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Abstract 

We prove a result on the length of a longest cycle in a graph on n vertices that contains 
a 2-factor and satisfies d(u)+ d(v)+d(w)~> n + 2 for every triple u, v, w of independent vertices. 
As a corollary we obtain the following improvement of a conjecture of H/iggkvist (1992): Let 
G be a 2-connected graph on n vertices where every pair of nonadjacent vertices has degree sum 
at least n - k  and assume G has a 2-factor with at least k+ 1 odd components. Then G is 
hamiltonian. 
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1. Results 

We use [4] for terminology and no ta t ion  not  defined here and consider finite, 

simple graphs only. 

The following three conjectures, among  many  others, appear in [6]. 

Conjecture 1. Let G be a 2-connected graph on n vertices where every pair of 

nonad jacen t  vertices has degree sum at least n -  k and assume furthermore that G has 

a k-factor. Then  G is hamil tonian.  

Conjecture 2. Let G be a 2-connected graph on n vertices where every pair of 

nonad jacen t  vertices has degree sum at least n - k  and assume that G has a 2-factor 

where every componen t  is of order more than k. Then G is hamil tonian.  

Conjecture 3. Let G be a 2-connected graph on n vertices where every pair of 

nonad jacen t  vertices has degree sum at least n - k  and  assume that G has a 2-factor 

with at least 2k odd components .  Then  G is hamil tonian.  
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A generalization of Conjecture 1 is proved in [5]. The Petersen graph is a counter- 
example to Conjecture 2, but it is well possible that there are no other counter- 
examples. 

The main goal of this paper is to prove a result which implies that Conjecture 3 is 
true. In fact, our result implies that the bound 2k in Conjecture 3 can be almost halved 

in general. For a graph G and an integer k ~> 1, define ak(G) by 

ak(G)=min { y, d~(v)l S ~_ V(G) is an independent set of size k}. 
v ~ S  

Now we can state our main result, the proof of which will be given in Section 2. 

Theorem 4. Let G be a 2-connected graph on n vertices that satisfies a3(G)>~n+ 2 and 

assume G contains a 2-factor with at least k odd components. Then a longest cycle in 

G has length at least min{n,  X3a3(G)+ ~-±~1"1 

The conclusion in Theorem 4 is best possible. This is shown by the graphs 
G k 3 a = K t v ( I K 3 + ( k - l ) K 2 + ( t + l - k ) K a )  ( v  denotes the join of two graphs). For 
any k, l, t with k ~> l >~ 1 and t ~> 21 + k + 2, Gk,~,~ is a 2-connected graph on n = 2t + 21 + k 
vertices that contains a 2-factor with k odd components, but no 2-factor with more 
than k odd components, and satisfies a3(Gk, t , t)=3t>~n+2. The length of a longest 
cycle in Gk,/,, is 3 1 + 2 ( k - l ) + ( t - k ) + t = 2 t + l + k = ½ a 3 ( G k . ~ . , ) + ½ n + ½ k .  

Also the bound a3(G)~>n+2 in Theorem 4 cannot be relaxed as is shown by the 

g r a p h s  /-/t = Kz v (K3t + K31 + K31_ 2)- For any I ~> 1, H~ is a 2-connected graph on 
n=91 vertices that has a 2-factor with 31 odd components and satisfies 
a 3 ( H , ) = 9 1 + l = n + l .  Furthermore, ~a3(Hz)+½n+½(31)=9l+½, whereas a longest 
cycle in H~ has length 61 + 2 only. 

From Theorem 4 we can derive the following corollaries concerning Hamilton 
cycles in graphs. Corollary 7 shows that (a sharper version of) Conjecture 3 is 

true. 

Corollary 5. Let G be a 2-connected graph on n vertices that satisfies ~r3(G)~> 
max {23(n - k ) -  1, n + 2} and contains a 2-factor with at least k - 1 odd components. Then 

G is hamiltonian. 

Proof. Let G be a graph that satisfies the conditions in the corollary. Then we have 

~ a 3 ( G ) ÷ ½ n + ½ ( k -  >-' ' ' 1 ) ~ . 2 ( n - k ) - ~ + 2 n + ½ ( k -  1 ) = n - ~ >  n -  1, 

so, by Theorem 4 we can conclude that G contains a Hamilton cycle. [] 

Corollary 6. Let G be a 2-connected graph on n vertices that satisfies az(G)>~ 

max { n -  k, Zn + 1 } and contains a 2-factor with at least k -  1 odd components. Then G is 

hamiltonian. 
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Proof. For any graph G and any three independent vertices u, v, w in V(G) we have 

d(u) + d (v) + d(w) = ½ [(d(u) + d (v) ) + ( d(u) + d(w) ) + ( d(v) + d(w))] 

~> ½(3o2(G)). 

So, for any graph G, o'3(G)~>3O'2(G) and Corollary 6 follows immediately from 
Corollary 5. [] 

Corollary 7. Let G be a 2-connected graph on n vertices that satisfies a2(G)>~ n - k  and 
contains a 2-factor with at least k + 1 odd components. The G is hamiltonian. 

Proof. Let G be graph that satisfies the conditions in the corollary. Since G contains 
a 2-factor with at least k + 1 odd components,  we have n ~> 3(k + 1), or k ~<~n- 1. This 

means a 2 ( G ) ~ n - k > ~ n + l ,  and the result follows from Corollary 6. [Z 

Notice that for k~<~(n-5)  we have V ~ - ( n - k ) - l ] / > n + 2 -  So the bound 
a3(G)>~max{3(n-k) - 1,n+2} in Corollary 5 can be replaced by a3(G)>~3(n-k) - 1 
if we add the extra condition k~<½(n-5). Analogously, the bound a2(G)~ 
m a x { n - k , 2 n + l }  in Corollary 6 can be replaced by a2(G)>~n-k if we add the 
condition k~<](n-3) .  This is not a strong limitation, because we already have the 
condition that G contains a 2-factor with at least k -  1 odd components,  which means 
n~>3(k-  1), or k~<~(n+3). 

The graphs Gk- 1, 1. = K t  v (K3 + ( k - 2 ) K 2  + ( t - k + 2 ) K 1 )  show that the bounds in 
Corollaries 5 and 6 are sharp. For any k,t with k~>2 and t>~k+3, Gk-Ll , t  is 
a 2-connected graph on n = 2t + k + 1 vertices that contains a 2-factor with k -  1 odd 
components, satisfies a 3 ( G k _ l , l , t ) = 3 t = 3 ( n - k ) - l - ½  and a2(Gk_l, l , t )=2t= 
n - - k - 1 ,  but contains no Hamil ton cycle. 

2. Proof of Theorem 4 

Let C be a cycle of a graph G. If V(G) -  V(C) is a independent set, then C is called 
a dominating cycle of G. By ~ we denote the cycle C with a given orientation. If 

u e V(C), then u + denotes the successor of u on ~.  If A _~ V(C), then A + = { v + [ v e A }. 
The following two lemmas are essential in our proof  of Theorem 4. The first part  

of Lemma 8 is a result from [3]; the second part is implicit in the proof  of [2, 
Theorem 10]. Lemma 9 is [2, Lemma 8]. Both lemmas also appear in [1]. 

Lemma 8 (Bauer et al. [1,2], Bondy [33). Let G be a 2-connected graph on n vertices 
that satisfies aa(G)~>n+2. Then every longest cycle of G is a dominating cycle. 
Moreover, if G is nonhamihonian, then G contains a longest cycle C such that 
max{d~(v) [ v~ V(G) -  V(C)} ~>~a3(G). 
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Lemma 9 (Bauer et al. [-1,2]). Let G be a 9raph on n vertices with 6(G)>~2 and 
tr3(G)~>n. Assume that G contains a lonyest cycle ~ which is a dominatin9 cycle. I f  
vE V(G) -  V(C), then ( V ( G ) -  V(C)) w (N(v)) + is an independent set of vertices. 

For the remainder of this section we assume that G is a nonhamiltonian, 2- 
connected graph on n vertices that satisfies tr3(G)>~n+2 and contains a 2-factor 
F with at least k odd components. By Lemma 8, we can choose a longest cycle C in 
G and a vertex a t  V (G) -  V(C) such that N(a) c_ V(C) and d~(a)>~½a3(G). Let c be the 
length of C and choose an orientation C of C. Define A = (V(G) -- V(C)) w (N (a)) + and 
B= V(G)--A. By Lemmas 8 and 9, A is an independent set of vertices of size 
]Al>~n--c + ½cr3(G). 

Since A is an independent set, all edges in G either have one end vertex in A 
and the other end vertex in B, or both end vertices in B. Of course the same holds for 
the edges of the 2-factor F. Let er(B) be the number of edges of F with both end 
vertices in B. Every odd component  of F contains at least one edge with both end 
vertices in B, hence er(B)>>.k. Counting the edges of F between A and B in two ways 
we see 

2]A] =21B]--2ev(B). 

Since ]BI = n -  I A ], this is equivalent to 

41A ] = 2 n -  2ev(B). 

Using that ]AI >>.n-c+~tr3(G) and ev(B)>~k we obtain 

4a3(G) + 4 n - 4 c  ~< 2 n -  2k, 

which gives 

This completes the proof of Theorem 4. 
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