2.8. Let G = (X, I?) be a muktigraph with a cut point p. Let B be 
a subset of X - (p) s&z that B u I’ll = B u {p). fHence B contains all 
vertices of some components of X - (p}). Let k be the number of edges 
from p to B, and rO the ,number of edges o,f G which have no end vertex 
in 13. Then 

6 pB = 1 + 2ro/k. 
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emark 2.9. A greek letter with a graph symbol as a superscript indicates 
a conditional expectation. For example, when H is a partial subgraph of 
6, and p is a vertex of H, then $ is the condi ional expectation of the 

recurrence time to p, under the condition that the random walk is re- 
stricted to vertices of H. 

Proof of Lemma 2.8. Let H be the sub-multigraph of G generated by 
X - B. Then according to Theorem 1.1 we have 

E; = 2rO/(vP-k), 

where vP is the (total) valency of y. Hence 

= vi’ (k + 2ro) + (l-k/vp>$B. 

Solving for spB, we obtain the desired result. q 

Lemma 2.8 is more powerful, as we shall see presently, when we com- 
bine it with imploding, to use a graph-theoretic term, or lumping, of 
states in Markov chain terminology. 

Lemma 2.10. Let G = (X, I’) be a multigraph, and let B be a non-trivial 
s&wet of X. Let 

C = I73 - B = {cl, c2, . . . . cm}. 

Suppose 6(cE.’ B) = 6(C, B) does not depend on j. Further suppose that 
there are no edges between any pair (Ci, cj). Let there be exactly k edges 
from each cj to B, and r. edges without end-points in B. Then 

6(C, B) = 1 + 2r,/(km). 

Remark 2.11. In our applications, the condition on 6(+ B)r is usually 
trivially true for symmetry reasons. 

Psoof.of Lemma 2.10. Consider the auxiliary multigraph (X’, ,‘) ob- 
tained from (X, r by mutually identifying all ci* The conditions of the 
lemma ensure that 6(C, B) does not change. By applying Lemma 2.8, 
we immediately obtain the desired result. Cl 

2. The restriction to graphs without edges between ci and ci 
has been made to avoid loops in the multigraph (X’, 6“). 
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2.3. Applications 

2.3.1. Distances in the cube graph. The D-dimensional cube graph may 
be defined as follolNs. The vertex set X is the set of all 2D binary se- 
quences of length 6). Two vertices are connected by an edge i 
responding sequences differ in exactly one place. Hence the valency of 
a vertex is D, and the total number of edges is D 20-r. 

For technical reasons, suppose that X is a subset of equipped with 
the norm iI l 11 given by 

D 
llxll = x IXJ 

i=l 

forx = (x1, . ..) x0) E . (Then X,JJ E X are connected by an edge iff 
Ilx-~~11 = 1.) Set 

sfi* = (x E x I llxll = ml. 

Since every x E Sm is connected with S, 1 by m edges, and since, for 
symmetry reasons, 6(x, Sm_r ) does not depend on x if x ranges over S,, 
Lemma 2.10 can be applied, yielding 

D 

sc:s,, Sm_l) = (g-y 22 (f% - 
j=m 

Now by Corollary 2.4(b) we have 
k 

‘(‘k9 ‘0) = c ‘CsmP ‘m-r)9 
m=1 

so that in general, by an obvious symmetry argument, 
k D 

if Ikyll = k:. 

In particular we find that the maximum value of &,,, where x and y run 
through the vertex set X, is given by 

D D 

6 max = g1 (“,I:>-’ c (f), 
j=m 

which can be reduced to 
D-l 

6 max 
= 2D-1 

The derivation constitutes a nice exercise with binomial coefficients. 
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We note that for D large, 

6 max- 2q1 -f-D-‘), 
whereas 

6 = = x 
P 
y 2O-- 1 if (Jx-yia 1. 

Z.3.2. Collecting times on the cyclic graph. Let G = (X, r) be a graph and 
let i E X. Consider the random walk which starts at i and which stops as 
soon as all1 vertices have been visited at least once. The number of steps in 
such a random walk is called the collecting time starting at i, and is de- 
noted by xi. E(xi } is denoted by & and maxiEx & by & 

We show that e = (z) when G = e,* When we have just added the kffr 
(new) vertex to our cohection, the expected number qk of steps required 
to obtain the k + 1 st vertex can be found by applying Lemma 2.10 with 
B equal to the set of vertices not in the collection (note that the starting 
point is indeed adjacent to B): 

Q&. = 1 + 2(k-1)/(1*2) = k, 

and hence 

2.4. Tree-wise joins 

Let G = (XI I’), with X = {+ x2, . . . . x,}, and let Hj = (Yi, $), with 
Yj E Yj 0’ = 192, l V., n). Tile tree-wise join (or just the join) of G and 

HI , . . . . Hn is defined as the graph H which arises by identifying xf and 3 
0’ = 1, 2, . . . . n). Note that we do not exclude the possibility that one. 
or several Hi consist of a single point. An example is shown in Fig. 2.1. 

Fig. 2.1. The join H of G and HI, Ha lQ H4. 
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Theorem 2.13. Let G = (Xi, F) be a multigruph. Let hr be the join of G 
and Hj = (Yi, A$, with iA+ = yi (j = 1,2, C._l) n). Let i and k be elements 
o-f X. Then 

or, equivalently, 

G-2) 

Proof (outline). Consider a random walk on the graph H. Part of it will 
G lie in G; its expected length is 6ik. Bes:ides, there will be a number of de- 

partures from j to a vertex of G - (i’); the expectation of this number is 
@k. Each such departure from j is preceded by a random walk in Hi, 
possibly of length 0; the expected length of one such random walk in 
-$li follows at once from Lemma 2.8: it is equal to 

~~,~ _ Ii)-1 = 2rilVG. 

We subtract 1 because the step from j to G - (i} is part of the walk 
within G and has been accounted for in,the number 6%. 0 

2.5. The attraction law for a tree 

Let i and i be; vertices of a tree 13 with straight distance mij = n. De- 
note the successive vertices between i and j inclusive by 0, 1, . . . . n. Then 
0, 1 f . . . . n generate a subgraph G of H isomorphic to L, +1. Moreover, H 
is the tree-wise join of G and trees Hk (0 < k < ut), attached to G at the 
vertex k, and with, szy, nk vertices (including k). Hence by Theorem 2.13 
we have 

Now vf = 2 (k = I, . . . . n-l), and vf = vt = 1, while a straightforward 
calculatiorl shows that 

$?+I 
F 8kn = 2(n-k), k > 0, &il = n. 

I-Ien ce 
n 

a 
2 (Sfn -i= mfn) = 

k=O 
nk (n-k). 
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0 1 2 3 4 5 6 -- 

Fig. 2.2. A tree in which 6ma, and the diameter are attained for different pairs of vertices. 

This formula has a nice interpretation. By giving all vertices of H mass 1 

and identifying the vertices of G with the corresponding points 0, 1, . . . . n 
on the real line followed by concentrating the whole mass of Hk in k 
(0 < k < n), a mass distribution on the line is obtained. The (euclidean) 
distance of its centre of gravitv to the point YI is proportional to the 
right-hand side of (2.3), thereby providing an interpretation of this for- 
mula as a sort of attraction law. 

With the aid of (2.3), distances I$ in a tree can be quickly calculated. 
In the tree of Fig. 2.2 we find 6, 6 = 78 and 6, 6 = 83. This shows that 
in a tree, Gmax is not necessarily attained for two vertices of which t;;le 
straight distance is the diameter. (For the behlaviour of y in this respect 
see Section 3.2). 

2.6. The quantities 8ij 

We have already met the quantity Pijk/Uj several times. From its inter- 
pretation given in Section 1.4 it follows that the symmetrized quantity 

may be interpreted as the expected number the step j + s is made in a 
random walk from i to k and back (where s is a fixed element of I”‘). 
This quantity, 8ijk, will be of crucial importance in the sequel. Theorem 
2.5(a) states ‘nat 

ti,FE r 'ikj = ‘-l) 

independent of k. e now prove the following much stronger result. 

heorem 2.14. In eadt G = (X9 I’) with i,j, k E 
on k. 
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roof. If one symmetrizes formula (1.13) with respect to i and j, one ob- 
tains 

vkeikj = C 8. l = C (vseisj)Psk9 
s&r-k “I 

k = 1, 2, . . . . 
SEX 

In otjher words, for fixed i and j the quantities Vk@ikj satisfy the station- 
ary state equations. Hence 

‘k ‘ikj = XijBk, 

where hii is a constant depending on i and j only. T-he desired result now 
follows from Theorem 1.1.0 

From now on we WlitR Oij for eikj’ 

Corollary 2.15. Oij = fliij/Vi = fljji/Vj* 

CoroNary 2.16. In each graph G = (X, r) with i, k f X, 

Proof. From (2.2) it follows by interchanging i and k and adding that 

Since we may choose IY = G, the corollary follows. e] 

Corollary 2.17. 
(a) oik ’ fkj 7 ejj + &jk /vj* 

tb)Tik + Ykj = Yij ~ 2(2rlui)piik. 

Proof. Apply Proposition 1.6.0 

Remark 2.18. In view of Corollary 2.16, (a) and (b) are equivalent. Both 
(a) and (b) can be viewed as triangle inequalities, in which the deviation 
from equality is precisely given (namely by the last term). Compare 
11, #ll,Theorem3]. 

Using (1.7) (and Theorem 1.1) one easily obtains the following corol- 
lary from Corollary 2.17 (after multiplication by Vj and summation over 
i)* 
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This shows among other things that the &structure is determined by the 
y-structure. 

heorem 2.20. If H is obtained by joining graphs Hj to G = (X, I’), then 
for each pair i,k E X, 

Proof. From the proof of Corollary 2.16 we have ei6, = #k/(2p). iBy the 
same corollary applied to H we have 0: = #k/(2&, and the theorem 
follows. u v 

3. Balanced graphs 

3.1. General theorems 

Theorem 3.1. If G = (X, r) anti’ i E X has valency Uj with i, k,s, . . . E I’j, 
then : 

Ca) ujC"ij - OsjI = xkt=rj Ceik - $sk); 

(b) Uj(-1 + 23 iErj$ij)= z(ck)c Fj’ik’ 

Proof, Corollary 2.17(a) states that 

eij + ejk = eik ’ 2P,kj/V,. 

Hence, by summation over all k E r’j, using formula (1.12): 

his holds mutatis mutandis for any s E l?j substituted for i, and (a) fol- 
lows by subtraction., while (b) follows by sIumma$ion over i E I”. U 

The result in (b) is less deep than the one in (a). In fact, (b) can be ob- 
tained using only the basic recursions (1.1) and (1.2) and the relation 

Te = 2~3,. We leave the details as an exercise. 

Corollary 3.2. If G = (X, I’) and i E X has valency 2 with I”j = (i, k), then 
(a) $ij =$k’; 
(b) oik = 4Qii - 2. 

Take cj = 2 in Theo 
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a 

b 

Fig. 3.1. A vertex-equivalent unbalanmd graph. 

efinition 3.3. A multigraph G = (X, r) is called balanced when 7e (or 
equivalently Oe) has the same value for all e E I’. 

Rather trivial examples of balanced graphs are edgeequivalent graphs 
like K,, CH and Km n. Other examples will be given further on. An ex- 
ample of a vertex-ehuivalent graph which is not balanced is shown in 
Fig. 3.1. A direct calculation shows that va = 9, yb = F. %_a - 

Remark 3.4. Although we consider connected graphs only, it seems na- 
tural to define 6ij = 00 if i and j belong to different components of a dis- 
connected graph. For disconnected graphs it does make a difference 
Whether we require 7e or Oe to be constant in order that the graph be 
balanced; & (which gives the wider class) seems to be the better choice. 

3.2. Trees 

From Theorem 2.5 it follows that if a graph is balanced, then for all 
eE r, 

i!$ = (n-1)/r, 7e = 2(n-1) 

(wie do not need Corollary 2.16 for that). Note that Theorem 2.5 states 
that for any graph the mean of the Q is equal to (n- 1 )/r, and the mean 
of the *ye to 2(n- 1). 

reposition 3.5. Every tree is balanced. 

roof. Let e be an edge, with end oints p and 4, of a tree. Since e is a 
bridge, we may apply Lemma 2.8 with k = 1, and we obtam dye = 2r = 
207-l). cl 
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u A multigraph with a bridge is balanced iff the multi- 
graph is a tree. 

roof. Let e be a bridge in a balanced multigraph G. Then 7e = 2r, from 
the above proof, while on the other hand 7e = 2(n-1) since G is balanced. 
Hence n-l = Y, and the “only if’ part of the proposition follows from 
the connectedness of G. The ‘Y part is Proposition 3.5. 0 

3.3. Tree-wise joins of balanced graphs 

If we join two graphs G = (X, r) and G’ = (X’, I”) to form a graph I-i!, 
then, according to Theorem 2.20, 

if e E I’ and e’ E I”. Hence a necessary and sufficient condition in order 
that the join of two graphs G and G’ be balanced is that both G and G’ 
are balanced with 

Since this is obviously also true for an arbitrary number of graphs, we . 

have the following theorem. 

Theorem 3.7. The tree-wise join of graphs G,, G,, ..‘ I’ GN is balanced iff 
all Gi are balanced and have the scme value of 8,. 

In particular, we may join identical balanced graphs, and the result 
will be balanced. Two different edge-equivalent graphs with the same 
value of Be are e.g. Km and Km_ l,m. Note that Proposition 3.5 is a spis- 
cial case of Theorem 3.7. 

3.4. A valency criterion 

Let G = (X, I’), IX1 = n, iI’1 = r and u. = min,x E x ux. 

roposition 3. .Hf2r>vo (2n-u. - I), then G is not balanced unkss 
Gisa treeorG=K,. 

n particular (take u. = n-2), the gra.ph obtainabl,e from 
by deleting one edge is not balanced. 

o prove the proposition we need a leimma w 
interest on its own. 
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roof. The case uX = 1 is trivial, so suppose uX 2 2. Fix s E Fx. Set 

ck = min(Fik, 1 k E L?&s, uk # 1). 

Let k, E Fs satisfy 6kl,s = Q. Then 

k#s 

Nowa> l,soukl # l.Thusalso 

“=$ 1 - 1 
1 
,> +u$uk 

1 
l)&> +$‘(u,-l)k 

Hence cy 2 tiO, and consequently 

Proof of Proposition 3.8. Choose x such that uX = uO. Let qe be the mean 
value of ‘yXs with s ranging over I’x. Then clearly 

r;. = UG -l c (s, + Fi,,) 
SE rx 

= 1 +u;r z1 6 +ui’ zz (6 - 1). 
SEl?X sx SEl?X xs 

Thus, according to Lemma 3.9, 

9, 2 ex + ug - 1 z= u;” (2r + U()(~+) - 1)). 

Hence, if G is balanced, then 

214 < a0 (2n-u. -- 1). 

This can be sharpened if we suppose in addition that u. # 1 and not all 
valencies are the same. We then choose x such that ux = u. and such 
that a vertex y E I’x exists with uv > uO. Re-examining the proof of the 
lemma, one readily finds ouit: that in this case 

axs > q) + u;l (ux -q) 1, 

and that consequently 

2r < uO (2n-u. -I), . 

as required. Note, however, that if G is balanced and 2r = uo(2n-u. -l), 
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and G is neither a tree nor Kn, then it follows that u0 St 1 and that not 
all valencies are the same. 0 

3.5 Substitution 0; linear gniphs 

If we substitute linear graphs into a graph G, or more generally, place 
some extra vertices on some of its edges, we obtain a special sort of 
“linear” subgraphs of G, which we call segments. 

Definition 3.10. Let G = (X, I’) be a graph. If 

Y = {&so, sr, . . . . sp} c x 

with all Sj distinct, and rsk = ( $_l, ++I) for all k with 0 < k: < p, and 

A=cr, 11 <k<p}, 

where fk is the edge with end points Sk _ 1 and Sk, then Y and A consti- 
tute a partial subgraph S = (Y, A) of G called a segment of G of length p. 

Note that S is the subgraph generated by Y if p = 1 or so $ I?sp. Fur- 
thermore, any edge of G, together with its two end points, constitute 
a segment (obviously of length 1). 

If S is a segment, then, in view of Corollary 3.2, BP does not depend 
on the choice of e from among the edges of&‘. Hence, if G is edge equiv- 
alent, then (0, n, L,,,) + Gk is balanced. 

An example of a graph which is balanced by this remark is 
(0, n, L* & + Lg (see Fig. 3.2). The condition that G be edg;e equivalent 
can be weakened, as is shown by the following theorem. 

Theorem 3.11. Let G be a graph. 77zen (0, n, L, +1l -+ Gk is balawed iff 
G is balanced. 

The proof rests on a lemma which is of some interest on its own. 

Fig. 3.2. The balla ted graph (0, 3, tQ> -+ 
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2. If S is a segment of a graph G and i, j, p, y are vertices of 
S, then 

m;q($j - mij) ‘;;= mZ(0 11 PY 
- m,,), 

where mij is the straight distance between i and i. 
IEl partictilar, if mij = k and e is an edge of S, then 

eii=k2(e~ - l)+k. 

roof. Denote k + 1 successive vertices of S by 0, 1, . . . . k (i.e. mi i+l_= 1 
for all 0 < i < k). We shah prove by induction on k that 8,k - k’s 
k 

2 
(~0, - 1). In view of Corollary 3,2 this is sufficient to prove the lemma. 

By Corollary 2.17(a), in’combination with formula (1.12), we have 

‘Ok + ‘k k+9 = ‘0 k+l 
-1 

+ 2 - 2uk-1 PO,k-l,k’ 

Since ok,k+1 = OOr ‘by Corollary 3.2(a), we will obtain an expression for 
8 ()$+r rn terms of eOk and 601 if we determine &_&)k _ l,&. We pro- 

ceed as follows. Set 

a, =~~,/u,, o<S< k. 

Then a0 = o()k ;Cor&uy 2.15), ak 7 0, and in-between (0 < s < k) 
a, satisfies the familiar recursion 

a, =$a,,1 - +;a, 1 

for the arithmetic sequence, as follows from formula (1.13). Hence 

as = k”(k - s&k, 

and consequently 

8 () k+P + 2 = @oI + k” (2 + k&k, 

from which the proof of the induction step is easily derived. Cl 

rmf of eorem 3.11. We write H = (0, n, L,+$ + Gk. Let e be an edge 
of G with end points x anvil y. In the construction of H from G, a copy 
OfL,+l is substituted for e; the result is a segment S of H. Let f be an 
arbitrary edge of S. We want to relate 0: and 07. We know that 

#%+I = 6Ln+1 = n2 
On n0 . 
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Hence it follows from Theorem 2.7, after the usual interchanging and 
adding that 

r, since fl = kn rc, 

19:~ = nk’l OFy. 

Now Lemma 3.12 can be applied to the segment S of H, and we 0btai.n 

0; =k{n(Bf; - l)+ 1). 

It now only takes a small step to complete the proof. 0 

3.6. Various criteria 

We now further exploit Lemma 3.12. We start with a definition. 

Definition 3.13. A vertex of a segment is calkd an ena! vertex (01: end 
point) if it is incident with only one edge of the segment. 

Proposition 3.14. If within a graph G two segments exist, both with the 
same end vertices but with distinct lengths p and q, then G is balarxed 
onZy if (n-l ) r-l = 1 - (p + q)-l . 

Proof. Apply Lemma 3.120 

Corollary 3.15. If within a graph G three segments exist, all three with 
the same end vertices but with distinct lengths, then 6 is not balanced. 

Proposition 3.16. If j is a vertex of G with vj = 3 and i,k E rj are the 
end pointsaof a segment of length p, then G is balanced only if 

( r-n+ l)r’1 =(p- 2)(p2 -3)-l. 

Note that if G satisfies the conditions of Proposition 3.16 with p = 2, 
then G is not balanced. 

Proof. Let Fj = {i, k, s). Suppose that G is balanced. Then it follows 
from Theorem 3.1 (a) that @jk - (?sk = 0. Similarly 6is = &, and so, Iby 
Lemma 3.12, 
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Hence Theorem 3.1(b) takes the simple form 

3e, - 1 =p2(e, - l)+p, 

from which the proposition follows at once. CJ 

emark 3.17. Let H be a balanced graph satisfying the conditions of 
Proposition 3.14 (case 1) or Proposition 3.16 (case 2). Suppose that x 
and y are two equivalent vertices of H, which are either equal to an end 
point of any of the segments concerned, or do not at all1 belong to any 
of those segments Suppose furthermore that in case 2, x and y are not 
equal to j. Then CX, y, H) + G is balanced only if G is a tree. This can be 
shown by counting vertices and edges. 

The above results (an those of the appendix) have led us to believe 
that aU balanced graphs can be obtained through tree-wise joins of sub- 
stitusion results of k-fold linear graphs into edge-equivalent graphs. 

Let us put this differently and more exactly. We have already shown 
that a graph $vith a cut point is balanced if and only if it is the tree-wise 
join of balanced graphs with a common value of Q The characterization 
of balanced graphs could be completed now by proving the following 
conjecture. 

Conjecture 3.18. A block is balanced if and only if it can be obtained 
by substitution of a linear graph in to an edge-equivalent &aph. . 

Appendix 

In Table A.1 we give a survey with respect to balancedness of graphs 
on 6 or fewer points. Our starting point was [ 2, Appendix 11. 

We have omitted all disconnected graphs from arary’s list, and also 
all graphs with a bridge. The remaining graphs, listed below, are charac- 
terized by three parameters: n (number of points), r (number of edges), 
and H (the number which Harary in his table assigns to the graphs). 

Our criteria have been applied in the same order as in the list of ab- 
breviations below the table. 

The eight graphs for which ;t different argument was necess 
ig. A.1. The graph (6,8,23) is not b.alanced on ac 

roposition 3.16 with p = 2. he graph (6, 14, -) is not balanced on ac- 
count of the remark immediately following oposition 3.8. The graphs 
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Table A.11 
Balancedness of graphs on 6 or fewer points 

-_ 
n I H n P H n r H 

3 3 
4 4 
4 5 
4 6 
5 5 
5 6 

5 7 

5 8 

5 9 
5 10 
8 6 
6 7 

6 8 

2 

- 

I 
5 
6 
7 

13 
1 
5 
6 
7 
9 

BE 6 8 12 NV 6 
BE 14 NT 
N2 15 BE 
BE 16 NV 
BE 21 NS 
BT 23 NA 
NV 6 9 1 N2 
BE 2 N2 
N2 5 N2 6 
N2 6 NT 
N2 I NV 
N2 8 N2 
NA 9 N2 
NV 10 N2 
BE 11 N2 
BE 13 N2 
N!S 16 N2 6 
NV 17 BE 
N;i: 18 N2 
NT 19 N2 
NT 20 N2 
NV 6 10 1 N2 6 
NV 2 NA 
NV 3 N2 6 
w 4 N2 6 

10 

11 

12 

13 

14 
15 

5 
7 
8 

10 
11 
12 
14 
15 

1 
2 
3 
5 
6 
7 
8 
9 
1 
2 
3 
4 
5 
1 
2 

- 

N2 
NA 
N2 
N2 
N2 
NA 
NA 
N2 
N2 
NV 
NV 
N2 
NV 
NV 
NV 
N2 
NV 
NV 
N2 
NV 
BE 
NV 
NA 
NA 
BE 

BE: edge-equivalent, hence balanced. 
BT: tree-wise join of edge-equivalent graphs with a common value of 6, hence balanced. 
NT: tree-wise join other than above, hence not balanced. 
N2: not balanced on a.ccount of Proposition 3.8 with UO= 2. 
NV: not balanced on a.ccount of Proposition 3.16 with p = 1. 
NS: not balanced on account of Proposition 3.14. 
NA: not balanced on account of a different argument. 

(5,8,2) (6,8,23) 6JO,7) 

(6,13,2) (6,~,-) 

Fig. A.1. Graphs which require speci,al proofs fox their un 
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(6, 10, 12) bid (6, 13,2) satisfy the conditions of Proposition 1.4, while 
the vertices 1 and 2 are equivalent, so that ~~2 can be quickly found. The 
remaining f mw graphs have been dealt with by direct computation. 

ded in proof 

Recently our Conjecture 3.18 has been disproved. A computer search 
has shown that there exists exactly one balanced graph G on 7 points 
tihich is a block but which cannot be obtained by substitution of a 
linear graph into an edge-equivalent graph. This graph is G = (X, I’) with 

X= (1, 2, .:., 71, I’ = { 12, 13, 14, 15, 26, 36, 47, 57, 67). 
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