

Discrete Mathematics 137 (1995) 389-393

DISCRETE MATHEMATICS

Note

Long cycles in graphs containing a 2-factor with many odd components

J. van den Heuvel

Faculty of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands

Received 13 October 1992; revised 26 February 1993

Abstract

We prove a result on the length of a longest cycle in a graph on *n* vertices that contains a 2-factor and satisfies $d(u)+d(v)+d(w) \ge n+2$ for every triple *u*, *v*, *w* of independent vertices. As a corollary we obtain the following improvement of a conjecture of Häggkvist (1992): Let *G* be a 2-connected graph on *n* vertices where every pair of nonadjacent vertices has degree sum at least n-k and assume *G* has a 2-factor with at least k+1 odd components. Then *G* is hamiltonian.

Keywords: (Long, Hamilton) cycle; 2-factor; Degree sum

1. Results

We use [4] for terminology and notation not defined here and consider finite, simple graphs only.

The following three conjectures, among many others, appear in [6].

Conjecture 1. Let G be a 2-connected graph on n vertices where every pair of nonadjacent vertices has degree sum at least n-k and assume furthermore that G has a k-factor. Then G is hamiltonian.

Conjecture 2. Let G be a 2-connected graph on n vertices where every pair of nonadjacent vertices has degree sum at least n-k and assume that G has a 2-factor where every component is of order more than k. Then G is hamiltonian.

Conjecture 3. Let G be a 2-connected graph on n vertices where every pair of nonadjacent vertices has degree sum at least n-k and assume that G has a 2-factor with at least 2k odd components. Then G is hamiltonian.

A generalization of Conjecture 1 is proved in [5]. The Petersen graph is a counterexample to Conjecture 2, but it is well possible that there are no other counterexamples.

The main goal of this paper is to prove a result which implies that Conjecture 3 is true. In fact, our result implies that the bound 2k in Conjecture 3 can be almost halved in general. For a graph G and an integer $k \ge 1$, define $\sigma_k(G)$ by

 $\sigma_k(G) = \min \{ \sum_{v \in S} d_G(v) | S \subseteq V(G) \text{ is an independent set of size } k \}.$

Now we can state our main result, the proof of which will be given in Section 2.

Theorem 4. Let G be a 2-connected graph on n vertices that satisfies $\sigma_3(G) \ge n+2$ and assume G contains a 2-factor with at least k odd components. Then a longest cycle in G has length at least $\min\{n, \frac{1}{3}\sigma_3(G) + \frac{1}{2}n + \frac{1}{2}k\}$.

The conclusion in Theorem 4 is best possible. This is shown by the graphs $G_{k,l,t} = K_t \vee (lK_3 + (k-l)K_2 + (t+l-k)K_1)$ (\vee denotes the join of two graphs). For any k, l, t with $k \ge l \ge 1$ and $t \ge 2l + k + 2$, $G_{k,l,t}$ is a 2-connected graph on n = 2t + 2l + k vertices that contains a 2-factor with k odd components, but no 2-factor with more than k odd components, and satisfies $\sigma_3(G_{k,l,t}) = 3t \ge n+2$. The length of a longest cycle in $G_{k,l,t}$ is $3l + 2(k-l) + (t-k) + t = 2t + l + k = \frac{1}{3}\sigma_3(G_{k,l,t}) + \frac{1}{2}n + \frac{1}{2}k$.

Also the bound $\sigma_3(G) \ge n+2$ in Theorem 4 cannot be relaxed as is shown by the graphs $H_l = K_2 \lor (K_{3l} + K_{3l} + K_{3l-2})$. For any $l \ge 1$, H_l is a 2-connected graph on n=9l vertices that has a 2-factor with 3l odd components and satisfies $\sigma_3(H_l) = 9l + 1 = n + 1$. Furthermore, $\frac{1}{3}\sigma_3(H_l) + \frac{1}{2}n + \frac{1}{2}(3l) = 9l + \frac{1}{3}$, whereas a longest cycle in H_l has length 6l + 2 only.

From Theorem 4 we can derive the following corollaries concerning Hamilton cycles in graphs. Corollary 7 shows that (a sharper version of) Conjecture 3 is true.

Corollary 5. Let G be a 2-connected graph on n vertices that satisfies $\sigma_3(G) \ge \max\{\frac{3}{2}(n-k)-1, n+2\}$ and contains a 2-factor with at least k-1 odd components. Then G is hamiltonian.

Proof. Let G be a graph that satisfies the conditions in the corollary. Then we have

$$\frac{1}{3}\sigma_3(G) + \frac{1}{2}n + \frac{1}{2}(k-1) \ge \frac{1}{2}(n-k) - \frac{1}{3} + \frac{1}{2}n + \frac{1}{2}(k-1) = n - \frac{5}{6} > n - 1,$$

so, by Theorem 4 we can conclude that G contains a Hamilton cycle. \Box

Corollary 6. Let G be a 2-connected graph on n vertices that satisfies $\sigma_2(G) \ge \max\{n-k, \frac{2}{3}n+1\}$ and contains a 2-factor with at least k-1 odd components. Then G is hamiltonian.

390

Proof. For any graph G and any three independent vertices u, v, w in V(G) we have

$$d(u) + d(v) + d(w) = \frac{1}{2} [(d(u) + d(v)) + (d(u) + d(w)) + (d(v) + d(w))]$$

$$\geq \frac{1}{2} (3\sigma_2(G)).$$

So, for any graph G, $\sigma_3(G) \ge \frac{3}{2}\sigma_2(G)$ and Corollary 6 follows immediately from Corollary 5. \Box

Corollary 7. Let G be a 2-connected graph on n vertices that satisfies $\sigma_2(G) \ge n-k$ and contains a 2-factor with at least k+1 odd components. The G is hamiltonian.

Proof. Let G be graph that satisfies the conditions in the corollary. Since G contains a 2-factor with at least k + 1 odd components, we have $n \ge 3(k+1)$, or $k \le \frac{1}{3}n - 1$. This means $\sigma_2(G) \ge n - k \ge \frac{2}{3}n + 1$, and the result follows from Corollary 6. \Box

Notice that for $k \leq \frac{1}{3}(n-5)$ we have $\lceil \frac{3}{2}(n-k)-1 \rceil \geq n+2$. So the bound $\sigma_3(G) \geq \max\{\frac{3}{2}(n-k)-1, n+2\}$ in Corollary 5 can be replaced by $\sigma_3(G) \geq \frac{3}{2}(n-k)-1$ if we add the extra condition $k \leq \frac{1}{3}(n-5)$. Analogously, the bound $\sigma_2(G) \geq \max\{n-k, \frac{2}{3}n+1\}$ in Corollary 6 can be replaced by $\sigma_2(G) \geq n-k$ if we add the condition $k \leq \frac{1}{3}(n-3)$. This is not a strong limitation, because we already have the condition that G contains a 2-factor with at least k-1 odd components, which means $n \geq 3(k-1)$, or $k \leq \frac{1}{3}(n+3)$.

The graphs $G_{k-1,1,t} = K_t \vee (K_3 + (k-2)K_2 + (t-k+2)K_1)$ show that the bounds in Corollaries 5 and 6 are sharp. For any k, t with $k \ge 2$ and $t \ge k+3$, $G_{k-1,1,t}$ is a 2-connected graph on n = 2t+k+1 vertices that contains a 2-factor with k-1 odd components, satisfies $\sigma_3(G_{k-1,1,t}) = 3t = \frac{3}{2}(n-k) - 1 - \frac{1}{2}$ and $\sigma_2(G_{k-1,1,t}) = 2t = n-k-1$, but contains no Hamilton cycle.

2. Proof of Theorem 4

Let C be a cycle of a graph G. If V(G) - V(C) is a independent set, then C is called a *dominating cycle* of G. By \vec{C} we denote the cycle C with a given orientation. If $u \in V(C)$, then u^+ denotes the successor of u on \vec{C} . If $A \subseteq V(C)$, then $A^+ = \{v^+ | v \in A\}$.

The following two lemmas are essential in our proof of Theorem 4. The first part of Lemma 8 is a result from [3]; the second part is implicit in the proof of [2, Theorem 10]. Lemma 9 is [2, Lemma 8]. Both lemmas also appear in [1].

Lemma 8 (Bauer et al. [1,2], Bondy [3]). Let G be a 2-connected graph on n vertices that satisfies $\sigma_3(G) \ge n+2$. Then every longest cycle of G is a dominating cycle. Moreover, if G is nonhamiltonian, then G contains a longest cycle C such that $\max\{d_G(v) | v \in V(G) - V(C)\} \ge \frac{1}{3}\sigma_3(G)$.

Lemma 9 (Bauer et al. [1,2]). Let G be a graph on n vertices with $\delta(G) \ge 2$ and $\sigma_3(G) \ge n$. Assume that G contains a longest cycle \vec{C} which is a dominating cycle. If $v \in V(G) - V(C)$, then $(V(G) - V(C)) \cup (N(v))^+$ is an independent set of vertices.

For the remainder of this section we assume that G is a nonhamiltonian, 2connected graph on n vertices that satisfies $\sigma_3(G) \ge n+2$ and contains a 2-factor F with at least k odd components. By Lemma 8, we can choose a longest cycle C in G and a vertex $a \in V(G) - V(C)$ such that $N(a) \subseteq V(C)$ and $d_G(a) \ge \frac{1}{3}\sigma_3(G)$. Let c be the length of C and choose an orientation \vec{C} of C. Define $A = (V(G) - V(C)) \cup (N(a))^+$ and B = V(G) - A. By Lemmas 8 and 9, A is an independent set of vertices of size $|A| \ge n - c + \frac{1}{3}\sigma_3(G)$.

Since A is an independent set, all edges in G either have one end vertex in A and the other end vertex in B, or both end vertices in B. Of course the same holds for the edges of the 2-factor F. Let $e_F(B)$ be the number of edges of F with both end vertices in B. Every odd component of F contains at least one edge with both end vertices in B, hence $e_F(B) \ge k$. Counting the edges of F between A and B in two ways we see

 $2|A| = 2|B| - 2e_F(B).$

Since |B| = n - |A|, this is equivalent to

 $4|A| = 2n - 2e_F(B).$

Using that $|A| \ge n - c + \frac{1}{3}\sigma_3(G)$ and $e_F(B) \ge k$ we obtain

 $\frac{4}{3}\sigma_3(G) + 4n - 4c \leq 2n - 2k,$

which gives

 $c \geq \frac{1}{3}\sigma_3(G) + \frac{1}{2}n + \frac{1}{2}k.$

This completes the proof of Theorem 4.

Acknowledgment

I thank H.J. Veldman for his help and suggestions during the preparation of this paper.

References

- D. Bauer, H.J. Broersma and H.J. Veldman, Around three lemmas in hamiltonian graph theory, in: R. Bodendiek and R. Henn, eds, Topics in Combinatorics and Graph Theory, Essays in Honour of Gerhard Ringel (Physica-Verlag, Heidelberg, 1990) 101-110.
- [2] D. Bauer, A. Morgana, E.F. Schmeichel and H.J. Veldman, Long cycles in graphs with large degree sums, Discrete Math. 79 (1989/90) 59-70.

- [3] J.A. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR 80-16, Univ. of Waterloo, Waterloo, Ontario (1980).
- [4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976).
- [5] R.J. Faudree and J. van den Heuvel, Degree sums, k-factors and Hamilton cycles in graphs, preprint (1992).
- [6] R. Häggkvist, Twenty odd statements in Twente, in: H.J. Broersma, J. van den Heuvel and H.J. Veldman, eds, Updated Contributions to the Twente Workshop on Hamiltonian Graph Theory, 6–10 April 1992. Univ. of Twente, Enschede, Netherlands (1992) 67–76.