Stochastic Processes and their Applications 2 (1974) 311-336. © North-Holland Publishing <ompany

RANDOM WALKS ON GRAPHS
F. GOBEL and A.A. JAGERS

Technische Hogeschool Twente, Enschede, The Netherlands

Received 19 March 1973
Revised 15 January 1974

Abstract. In this paper the following Markov chains are considered: the state space is the set of
vertices of a connected graph, and for each vertex the transition is always to an adjacent vertex,
such that each of the adjacent vertices has the same probability. Detailed results are given on the
expectation of recurrence times, of first-entrance times, and of symmetrized first-entrance times
(called commuting times). The problem of characterizing all connected graphs for which the
commuting time is constant over all pairs of adjacent vertices is solved almost completely.

balanced graph random walk
block (of a graph) tree-wise join
first entrance time

1. Preliminaries
1.1. Intuitive introduction and summary

Consider the graph of Fig. 1.1. At A we start a random walk along the
edges. After one step we are at the vertex B. The next step is either BA or
BC. We assign probability { to each of the two possibilities. Once we are
at C, there are three possibilities for the next step: CB, CD or CE. To
each we assign probability . We agree to stop as soon as we are at D. The

Fig. 1.1. A simple maze.
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expected number of steps in this random walk, to be denoted by 6,p, can
be easily calculated: 8,5 = 11. The analogous quantity &y, has the value
13. If i and j are two vertices of the above graph, we may consider y;; de-
fined by

A simple calculation shows that

YaB = Yac = Yop = Yeg = 85

hence y has the same value for all edges of the graph. Such a graph is
called balanced.

More generally, we may consider a fairly arbitrary graph and investi-
gate quantities like the above 8’s and v’s. In this paper we present some
of our findings. Section 1.2 contains graph-theoretic preliminaries; in
Section 1.3 we give rigorous definitions of the random walks and of
most of the quantities we are interested in. In Section 3 we treat the
special subject of balanced granhs.

The origin of our work was the question: “How long will it take to
reach the goal of a maze if I move at random through the maze?”” In the
obvious model suggested by the above example, the sequence of succes-
sive vertices is of course a Markov chain with a finite state space. Al-
though detailed results for such ch:.ins are available in the literature, we

believe that the specific findings collected in this paper may be of inter-
est.

1.Z. Graphs

Let G be a finite, connected, undirected graph without loops and, un-
les; stated otherwise, without multiple edges. Whenever we use the word
graph, we tacitly assume that it has all the above properties; we use the
wcerd multigraph if all the conditions are fulfilled with the last as a pos-
sible exception. Often we write (X, I') instead of G, denoting by X the
sct of vertices of G and by I' the set of edges. By I a multivalued mapping
from X into X (to be denoted by I' as well) is defined in such a way that,
if x € X, I'x is the set of all y € X adjacent to x.

As usual, U, p V'x will be denoted by I'B if B is a subset of X. Since
G has no multiple edges, G is uniquely determined by X and the mapping
I. Usually, we shall denote LX| by # and IT'l by ». The valency (or degree) v,
of x € X is by definition equal to IT'x|; the index x will be dropped fre-

quently when no confusion is possible, e.g. when all valencies are equal.
Note that 2, yv, =2r.
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If Y is a subset of X, then the subgraph generated by Y is by defini-
tion the subgraph with vertex set Y, hence the graph with vertex set Y
and which lias as edges all edges of X with both end points in ¥,

The vertices of G are usually supposed to be labeled 1, 2, ..., n or
0,1,..n-1.

The adjacency matrix of G is the n X n matrix A = [4;], with
4;; = 1ifieT; and 4;; = 0 otherwise. Note that 4 is a symmetric ma-
trix with zeros on the diagonal and that

; Al.]. = ?Aﬁ = ;.

A bridge of G = (X, I') is an edge e such that (X, I — {e}) is not con-
nected. A cut-point of G is a vertex x such that the subgraph generated
by X — {x} is not connected. A block is a graph without cutpoints.

Let G=(X, I') and H = (Y, A) be graphs, and x € X, y € Y. The tree-
wise join of G and H (at x and y) is the graph obtained by just mutually
identifying x and y.

The straight distance my, of two vertices x and y of a graph G is thc
smallest number & such that x € I'*y (where I'* is the kth iterate of I").

Some special graphs, which we need in the sequel, are the following:

(a) The complete graph on # vertices, K,,, which is the graph with

%) edges.

(b) The complete bipartite graph K,,, ,,, where X =4 + B with A and

B disjoint, |A| =m, |B| = n, and

I'={{a, b}la € A, b € B}.

(c) The cyclic graph C,, where X ={0, 1, 2, ..., n—1}, and
P={{ii+1}1i=0,..,n-2} v {{0, n—1}}

(d) The linear graph L,, where X ={0, 1, 2, ..., n—1}, and
Fr={ii+1}1i=0,..,n-2}

If G is a graph, then G, the k-fold multigraph corresponding to G is
defined as the multigraph which can be obtained from G by replacing
each edge with k edges (k> 1, G- = G). See Fig. 1.2.

If G and H are graphs and x and y are two distinct equivalent vertices
of H, then we denote by (x, y, H) - G¥ (cr if x, y are fi:ed, by H>G*)
the graph which can be obtained from G* by replacing each edge of Gk
with a copy of H in such a way that x and y are identified with /and j
respectively, if i and j are neighbours in G. For an examaple, see Fig. 1.3.
Note that (0, 3, L4) » C} can also be obtained as (0, 3, g}~ C3.
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2
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Fig. 1.2. A graph and its 2-fold multigraph.

Q.3L0—C3

FFig. 1.3. An example of substitution.

1.3. Random walks and related quantities

Let G = (X, I') be a graph; to avoid trivialities we assume |X| > 1. Let
i € X. A random walk on G startirg at i is a random sequence xg, X;. X, ...
of vertices of G such that:

(@) Plx, =il =1,

B)Plxpe1 =kl xg =i, X Ty ey X1 Thpp_pp X =115

=PlXpe =k 1 Xy =j1=v/1if k €T}, and = 0 otherwise.

Hence x, x4, x,, ... is a Markov chain with stationary transition proba-
bilities and with finite state space X. The chain is irreducible (since G is
connected) and either aperiodic oz, if G is bipartite, periodic with period 2.

Let i and j be elements of X. We define the stochastic variable d;; to
be identically 0 if i =j. If i # j, then we say that d;; assumes the value k
if and only if in a random walk starting at i we have

X #F1, Xy F [, o, Xp_FI X =]

Hence d;; is the number of steps to reach j from i for the first time. The
expectation of d;; is denoted by 5,-,-. From our assumptions it follows
that every two states communicate, and, since X is finite, it follows that
8,-' < oo,

]
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If i € X, then ¢, is the recurrence time of i, i.e. ¢; = k > 0 if and only if

x, =i x, . #1i . #F=i yx =i
*k ) vvk_l vy esey vvl 7 » ﬂO e

The expectation E{e;} is denoted by €;. Note that ¢; < oo,
The quantities §;; and ¢, satisfy the two closely related recursions

S.=1+v! 24 65,., i#j, (1.1)
4 ' keri M ’ . :
e, =1+v! 27 &5 (1.2)
! i reri M
These can be easily proved by considering the conditional expectations,
e f rst step, in a random waik starting at i. In
an

given the outcome of th
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1.2) can be written as
S+e=F+pP

‘-J'lv’

where  is the n X n matrix with entries §;, € is the diagonal n X n ma-
trix with €; on the diagonal, E consists of i’ s, and P is the transition pro-
bablhtv matnx Note that P can be written as P= VA, where V is the
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Theorem ' 1. If G = (X, ") and i € X, then €; = 2r/v;.

Proof. A finite irreducible Markov chain has a stationary distribution,
say m; (i = 1, 2, ...), which is the unique solution of

1111
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Corollary 1.2. If v, =v for allj, then €; = n for all j.

Remark 1.3. Theorem 1.1 and Corollary 1.2 are also true when G is a
multigraph; the proof is virtually the same.

Proposition 1.4. If {1} U T'l ={2} U T"2, then
b =8y = 2r/(vy + 1).

Proof. Apply (1.1) withi=1,j=2,and (1.2) withi=2.0

If i and j are elements of X, the commuting time c;; is defined as the
number of steps in a random walk from i toj and back. Hence c;; has the
same distribution as d;; + d;;. The expectation E{c, } is denoted by Vi
if i and j are joined by an edge e of I', then v;; may be alternatively de-
noted by v,.

Consider a random walk which starts at i and which stops as soon as
k is reached. The number of times the vertex j is left during this random
walk will be denoted by b, , and its expectation by B;;;. We define b;;;=0
and b;; = 0 for all i, j. The quantities b;;; satisfy the recurrence relations

B =8+ vt L By, ik, (1.3)
where &/ is the Kronecker delta. The proof of (1.3) is similar to that of
(1.1)and (1.2).

In terms of matrices, (1.3) reads

By =1+ Py, (1.4)

where B is the (n—1) X (n—1) matrix with entries {3,-]-k G#k j+k),
I is the identity matrix and P, the matrix obtained from P by deleting the
kth row and kth column. The formal solution of (1.4) is

B, =U— P! =?—30P;€' (1.5)
For a proof of the existence of the inverse, the convergence of the series
and several other results we refer to [3, ch. III]. From the definitions it
is clear that d;; has the same distribution as

2 b

keX tkj
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and hence
5= 2 By (1.7)
This breakdown of §;; coincides with [3, Theorem 3.3.5].

Example 1.5. Let G = C,,, labeled in the usual way. Let 0 <j < n, and
let the vertex O alternatively be denoted by n. Then (1.3) takes the
form

Bn =4 Bistjint iBi_tjm fOTO#EI#], (1.8)

ﬁif" =1+ lﬁ] Lj,n %Bjﬂ,j,n' (1.9)

From these relations and from the boundary conditions 3, =
we obtain

Bijn = 2iln—j)n, 0<i<j,

ﬁnjn = Os

Bl.fn =2j(n—i)/n, j<i<n.
Or, in one formula:
Bijn = 2{minG, j) — ij/n}. (1.10)

A remarkable property is the symmetry of the f;;,, viz. Biin = Bjin- This
is not a specific property of C,, as is shown by the following proposition.

Proposition 1.6. f,;;/v; = Bk,]/v for any graph G.

Proof. By (1.5), ﬁT - PT)' Furthermore, if V; is obtained from V,
as P; from P, by deletmg the jth row and column, then PT =V ‘IP Vi.
Hence BY=V;18,V;, or Vi =B;V; and so Biz;/v; = B0y Gat first only
forH&]andk#:]) ]

1.4. Time reversal

In general, if P is the transition matrix of a finite ergodic Markov
cham, the reverse Markov chain is a Markov chain with transition matrix
P given by P = ePTe1l. A Markov chain is called reversible if P = P
[3, Definitions 5.3.1, 5.3.2]. Clearly P = P here, since P= V-1 PTV and
€= 2r V-1 by Theorem 1.1. Essentially from this fact, Proposition 1.6
was derived, and indeed this very proposition can be used to transform
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the forward recursion (1.3)

= sk -1 . 4
Bixj = 8; +v; sezm.ﬁskj’ t#17,
into a backward recursion:
_ sk .
Bay =0F + T Giglv), k#. (1.11)

A more direct proof follows from (1.4), noting that, since §; is invert-
ible, g; =1+ P;B; iff B,- =1+8/P;.

Formula (1.11) has a nice interpretation, which may also serve as an
alternative proof. Namely, B,-k,-/vk is the expected number of times a di-
rected edge (k, x) is traversed in a random walk from i to j. Hence

Z Bylv)
is the expected number of arrivals at k, while Bixj is, by definition, the
expected number of departures from k.

By considering the final step of a random walk from i to j, the same
interpretation yields the following supplement to (1.11):

1= 21 Bi;lv), i#]. (1.12)
sery

Or, (1.11) and (1.12) combined:

5 46y =8 + 2 Bylv) (1.13)

forallj j, k.

2. Results

2.1. The stachastic triangle inequality and other general theorems
Definition 2.1. If x and y are two random variables with distribution
functions F and H, respectively, then we say that x is stockastically less

than or equcl to y (notation: x <* y) iff F(x) > H(x) for all x.

Clearly,if x <* y and y <* x, thenx = y.
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Let G ={X, I'} be a graph.

Definition 2.2. If i,j,k € X, we say that k lies between i andj if k=i or
k =j or every path from i toj contains k. (Hence k is a cut point in the
last case).

Theorem 2.3.
@) d;; < dy +dy
(b) d;; = dy +dy; iff k lies between i and j.
() e; < ¢y
(d) e; = ¢ iff T'i = {k}.

A proof can be given witl: the aid of Chung’s decomposition theorem
[1,p.46]1.0
From the well-known result

E{(x}= [ {1 - F(x)} dx
0

for an arbitrary non-negative random variable x with distribution func-
tion F(x), we have the following corollaries.

Corollary 2.4.
(a) 8,’ < 6,-k + Bk]"
(b) 8;; = & + 8y iff k lies between i and j.
(¢) €; < Yik-
(d) €; =y iff Ti ={k}.

From (a) we have v;; < v + 7, and since 7 is symmetric, a graph
is a metric space with respect to the distance v.

Theorem 2.5.
(@) Z{ jyer Bixj * Bjxi)/vy =n-1.
) Z.cr Ve =2r(n-1).
Proof. According to Proposition 1.6 and formula (1.12),

1-8F= iezr’j Bizjlve)-

From this, (a) follows by summation over j, and then {b) from (a) by
summation over k. 0
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Proposition 2.6. All quantities which are derived from the Markov chain
related to G, such as v, 8, €, etc., are the same for G and G*.

Proof. Note that PG = PG* | the transition probabilities being the same. O

Theorem 2.7. Suppose G and H are graphs, x and y are distinct equivalent
vertices of H, and K is (x, y, H) > G* Let i and j be vertices of G, em-
bedded in the natural way into K. Tr.cn

K=gH §G
oK =8 53,

Proof (outline). Let X be the vertex set of G, embedded in the natural
way imto K. Consider the random walk in K starting at i/, which stops as
soon as j is reached. Now for each realization {x; =i, x;, x,, ...} of this
random walk, we define an interval (of length a) as a subsequence of the
form {xg, Xg41, Xg495 --es Xg4q} Which satisfies the following conditions:

(@) x; €EX, X540 € X, X3 # Xg4g5

(b) x, € X with s < p < s +a implies Xp = X |
Note that each realisation is uniquely partitioned into intervals. Let N
be the number of intervals in {xy =i, x,, x,, ...}, and ¢,, the length of
the mt™ interval in = 1, 2, ..., N). For the corresponding random variables
N and ¢t,, we have

dii '—'tl +t2 + ...+tN,

and hence

5;=E{t, + .+ ty} =EE{t, +..+1y IN=N}

= = i Gy = sH
= E{t,} E{N} =E{2] } E{d} = 87 &7,

where we have inade use of the fact that ¢; and df{y have the same dis-
tribution, as well as N and df}. O

2.2. Decomposition theorems

Lemma 2.8. Let G = (X, ") be a multigraph with a cut point p. Let B be
a subset of X — {p} such that BV I'B = B U {p}. (Hence B contains all
vertices of some components of X — {p}). Let k be the number of edges

frecm p to B, and ry the number of edges of G which have no end vertex
in B. Then

6pB =1+2ry/k.
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Remark 2.9. A greek letter with a graph symbol as a superscript indicates
a conditional expectation. For example, when 4 is a partial subgraph of
G, and p is a vertex of H, then e{,’ is the conditional expectation of the
recurrence time to p, under the condition that the random walk is re-

stricted to vertices of H.

Proof of Lernma 2.8. Let H be the sub-multigraph of G generated by
X — B. Then according to Theorem 1.1 we have

e;’ = 2r0/(vp—k),
where v, is the (total) valency of p. Hence

8,8 =V, 1k + (v, ~K)(ey +5,5)}

= -1 - —
v, {k+2r,}+(1 k/vp)ﬁpB

Solving for Bp p» We obtain the desired result. O

Lemma 2.8 is more powerful, as we shall see presently, when we com-
bine it with imploding, to use a graph-theoretic term, or lumping of
states in Markov chain terminology.

Lemma 2.10. Let G = (X, T") be a multigraph, and let B be a non-trivial
subset of X. Let A

C=TE - B={c, ¢}, -r» Cml-

Suppose &(c;, B) = 8(C, B) does not depend on j. Further suppose that
there are no edges between any pair (c;, c;). Let there be exactly k edges
from each c; to B, and r\ edges without end-points in B. Then

5(C, B) =1+ 2r, [ (km).

Remark 2.11. In our applications, the condition on §(c;, B) is usually
trivially true for symmetry reasons.

Proof.of Lemma 2.10. Consider the auxiliary multigraph (X', ™) ob-
tained from (X, I') by mutually identifying all ¢;. The conditions of the
lemma ensure that 8(C, B) does not change. By applying Lemma 2.8,
we immediately obtain the desired result. O

Remark 2.12. The restriction to graphs without edges between ¢; anc ¢;
has been made to avoid loops in the multigraph (X', I'").
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2.3. Applications

2.3.1. Distances in the cube graph. The D-dimensional cube graph may
be defined as follows. The vertex set X is the set of all 22 binary se-
quences of length D. Two vertices are connected by an edge iff the cor-
responding sequences differ in exactly one place. Hence the valency of
a vertex is D, and the total number of edges is D 201,

For technical reasons, suppose that X is a subset of RP equipped with
the norm || - || given by

D
Ixll = 271,
for x = (x,, ..., x;) € RP. (Then x,y € X are connected by an edge iff
Ix—yll = 1.) Set
S, ={x€X|lxll =m}.

Since every x € §,, is connected with S,, _, by m edges, and since, for
symmetry reasons, 3(x, S,,_,) does not depend on x if x ranges over S
Lemma 2.10 can be applied, yielding

5(S,,. S,y )= (BLy 2N

j=m 7
Now by Corollary 2. 4(b) we have

5(Sy, Sy) = 2'3 5S,, S, _,)s
so that in general, by an obvious symmetry argument,
k D
by =2, QDT DD ifIx-yl =k

In particular we find that the maximum value of Bxy, where x and y run
through the vertex set X, is given by

D D
= D—14-1
Smax = 2 (071) Zo,
which can be reduced to
D-1
5 =9D-1 E D-1y-1
max m=0 ( m )

The derivation constitutes a nice exercise with binomial coefficients.
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We note that for D large,

6max ~201+ DY,
whereas

—AD . —
5x,,y"2 -1 iffx—yii=1.

2.3.2. Collecting times on the cyclic graph. Let G = (X, I") be a graph and
let i € X. Consider the random walk which starts at i and which stops as
soon as all vertices have been visited at least once. The number of steps in
such a random walk is called the collecting time starting at i, and is de-
noted by x;. E{x; } is denoted by &; and max;c y §; by &.

We show that ¢ = (g) when G = C,,. When we have just added the kth
(new) vertex to our collection, the expected number n; of steps required
to ~btain the £ + 15t vertex can be found by applying Lemma 2.10 with
B equal to the set of vertices not in the collection (note that the starting
point is indeed adjacent o B):

=1+ 2(k-1)/(1-2) =k,
and hence

E=mytmy ot =0Q)

2.4. Tree-wise joins

‘Let G =(X, I'), with X ={x, x,, ..., x,.}, and let H; = (Y}, 4;), with
y; € Y]- G=1,2,..,n). Tae tree-wise join (or just the join) of G and
H,, ..., H, is defined as the graph H which arises by identifying x; and y;
G=1,2,..,n). Note that we do not exclude the possibility that one.
or several H; consist of a single point. An example is shown in Fig. 2.1.

X, x 3 l
N %X % % B %
G Hh H, Hy H, H

Fig. 2.1. The join H of G and Hl» Hg, H3, Hg.
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Theorem 2.13. Let G = (X, I') be a multigraph. Let F be the join of G
and H,- = (Yj, A]-), with 141 =r; G=1,2,..,n). Letiand k be elements
of X. Then

s =58G +2 Z;( B85 0P ), Q2.1)
or, equivalently,
= inG
st );E BS, (1 + 2r,jvE). | 2.2)

Proof (outline). Consider a random walk on the graph H. Part of it will
lie in G; its expected length is 6,%. Besides, there will be a number of de-
partures fromj to a vertex of G — {j}; the expectation of this number is
ng . Each such departure from j is preceded by a random walk in H;,
possibly of length O; the expected length of one such random walk in
H; follows at once from Lemma 2.8: it is equal to

- G
5].’6__ {j}_l = 2?‘]./0]. .

We subtract 1 because the step fromj to G — {j} is part of the walk
within G and has been accounted for in.the number 8§, . O

2.5. The attraction law for a tree

Let i andj be vertices of a tree H with straight distance m;; = n. De-
note the successive vertices between i and j inclusive by 0, 1, ..., n. Then
0, 1, ..., n generate a subgraph G of H isomorphic to L, ,,. Moreover, H
is the tree-wise join of G and trees ;. (0 < k < #n), attached to G at the

veitex k, and with, say, n; vertices (including k). Hence by Theorem 2.13
we have

8 = E ¢ B {1+ 20 ~DIoF ).
Now v =2 (k =1,..,n—1),and v§ =vC = 1, while a straightforward
calculation shows that

5(;'*1—2(;1 k), k>0, 60"”‘

Hence
n

15, 4 mg) = . E n, (n—k). (2.3)
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7]\

Fig. 2.2. A tree in which &, . and the diameter are attained for different pairs of vertices.

This formula has a nice interpretation. By giving all vertices of H mass 1
and identifying the vertices of G with the corresponding points 0, 1, ..., n
on the real line followed by concentrating the whole mass of H}, in k

(0 < k < n), a mass distribution on the line is obtained. The (euclidean)
distance of its centre of gravitv to the point # is proportional to the
right-hand side of (2.3), thereby providing an interpretation of this for-
mula as a sort of attraction law.

With the aid of (2.3), distances 6,-]- in a tree can be quickly calculated.
In the tree of Fig. 2.2 we find 8, ¢ = 78 and 8, g = 83. This shows that
in a tree, d,,, is not necessarily attained for two vertices of which tne
straight distance is the diameter. (For the behaviour of vy in this respect
see Section 3.2).

2.6. The quantities 0;;

We have already met the quantity §;; /v; several times. From its inter-
pretation given in Section 1.4 it follows that the symmetrized quantity

O = B * Byidly,;
may be interpreted as the expected number the stepj - s is made in a
random walk from i to k and back (where s is a fixed element of Iy).

This quantity, 8;;; , will be of crucial importance in the sequel. Theorem
2.5(a) states “nat

2 6., .=n—1
{ijter M ’
independent of k. We now prove the following much stronger result.

Theorem 2.14. In each G = (X, T") with i,j,k € X, 8,-,‘1,- does no¢ depend
on k.
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Proof. If one symmetrizes formula (1.13) with respect to i and j, one ob-
tains .
vl = 2 Oy = EX b Wgr k=1,2,....

In other words, for fixed i and j the quantities vy 6;;; satisfy the station-
ary state equations. Hence

V0t = N

where \; is a constant depending on i and j only. The desired result now
follows from Theorem 1.1. O

From now on we write 6;; for 6,
Corollary 2.15. 6;; = B;;;/v; = Byj;/v;-
Corollary 2.16. In each graph G = (X, Ty with i, k€ X,

=1
O =3I

Proof. From (2.2) it follows by interchanging i and k& and adding that
- G\ G = G
i = Z}'J (2r; +v8) 05 =2H 6§,
Since we may choose H = G, the corollary follows. O

Corollary 2.17.
(a) Ox‘k + o.k_l '= 0'] + ZBijk /v]
(b) Yir T Yij = Vij + 2(2"/0,-) Bijk .

Proof. Apply Proposition 1.6. 0

Remark 2.18. In view of Corollary 2.16, (a) and (b) are equivalent. Both
(a) and (b) can be viewed as triangle inequalities, in which the deviation

from equality is precisely given (namely by the last term). Compare
[1, 8§11, Theorem 3].

Using (1.7) (and Theorem 1.1) one easily obtains the following corol-
lary from Corollary 2.17 (after multiplication by v; and summation over

j)-
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COl'Ollal'y 2.19, Skl' _— 6[]{ = ZI U](Gl’ - 6[(]) = Z] ﬂ]('y,! — ')’k])

This shows among other things that the §-structure is determined by the
y-structure.

Theorem 2.20. If H is obtained by joining graphs H;to G=(X, T), then
for each pair i,k € X,

G = pH
O = O -
Proof. From the proof of Corollary 2.16 we have 8§ = i /(2r"). By the

same corollary applied to H we have 6 =+ /(2r"), and the theorem
follows. O

3. Balanced graphs
3.1. General theorems

Theorem 3.1. If G = (X, ') and j € X has valency v; with ik,s, ... € T,
then:

(@) v(6;; — 6;)) = Zperj (B — O );

(0) vy (~1 + Zier; 0) = Z {i kb 1y Oir-

Proof. Corollary 2.17(a) states that
Gil. + Bjk =0, + 2{3ikj/vk.

Hence, by summation over all k € I'j, using formula (1.12):

= 27 6, +2.

v.Bl..+ 2 6
A kerj

kerj M
This holds mutatis mutandis for any s € I'j substituted for i, and (a) fol-
lows by subtractior, while (b) follows by summation overi € I'j. O

The result in (b) is less deep than the one in (a). In fact, (b) can be ob-
tained using only the basic recursions (1.1) and (1.2) and the relation
v, = 2r0,. We leave the details as an exercise.

Corollary 3.2. If G = (X, ') and j € X has valency 2 with Tj = {i, k}, then
(a) 6,.1. =0,
(b) O, =46, — 2.

Proof. Take Y = 2 in Theorem 3.1. 0
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Fig. 3.1. A vertex-equivai=nt unbalanced graph.

Definition 3.3. A multigraph G = (X, T') is called balanced when v, (or
equivalently 6,) has the same value forallee I'.

Rather trivial examples of balanced graphs are edge-equivalent graphs
like K,,, C,, and X, ,,. Other examples will be given further on. An ex-
ample of a vertex-equivalent graph which is not balanced is shown in
Fig. 3.1. A direct calculation shows that q, =3}, , =48,

Remark 3.4. Although we consider connected graphs only, it seems na-
tural to defire §; = o= if i and j belong to different components of a dis-
connected graph For disconnected graphs it does make a difference
whether we require v, or 6, to be constant in order that the graph be
balanced; 6, (which gives the wider class) seems to be the better choice.

3.2 Trees

Froin Theorem 2.5 it follows that if a graph is balanced, then for all
ecT,

d, = (n—1)/r, Ye = 2(n—1)

(we do not need Coroilary 2.16 for that). Note that Theorem 2.5 states
that for any graph the mean of the 6, is equal to (n—1)/r, and the mean
of the v, to2(n—1).

Proposition 3.5. Every tree is balanced.

Proof. Let e be an edge, with end points p and g, of a tree. Since e is a
bridge, we may apply Lemma 2.8 with k = 1, and we obtainy, =2r =
2{n—1).0



F. Gobel, A.A. Jagers, Random walks on graphs 329

Proposition 3.6. A multigraph with a bridge is balanced iff the multi-
graph is a tree.

Proof. Let e be a bridge in a balanced multigraph G. Then Yo = 2r, from
the above proof, while on the other hand 4, = 2(n—1) since G is balanced.
Hence n—1 =r, and the “only if”’ part of the proposition follows from
the connectedness of G. The “if” part is Proposition 3.5. O

3.3. Tree-wise joins of balanced graphs

If we join two graphs G = (X, I') and G’ = (X', I'") to form 2 graph ¥,
then, according to Theorem 2.20,

0f =67, 6H=6G",

if e€I' and ¢’ € I. Hence a necessary and sufficient condition in order
that the join of two graphs G and G’ be balanced is that both G and G’
are balanced with

G = G’
65 =08

Since this is obviously also true for an arbitrary number of graphs, we
have the following theorem.

Theorem 3.7. The tree-wise join of graphs G, G, ..., Gy is balanced iff
all G; are balanced and have the same value of 0,.

In particular, we may join identical balanced graphs, and the result
will be balanced. Two different edge-equivalent graphs with the same
value of 6, are e.g. K, and K, _, ,,,. Note that Proposition 3.5 is a sps-
cial case of Theorem 3.7.

3.4. A valency criterion
Let G = (X, "), 1X| =n, IT'| =r and vy =min, . y v,.

Proposition 3.8. If 2r > vy (2n — vy — 1), then G is not balanced unless
Gisatreeor G =K,,.

In particular (take v, = n—2), the graph ottainable from K,, (n > 3)
by deleting one edge is not balanced.

To prove the proposition we need a lemma which is not without
interest on its own.



330 F. Gobel, A.A. Jagers, Random walks on graphs

Lemma 3.9. If s € T'x, then &,,2 vy + (v, — vg)/v,.

Proof. The case v, = 1 is trivial, so suppose v, = 2. Fix s € I'x. Set
a =min{§, | k€ s,v, # 1}

Let k; € I's satisfy §; ,=a. Then
5..=1+u! L 5 >1+ulw —De.

kerx
k+s

Nowa > 1,s0 Vg, # 1. Thus also
a=8 >1+ul@, —Da>1+y5' -1
Hence a > v, and consequently

-1
8xs =y, tu, (”x“”o)' =

Proof cf Proposition 3.8. Choose x such that v, =uv,. Let 4, be the mean
value of v, with s ranging over I'x. Then clearly

S =1
Te =Yg Z (B, *6,)

ser'x

=l+ugt 2 8, + gt Z (8- 1),
Thus, according to Lemma 3.9,
%, =€, tvy — 1 =051 {2r + v, (v, — D}
Hence, if G is balanced, then
2r < Yo (2n—v0 --1).

This can be sharpened if we suppose in addition that vy, # 1 and not all
valencies are the same. We then choose x such that v, =y, and such

that a vertex y € I'x exists with v, > vy. Re-examining the proof of the
lemma, one readily finds oui that in this case

-1
6xs > Yo * 0, (Ux —Yy ),
and that consequently
2r<uy, (2n—y,—1),

as required. Note, however, that if G is balanced and 2r = v0(2n—v0 -1),
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and G is neither a tree nor K, then it follows that vy # 1 and that not
all valenciés are the same. O

3.5. Substitution o) linear graphs

If we substitute linear graphs into a graph G, or more generally, place
some extra vertices on some of its edges, we obtain a special sort of
“linear” subgraphs of G. which we call segments.

Definition 3.10. Let G = (X, I') be a graph. If
Y ={sq, ;> ...,sp} cX

with all 5; distinct, and sy ={s; _,, Sy} forall k with 0 < k < p, and
A={fi I 1 <k<p},

where f; is the edge with end points s; _; and s;, then Y and A consti-
tute a partial subgraph S = (Y, A) of G called a segment of G of length p.

Note that S is the subgraph generated by Y if p =1 ors, ¢ Lsp. Fur-
thermore, any edge of G, together with its two end points, constltute
a segment (obviously of length 1).

If S is a segment, then, in view of Corollary 3.2, 8, does niot depend
on the choice of e from among the edges of S. Hence, if G is edge equiv-
alent, then <0, n, L)~ G* is balanzed.

An example of a graph which is balanced by this remark is
O,n, Ly~ Lz (see Fig. 3.2). The condition that G be edge equivalent
can be weakened, as is shown by the following theorem.

Thecrem 3.11. Let G be a graph. Then (0, n, L, ) = G¥ is balanced iff
G is balanced.

The proof rests on a lemma which is of some interest on its own.

<>

Fig. 3.2. The balanced graph (0, 3, Ly — Lg.
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Lemma 3.12. If S is a segment of a graph G and i, j, p, q are vertices of
S, then

2 _ ) _
Mg, By — my) = 1y (6, — my,),
where my; is the straight distance between i and j.
In particular, if my; =k and e is an edge of S, then
=72
Bi].—k 6, — 1) +k.

Proof. Denote k + 1 successive vertices of S by 0, 1, ..., k (i.e. m; ;4 =1
for all 0 < i < k). We shall prove by induction on k that 6y, — k =

k2(001 — 1). In view of Coroilary 3.2 this is sufficient to prove the lemma.
By Corollary 2.17(a), in combination with formula (1.12), we have

_ -1
Ook Ok k41 =00 k41 T2 =20, By 100

Since 8y, .y = 0p; by Corollary 3.2(a), we will obtain an expression for
6y k+1 In terms of 6y, and 6y if we determine vl 18 % -1,k - We pro-
ceed as follows. Set

a, =By lv,, O<s<k’

Then ay = y; (Corollary 2.15), a; =0, and in-between (0 < s < k)
a, satisfies the familiar recursion

a, =ia 1

1
s +3a

s+1
for the arithmetic sequence, as follows from formula (1.13). Hence
a, =k~ (k — )0,
and consequently
= -1
Ook+1 ¥ 2= 00 + K™ (2 + K0y,

from which the proof of the induction step is easily derived. O

Preof of Theorem 3.11. We write H =(0, n, L,,,,) - G*. Let e be an edge
of G with end points x and y. In the construction of H from G, a copy
of L, ., is substituted foi e; the result is a segment S of H. Let f be an
arbitrary edge of S. We want to relate Gf and 0}" . We know that

L L
n+l = gn+1 = ,,2
60n 6n0 n-.
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Hence it follows from Theorem 2.7, after the usual interchanging and
adding that

= 2
'yfy =n 'yfy.
Or, since ! =kn r©,
H - ,1.-1pG
Oxy =nk ny.
Now Lemma 3.12 can be applied to the segment S of H, and we obtain
6% =k{n(6f — 1)+1}.

It now only takes a small step to complete the proof. O
3.6. Various criteria
We now further exploit Lemma 3.12. We start with a definition.

Definition 3.13. A veriex of a segment is called an end vertex (or end
point) if it is incident with only one edge of the segment.

Proposition 3.14. If within a graph G two segments exist, both with the
same end vertices but with distinct lengths p and q, then G is balanced

onlyif n—Drl=1—-(@p+q)L
Proof. Apply Lemma 3.12. 0

Corollary 3.15. If within a graph G three segments exist, all three with
the same end vertices but with distinct lengths, then G is not balanced.

Proposition 3.16. If j is a vertex of G with v; =3 and i, I €I are the
end points-of a segment of lengih p, then G is balanced only if

(r—-n+1)rl=@-2)@E -3L

Note that if G satisfies the conditions of Proposition 3.16 with p = 2,
then G is not balanced.

‘Proof. Let I'j = {i, k, s}. Suppose that G is balanced. Then it follows
from Theorem 3.1(a) that 6;;, — 0 = 0. Similarly 6;; = 6;;, and so, by
Lemma 3.12,

eiszeik =esk =p2(6e — 1 +p.
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Hence Theorem 3.1(b) takes the simple form

equal toj. Then {x, y, H) >
shown by counting vertices an

The above resuits (and those of the appendix) have led us to believe
that all balanced graphs can be obtained through tree-wise joins of sub-
-stitution results of k-fold linear graphs into edge-equivalent graphs.

Let us put this differently and more exactly. We have already shown
h a common value of 8,. The characterization

0
~

of halanced oran nleted naow hv nrovine the followine
WA LFALMALVYW LS b‘urll WAT WA ‘ll!’lv.v\‘ AR 'y UJ t"v'll‘b CAAW ENFAANS "lllc
raniarntrara
VAV S| AV V2 A F-5 WY

Ccnjecture 3.18. A block is balanced if and only if it can be obtained
by substitution of a linear graph into an edge-equivalent graph.

Appendix

In Table

on 6 or few
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g point was [2, Appendix 1].
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Our criteria have been applicd in the s
breviations below the table.

The eight graphs for which a different argument was necessary are
shown in Fig. A.1. The graph (6, 8, 23) is not balanced on account of
Proposition 3.16 with p = 2. The graph (6, 14, -) is not balanced on ac-
count of the remark immediately following Proposition 3.8. The graphs
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Table A.1
Balancedness of graphs on 6 or fewer points
n r H n r H n r H
3 3 - BE 6 8 12 NV 6 10 5 N2
4 4 2 BE 14 NT 7 NA
4 5 - N2 15 BE 8§ N2
4 6 - BE 16 NV 10 N2
) 5 6 BE 21 NS 11 N2
S 6 1 BT 23 NA 12 NA
4 NV 6 9 1 N2 14 NA
5 BE 2 N2 1S N2
5 7 1 N2 5 N2 6 11 1 N2
2 N2 6 NT Z NV
4 N2 7 NV 3 NV
5 8 1 N2 8§ N2 5 N2
2 NA 9 N2 6 NV
5 9 - NV 10 N2 7 NV
S 10 - BE 11 N2 8 NV
8 6 7 BE 13 N2 9 N2
6 7 S NS 16 N2 6 12 1 NV
6 NV 17 BE 2 NV
7 NS 18 N2 3 N2
13 NT 19 N2 4 NV
6 8 1 NT 20 N2 5 BE
§ NV 6 10 1 N2 6 13 1 NV
6 NV 2 NA 2 NA
7 NV 3 N2 6 14 - NA
9 NV 4 N2 6 15 - BE

BE: edge-equivalent, hence balanced.

BT: tree-wise join of edge-equivalent graphs with a common value of 8, hence balanced.
NT: tree-wise join other than above, hence not balanced.

N2: not balanced on account of Proposition 3.8 with vg= 2.

NV: not balanced on account of Proposition 3.16 with p = 1.

NS: not balanced on account of Proposition 3.14.

NA: not balanced on account of a different argument.

X X ® &

(582 68,23) 6,02) 6,0,7) (6,1012)

& & @

(6,0,14) (613,2) 6,4,-)

Fig. A.1. Graphs which require special proofs for their unbalancedness.
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(6, 10, 12) and (6, 13, 2) satisfy the conditions of Proposition 1.4, while
the vertices 1 and 2 are equivalent, so that v, can be quickly found. The
remaining 1our graphs have been dealt with by direct computation.

Note added in proof

Recently our Conjecture 3.18 has been disproved. A computer search
has shown that here ex15ts exactly one balanced zranh G on 7 points

L h d e «J L) k> Y .

. LNung, Markov Chains with atauonary Transition rmoaoluues 27" ed. (dpringer, perin,
)

Je

F. Harary, Graph Theory (Addison—Wesley, Reading, Mass., 196
J.

Reading, Mass., 1969).
»

emenv and J.L. Snell, Finite Markov Chams (Van Nosttand New York, reprinted 1969).
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