Note
 Long cycles in graphs containing a 2 -factor with many odd components

J. van den Heuvel
Faculty of Applied Mathematics, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands

Received 13 October 1992; revised 26 February 1993

Abstract

We prove a result on the length of a longest cycle in a graph on n vertices that contains a 2 -factor and satisfies $d(u)+d(v)+d(w) \geqslant n+2$ for every triple u, v, w of independent vertices. As a corollary we obtain the following improvement of a conjecture of Häggkvist (1992): Let G be a 2 -connected graph on n vertices where every pair of nonadjacent vertices has degree sum at least $n-k$ and assume G has a 2 -factor with at least $k+1$ odd components. Then G is hamiltonian.

Keywords: (Long, Hamilton) cycle; 2 -factor; Degree sum

1. Results

We use [4] for terminology and notation not defined here and consider finite, simple graphs only.

The following three conjectures, among many others, appear in [6].
Conjecture 1. Let G be a 2 -connected graph on n vertices where every pair of nonadjacent vertices has degree sum at least $n-k$ and assume furthermore that G has a k-factor. Then G is hamiltonian.

Conjecture 2. Let G be a 2 -connected graph on n vertices where every pair of nonadjacent vertices has degree sum at least $n-k$ and assume that G has a 2 -factor where every component is of order more than k. Then G is hamiltonian.

Conjecture 3. Let G be a 2 -connected graph on n vertices where every pair of nonadjacent vertices has degree sum at least $n-k$ and assume that G has a 2 -factor with at least $2 k$ odd components. Then G is hamiltonian.

A generalization of Conjecture 1 is proved in [5]. The Petersen graph is a counterexample to Conjecture 2, but it is well possible that there are no other counterexamples.

The main goal of this paper is to prove a result which implies that Conjecture 3 is true. In fact, our result implies that the bound $2 k$ in Conjecture 3 can be almost halved in general. For a graph G and an integer $k \geqslant 1$, define $\sigma_{k}(G)$ by

$$
\sigma_{k}(G)=\min \left\{\sum_{v \in S} d_{G}(v) \mid S \subseteq V(G) \text { is an independent set of size } k\right\} .
$$

Now we can state our main result, the proof of which will be given in Section 2.
Theorem 4. Let G be a 2 -connected graph on n vertices that satisfies $\sigma_{3}(G) \geqslant n+2$ and assume G contains a 2 -factor with at least k odd components. Then a longest cycle in G has length at least $\min \left\{n, \frac{1}{3} \sigma_{3}(G)+\frac{1}{2} n+\frac{1}{2} k\right\}$.

The conclusion in Theorem 4 is best possible. This is shown by the graphs $G_{k, l, t}=K_{t} \vee\left(l K_{3}+(k-l) K_{2}+(t+l-k) K_{1}\right)(\vee$ denotes the join of two graphs). For any k, l, t with $k \geqslant l \geqslant 1$ and $t \geqslant 2 l+k+2, G_{k, l, t}$ is a 2 -connected graph on $n=2 t+2 l+k$ vertices that contains a 2 -factor with k odd components, but no 2 -factor with more than k odd components, and satisfies $\sigma_{3}\left(G_{k, l, t}\right)=3 t \geqslant n+2$. The length of a longest cycle in $G_{k, l, t}$ is $3 l+2(k-l)+(t-k)+t=2 t+l+k=\frac{1}{3} \sigma_{3}\left(G_{k, l, t}\right)+\frac{1}{2} n+\frac{1}{2} k$.

Also the bound $\sigma_{3}(G) \geqslant n+2$ in Theorem 4 cannot be relaxed as is shown by the graphs $H_{l}=K_{2} \vee\left(K_{3 l}+K_{3 l}+K_{3 l-2}\right)$. For any $l \geqslant 1, H_{l}$ is a 2 -connected graph on $n=9 l$ vertices that has a 2 -factor with $3 l$ odd components and satisfies $\sigma_{3}\left(H_{l}\right)=9 l+1=n+1$. Furthermore, $\frac{1}{3} \sigma_{3}\left(H_{l}\right)+\frac{1}{2} n+\frac{1}{2}(3 l)=9 l+\frac{1}{3}$, whereas a longest cycle in H_{l} has length $6 l+2$ only.

From Theorem 4 we can derive the following corollaries concerning Hamilton cycles in graphs. Corollary 7 shows that (a sharper version of) Conjecture 3 is true.

Corollary 5. Let G be a 2 -connected graph on n vertices that satisfies $\sigma_{3}(G) \geqslant$ $\max \left\{\frac{3}{2}(n-k)-1, n+2\right\}$ and contains a 2 -factor with at least $k-1$ odd components. Then G is hamiltonian.

Proof. Let G be a graph that satisfies the conditions in the corollary. Then we have

$$
\frac{1}{3} \sigma_{3}(G)+\frac{1}{2} n+\frac{1}{2}(k-1) \geqslant \frac{1}{2}(n-k)-\frac{1}{3}+\frac{1}{2} n+\frac{1}{2}(k-1)=n-\frac{5}{6}>n-1,
$$

so, by Theorem 4 we can conclude that G contains a Hamilton cycle.

Corollary 6. Let G be a 2-connected graph on n vertices that satisfies $\sigma_{2}(G) \geqslant$ $\max \left\{n-k, \frac{2}{3} n+1\right\}$ and contains a 2 -factor with at least $k-1$ odd components. Then G is hamiltonian.

Proof. For any graph G and any three independent vertices u, v, w in $V(G)$ we have

$$
\begin{aligned}
d(u)+d(v)+d(w) & =\frac{1}{2}[(d(u)+d(v))+(d(u)+d(w))+(d(v)+d(w))] \\
& \geqslant \frac{1}{2}\left(3 \sigma_{2}(G)\right) .
\end{aligned}
$$

So, for any graph $G, \sigma_{3}(G) \geqslant \frac{3}{2} \sigma_{2}(G)$ and Corollary 6 follows immediately from Corollary 5.

Corollary 7. Let G be a 2 -connected graph on n vertices that satisfies $\sigma_{2}(G) \geqslant n-k$ and contains a 2 -factor with at least $k+1$ odd components. The G is hamiltonian.

Proof. Let G be graph that satisfies the conditions in the corollary. Since G contains a 2 -factor with at least $k+1$ odd components, we have $n \geqslant 3(k+1)$, or $k \leqslant \frac{1}{3} n-1$. This means $\sigma_{2}(G) \geqslant n-k \geqslant \frac{2}{3} n+1$, and the result follows from Corollary 6.

Notice that for $\mathrm{k} \leqslant \frac{1}{3}(n-5)$ we have $\left\lceil\frac{3}{2}(n-k)-1\right\rceil \geqslant n+2$. So the bound $\sigma_{3}(G) \geqslant \max \left\{\frac{3}{2}(n-k)-1, n+2\right\}$ in Corollary 5 can be replaced by $\sigma_{3}(G) \geqslant \frac{3}{2}(n-k)-1$ if we add the extra condition $k \leqslant \frac{1}{3}(n-5)$. Analogously, the bound $\sigma_{2}(G) \geqslant$ $\max \left\{n-k, \frac{2}{3} n+1\right\}$ in Corollary 6 can be replaced by $\sigma_{2}(G) \geqslant n-k$ if we add the condition $k \leqslant \frac{1}{3}(n-3)$. This is not a strong limitation, because we already have the condition that G contains a 2 -factor with at least $k-1$ odd components, which means $n \geqslant 3(k-1)$, or $k \leqslant \frac{1}{3}(n+3)$.

The graphs $G_{k-1,1, t}=K_{t} \vee\left(K_{3}+(k-2) K_{2}+(t-k+2) K_{1}\right)$ show that the bounds in Corollaries 5 and 6 are sharp. For any k, t with $k \geqslant 2$ and $t \geqslant k+3, G_{k-1,1, t}$ is a 2-connected graph on $n=2 t+k+1$ vertices that contains a 2 -factor with $k-1$ odd components, satisfies $\sigma_{3}\left(G_{k-1,1, t}\right)=3 t=\frac{3}{2}(n-k)-1-\frac{1}{2} \quad$ and $\quad \sigma_{2}\left(G_{k-1,1, t}\right)=2 t=$ $n-k-1$, but contains no Hamilton cycle.

2. Proof of Theorem 4

Let C be a cycle of a graph G. If $V(G)-V(C)$ is a independent set, then C is called a dominating cycle of G. By \vec{C} we denote the cycle C with a given orientation. If $u \in V(C)$, then u^{+}denotes the successor of u on \vec{C}. If $A \subseteq V(C)$, then $A^{+}=\left\{v^{+} \mid v \in A\right\}$.

The following two lemmas are essential in our proof of Theorem 4. The first part of Lemma 8 is a result from [3]; the second part is implicit in the proof of [2, Theorem 10]. Lemma 9 is [2, Lemma 8]. Both lemmas also appear in [1].

Lemma 8 (Bauer et al. [1,2], Bondy [3]). Let G be a 2 -connected graph on n vertices that satisfies $\sigma_{3}(G) \geqslant n+2$. Then every longest cycle of G is a dominating cycle. Moreover, if G is nonhamiltonian, then G contains a longest cycle C such that $\max \left\{d_{G}(v) \mid v \in V(G)-V(C)\right\} \geqslant \frac{1}{3} \sigma_{3}(G)$.

Lemma 9 (Bauer et al. [1,2]). Let G be a graph on n vertices with $\delta(G) \geqslant 2$ and $\sigma_{3}(G) \geqslant n$. Assume that G contains a longest cycle \vec{C} which is a dominating cycle. If $v \in V(G)-V(C)$, then $(V(G)-V(C)) \cup(N(v))^{+}$is an independent set of vertices.

For the remainder of this section we assume that G is a nonhamiltonian, 2connected graph on n vertices that satisfies $\sigma_{3}(G) \geqslant n+2$ and contains a 2 -factor F with at least k odd components. By Lemma 8 , we can choose a longest cycle C in G and a vertex $a \in V(G)-V(C)$ such that $N(a) \subseteq V(C)$ and $d_{G}(a) \geqslant \frac{1}{3} \sigma_{3}(G)$. Let c be the length of C and choose an orientation \vec{C} of C. Define $A=(V(G)-V(C)) \cup(N(a))^{+}$and $B=V(G)-A$. By Lemmas 8 and $9, A$ is an independent set of vertices of size $|A| \geqslant n-c+\frac{1}{3} \sigma_{3}(G)$.

Since A is an independent set, all edges in G either have one end vertex in A and the other end vertex in B, or both end vertices in B. Of course the same holds for the edges of the 2 -factor F. Let $e_{F}(B)$ be the number of edges of F with both end vertices in B. Every odd component of F contains at least one edge with both end vertices in B, hence $e_{F}(B) \geqslant k$. Counting the edges of F between A and B in two ways we see

$$
2|A|=2|B|-2 e_{F}(B)
$$

Since $|B|=n-|A|$, this is equivalent to

$$
4|A|=2 n-2 e_{F}(B) .
$$

Using that $|A| \geqslant n-c+\frac{1}{3} \sigma_{3}(G)$ and $e_{F}(B) \geqslant k$ we obtain

$$
\frac{4}{3} \sigma_{3}(G)+4 n-4 c \leqslant 2 n-2 k
$$

which gives

$$
c \geqslant \frac{1}{3} \sigma_{3}(G)+\frac{1}{2} n+\frac{1}{2} k
$$

This completes the proof of Theorem 4.

Acknowledgment

I thank H.J. Veldman for his help and suggestions during the preparation of this paper.

References

[1] D. Bauer, H.J. Broersma and H.J. Veldman, Around three lemmas in hamiltonian graph theory, in: R. Bodendiek and R. Henn, eds, Topics in Combinatorics and Graph Theory, Essays in Honour of Gerhard Ringel (Physica-Verlag, Heidelberg, 1990) 101-110.
[2] D. Bauer, A. Morgana, E.F. Schmeichel and H.J. Veldman, Long cycles in graphs with large degree sums, Discrete Math. 79 (1989/90) 59-70.
[3] J.A. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR 80-16, Univ. of Waterloo, Waterloo, Ontario (1980).
[4] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976).
[5] R.J. Faudree and J. van den Heuvel, Degree sums, k-factors and Hamilton cycles in graphs, preprint (1992).
[6] R. Häggkvist, Twenty odd statements in Twente, in: H.J. Broersma, J. van den Heuvel and H.J. Veldman, eds, Updated Contributions to the Twente Workshop on Hamiltonian Graph Theory, 6-10 April 1992. Univ. of Twente, Enschede, Netherlands (1992) 67-76.

