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Harmonic enhancement of single-bubble sonoluminescence
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It is known from experiment that the light emission from a sonoluminescing bubble can be increased by
using more than one driving frequency. In this paper, a systematic method to determine the optimal conditions
of pressure amplitude and relative phase for this effect is described. As a specific application, a two-frequency
system—26.5 kHz and 53 kHz—is considered. It is found that the maximum temperatures achievable can be
appreciably increased with respect to single-frequency drive, still maintaining spherical stability, provided the
dissolved inert gas concentration is kept extremely low in order to maintain diffusive stability.

DOI: 10.1103/PhysRevE.67.056310 PACS number~s!: 78.60.Mq, 47.20.Ma, 47.55.Dz
m
a

s

b
t.

s
re
p

i
lu
p
e
b
ul
t
n
e
p

ith
m
c

r-
o
cy
tiv
n
es
s
nc
a
e
u
e’

sta-
it
en-

hro-

o-

dia-
d
d-
ss,

nt
rst-

vis-

,

red

s

I. INTRODUCTION

The remarkable phenomenon of single-bubble sonolu
nescence@1,2# consists of the periodic light emission from
gas bubble driven into radial pulsation by a sound field~for a
recent review, see Ref.@3#!. The numerous puzzling feature
reported by the early investigators of the phenomenon~see,
e.g., Ref.@4#! have found a satisfactory explanation in su
sequent work@3#, which agrees very well with experimen
Briefly, the light is due to a weakly ionized plasma that form
in the bubble due to the intense, nearly adiabatic comp
sion of the gas that takes place during the bubble colla
@3#.

In view of the surprising intensity of the phenomenon,
is of considerable interest to try to further enhance sono
minescence emission by increasing the sound field am
tude. Unfortunately, this objective is difficult to achiev
since, at high driving amplitudes, the spherical shape
comes unstable, which leads to the fragmentation and
mate destruction of the bubble@5–8#. Another approach tha
has been followed to achieve the same objective has bee
use of a lower-frequency drive which, however, has prov
equally unsuccessful due to the accumulation of water va
inside the bubble@9–12#.

While most of the work to date has been carried out w
the bubble driven by a monochromatic sound field, so
investigators have been experimenting with multifrequen
acoustic drives@13–18#. Of particular interest is the obse
vation of Refs.@13,15# which report an increase by up t
300% of the emitted light intensity with a dual-frequen
drive. Since this result was reached by varying the rela
phase of the two harmonics of the sound field by trial a
error, it is natural to enquire whether, by a systematic inv
tigation of the matter, it would be possible to further increa
the light emission. This idea was investigated in a confere
paper@19#, of which the present work is an extension and
elaboration. Our conclusion is that a further enhancem
appears indeed possible. Specifically, we consider a so
field consisting of two harmonics and maximize the bubbl
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peak temperature, under the condition that the spherical
bility of the bubble be preserved. Although here we lim
ourselves to two frequencies, the method we describe is g
eral and can be adapted to a greater number of monoc
matic components.

II. MATHEMATICAL MODEL

The model we use for the bubble dynamics and therm
dynamics is basically that of Refs.@20,21#, which has proven
to accurately account for various experimental phase
grams@3,21#. It is very similar to the model by Storey an
Szeri @10,22#. We consider an argon bubble in water inclu
ing the effects of water vapor diffusion, conductive heat lo
and chemical reactions.

A. Bubble dynamics

The radial motion of the bubble is described by a varia
of the Rayleigh-Plesset equation taking into account fi
order corrections for the liquid compressibility@23#.
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Here, dots denote time differentiation,r, c, s, andm are the
density, speed of sound, surface tension coefficient, and
cosity of the liquid,pg is the bubble internal pressure,P0 is
the static pressure, andPa(t) is the acoustic driving pressure
for which we assume the form

PA5p1 cosv1t1 (
,52

N

~p, cosv,t1q, sinv,t !, ~2!

with the time origin chosen in such a way thatq150. The
frequenciesvk depend on the apparatus and are conside
prescribed.

The internal pressurepg is modeled by a van der Waal
type equation of state,
©2003 The American Physical Society10-1
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pg5
NtotkT

V2NtotB
, ~3!

with Ntot the total number of particles~i.e., argon atoms
vapor and its reaction products! and B55.131029 m3 @24#
the covolume, which—for simplicity—is taken to be equ
for all species.

B. Mass transport

The number of particles of speciesi in the bubble change
with time because of diffusion and chemical reactions.
model the diffusive rate of changeṄi

d by means of the
boundary layer approach of Ref.@12#.

Ṅi
d54pR2D

ni ,02ni

l d
, l d5minSARD

uṘu
,
R

p D . ~4!

Here,ni andni ,0 are the instantaneous and equilibrium co
centration of particles of speciesi, respectively;D is the
binary diffusion coefficient of the water vapor-argon mixtu
and l d is the thickness of the diffusive boundary layer. T
previous approximation tol d is only valid in the regime
PeD5RuṘu/D.1. Therefore,l d is not allowed to become
smaller thenR/p ~see Ref.@12# for details!. Note that we use
a common diffusion constant and correspondingly a comm
l d for all species. This simplification has proven sufficient
our earlier work.

Because of the large heat capacity of water we will
sume isothermal behavior at the bubble wall. The diffus
constantD is correspondingly given by scaling its value u
der normal conditions~101.3 kPa, 293.15 K! with the num-
ber density in the boundary layer, the composition of wh
is assumed to be dominated by argon and vapor in equ
rium with the liquid phase. Hence,D5D0@n0 /(nH2O,0

1nAr)#, whereD0523.5531026 m2/s @25# and n052.446
31025 m23. Finally, in order to completely specify Eq.~4!,
the equilibrium concentrationsni ,0 at the bubble wall must be
set. For H2O it is given by the number density correspondi
to the saturation vapor pressure at temperatureT0 : nH2O,0

5Pv(T0)/kT0'5.931023 m23. For all other species we
simply setni ,050, as in the situation of harmonic driving th
liquid must be highly undersaturated in order to achieve
fusive stability of the bubble, cf. Table IV.

C. Heat loss

Analogously to Eq.~4!, we approximate the conductiv
heat loss by

Q̇54pR2k
T02T

l th
, l th5minSARx

uṘu
,
R

p D ,

T being the temperature of the bubble contents,T0 the ~liq-
uid! temperature at the bubble wall,k the thermal conduc-
tivity of the gas mixture,x its thermal diffusivity, andl th the
thickness of the thermal boundary layer. An effective h
conductivity is obtained from the empirical formula@26#
05631
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F i , j5
1

A8
S 11

mi

mj
D 21/2F11S h i

h j
D 1/2S mj

mi
D 1/4G2

, ~6!

which relates the heat conductivitiesl i and viscositiesh i of
the pure substances to the conductivity of the mixture.j i
denotes the mole fraction of species i andmi its molecular
mass. In our casekAr517.831023 W/mK, kH2O518

31023 W/mK, hAr522.831026 Pa s, and hH2O510

31026 Pa s@24#. The thermal diffusivity is finally obtained
from x5kmix /cp , with cp5 5

2 nArk1 8
2 nH2O,0k the constant-

pressure heat capacity per unit volume of the gas mixtur
the wall.

D. Chemical reactions

The rates of the chemical reactions are described
means of modified Arrhenius laws. Following Ref.@20#, we
furthermore include a correction factor in the forward rea
tion rate of every elementary reaction to approximately
count for the shift of the equilibrium constant under hig
density. The general form for the reaction rates of a chem
processM1A1B↔M1C1D then becomes

r f , j5Fexp@ntotB/~12ntotB!#

12ntotB
G t j

kf , j ntot nA nBTcf , j

3expS 2
Ef , j

kT D , ~7!

r b, j5kb, jntotnCnDTcb, jexpS 2
Eb, j

kT D , ~8!

r j5r f , j2r b, j , ~9!

with nA, . . . ,D the concentration of the participating specie
ntot the number density of the colliderM ~given by the total
number density as every particle can act as a collider!, andr j
the net reaction rate per unit volume given by the differen
between the forward and backward ratesr f , j and r b, j . Note
that for reactions of typeA1B↔C1D or M1A1B↔M
1C the concentration must be adapted accordingly. Tab
lists the parameters used@45#. The chemical rate of chang
of speciesi is now given by the sum over all elementa
reaction rates with their corresponding stoichiometric wei
a i , j .

Ṅi
c5V(

j
a i , j r i . ~10!

To illustrate this consider, for example, reactionj 51. In this
reaction oxygen radicals (i 5O) have a stoichiometric
weight aO,1522, since two O radicals are destroyed in t
process. For say hydroxyl radicals (i 5OH) it is obviously
aOH,150, since hydroxyl radicals are not involved in rea
tion j 51.
0-2
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TABLE I. Arrhenius parameters of the reaction scheme@24,45#. The frequency factorskf , j , kb, j are given
in cm3(mol/s) for the two-body reactions and in cm6(mol2/s) for the three-body reactions.Ef , j /k andEb, j /k
are given in K and the reaction energiesDEj are in kJ/mol.

No. Reaction t j kf , j cf , j Ef , j /k kb, j cb, j Eb, j /k DEj

1 O1O1M↔O21M 1 1.231017 21 0 3.1631019 21.3 59893 498
2 O1H1M↔OH1M 1 531017 21 0 3.5431017 20.9 51217 428
3 O1H2↔H1OH 0 3.873104 2.7 3150 1.793104 2.7 2200 28
4 H1O2↔O1OH 0 2.6531016 20.7 8576 931013 20.3 283 270
5 H1H1M↔H21M 1 131018 21 0 7.4631017 20.8 52177 436
6 H1OH1M↔H2O1M 1 2.231022 22 0 3.6731023 22 59980 498
7 OH1H2↔H1H2O 0 2.163108 1.5 1726 5.23109 1.3 9529 62
8 OH1OH↔O1H2O 0 3.573104 2.4 1062 1.743106 2.2 7693 70
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Given the chemical and diffusive rate of change by E
~10! and Eq.~4!, the total rate of change of speciesi even-
tually becomes

Ṅi5Ṅi
d1Ṅi

c ~11!

E. Energy balance

In order to derive a differential equation for the gas te
perature, we start from the global energy balance of
bubble interior@27#

Ė5Q̇2pgV̇1(
i

~hw,i1hform,i !Ṅi
d . ~12!

Here, Ė is the rate of change of the total energy,Q̇ is the
conductive heat loss,pgV̇ the work performed on the bubble

and ( i(hw,i1hform,i)Ṅi
d is the energy loss due to diffusion

The terms in the summation account for the enthalpy of f
mation hform,i of the various radicals; differences betwe
these enthalpies determine the reaction energy of the ch
cal reactions. Hence, we write

E5(
i

~eth,i1hform,i !Ni , ~13!

with the thermal energy per moleculeeth,i given by

eth,i5
f i

2
kT1(

l

kQ i ,l

exp
Q i ,l

T
21

. ~14!

f i is the number of translational and rotational degrees
freedom andQ i ,l the characteristic vibrational temperatu
of speciesi. Table II lists the values used in the calculatio
@46#. Taking the time derivative of Eq.~13! one finds

Ė5Ṫ(
i

]eth,i

]T
Ni1(

i
hform,i Ṅi

c1(
i

eth,i Ṅi
c1(

i
hform,i Ṅi

d

1(
i

eth,i Ṅi
d . ~15!
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The second term in the last equation is readily recognize
the net reaction energy per unit time:

(
i

hform,i Ṅi
c52V(

j
r jDEj . ~16!

Upon equating Eq.~15! and Eq.~12! and using this relation,
we finally obtain a differential equation for the temperatu
T. It will be noted that, as expected, the enthalpies of form
tion hform,i are thus only important in the net reaction energ
but not in the final temperature equation.

We note that our model does not include ionization re
tions or electronic excitation even though, for the smal
bubbles that we simulate, we find peak temperatures of
order of ten times the ionization temperature. Inclusion
these effects would considerably lower the peak tempe
tures as presumably a major part of the compressional w
would be consumed by them. Although our predictions m
not be quite realistic in these cases, it should be noted
the problem does not even arise in the case of sin
frequency driving as the calculated temperatures are m
lower. The trend toward a much increased temperatur
therefore a robust prediction.

F. Diffusional stability

In order to prevent the disappearance of the bubble,
maximization of the temperature must be effected under
constraints that the bubble maintain~1! diffusional and~2!
shape stability. The former condition translates to

TABLE II. Number of translational1rotational degrees of free
dom and characteristic vibrational temperatures of the various
cies @24,46#. Note also thathw,i5( f i12)/2kT0.

Species H2 H O O2 OH H2O Ar

Q i ,l 6325 2273 5370 2295
Q i ,2 5255
Q i ,3 5400
f i 5 3 3 5 5 6 3
0-3
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TABLE III. Compression ratiosªRMax /Rmin , pressure amplitudesp1 ,p2 ,q2, normalized equilibrium
dissolved gas concentrationC` /Csat, and estimated maximum gas temperatureTMax , for single-frequency
drive ~left! and optimal two-frequency drive for the cases shown in Fig. 1;Csat is the saturation concentration
The calculations are for an argon-water system at standard temperature and pressure.

Single-frequency drive Multifrequency drive
R0 s p1 C` /Csat TMax s p1 p2 q2 C` /Csat TMax

(mm) ~kPa! ~K! ~kPa! ~kPa! ~kPa! ~K!

2.0 545 316 4.331026 25 100 955 48 2775 21605 1.1431026 688 000
2.5 404 289 9.931026 23 500 738 32 21597 2519 2.2231026 451 000
3.0 267 243 2.8631025 21 500 633 16.3 1306 108 3.731026 319 000
3.5 145 196 1.0831024 14 600 446 120 2954 84 9.7531026 153 000
4.0 116 171 3.231024 11 300 220 240 276 275 5.1531025 17 400
4.5 88 153 9.0031024 10 400 177 222 271 2100 8.731025 15 400
5.0 62 138 2.5631023 9600 224 288 287 29 5.031025 14 700
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U

ṁ50

.0, ~17!

whereC` is the gas concentration in the liquid; the deriv
tive is taken along the line of diffusional equilibrium alon
which ṁ, the net gas inflow into the bubble over one cyc
vanishes. The condition~17! ensures that, for a givenC` , a
small increase in the equilibrium radius~which is related to
the mass of gas inside the bubble! will bring the bubble into
a region where gas diffuses out of it thus restoring the or
nal equilibrium radius, and conversely for a smallR0 de-
crease. The dissolved concentrationC` with which a bubble
of equilibrium radiusR0 is in diffusional equilibrium is
given by @28#

C`

Csat
5

1

P`

^p~ t !R4&

^R4&
, ~18!

whereCsat is the saturation concentration atP` and the an-
gular brackets indicate the average over a complete perio
the sound pressure amplitude~2!.

G. Shape stability

In order to check the shape stability of the bubble,
have recourse to the equation governing the initial growth
a shape distortion proportional to thenth order spherical har
monic, which is~see, e.g., Refs.@6,7,29,30#!

än1F3
Ṙ

R
22~n21!~n11!~n12!

m

rR2 12
n~n12!2

112d/R

m

rR2G
3ȧn1~n21!F2

R̈

R
1~n11!~n12!

s

rR3

12~n12!
mṘ

rR3 S n112
n

112d/RD Gan50. ~19!

Here,an is the amplitude of the shape distortion andd is the
viscous boundary layer thickness approximated by@6,31#
05631
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At steady state the coefficients of Eq.~19! are periodic func-
tions of time and, therefore, Floquet theory applies~see, e.g.,
Ref. @32#!, according to which the solution (an ,ȧn) at the
end of a cycle is linearly related to (an ,ȧn) at the beginning
of the cycle. It can be shown that, when the eigenvalues
the matrix establishing this linear relationship are compl
the spherical shape is stable. When they are real, letl be the
one with the greater modulus; then, ifulu.1, (an ,ȧn) will
grow over each cycle and the bubble will be shape unsta
@5,6#.

III. NUMERICAL METHODS

An exploratory calculation readily shows that, consider
as a function of the pressure amplitudes (pk ,qk) for a given
bubble equilibrium radiusR0, the maximum temperature
Tmax possesses a great many points of relative maximum
minimum, cf. also Tables III and IV. This circumstance re
ders the more straightforward optimization algorithms, su
as Newton-Raphson, ineffective. For this reason, we h
chosen simulated annealing, which has the virtue of allow

TABLE IV. Result of the optimization process, with an annea
ing rate three times as large as in Table III; all other parame
have the same values as before.

Multifrequency drive
R0

~mm!
s p1

~kPa!
p2

~kPa!
q2

~kPa!
C` /Csat TMax

~K!

2.0 2255 2831 14,580 26411 3.8231028 1 466 000
2.5 722 213 2488 21546 1.8531026 436 000
3.0 539 164 2847 21049 3.931026 293 000
3.5 275 208 2219 63 2.631025 21 500
4.0 242 217 2185 50 3.831025 18 300
4.5 164 2246 53 213 1.1131024 14 700
5.0 96 99 2107 2119 4.631025 10 900
0-4
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the search process to escape local extrema. The implem
tion of the algorithm that we use is that described in R
@33#, which can be summarized as follows.

Start with a set of values for the amplitudes (pk ,qk) in the
shape-stable region and calculate the corresponding valu
u5 ln(Tmax) for steady state oscillations of the bubble. W
optimize the logarithm of the temperature rather than
temperature itself, as the latter one spans orders of magn
and therefore is not a suitable objective function. A rand
number generator produces a new set of amplitudes (pk8 ,qk8)
which is used to calculate a newu8 at steady state. We firs
test whether the corresponding prolate-oblate distortion
plitude a2 of the bubble is stable or unstable by calculati
its largest Floquet multiplier from Eq.~19!. In the latter case
the set is discarded~and counted as a failed step!, a new set
(pk8 ,qk8) is generated, and shape stability is tested again
instead, the set (pk8 ,qk8) corresponds to shape-stable con
tions, we compareu8 with u: whenu8.u, the set (pk ,qk) is
replaced by (pk8 ,qk8) and the process is repeated. Ifu8 is
smaller thanu, then the set (pk8 ,qk8) is not automatically
discarded as in other methods, but is accepted with a p
ability exp@(u82u)/Q#, whereQ is a pseudotemperature th
is gradually decreased as the iterations converge to the
sired maximum. TypicallyQ.10 at the beginning of the
process and is progressively decreased as described in
@33#. The process is stopped whenQ has reached a value o
the order of 1022.

We have found that, depending on the rate of anneal
the estimated optimal point varies somewhat, as will be d
cussed further below. However, in all cases, we have b
able to considerably increase the peak temperature over
is achievable with a single-frequency drive.

When the maximumu has been found, we check that th
higher-order shape modesan , with n up to five, are also
stable, again by calculating the pertinent Floquet multiplie
Typically, we find that the multipliers fora3 and possiblya4
are somewhat larger than those fora2, although still stable,
while those fora5 and the higher modes are much smaller.
the optimum point (pk ,qk) we also calculate the concentr
tion of dissolved gas with which the bubble would be
diffusional equilibrium @6,7# and we check that the diffu
sional stability condition~17! is satisfied. In all cases, w
have found that this condition was satisfied.

IV. RESULTS

We demonstrate the results that are obtainable by
present method by considering a specific example with o
three harmonic amplitudes (p1 ,p2 ,q2), so that

PA5p1 cosvt1p2 cos~2vt !1q2 sin~2vt !. ~21!

The fundamental frequencyv1/2p is taken as 26.5 kHz
~which is of the order of the frequency used in much of t
experimental work conducted to date@2,4,34,35#!.

We have generated results using two different annea
protocols, with the second one proceeding three times as
Figure 1 compares the compression ratios5Rmax/Rmin and
the maximum temperatureTmax achievable with a single
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frequency drive~dotted lines! with the optima given by the
two annealing procedures~solid and dashed lines!, as a func-
tion of the bubble equilibrium radiusR0. The corresponding
values of (p1 ,p2 ,q2) are given in Tables III and IV.

It is seen here that, for small bubbles (;2 –3 mm), the
optimum collapse temperature~upper graph! can be more
than an order of magnitude larger than in the single-driv
case. This is also reflected by the significantly increa
compression ratio of these bubbles which is shown in
lower graph. The calculated temperatures for these v
small bubbles, however, are very unlikely due to limitatio
of the model which become increasingly severe at such
treme conditions, notably the disregard of ionization and
idealized temperature and flux conditions conditions at
bubble wall.

These unrealistically large temperatures drastically d
with increasing R0 although a clear enhancement ov
single-frequency drive is still present. For these larg
bubbles, water vapor has a strongly adverse effect by
creasing the heat capacity of the gas mixture and diverting
increasing part of the thermal energy to chemical reactio
In addition, larger bubbles tend to be more sensitive to sh
distortions and, as a consequence, cannot be driven
strongly as small bubbles. Regardless of the equilibrium s
the time dependence of the radius is markedly different
tween one- and two-frequency driving; the upper panel
Fig. 2, in which the dashed and solid lines are for the sing
and two-frequency drive, respectively, gives an example
R055 mm.

The bubble core temperature and argon mole fraction
also depicted in this figure. It can be seen here that, for
dual-frequency drive, the argon mole fraction at collapse
smaller than with a single frequency which, all other con
tions being equal, would result in a smaller temperature. T
circumstance, however, is more than compensated for by
greatly increased compression.

FIG. 1. Maximum collapse temperature and ratios
5Rmax/Rmin of the maximum bubble radius to the subsequent m
mum as a function of the equilibrium radius for single-frequen
drive ~dotted line! and optimal multifrequency drive~dashed and
solid lines, for the two different annealing rates mentioned in
text!; the corresponding numerical values are given in Tables
and IV.
0-5
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The solid lines in Fig. 1~which correspond to the result
in Table III! are for the slow annealing rate, while the dash
lines are for the faster one. The differences between the
calculations are due to the exceedingly complex structur
the objective function, which would require annealing a
very slow rate for a resolution of these differences. We h
not attempted this due to the large computational cost. In
event, the factor of 2 difference forR052 mm cannot be
regarded as significant due to very strong sensitivity of
results to small change in conditions such as pressure am
tudes, relative phase, and others. A further illustration of t
sensitivity are the results forR053.5 mm, which are due to
a particularly steep structure of the response surface in
neighborhood. As shown by a comparison of the results
Tables III and IV, for the larger values of the radius, the d
are not significantly different in the two cases, and it is
these cases that the model is more realistic.

In practice, in order to observe the predicted effect,
bubble must be diffusively stable. The dissolved argon c
centrationsC` ~normalized by the saturation concentrati
Csat) necessary to maintain diffusional equilibrium at the o
timum point for each bubble radius are tabulated in Tables
and IV, and graphed in Fig. 3; here the abscissa is the in
sity of the sound field,PsndªAp1

21p2
21q2

2. It will be no-
ticed that the relative argon saturation necessary to obs
the effects that we find are extremely low; they cou

FIG. 2. Time dependence of the radius~normalized by its equi-
librium value R055 mm) for single- ~dashed line! and two-
frequency drive in correspondence of the optimum conditio
shown in Fig. 1 and Table III~upper panel!, with the corresponding
temperature@center panel,T(t) normalized byT05293.15 K] and
argon mole fraction histories.
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be achieved, for instance, by repeated dilution of the
mixture to which the liquid is exposed.

All the single-frequency~circles! and multiple-frequency
~triangles! data correspond to shape-stable conditions,
for all of them the diffusional equilibrium is also stable.

V. REACHING THE OPTIMUM POINT

While the results described prove the existence of a p
in parameter space where the oscillation amplitude o
stable bubble is greatly increased over that attainable wi
single-frequency drive, in order to exploit this finding
practice it is necessary to be able to reach this optimum p
starting from a low drive amplitude while maintainin
bubble stability. It is evident that this is a nontrivial requir
ment for the practical application of multifrequency enhan
ment of sonoluminescence. As a matter of fact, it is not e
clear that such a path exists, as the maxima that we h
identified may well belong to ‘‘islands’’ of stability that ar
not connected by stable paths to stable regions. Indeed
have strong evidence of this possibility in at least one ca
for the 2 mm bubble in Table III. In this case, we observe
that all steps away from the set of values shown in the ta
led to shape-unstable conditions. Furthermore, the Floq
multiplier for this case was very close to 1. A similar com
plex topology of the stable-unstable regions is reflected
the results of@36# for the shape-stability boundary.

If, however, a stable path exists, a possible way to find
which we have found useful, is the following, which w
illustrate for a bubble with an equilibrium radiusR0
55 mm. Since the procedure is computationally intensi
for simplicity, we have carried out these computations e
cluding the chemical reactions from the model. This simp
fied model gives an optimum point different from that show
in Table III, with p15157 kPa, p252121 kPa, q2
554 kPa, andC`,opt/Csat5231024. In an experiment the

s

FIG. 3. Dissolved argon concentration~normalized by the satu-
ration valueCsat) necessary to ensure diffusional equilibrium of th
bubble as a function of the intensity of the sound fieldPsnd

ªAp1
21p2

21q2
2. The circles are for single-frequency and the t

angles for two-frequency drive. The diffusional equilibria are
found to be stable.
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dissolved gas concentration would be fixed, while the eq
librium radius of the bubble would vary as, for a fixed co
centration, it depends on the acoustic drive.

We proceed backward starting from the optimum po
and taking a small stepdP5(dp1 ,dp2 ,dq2) in the param-
eter space spanned by the three acoustic pressure ampli
of Eq. ~21! according to

dP52eR0

“R0

u“R0u2
, ~22!

where the gradient is with respect to the pressure amplitu
and is taken keepingC`5C`,opt constant;e is a prescribed
small number~typically of the order of 1024). This proce-
dure has the effect of changing the driving amplitudes in
direction2“R0, which is motivated by the general consi
eration that spherical stability improves for smaller bubbl
Furthermore, with single-frequency driving and at const
C` , the value ofR0 for diffusive stability decreases with th
pressure amplitude~see, e.g., Ref.@6#, Fig. 7, Ref.@7#, Fig.
14, or Ref.@3#, Fig. 30!. Although“R0 is calculated keeping
C` constant, after the displacement~22!, this condition will
not be satisfied exactly due to the nonlinearity of t
concentration-pressures relation. Furthermore, it is desir
to keep the shape-stability Floquet multiplierl away from
the stability limits61 to avoid getting too close to an insta
bility region. Thus, after taking the step~22!, we adjust the
pressure amplitudes further by employing the ansatz

dP5a“C`1b“l, ~23!

and determininga andb by imposing that

C`1dP•“C`5C`,opt, ~24!

whereC`,opt is the concentration corresponding to the op
mum point, and

l1dP•“l50. ~25!

The gradients in these two relations are taken with respe
pressure, keepingR0 constant. The first condition is
Newton-Raphson extrapolation to the required value ofC` .
If l were a linear function ofdP, the condition~25! would
force it to vanish at the end of the step. In view of t
nonlinearity of thel2dP relation,~25! only forces the step
to be in the direction of decreasingulu, i.e., more stable
conditions. This adjustment is repeated untilulu,0.5 andC`

is within 1% of C`,opt.
The same procedure is repeated until the pressure am

tudes are sufficiently small that the bubble is in a fully sta
region.

The results of this procedure are shown in the thr
dimensional parameter space (p1 ,p2 ,q2) in Fig. 4.

At each point of this path the condition~17! of diffusive
stability is satisfied. It can be seen in the figure that the p
is complex and could not readily be found experimentally
trial and error. A good theoretical model appears therefor
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be a prerequisite for any attempt at a full exploitation of t
enhancement that multifrequency drive is predicted to ren
possible.

Once the path has been found, we can go back to the
model, including chemical reactions, and test again
spherical stability. The results of this test are shown in
same Fig. 4, where the solid part of the line marks the sta
portion of the path, while the dotted part indicates sphe
cally unstable conditions in the presence of chemical re
tions. Somewhat unexpectedly, it is found that the latter
stabilize the upper portion of the path. This finding is y
another demonstration of the subtle effect of the afterboun
on the shape stability of the bubble. Including chemical
actions, the last stable point of the path corresponds toR0
52.6mm, p1517.4 kPa, p252209 kPa, q25262 kPa,
and a maximum temperature of 13 800 K.

It is possible that a stable path with chemical reactio
could be found in the neighborhood of the one shown in F
4. We have not pursued the matter in view of the consid
able amount of computation required, which would have
be repeated in any attempt to investigate the issue exp
mentally. This paper is meant to point out the existence
optimum points at much higher pressure amplitudes t
with single-drive excitation and to demonstrate compu
tional approaches for their calculation.

VI. CONCLUSIONS

It is known that single-bubble sonoluminescence can
enhanced by a proper selection of the liquid-gas comb
tion, degree of liquid saturation, and operation at low te
peratures@37–40#. We have demonstrated in this paper th
there is a possibility of further significant enhancement
the use of an optimized set of Fourier amplitudes of
driving sound field, while maintaining shape, diffusive, a

FIG. 4. Calculated diffusionally stable path from the stable
gion at low driving amplitudes to the optimum point forR0

55 mm. The argon saturation isC` /Csat5231024 and the funda-
mental driving frequencyf 526.5 kHz. The solid portion of the line
denotes the region where the bubble is shape stable both with
without chemical reactions; on the dotted portion of the line sph
cal stability is predicted without chemical reactions only. Along t
path the Floquet multiplier is constrained to be less than 0.5
modulus.
0-7
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chemical stability. The effect is particularly marked f
smaller bubbles, where we find gas temperatures muc
excess of those achievable with single-frequency drivi
While the upper range of the predicted temperatures for th
small bubbles is unlikely due to limitations of the mod
~neglect of ionization, idealized bubble wall conditions, a
others!, for larger bubbles, where the model is more reliab
we find temperature increases by a factor of 2 or more.
these larger bubbles the increase is less marked as the
ence of water vapor is more pronounced.

For the experimental observations of our predictions
will be necessary to gradually adjust the level of the Fou
components of the sound field so as to reach the optim
point while maintaining stability. We have shown a proc
dure for this purpose.

A final condition necessary to observe the predicted o
mum conditions experimentally is that the pressure-radia
~or Bjerknes! force not lead to a removal of the bubble fro
the pressure antinode region. This point is a concern as
well known that, as the maximum radius increases, the
,

oc

.

e

e

hy

t.
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lapse of the bubble is delayed so much that the Bjerk
force may change sign and push a bubble driven below re
nance away from the pressure antinode@41,42#. While this
may happen, it is possible to avoid this difficulty, for e
ample, by the simultaneous use of a very high frequen
which would greatly increase the pressure gradient resp
sible for the Bjerknes force, with little effect on the radi
dynamics~see, e.g., Ref.@43#!. It may also be noted that th
condition of positional stability under the action of Bjerkn
forces can readily be introduced as an additional constr
on the optimization algorithm.
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