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AbstractÐThe first subject of this paper is the estimation of a high resolution directional field of fingerprints. Traditional methods are
discussed and a new method, based on principal component analysis, is proposed. The method not only computes the direction in any

pixel location, but its coherence as well. It is proven that this method provides exactly the same results as the ªaveraged square-

gradient methodº that is known from literature. Undoubtedly, the existence of a completely different equivalent solution increases the

insight into the problem's nature. The second subject of this paper is singular point detection. A very efficient algorithm is proposed that
extracts singular points from the high-resolution directional field. The algorithm is based on the PoincareÂ index and provides a

consistent binary decision that is not based on postprocessing steps like applying a threshold on a continuous resemblance measure

for singular points. Furthermore, a method is presented to estimate the orientation of the extracted singular points. The accuracy of the

methods is illustrated by experiments on a live-scanned fingerprint database.

Index TermsÐImage processing, fingerprint recognition, directional field, orientation estimation, singular point extraction, principal

component analysis.
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1 INTRODUCTION

FINGERPRINT recognition has received increasingly more
attention during the last years. Since the performance of

fingerprint verification systems has reached a satisfactory
level for applications involving small databases, the next step
is the development of algorithms for fingerprint identification
systems that can search relatively large databases for a
matching fingerprint. Although other approaches are possi-
ble, like, for instance, the hashing technique in the minutiae
domain [1], the first step in an identification system is often
continuous classification of fingerprints [2], [3]. This reduces
the partition of the database to be searched for matches. To
facilitate high-performance classification, algorithms for
accurate directional field and singular-point estimation are
needed.

In Fig. 1a, a fingerprint is depicted. The information
carrying features in a fingerprint are the line structures,
called ridges and valleys. In this figure, the ridges are black
and the valleys are white. It is possible to identify two levels
of detail in a fingerprint. The directional field (DF), shown in
Fig. 1b, describes the coarse structure, or basic shape, of a
fingerprint. It is defined as the local orientation of the ridge-
valley structures. The minutiae provides the details of the
ridge-valley structures, like ridge-endings and bifurcations.
Minutiae are, for instance, used for fingerprint matching,
which is a one-to-one comparison of two fingerprints.

This paper focuses on the directional field of fingerprints
and matters directly related to the DF. The DF is, in principle,

perpendicular to the gradients. However, the gradients are
orientations at pixel scale, while the DF describes the
orientation of the ridge-valley structures, which is a much
coarser scale. Therefore, the DF can be derived from the
gradients by performing some averaging operation on the
gradients, involving pixels in some neighborhood [4]. This is
illustrated in Fig. 2a, which shows the gradients in a part of a
fingerprint, and Fig. 2b, which shows the averaged direc-
tional field. While the gradients are not all parallel because of
the endpoint, the directional field is because of the averaging
operator. The averaging of gradients in order to obtain the DF
is the first topic of this paper.

The estimation method that is described in this paper
enables the application of DF-related tasks that require very
high resolution and accurate DFs. Examples of these
demanding techniques are, for instance, the accurate
ªextraction of singular pointsº as discussed in Section 3
and ªhigh-performance classification.º Together with the
DF, the coherence can be estimated. The coherence is a
measure that indicates how well the gradients are are
pointing in the same direction. An example of its use is
high-resolution segmentation [5], [6].

In the DF, singular points (SPs) can be identified. The
extraction of those singular points is the second topic of this
paper. SPs are the points in a fingerprint where the directional
field is discontinuous. Henry [7] defined two types of singular
points, in terms of the ridge-valley structures. The core is the
topmost point of the innermost curving ridge and a delta is the
center of triangular regions where three different direction
flows meet. The locations of the singular points in an example
fingerprint are given in Fig. 1c. Apart from its location, an SP
has an orientation; this paper also proposes an estimation
method for the orientation of SPs [8].

The most common use of SPs is registration, which means
that they are used as references to line up two fingerprints.
Another example of their use is classification of fingerprints
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in the Henry classes [9]. The orientation of singular points
can be used for more advanced classification methods, or to
initialize flow lines in the DF [9], [10], [11], [12].

This paper is organized as follows: First, in Section 2, the
estimation of the DF is discussed. In Section 2.1, the
traditional method of averaging squared gradients is dis-
cussed, while, in Section 2.2, a new method based on principal
component analysis (PCA) is proposed. In Section 2.3, a proof is
given that both methods are exactly equivalent and it is
shown that the coherence, which is a measure for the local
strength of the directional field, can be elegantly expressed in
the two eigenvalues that are computed for the PCA. Then, in
Section 3, SPs are discussed. Section 3.1 describes an efficient
method for the extraction of SPs from the DF, while, in
Section 3.2, a method is proposed for the estimation of the
orientation of the SPs. In Section 4, some computational
aspects of DF estimation and SP extraction are discussed.
Furthermore, it is shown that the high-resolution DF can be
used to obtain more accurate block-DF estimates. Finally, in
Section 5, an experiment is presented where the theory is
applied to fingerprints contained in one of the databases used
for the Fingerprint Verification Competition 2000 [13]. In that
section, some practical aspects of the algorithms are dis-
cussed as well.

2 DIRECTIONAL FIELD ESTIMATION

Various methods used to estimate the DF from a
fingerprint are known from literature. They include
matched-filter approaches [14], [15], [9], methods based

on the high-frequency power in three dimensions [16], 2-
dimensional spectral estimation methods [15], and micro-
patterns that can be considered binary gradients [10]. These
approaches do not provide as much accuracy as gradient-
based methods, mainly because of the limited number of
fixed possible orientations. This is especially important
when using the DF for tasks like tracing flow lines. The
gradient-based method was introduced in [17] and adopted
by many researchers, see, e.g., [18], [19], [20], [21].

The elementary orientations in the image are given by
the gradient vector �Gx�x; y� Gy�x; y��T , which is defined as:

Gx�x; y�
Gy�x; y�
� �

� sign�Gx�rI�x; y�

� sign
@I�x; y�
@x

� � @I�x;y�
@x

@I�x;y�
@y

" #
;

�1�

where I�x; y� represents the gray-scale image. The first

element of the gradient vector has been chosen to always be

positive. The reason for this choice is that in the DF, which

is perpendicular to the gradient, opposite directions

indicate equivalent orientations. It is illustrated in Fig. 2

that some averaging operation has to be performed on the

gradients in order to obtain the DF.

2.1 Averaging Squared Gradients

This section discusses the problems that are encountered
when averaging gradients and the traditional solution of
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Fig. 1. Examples of a fingerprint, its directional field and its singular points: (a) fingerprint, (b) directional field, and (c) singular points.

Fig. 2. Detailed area in a fingerprint: (a) the gradient and (b) the averaged directional field.



averaging squared gradients. First, the general idea behind
averaging squared gradients is presented and then, an
analysis of the results of this method is given. Apart from
the estimation of the DF, this section also discusses the
coherence, which provides a measure for the strength of the
estimated orientation.

2.1.1 Qualitative Analysis

Gradients cannot directly be averaged in some local neighbor-

hood since opposite gradient vectors will then cancel each

other, although they indicate the same ridge-valley orienta-

tion.This iscausedbythefact that local ridge-valleystructures

remain unchanged when rotated over 180 degrees [21]. Since

the gradient orientations are distributed in a cyclic space

ranging from 0 to �, and the average orientation has to be

found, another formulation of this problem is that the

ª�-periodic cyclic meanº has to be computed.
In [17], a solution to this problem is proposed by doubling

the angles of the gradient vectors before averaging. After

doubling the angles, opposite gradient vectors will point in

the same direction and, therefore, will reinforce each other,

while perpendicular gradients will cancel. After averaging,

the gradient vectors have to be converted back to their single-

angle representation. The ridge-valley orientation is then

perpendicular to the direction of the average gradient vector.
In the version of the algorithm discussed in this paper, not

only the angle of the gradients is doubled, but also the length
of the gradient vectors is squared, as if the gradient vectors are
considered as complex numbers that are squared. This has the
effect that strong orientations have a higher vote in the
average orientation than weaker orientations. Furthermore,
this approach results in the cleanest expressions. However,
other choices, like, for instance, setting all lengths to unity
[21], are found in literature as well.

In [17], a method is proposed to use the squared gradients

for computation of the strength of the orientation. This

measure, which is called the coherence, measures how well

all squared gradient vectors share the same orientation. If

they are all parallel to each other, the coherence is 1 and if they

are equally distributed over all directions, the coherence is 0.

2.1.2 Quantitative Analysis

In this section, the qualitative analysis that was given in the

previous section is made quantitative. The gradient vectors

are first estimated using Cartesian coordinates, in which a

gradient vector is given by �Gx Gy�T . For doubling the angle

and squaring the length, the gradient vector is converted to

ºpolarº coordinates, in which it is given by �G� G'�T . This

conversion is given by:

G�

G'

� �
�

������������������
G2
x �G2

y

q
tanÿ1 Gy=Gx

" #
: �2�

Note that ÿ 1
2� < G' � 1

2� is a direct consequence of the fact

hat Gx is always positive. The gradient vector is converted

back to its Cartesian representation by:

Gx

Gy

� �
� G� cosG'

G� sinG'

� �
: �3�

Using trigonometric identities, an expression for the

squared gradient vectors �Gs;x; Gs;y�T that does not refer to

G� and G', is found:

Gs;x

Gs;y

� �
�

G2
� cos 2G'

G2
� sin 2G'

" #
� G2

��cos2 G' ÿ sin2 G'�
G2
��2 sinG' cosG'�

" #

� G2
x ÿG2

y

2GxGy

" #
:

�4�

This result can also be obtained directly by using the

equivalence of ªdoubling the angle and squaring the length

of a vectorº to ªsquaring a complex numberº:

Gs;x � j �Gs;y � �Gx � j �Gy�2 � �G2
x ÿG2

y� � j � �2GxGy�:
�5�

Next, the average squared gradient Gs;x Gs;y

� �T
can be

calculated. It is averaged in some neighborhood, using a

possibly nonuniform window W :

Gs;x

Gs;y

" #
�

P
W Gs;xP
W Gs;y

� �

�
P

W G2
x ÿG2

yP
W 2GxGy

" #
� Gxx ÿGyy

2Gxy

� �
:

�6�

In this expression,

Gxx �
X
W

G2
x �7�

Gyy �
X
W

G2
y �8�

Gxy �
X
W

GxGy �9�

are estimates for the variances and crosscovariance of Gx

and Gy, averaged over the window W . Now, the average

gradient direction �, with ÿ 1
2 � < � � 1

2�, is given by:

� � 1

2
� Gxx ÿGyy; 2Gxy

ÿ �
; �10�

where ��x; y� is defined as:

��x; y� �
tanÿ1�y=x� x � 0
tanÿ1�y=x� � � for x < 0 ^ y � 0
tanÿ1�y=x� ÿ � x < 0 ^ y < 0

8<: �11�

and the average ridge-valley direction �, withÿ 1
2� < � � 1

2�,

is perpendicular to �:

� � �� 1
2� for � � 0

�ÿ 1
2� � > 0:

�
�12�

The coherence of the squared gradients can also be

expressed using the same notations. The coherence Coh is

given by [17]:

Coh �
P

W �Gs;x; Gs;y�
�� ��P

W �Gs;x; Gs;y�
�� �� : �13�

BAZEN AND GEREZ: SYSTEMATIC METHODS FOR THE COMPUTATION OF THE DIRECTIONAL FIELDS AND SINGULAR POINTS OF... 907



If all squared gradient vectors are pointing in exactly the
same direction, the sum of the moduli of the vectors equals
the modulus of the sum of the vectors, resulting in a
coherence value of 1. On the other hand, if the squared
gradient vectors are equally distributed in all directions, the
length of the sum of the vectors will equal 0, resulting in a
coherence value of 0. In between these two extreme
situations, the coherence will vary between 0 and 1, thus
providing the required measure.

2.2 Principal Component Analysis

This paper proposes a second method to estimate the
directional field from the gradients, which is based on
principal component analysis (PCA). PCA computes a new
orthogonal base given a multidimensional date set such that
the variance of the projection on one of the axes of this new
base is maximal, while the projection on the other one is
minimal. It turns out that the base is formed by the
eigenvectors of the autocovariance matrix of this data set [22].

When applying PCA to the autocovariance matrix of the
�Gx Gy�T gradient vectors, it provides the 2-dimensional
Gaussian joint probability density function of these vectors.
From this function, the main direction of the gradients can be
calculated.

The estimate of the autocovariance matrix C of the
gradient vector pairs is given by:

C � Gxx Gxy

Gxy Gyy

� �
�
X
W

G2
x GxGy

GxGy G2
y

� �
: �14�

In this estimate, the assumption is made that the gradient
vectors are zero-mean, i.e.,

E�Gx� � E�Gy� � 0 �15�
in a window W in the given fingerprint. This is true in any
window in which the fingerprint has a constant mean gray
value. Then, the gradient is defined as the difference of two
values that have the same expectation. Therefore, the
expectation of the gradient is zero. The requirement of
constant mean is reasonable in windows that contain a
small number of ridge-valley transitions.

The longest axis v1 of the 2-dimensional joint probability
density function is given by the eigenvector of the
autocovariance matrix that belongs to the largest eigenvalue
�1. This axis corresponds to the direction in which the
variance of the gradients is largest, and so to the ªaverageº
gradient orientation. The ridge-valley orientations are
perpendicular to this axis and, therefore, given by the
shortest axis v2. This is the direction of the eigenvector that
belongs to the smallest eigenvalue �2. The average ridge-
valley orientation � is given by:

� � �v2: �16�
The ªstrengthº Str of the orientation can be defined as a

simple function of the two eigenvalues. In order to limit the
strength between 0 and 1, it is defined by:

Str � �1 ÿ �2

�1 � �2
: �17�

Again, if all gradients are pointing in the same direction,
�2 � 0 and Str � 1, while, in case of a uniform distribution
over all angles, �1 � �2 and Str � 0.

2.3 Comparison

In this section, a comparison is made between the two
methods of DF estimation. A proof is given that both
methods are exactly equivalent and it is shown that the
coherence Coh and strength Str are equivalent as well. This
section provides a brief description of the proofs; the
mathematical details can be found in Appendix A and B.

The proof starts by deriving the average gradient,
calculated by the method of averaging squared gradients
as described in Section 2.1. In Appendix A, it is shown that:

Gx

Gy

� �
� 1

c
� 1

2 �Gxx ÿGyy� � 1
2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q
Gxy

" #
�18�

with

c �
������������������������������������������������������������������������������������
1

2
�Gxx ÿGyy� � 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

qr
: �19�

Next, it is shown that this vector is an eigenvector of
autocovariance matrix C, as defined in (14), which proves
that both methods are equivalent.

The coherence Coh, calculated using the squared
gradient method (see (13)) and the strength Str (see (17))
are exactly equal as well. In Appendix B, it is shown that

Str � Coh �
�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q
Gxx �Gyy

: �20�

3 SINGULAR POINT EXTRACTION

The subject of this section is extraction of the SPs, which are
the points in a fingerprint where the DF is discontinuous. In
Fig. 3, two segments of the fingerprint of Fig. 1 are shown,
one containing a core and one containing a delta. The SPs
are somewhere in the center of the segments. However, they
cannot be located more accurately than within the width of
one ridge-valley structure in the gray-value fingerprint,
which is approximately 10 pixels for this example.

In Fig. 4, the DF of those segments is shown. From this DF,
the exact SP location can be determined easily with an
accuracy of only one pixel. Although it seems like a very
straightforward task to extract the SPs from the DFs, many
different algorithms for SP extraction are known from
literature.

In [23], first areas of high curvature are identified as search
areas. Then, a feature vector is estimated by taking the
difference between the estimated direction and the direction
of a double core (whorl) in a number of positions in a circle
around a candidate area. This feature vector is classified as
being core, delta, whorl, or none of these. In [24], first
candidate areas of high curvature are selected, too. Then, a
feature vector is constructed by taking the average directions
at four positions around the candidate SP. This feature vector
is classified as a core or delta. In [18], some reference models
are shifted over the DF, and SPs are detected by a least-
squares fit. In [21], the local energy of the DF is used as a
measure for how much the local DF resembles an SP and, in
[14], a neural network is slided over the DF to detect SPs.
Finally, in [25], the ratio of the sines of the DFs in two adjacent
regions is used as a measure to detect SPs.
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These methods all provide somewhat unsatisfactory
results since they are not capable of consistently extracting
the singular points. Instead of providing a Boolean output
that indicates whether an SP is present at some location or
not, they produce a continuous output that indicates how
much the local DF resembles a SP. Postprocessing steps, like
thresholds and heuristics, are necessary to interpret the
outputs of the algorithms and to make the final decisions.

The method that is presented in this section is based on
the PoincareÂ index, which was first introduced in [10]. The
PoincareÂ index can be explained using the DFs that are
depicted in Fig. 4. Following a counterclockwise closed
contour around a core in the DF and adding the differences
between the subsequent angles results in a cumulative
change in the orientation of � and carrying out this
procedure around a delta results in ÿ�. However, when
applied to locations that do not contain an SP, the
cumulative orientation change will be zero.

Although the PoincareÂ index provides the means for
consistent detection of SPs, the question arises how to
calculate this measure. Apart from the problem of how to
calculate cumulative orientation changes over contours
efficiently, a choice has to be made on the optimal size
and shape of the contour. A possible implementation is
described in [26]. That paper claims that a square curve
with a length of 25 pixels is optimal. A smaller curve results
in spurious detections, while a larger curve may ignore

core-delta pairs which are close to each other. If the
postprocessing step finds a connected area of more than
seven pixels in which the PoincareÂ index is � �, a core or
delta is detected. In the case of an area that is larger than
20 connected pixels, two cores are detected.

In Section3.1,weproposeanefficient implementation ofan
SP extraction algorithm that is based on the PoincareÂ index
and makes use of small 2-dimensional filters. The algorithm
extracts all singular points from the DF, including false SPs
that are caused by an insufficiently averaged DF. Further-
more, the algorithm determines whether a core or a delta is
detected.

Section 3.2 presents an algorithm for estimating the
orientation of SPs. As far as we know, there exists only one
earlier publication on computing the orientation of SPs [23].
That method examines the DF at a number of fixed
positions in a circle around the SP and takes the position
where the DF points best toward the SP as orientation of the
SP. The method that is described below uses the entire
neighborhood of the SP for the orientation estimate, thus
providing much more accurate results.

3.1 Extraction of Singular Points

In the implementation that is proposed in this paper, choices
of the size and shape of the contour don't have to be made.
Postprocessing steps are not necessary and the cumulative
orientation changes over contours are implemented
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Fig. 4. Directional fields. (a) Core and (b) delta.

Fig. 3. Segments of a fingerprint that contain a singular point. (a) Core and (b) delta.



efficiently in small 2-dimensional filters. The method
computes for each individual pixel whether it is an SP,
and is therefore capable of detecting SPs that are located
only a few pixels apart. This property is especially useful for
the extraction of SPs from block-directional fields (BDFs),
which estimate one direction for each n� n block. Special
care has to be taken that high-resolution DFs are sufficiently
averaged such that spurious SPs are eliminated beforehand,
as the SP-extraction algorithm will detect all SPs present in
the DF of a given resolution.

The algorithm first takes the squared directional field
(SDF). This eliminates the step of � which is encountered in
the DF between the orientations � � 1

2� and � � ÿ 1
2�. The

PoincareÂ indexes change to 2�,ÿ2�, and 0 for, respectively, a
core, a delta, and none of these. The orientation of the SDF,
denoted by 2�, is depicted in Fig. 5 for the areas around SPs.

Summing the changes in orientation corresponds to
summing the gradients of the squared orientation. The
gradient vector J can be efficiently precalculated for the
entire image by:

Jx�x; y�
Jy�x; y�
� �

� r2��x; y� �
@2��x;y�
@x

@2��x;y�
@y

" #
: �21�

In the calculation of the discrete version of this gradient,
both components of J should be calculated ªmodulo 2�,º
such that they are always between ÿ� and �. This makes the
transition from 2� � ÿ� to 2� � � continuous or, in other
words, the orientation is considered to be cyclic. The

gradient vectors of the squared orientation around both
singular points are shown in Fig. 6.

The next step is the application of Green's Theorem,
which states that a closed line-integral over a vector field
can be calculated as the surface integral over the rotation of
this vector field:I

@A

wxdx� wydy �
ZZ

A

rot�wx wy�T dxdy

�
ZZ

A

@wy
@x
ÿ @wx

@y

� �
dxdy;

�22�

where x and y define the coordinate system, A is the area,
and @A is the contour around this area and �wx wy�T is the
vector field. This theorem is applied to the summation of
the gradients of the squared orientation over the contour:

Index �
X

�x;�y along @A

�Jx ��x� Jy ��y� �
X
A

rot�Jx Jy�T

�
X
A

@Jy
@x
ÿ @Jx
@y

� �
:

�23�
Since all SPs have to be extracted from the DF, A is taken

as a square of one pixel. This results in a very efficient
method for computation of the PoincareÂ index. Application
of the proposed method will indeed lead to the desired
SP locations. Unlike all other SP extraction methods, a core
results in a PoincareÂ index of 2�, a delta in ÿ2� while the
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Fig. 6. Gradient of squared directional fields. (a) Core and (b) delta.



index for all other pixels in the image is exactly equal to 0.
This is illustrated in Fig. 7.

The exact locations of the SPs in the DF are just between
the pixels. Our method detects an SP in all neighboring
pixels of the point, because of the region of support of the
gradient operator. This results in SP detections that have a
size of 2� 2 pixels, as can also be seen in Fig. 7.

3.2 Orientation of Singular Points

The last subject of this paper is the estimation of the
orientations ' of the extracted SPs. The method that is
described here, makes use of the squared gradient vectors
in the neighborhood of an SP, both for the image to be
analyzed and for a reference SP. First, reference models of
the DFs around standard cores and deltas are constructed.
For a core at �x; y� � �0; 0�, the reference model that
describes the SDF is given by:

SDFcore;ref � �y;ÿx����������������
x2 � y2

p �24�

and, for a delta at �x; y� � �0; 0�, it is given by:

SDFdelta;ref � �ÿy;ÿx����������������
x2 � y2

p : �25�

Note that jSDFcore;ref j � jSDFdelta;ref j � 1 for all �x; y�. The DFs
that are associated with these models are shown in Fig. 8.

The SDF in the neighborhood of a core, repeated in
Fig. 9a, ideally looks like the reference model in Fig. 9b. The

usefulness of the squared gradients is caused by the fact
that, when the gray-scale image rotates around the core, all
components of the SDF rotate over the same angle, as
shown in Appendix C. Therefore, the model of a core that
has rotated over an angle ', is given by a reference model
with all its components multiplied by ej'.

SDFcore;' � SDFcore;ref � ej': �26�
This property is used for the estimation of the

orientation of the core. The orientation of the core with

respect to the reference model is found by taking the

element-by-element product of the observed squared

gradient data SDFcore;obs�x; y� and the complex conjugated

of the reference model SDFcore;ref�x; y�. This is depicted in

Fig. 9c. Then, the elements are summed and the sum is

divided by the number of matrix elements N , and the

angle of the resulting vector is taken.

'̂C � � 1

N

X
x;y

SDF �core;ref�x; y� � SDFcore;obs�x; y�: �27�

The relative orientation of a delta with respect to the
reference model is given by one third of the angle of the
element-by-element product, as also shown in Appendix C:

'̂D � 1

3
� 1

N

X
x;y

SDF �delta;ref�x; y� � SDFdelta;obs�x; y�: �28�
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Fig. 7. Rotation of the gradient of the squared directional fields. (a) Core and (b) delta.

Fig. 8. Reference models of singular points. (a) Core and (b) delta.



The averaging operator provides an accurate and
unbiased estimate for the orientations 'C and 'D. If the
observed core is exactly a rotated version of the reference
core, the orientation estimate gives:

'̂C � � 1

N

X
x;y

SDF �core;ref�x; y� � SDFcore;ref�x; y� � ej'

� � 1

N

X
x;y

SDFcore;ref�x; y�
�� ��2�ej'

� �ej' � ':

�29�

When applying the orientation estimate to the core of
Fig. 3, it is found to be rotated 4 degrees clockwise with
respect to the reference core of Fig. 8, while the delta of Fig. 3
is found to be rotated 8 degrees counterclockwise with
respect to the reference delta of Fig. 8. This corresponds to
the estimates that were made by visual inspection.

4 COMPUTATIONAL ASPECTS

For efficient calculation of the DF and the coherence, one
should not use either of the two basic methods. Instead, first
(7), (8), and (9) are used for estimation of Gxx, Gyy, and Gxy,
and subsequently (51) and (58) are used for calculation of
the DF and the coherence. When calculating those for all
pixels in the image, the summations over W reduce to linear
filter operations, which can be implemented very effi-
ciently. On a 500 MHz Pentium III computer, an efficient
C++ implementation for calculation of the DF and the
coherence takes approximately 300 ms of processing time
for a fingerprint of 300 by 300 pixels.

For most DF-related tasks, such a high resolution estimate
is not needed. In these cases, a simple block-directional field
(BDF) with blocks of, for instance, 8� 8 pixels provides
enough accuracy. The classical way to estimate a BDF is to
partition the image into blocks and estimateGxx,Gyy, andGxy

as the average of the block. Sometimes, overlapping blocks are
used for some more noise suppression. However, averaging
with a uniform window W does not suppress the high-
frequency noise sufficiently. Therefore, aliasing introduces
artifacts in the DF, which, in turn, creates false singular points.

The cause of this problem is that the length of the averaging
filter is set to the same number as the decimation rate. This can
be solved by decoupling the size and the shape of the
averaging filterW from the subsampling rate. We propose the
use of an alternative BDF calculation method that is based on
the high-resolution DF. In each block, Gxx, Gyy, and Gxy are

estimated by means of decimation of the high-resolution DF.
Scale-space theory tells that averaging with a Gaussian
window W minimizes the amount of artifacts that are
introduced by subsampling [4]. This will reduce the number
of false singular points in the DF considerably.

From multirate signal processing, it is known that the
filtering and decimation steps can be implemented very
efficiently using polyphase filters by interchanging the order
of decimation and filtering [27]. Using this method, the
calculation of a 4� 4 BDF is expected to take 40 ms on a
500 MHz Pentium III, while the calculation of an 8� 8 BDF is
expected to take only 20 ms. Since the SP extraction algorithm
makes use of small 2-dimensional filters, it takes 150 ms for a
300� 300 DF. It is expected to take only 10 ms to extract the
SPs from a 4� 4 BDF of a fingerprint of 300� 300 pixels.

5 EXPERIMENTAL RESULTS

In this section, some experiments will be presented in which
the previously derived results are applied to a large number
of fingerprints. It will be shown that application of these
methods enables the estimation of very accurate and high
resolution DFs, accurate SP locations, and correct orienta-
tions of the singular points.

We have run our experiments on the second database of
the FVC2000 contest [13]. This database contains fingerprint
images that are captured by a capacitive sensor with a
resolution of 500 pixels per inch. This means that two
adjacent ridges are located eight to 12 pixels apart. In this
database, 110 untrained individuals are enrolled, each with
eight prints of the same finger.

Since there exists no ground truth for the DF of
fingerprints, objective error measures cannot be constructed.
Therefore, it is difficult to evaluate the quality of a DF estimate
quantitatively. Alternatively, the quality of a DF estimate has
to be measured indirectly. This section is organized as
follows: First, in Section 5.1, the quality of the DF is assessed
by means of manual inspection. Next, in Section 5.2, the
number of false SPs is used as a measure for the quality of a DF
estimate. However, this measure also depends on the
segmentation measure used. Then, Section 5.3 presents
experimental results on the orientation estimation of the SPs.

5.1 Directional Field Estimation

Most authors process fingerprints blockwise [9], [20]. This
means that the directional field is not calculated for all
pixels individually. Instead, the average DF is calculated in
blocks of, for instance, 16 by 16 pixels. In this section, it will
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Fig. 9. Processing steps in the calculation of the orientation of a core. (a) SDF around core. (b) SDF around reference core. (c) Orientation estimate.



be shown that the processing can be carried out pixelwise,
leading to a high resolution and accurate DF estimate.

The first experiment considers the fingerprint of Fig. 1.
Although the DF is only shown at discrete steps in Fig. 1b, it
is estimated for each pixel. This is illustrated in the gray-
scale coded Fig. 10a. In that figure, the angles in the range of
ÿ 1

2� to 1
2 � have uniformly been mapped to the gray-levels

from black to white. The figure is somewhat chaotic at the
borders since those are areas that consist of noise. However,
as shown in Fig. 10b, the coherence is very low in these
noisy areas [5]. In this figure, black indicates Coh � 0, while
white indicates maximum coherence.

Next, an experiment is carried out to illustrate the effects of
the choice of the window W . We have chosen a Gaussian
window, in accordance with the scale-space theory [4]. In
Fig. 11, the DF in a small segment of 25� 20 pixels is shown.
Thissegmentcontainsabrokenridgethat isalmosthorizontal.
In this experiment,� is chosen in the range from� � 1 to� � 5.
Itcanbeseenthat theDFisveryerratic forsmallvaluesof�.For

highervaluesof�, theDFbecomesmoreuniform,andthelines
get longer, indicating higher coherence values.

From this experiment, a window with � � 5 seems a good
choice. For this value, the DF around a broken ridge is
sufficiently averaged. The window has then an effective
region of support of approximately 20 pixels (2� on each
side), which corresponds to approximately two ridge-valley
structures.

5.2 Singular Point Extraction

In Section 3, it has been shown that the SP extraction
method correctly extracts SPs from the smooth DF of Fig. 4.
This was also illustrated in Fig. 1c for the fingerprint of
Fig. 1a. In this section, the question will be answered about
how well the method performs on a larger set of DFs that
are estimated from real fingerprints.

As already mentioned in Section 3, our method extracts
all SPs from the DF. In case the directional field is not
averaged sufficiently, this may result in many false singular
points. A DF that has not been averaged at all, may contain
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Fig. 10. Gray-scale coded directional field and coherence. (a) Directional field and (b) coherence.

Fig. 11. Gradients and directional field for various values of �.



as many as 100 spurious core-delta pairs, especially in noisy
regions like the borders of the image. When averaging the
DF, these pairs either merge and disappear or float off the
border of the image [21]. This is illustrated in Fig. 12, where
the extracted SPs are shown for various values of �. Another
example of this behavior can be seen from Fig. 11. For � � 1,
as many as five false cores and five false deltas can be
identified, which all disappear for � � 3.

In fingerprint recognition, only the SPs at the ridge-
valley scale are valid SPs. This means that the SPs have to
be extracted from a DF that is estimated at this scale [4]. The
coarse-scale directional field can be obtained by averaging it
using the algorithms of Section 2. Next, the proposed SP
extraction method can be applied. In fact, scale and singular
point extraction are two different problems. The SP
extraction method will only provide satisfactory results if
the scale is chosen well by sufficient averaging. Since a
fingerprint never contains more than two core-delta pairs,
this might provide a check to see whether the right scale has
been reached. Experiments have shown that � � 6 is
optimal for the database that is used in this section.

Even when the DF has been averaged sufficiently, the
noisy regions outside the fingerprint area may still contain
some singular points, as can also be seen from Figs. 10a and
12. More averaging in these regions of low coherence does not
always solve this problem: Some false singular points will
remain. This may also be the case in fingerprint regions that
are very noisy.

A solution is to use segmentation in order to discard the
false SPs. Segmentation is the partitioning of the image in a

ªforegroundº fingerprint area and a ªbackgroundº noise
area. After segmentation, all SPs that are in the background
can be discarded. Segmentation of inked fingerprint images is
a relatively straightforward task since the background
contains not much noise. Therefore, measures like the local
mean gray level and the local variance of the gray level can be
used [19]. However, the segmentation of live-scanned
fingerprint images is much harder, since they contain much
more background noise. Therefore, more advanced segmen-
tation methods that use, for instance, the coherence as
measure have to be used.

In our experiment, SPs are extracted from the first prints
of all fingers of the second FVC2000 database, using the
method of Section 3 and a Gaussian window with � � 6. For
the purpose of reference, the SPs in all prints were marked
by human inspection. The average number of false and
missed SPs are shown in Table 1, while the distribution of
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Fig. 12. Extracted singular points for various values of �.

TABLE 1
Results of SP Extraction



the numbers of false SPs is shown in Fig. 13 for four
different types of segmentation:

1. No segmentation, the whole image is taken as
fingerprint region.

2. Manual segmentation.
3. High resolution segmentation algorithm that uses

the coherence estimate as feature and morphological
operators to smooth the segmentation result [5].

4. High resolution segmentation algorithm that uses
the coherence, the mean, and the variance of the
fingerprint image as features and morphological
operators to smooth the segmentation result [6].

In Fig. 14, the extracted SPs for fingerprints of the five
Henry classes are shown. It can be seen that the
SP-extraction algorithm has no difficulties in distinguishing

a tented arch, which contains one core and one delta, from an
arch, which contains neither of both. Furthermore, the figure
shows that the delta in the right loop is not detected,
although it is visible in the image. The segmentation
boundary, which is also shown in the figure, positions this
delta just outside the foreground area.

In Fig. 15, an example of the extraction of spurious SPs is
shown. From the surroundings of the noisy center area, it
can be concluded that this area should contain one core.
However, the DF contains two cores and one delta in this
area. From the short lines in the DF of Fig. 15c, it can be seen
that the coherence is very low in this area. These false SPs
can be eliminated by further averaging the DF, but that
takes a window as large as � � 11. In this case, it would be a
better solution to develop segmentation algorithms that are
capable of detecting low-quality areas and discard spurious
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Fig. 13. Distribution of the number of false singular points for various segmentation methods. (a) No segmentation. (b) Manual segmentation.

(c) Segmentation 1. (d) Segmentation 2.

Fig. 14. SP extraction for examples from each of the five Henry classes. (a) Whorl. (b) Left loop. (c) Right loop. (d) Arch. (e) Tented arch.

Fig. 15. Example of extraction of spurious SPs. (a) Fingerprint. (b) Center Area. (c) DF of center area.



core-delta pairs from these areas. Furthermore, fingerprints
of very bad quality, having a low coherence value in the
entire print, should be rejected entirely.

5.3 Orientation of Singular Points

The last experiment shows the accuracy of the estimated
orientation of SPs using the method of Section 3.2. In this
experiment, first the orientations of all valid SPs are
marked manually. Next, these orientations are determined
automatically.

The distribution of the errors of the orientations,
e' � '̂ÿ ', is as follows: The estimate is unbiased since
the mean error is mean�e'� � ÿ0:012 � ÿ0:7 degrees.
Furthermore, the variance of the estimate is �2

e'
� 0:044,

which means that the standard deviation is only �e' �
0:21 � 12 degrees. Therefore, we conclude that our method
provides an accurate estimate of the orientations of SPs.

6 CONCLUSIONS

In this paper, a new PCA-based method for estimating
directional fields from fingerprints is proposed. Since it is
proven that this method provides exactly the same results
as the traditional method, the method offers a different
view and an increase of insight on the problem of
estimating an ªaverageº gradient. It is pointed out that
the methods that are presented in this paper can be used
either to estimate a high-resolution DF or to improve the
accuracy of block directional fields.

The singular-point-extraction method that is proposed in
this paper offers consistent binary decisions and can be
implemented very efficiently. It is capable of high resolu-
tion SP extraction and does not need to use heuristic
postprocessing. Furthermore, it is shown that a high-
resolution DF can be used for the accurate estimation of
the orientation of SPs. To further improve the error rates of
SP extraction, accurate segmentation algorithms have to be
developed that are capable of detecting low-quality areas in
a fingerprint. Then, spurious core-delta pairs can be
discarded from these areas.
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APPENDIX A

EQUIVALENCE OF DF ESTIMATION METHODS

It will be proven that the squared gradient method and the
PCA-based method for the estimation of the DF are exactly
equivalent. The proof starts by deriving the inverse of (4),
which was given to be:

Gs;x

Gs;y

� �
� G2

x ÿG2
y

2GxGy

� �
: �30�

Substituting the lower part of this expression, which is
given by

Gy � Gs;y

2Gx
�31�

into the upper part, given by

Gs;x � �G2
x ÿG2

y� �32�
gives

G4
x ÿGs;xG

2
x ÿ

1

4
Gs;y � 0: �33�

Solving this for Gx gives:

Gx �

1
2

�����������������������������������������������
2Gs;x � 2

�����������������������
G2
s;x �G2

s;y

qr
ÿ 1

2

�����������������������������������������������
2Gs;x � 2

�����������������������
G2
s;x �G2

s;y

qr
1
2

�����������������������������������������������
2Gs;x ÿ 2

�����������������������
G2
s;x �G2

s;y

qr
ÿ 1

2

�����������������������������������������������
2Gs;x ÿ 2

�����������������������
G2
s;x �G2

s;y

qr

8>>>>>>>>>>><>>>>>>>>>>>:
�34�

The second and fourth solutions can be eliminated since
Gx is always positive. Furthermore, since�����������������������

G2
s;x �G2

s;y

q
� Gs;x;

the third solution results in the square root of a negative
number. Therefore, only the first solution is valid:

Gx � 1

2

�����������������������������������������������
2Gs;x � 2

�����������������������
G2
s;x �G2

s;y

qr
: �35�

Thenextstepis toconsider thesquaredgradients,averaged
over the windowW and to substitute, according to (6):

Gs;x � Gxx ÿGyy �36�
Gs;y � 2Gxy: �37�

The average gradients, derived from the averaged
squared gradients, are:

Gx � 1

2

��������������������������������������������������
2Gs;x � 2

���������������������������
Gs;x

2 �Gs;y
2

qr
�

������������������������������������������������������������������������������������
1

2
�Gxx ÿGyy� � 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

qr �38�

and

Gy � Gs;y

2Gx

� Gxy

Gx

� Gxy�����������������������������������������������������������������������������������
1
2 �Gxx ÿGyy� � 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

qr :
�39�

Now, it will be shown that the vector:

Gx

Gy

� �
� 1

c
� 1

2 �Gxx ÿGyy� � 1
2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q
Gxy

" #
�40�

with:

c �
������������������������������������������������������������������������������������
1

2
�Gxx ÿGyy� � 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

qr
�41�

is an eigenvector of autocovariance matrix C, which is
defined in (14). This will prove that both methods are
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equivalent. For the eigenvectors of C, the following
expression must hold:

C �V � V ��; �42�
where the columns of V are the eigenvectors of C and � is
the diagonal matrix of the corresponding eigenvalues. This
expression must also hold for one eigenvector v1 with
corresponding eigenvalue �1:

C � v1 � �1 � v1 �43�
In order to show this, �Gx Gy�T is substituted for v1

v1 � Gx

Gy

� �
�44�

in the left-hand side of (43). This gives:

C � v1 �
Gxx Gxy

Gxy Gyy

� �
� 1
c
�

1
2 �Gxx ÿGyy� � 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q
Gxy

" #
� 1

c
�

Gxx
1
2 �Gxx ÿGyy� � 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q� �
�G2

xy

Gxy
1
2 �Gxx ÿGyy� � 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q� �
�GxyGyy

264
375:
�45�

This must be equal to �1 � �Gx;Gy�T . Calculating �1 from
the upper half of these expressions, we find:

�1 �
Gxx

�
1
2 �Gxx ÿGyy� � 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q �
�G2

xy

1
2 �Gxx ÿGyy� � 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q
�46�

which, by multiplying numerator and denominator by

1

2
�Gxx ÿGyy� ÿ 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q
;

can be simplified to:

�1 � 1

2
�Gxx �Gyy� � 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q
: �47�

From the lower half of these expressions, we find:

�1 �
Gxy

1
2 �Gxx ÿGyy� � 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q� �
�GxyGyy

Gxy

�48�
which can be easily simplified to:

�1 � 1

2
�Gxx �Gyy� � 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q
�49�

Since both expressions give the same result for �1,
�Gx;Gy�T is an eigenvector of C. Therefore, both methods
are exactly equivalent.

It is not difficult to derive the second eigenvector v2 and
its corresponding eigenvalue �2:

v1 �
1
2 �Gxx ÿGyy� � 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q
Gxy

" #
�50�

v2 �
1
2 �Gxx ÿGyy� ÿ 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q
Gxy

" #
�51�

�1 � 1

2
�Gxx �Gyy� � 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q
�52�

�2 � 1

2
�Gxx �Gyy� ÿ 1

2

�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q
�53�

Note that�1 is always larger than or equal to �2 confirming

that the average gradient angle is aligned with v1. The DF,

which is perpendicular to the gradient is aligned with v2.

APPENDIX B

EQUIVALENCE OF Coh AND Str

By substituting (52) and (53), Str is given by:

Str � �1 ÿ �2

�1 � �2

�
�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q
Gxx �Gyy

:

�54�

On the other hand, Coh is given by:

Coh �
P

W �Gs;x; Gs;y�
�� ��P

W �Gs;x; Gs;y�
�� �� ; �55�

where, by substituting (4),

X
W

�Gs;x; Gs;y�
�����

����� �
�������������������������������������������������������X

W
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 !2

�
X
W

Gs;y

 !2
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�

����������������������������������������������������������������������X
W

G2
x ÿG2
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 !2

�
X
W

2GxGy

 !2
vuut

�
�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q
�56�

and X
W

�Gs;x; Gs;y�
�� �� �X

W

�����������������������
G2
s;x �G2

s;y

q
�
X
W

�������������������������������������������������
�G2

x ÿG2
y�2 � �2GxGy�2

q
�
X
W

��������������������������������������
G4
x � 2G2

xG
2
y �G4

y

q
�
X
W

������������������������
�G2

x �G2
y�2

q
�
X
W

G2
x �G2

y

� Gxx �Gyy:

�57�

Therefore, the coherence of the averaging method is

given by:
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Coh �
�������������������������������������������
�Gxx ÿGyy�2 � 4G2

xy

q
Gxx �Gyy

�58�

which proves the equivalence of Coh and Str.

APPENDIX C

ROTATION OF SINGULAR POINTS

It can be proven that

SDFcore;' � SDFcore;ref � ej' �59�
by using polar notation ��s; �s� instead of �x; y� for a

position in the reference model of the SPs. The orientation

of the SDF is given by:

2�core;ref��s; �s� � �s � 1

2
� �60�

and the DF is given by:

�core;ref��s; �s� � 1

2
�s � 1

4
�: �61�

The problem is to determine the SDF at position ��s; �s�
after rotation of the reference model over an angle '. The

sample point at ��s; �s� after the rotation is located at

��s; �s ÿ '� before the rotation:

�core;ref��s; �s ÿ '� � 1

2
��s ÿ '� � 1

4
�: �62�

The rotation adds ' to the orientation at the sample point:

�core;'��s; �s� � 1

2
��s ÿ '� � 1

4
�� ': �63�

Now, the rotated DF can be converted back to the

rotated SDF:

2�core;'��s; �s� � ��s � 1

2
�� � ' � 2�core;ref��s; �s� � ' �64�

which completes the proof. From the formula it becomes

obvious that the SDF model of a core has to be rotated over

2� in order to obtain the original model.
Following the same procedure for a delta, it can be

proven that

SDFcore;' � SDFcore;ref � ej3': �65�
Now, the orientation of the SDF is given by:

2�delta;ref��s; �s� � ÿ�s � 1

2
�: �66�

Following the same procedure as for the core gives:

�delta;'��s; �s� � ÿ 1

2
��s ÿ '� � 1

4
�� ' �67�

and:

2�delta;'��s; �s���ÿ�s�1

2
���3'�2�delta;ref��s; �s��3': �68�

This corresponds to the fact that a delta has to be rotated

over 2
3� in order to obtain the original model.
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