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Adjoint and Hamiltonian 
Input-Output Differential Equations 

Peter E. Crouch, Senior Member, ZEEE, Francoise Lamnabhi-Lagarrigue, and Arjan J. van der Schaft 

Abstract- Based on recent developments in the theory of 
variational and Hamiltonian control systems by Crouch and 
van der Schaft, this paper answers two questions: given an 
input-output differential equation description of a nonlinear 
system, what is the adjoint variational system in input-output 
differential form and what are the conditions for the system to 
be Hamiltonian, i.e., such that the variational and the adjoint 
variational systems coincide? This resulting set of conditions is 
then used to generalize classical conditions such as the well- 
known Helmholtz conditions for the inverse problem in classical 
mechanics. 

I. INTRODUCTION 
HE work we are describing in this paper has its roots T in a very old problem in classical mechanics, where 

one asks which Newtonian systems correspond to Lagrangian, 
or variational systems; the so-called inverse problem. There 
are many variants of this problem, see Santilli [14], but the 
simplest one can be stated as follows. 

If q E R" is a configuration variable, which satisfies the 
Newtonian system 

for a smooth R" valued mapping F ,  such that dF/aq is a 
nonsingular matrix in a suitable open domain, then under what 
conditions does there exist a function L of q,  4, so that for 
some ordering of the variables of q 

The conditions under which this property holds are known 
as the classical Helmholtz conditions, see Santilli [ 141 where 
generalizations to functions F depending on arbitrary finite 
jets of q are also considered. 

The condition on the rank of aF/dq in the system (1) above 
enables those systems satisfying (2) to be written also as a 
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Hamiltonian set of equations 

(3) 

where H(p, q )  is the Hamiltonian function of the system, and 
( p ,  q )  are coordinates on the symplectic phase space R2". A 
result of Brockett and Rahimi [ l ]  is also of interest in this 
context and concerns the linear system C 

? = A x  + Bu; x(0)  = 0 

y = cx (4) 

in which x E R", U ,  y E R", and the so-called adjoint system 
C" (see also [12]) 

?j = -ATp - CTu,; p(0) = 0 

ya = B T p .  ( 5 )  

It was shown with the minimality of both systems, together 
with the "self-adjointness" condition that the input-output 
maps of C and C" coincide, that this is equivalent to the 
fact that the system C has another internal representation as a 
linear "Hamiltonian Control" system 

. dHT p =  -- (P, 4 ,  U )  
aq 

dHT 
4 = -(P, 4 ,  U )  

a P  
dHT 

Y = x ( P ,  4 ,  U )  (6) 

where for a linear Hamiltonian system 

1 
H(P, q ,  U )  = T ( P T ,  oT)F[:;] + ( P T ,  qT)Gu 

for some matrices F and G. 
The term "self-adjointness" is also used to describe the con- 

ditions which ensure that a Newtonian system does correspond 
to a Lagrangian, or Hamiltonian, system. This is explained by 
performing integration by parts to give an expression 
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for some functions F* and Q. The adjoint variational system to 
the variational system gq, + q, + gq, = 0 corresponding 
to (1) is then 

F*(( ,  i ,  () = 0. 

Self-adjointness of F is simply the statement that 

Work by Crouch and van der Schaft [ 5 ] ,  [ 6 ] ,  made an 
extensive investigation and generalization of the result by 
Brockett and Rahimi [ 11 to nonlinear control systems, based 
on earlier work by van der Schaft [15]. In particular, a state 
space form of the variational and adjoint variational systems 
was introduced, generalizing the relationship between C and 
E" to nonlinear systems. The concept of self-adjointness was 
correspondingly generalized, and under suitable hypotheses it 
was shown that self-adjointness is necessary and sufficient for 
Hamiltonian realizations of input-output maps. Moreover, the 
self-adjointness condition was successfully interpreted in terms 
of the Volterra series and Fliess series. See also Jakubczyk [ 121 
for a generalization to control systems with control entering 
in a nonaffine manner. 

This work, although implicitly generalizing the classical 
Helmholtz condition, fails to give conditions in terms of the 
differential equation representation of the input-output map, 
generalizing the system representation given by ( l ) ,  and here 
represented by an equation of the form 

where F is a smooth vector valued function of its arguments. 
Furthermore, the self-adjointness conditions of [5]  and [6]  are 
difficult to check in practice, since in principle one needs to 
compute the state trajectories of the nonlinear system under 
consideration. The present paper gives the full generalization 
of the classical Helmholtz conditions to control systems de- 
scribed by (8). The resulting conditions are completely in terms 
of the mapping F and its partial derivatives. They are worked 
out in detail for control systems 

(9) 

so that they have a Hamiltonian representation by a system 
of the form (6). To the knowledge of the authors, the only 
previous results in this direction are those given by two of the 
current authors [4], when dealing with the scalar input-scalar 
output version of the system (9). It is interesting to note that 
many problems associated with the preceding analysis coincide 
with those met in the study of time-varying linear systems; see, 
e.g., 121, 191, [lo], [113,  and [131. 

11. THE ADJOINT VARIATIONAL SYSTEM 
We consider analytic (i.e., C Y ) ,  complete, state-space sys- 

tems which may be written in the form 

C, i = f ( z ,  U ) ,  y = h ( z ) ,  U E R " ,  Y E  Rp (10) 

where z = (21,. . . , zn )  denote local coordinates for 
some state space manifold A4 and corresponding analytic 
input-output differential representations 

F ( y ,  ?j,. . .  , 1 ~ ( ~ ) ,  U ,  ZL, . . . , u ( ~ - ~ ) )  = 0 E Rp. ( 1 1 )  

If system (10) is minimal in the sense of Crouch and van der 
Schaft [5, ch. 3 for the input-affine case and ch. 6 for the gen- 
eral case], the corresponding representation ( 1  1 )  will also be 
called a minimal representation. Note that we do not insist here 
on the relationship between state-space representations (10) 
and input-output differential representations ( 1 1); we assume 
that all conditions are met for obtaining one representation 
from the other representation. 

A variational system Cz about a given trajectory 
( z ( t ) ,  u( t ) ,  y ( t ) )  of C, is defined in the usual way (see 
151) as 

G ( t )  = F(t)w(t) + G(t)u,(t), U ,  E R", ZI E R" 
Y,(t) = H(t )v ( t ) ,  Yv  E RP (12) 

with F ( t )  := g ( z ( t ) ,  u( t ) ) ,  G( t )  := g ( z ( t ) ,  u( t ) ) ,  H ( t )  = 
z ( z ( t ) ) ,  and v ,  U,, y, denoting, respectively, the variational 
state, variational input, and variational output. Note that (12) 
results from differentiation of a one-parameter family of 
solutions to (lo), cf. [ 5 ] .  The adjoint variational system E:, 
along the same trajectory ( z ( t ) ,  ~ ( t ) ,  y ( t ) ) ,  is defined as (see 

a h  

151) 

Yla(t) = G T ( M t ) ,  Ya E R" (13) 
li(t) = -FT( t )p( t )  - HT(t)U,(t), U ,  E Rp,  p E R" 

with p ,  U,, y, denoting the adjoint variational state, input, 
and output, respectively. The fundamental connection between 
variational and adjoint variational systems (along the same 
trajectory of E,) is [5, Lemma 2.11 

Now let us translate this to input-output differential represen- 
tations X i l o  given by ( 1  1). Clearly, the variational systems 
E;/o (along solutions ~ ( t ) ,  y ( t )  of are defined by the 
system of equations 

where the solution u( t ) ,  y(t) is substituted in g, g, . . . , 

parameter family of solutions ( ~ ( t ,  E ) ,  y(t, e)) to ( 1 1 ) .  Com- 
paring to Cy there is a potential problem since (see [201) 
the set of solutions U,, y, to (15) may be strictly larger than 
the set of solutions U,, yv generated by (12). This has to do 
with the form of the input-output differential representation 
( 1  1 )  (note that this representation is far from unique); we will 
later on make an assumption on ( 1  1 )  which will eliminate this 
potential problem. 

The next logical question is how to define the adjoint 
variational system This is not immediate from the 

- z:,;: _ . . .  . Again, (15) results from differentiation of a one- 
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definition of Et.  Relation (14) should provide the clue to 
a proper definition, although the right-hand side of (14) is 
expressed in the variational and adjoint variational state. 
Direct calculation based on Cy and Ct provides the following 
altemative to (14) 

1 w ~ ( T ) H ( T ) @ ( T ,  s)G(s)u,(s) ds d t  
d 

= dt [-LL 
(16) 

with @(T, s) being the transition matrix of F ( t )  (and the 
variational and adjoint variational states initialized at 0 at 
time -CO). Although the right-hand side of (16) is an integral 
expression in U,, U,, this partly motivates the following 
definition (another motivation is provided by the classical 
definition of adjoint variational systems for sets of differential 
equations, cf. [ 141). 

Definition I (see also [SI): Consider the variational system 
(15) along a solution ( ~ ( t ) ,  y(t))  of X i l o .  The adjoint 
variational system Czlo consists of the following set of 
input-output pairs ( U ,  (.), y, (.)): there exists a function 

U,, . . .) such that for all t E R 
Q(Y,  6 , .  .. , U ,  U, .. . , ~ v ,  Ijv, ' . . r ~ v ,  Cw,. ' .  , ~ a ,  $a> ... ,U,, 

for all input-output pairs ( U ,  (.) , y, (.)) which are solutions of 

To justify this definition we first have to prove that Defini- 

Proposition 1: Suppose that there exists a function 

y l o .  

tion 1 uniquely characterizes the adjoint variational system. 

0 ( Y l  $ , . . . , U ,  C,...,Y,, Y,,...,%, U,,... 1 

$a,  Y,,...,%, C a . . . )  

such that for all solutions ( ~ , ( t ) ,  y,(t)) to Cylo and all U,@) 

for all t E R, then ij,(t) = y,(t), t E R, and Q = Q modulo 
a constant. 

Proofi Subtracting (17) from (18) yields 

for all U,. Hence 

6' [ iL(t) - y a ( t ) l T ~ , ( t )  d t  = 10 - QIi;. 

Now take a fixed function U ,  on [ t l ,  t 2 ]  and corresponding 
fixed functions y,, y, on [t l ,  t z ]  and arbitrary U,. It follows 
that the left-hand side of (19) only depends on u,(tl) and 
u,(t2) (since the right-hand side does), thus implying that 
both sides of (19) are zero, and & = y, and Q = Q modulo 
a constant. 

The next thing we have to do is to show that Defini- 
tion 1 is consistent with the definition of the adjoint varia- 
tional system Et. Comparing (17) to (14) we see that this 

(19) 

means that pTw has to be expressible as a function Q of 
y,, y,, . . . , U,, Uw , . . . , y,, y,, . . . , U,, U,, . . . (and of course 
y, Ij, .  . . , U ,  U,. . .). To do so we make fundamental use of 
some results obtained by Ilchmann et al. [IO] on time-varying 
linear systems and Coron [3] and Sontag [17] on the relation 
between nonlinear state space systems E, and the variational 
systems Cy; see also [3], [18], and [7]. Indeed, in [3], [17] the 
following is shown. Consider the minimal state space system 
E,. Let I be an open interval of R, and denote by C" ( I ;  R") 
the set of smooth input functions U : I -+ R", equipped with 
the Whitney topology. Then the set of all U in C"(I; R") 
such that all corresponding solutions ( ~ ( t ) ,  u ( t ) )  of C, defined 
on I have the property that the variational systems (12) along 
( x ( t ) ,  u ( t ) )  satisfy 

(20) 

dimspan{(&F(t)) G(t)w; w E R m , i > O  = n  

for all t E I ,  is a dense subset of C"(I; R"); see [3, Corol- 
lary 1.81. (Note that the definition of the strong accessibility 
algebra used in [3] is the usual definition in the case of input- 
affine systems E,, while for general systems x = f(x, U )  it 
corresponds exactly to the definition given in [5,  ch. 61.) 

Furthermore, see [3, Corollary 1.151, the set of all U in 
C"(I; R") such that all corresponding solutions ( ~ ( t ) ,  u ( t ) )  
of C,  defined on I have the property that the variational 
systems (12) along ( ~ ( t ) ,  ~ ( t ) )  satisfy 

dimspan{ (g + FT(t)) iHT(t)w; w E Rp, i 2 0 = n 

(21) 
for all t E I ,  is also a dense subset of C"(I; R"). Properties 
(20) and (21) express well-known controllability, respectively, 
observability, properties of the time-varying linear systems 
given by the variational systems E:, and thus the above 
statements imply, loosely speaking, that in casa C,  is minimal 
then its variational systems are controllable and observable for 
a dense subset of input functions. 

To use now the fundamental results obtained in Ilchmann et 
al. [lo] and Ilchmann [ I l l  we will now restrict to analytic 
(Cw) input functions on the time-interval I .  Since (IO) is 
assumed to be analytic this will mean that the variational and 
adjoint variational systems (12), respectively (13), are analytic, 
i.e., the entries of F ( t ) ,  G( t ) ,  and H ( t )  are analytic functions 
on I .  Let M denote the meromorphic functions on I ,  and 
denote by M [D]  the set of polynomials 

1 i 

1 

k 

faDi 
i=0 

in D with coefficients from M (D will represent the dif- 
ferentiation operator E End ( M ) ,  the algebra of R-linear 
maps from M to M ) .  Considering also the multiplication in 
End(M),  we arrive at the skew-polynomial ring M[D] (see 
[IO], [ 111) with multiplication rule 

D ( f s )  = f D ( g )  + W ) g  = ( f D  + D ( f ) ) g ,  
f ,  9 E End ( M ) .  (22) 
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The set of m x n matrices over M [ D ]  will be denoted by 
M[DImxn.  A useful property (see [lo]) is that a left inverse 
of a square matrix in M[DlnXn  is also a right inverse, and 
vice versa. 

Let us now denote the variational and adjoint variational 
system in shorthand notation by 

( I $  + FT)p  + HTu, = 0 

(24) T y a - G  p = O .  

Throughout we will restrict to the dense subset of analytic 
input functions for which (23) satisfies the controllability and 
observability properties (20) and (21). Then by [lo, Lemma 
3.3 and Theorem 6.41 there exists an invertible matrix 

such that 

and an invertible matrix 

such that 

We will now apply the following "integration by parts" pro- 
cedure to (25), (26). This will be a key tool in all of our 
subsequent developments. 

Consider two matrices Ad(&), N ( & )  over M [ D ] ,  of 
appropriate dimensions such that 

M - N - = C  
( i t )  ( i t )  

with C some constant matrix, say of dimension k x 1. (Note 
that M ( & )  acts also on the entries of N ( $ ) ,  cf. (22); the 
same of course applies to the expressions (25) and (26).) 

Let now [ ( t )  be an l-vector of analytic functions, and 
consider the k-vector of analytic functions 

Now premultiply (28) by a k-row vector of analytic functions 
qT( t ) ,  i.e., 

and apply integration by parts to the integral 

(with [tl ,  tz] c I )  in order to shift the differentiations on [ ( t )  
to differentiations on q( t ) .  It follows that 

for certain matrices fi ($) , U (  &) over M [D] (in fact, &f 
and fi are dimensioned as M T ,  respectively NT.) Futhermore, 
from (27) and (30) it follows that the differential operator 
#(&)U(%) equals the constant linear mapping CT on all 
functions q( t )  of support within ( t l ,  t2). However, this means 
that fi( $)&f(&) equals CT,  and thus the remainders in (30) 
are necessarily zero. 

Applying this procedure to (25) and (26) yields 

respectively, for invertible matrices [ g]  , [ g] obtained 

from [ z], [ $1 by partial integration. 

results in the equivalent system of equations 
The action of the differential operator on (23) thus [' "I 

-PGu, + Sy, = v 

-QGu, + Ry, = 0 (33) 

and, similarly, a combination of (31) and (24) yields 

UHTu, - Vy, = p 
W H T u ,  - Zy, = 0. (34) 

It thus follows that v ( t )  = -P(&)G(t)u,(t)  + S(&)yv( t )  
and p ( t )  = U(%)HT(t)u,( t )  - V ( & ) y a ( t ) ,  implying that 
-&pT(t)v(t) appearing in the right-hand side of (14) can be 
expressed as a function Q in y,, U,, U,, y, and their time- 
derivatives (and implicitly of y, y,. . . , U ,  U,  . . .). This shows 
that Definition 1 is consistent with the definition of the adjoint 
variational system E:. Furthermore, as additional informa- 
tion we obtain from (33), (34) that input-output differential 
representations of E: and E: are given by 

respectively 

y,(t) = 0. (36) 

Now compare (35) to (13,  and write (15) in a more convenient 
notation as 

E:lo: (37) 

The requirement, as alluded to before, that the set of solutions 
U,, y, generated by E: equals the solution set of E:lo can 
thus be rephrased as the following. 
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Assumption I :  There exists an invertible matrix E (g) E 
M [ D ] P x P  such that 

From now on we will suppose throughout that Assumption 1 
holds. 

Our next objective is to give a procedure to compute an 
input-output differential representation of the adjoint varia- 
tional system directly in terms of the input-output differential 
representation E:/o of the variational system (without going 
through the state space representation). Thus, let us consider 

as given by (15), denoted in shorthand notation by (37). 
Premultiply (37) by a p-dimensional row-vector I T ( t )  and 
again apply partial integration to 

to shift all differentiations in yv ( t ) ,  u, ( t )  to differentiation in 
[ ( t ) .  This results in 

for certain matrices 0, N in M [D],  and remainders R. 
Comparing this to (17) (with Q playing the role of the 

remainders R) motivates the following definition of the adjoint 
variational system by 

Note that (41) is an image representation, in contrast with 
the kemel representation (37). (For a linear time-invariant 
system (41) corresponds to a right factorization, while (37) 
corresponds to a left factorization of the transfer matrix.) 
Indeed, the (analytic) input-output behavior of (41) consists 
of all analytic time-functions y , ( t ) ,  u , ( t )  satisfying (41) for 
some analytic function [ ( t ) .  

Theorem 1: The equations (41) are an image representation 
of the adjoint variational system defined in Definition 1. 

Proofi We only have to show that R in (40) can also be 
expressed as a function of y ,  y, . . . , U ,  U ,  . . . , y v ,  y,, . . . ,U,, 

U v , . . . , y a ,  y a , . . . r U a ,  U,,.. . .  

From (25) we obtain 

1 I $ - F  -G 0 
-H 0 I p  

for some K in M [ D ] .  Hence, from (32) and (42) we obtain 

U 0  -PG S v 
= [-: -QG R ]  [o  l p ]  

(43) 

Clearly the right-hand side of (43) is an invertible matrix, and 
thus “postmultiplication” of (43) by this inverse yields 

for some matrices a(&), B($) in M [ D ] .  Now recall that 
an input-output differential representation of Et is given by 
(33,  while also (38) holds. Thus there also exist matrices 
A (  &) , B(  8) in M [ D ]  such that 

D ( i t )  - A ( i t )  - - N  (ai) - B (:t) - = I p .  (45) 

Applying the partial integration procedure [see (27)-(30)] to 
(45) yields 

A - D  - ( f t )  $t) - - B  -(:t) - N -(:t)  - = I p  (46) 

for certain matrices A,  B in M [ D ] ,  and with D ,  # as given 
by (41). Thus, by (41) 

showing that can be expressed into y,, U ,  and their time- 
derivatives. 

Remark I :  The above notions seem to be also useful for 
analyzing the controllability properties of an input-output 
differential system (1 1). Consider the variational and adjoint 
variational systems of (1 1) given by (37), respectively (41), 
where the entries of the matrix differential operators D ,  N ,  
and D ,  N are seen as functions of y ,  y, . . . , U ,  U , .  . .. Then 
one may construct matrix differential operators D,, N, (with 
entries dtpending-on y, y, . . . , U ,  U ,  . . .) of maximal rank such 
that D,N - N,D = 0, implying that 

for all trajectories U,, y ,  generated by (41). Integration by 
parts applied to the kemel representation (47) yields the 
“adjoint of the adjoint system,” given in image representation 
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where we have suggestively denoted the inputs and outputs by 
U ,  and y,, since we want to compare (48) to the variational 
system (37). Indeed, it is easily checked that all trajectories 
U,, y, generated by (48) satisfy (37), while equality of the 
behavior of (48) and (37) seems to correspond to some form 
of controllability of the original nonlinear system (11) [(48) 
defines the "controllable" part of the system]. This is an area 
for future research. 

In the next section we will use the representation of the 
adjoint variational system as given by (41) in order to 
give a convenient characterization of Hamiltonian systems. 

111. CHARACTERIZATION OF HAMILTONIAN SYSTEMS FROM 
THE INPUT~UTFJUT DIFFERENTIAL REPRESENTATION 

We will derive in this section a complete characterization 
of Hamiltonian systems using the representation of the adjoint 
variational systems as in (41). In Section IV we will use an 
altemative approach based on the adjoint variational system 

found in [5]. Note that for systems described as 

X i l o  F ( y ,  y, y, U ,  21) = 0 E R, U E R, y E R (49) 

the conditions under which (49) represents a Hamiltonian 
system have been found already in an earlier paper by Crouch 
and Lamnabhi [4], i.e., 

i) 
ii) E($% - g) = (50) 

ay d t  au 

for every solution (y, 5, jj, U ,  21) satisfying (49). 
Using the characterization of the adjoint variational system 

given in Section I1 we now obtain similar conditions for a 
general input-output differential representation ( 1  1). 

Theorem 2: Consider a minimal input-output differential 
representation Xilo given by (11) with p = m, and its 
variational systems Cylo given by (37) satisfying Assumption 
1 .  Compute the adjoint variational system E? given by (41). 
Then is an input-output representation of a Hamiltonian 
system if and only if 

% I O  

D - N - - N  - D - = O  (51) 
( i t )  - ( i t )  (ddt) - ( i t )  

along every analytic solution ( y ( t ) ,  u( t ) )  of &lo. 
Proof: Observe that (51) is equivalent to 

i.e., the input-output behavior defined by (37) is the same as 
the input-output behavior defined by (41). In the terminology 
of [ 5 ] ,  [6] this means that every variational system along an 
analytic solution of &lo, is self-adjoint. In [5, ch. 41 it is shown 
that C, is Hamiltonian if and only if every variational system 
along trajectories resulting from piecewise constant inputs are 
self-adjoint. We finally note that by the Approximation Lemma 
[ 19, Lemma 11 the approximation of piecewise constant input 
functions by analytic input functions will result in state trajec- 
tories converging to the state trajectories corresponding to the 

We will now work out in detail the self-adjointness condition 

= 

piecewise constant input functions. 

(51) in case N = 2, i.e., we consider 

xi/o: F ( y ,  y, 5,  U ,  21) = 0 E Rm, U ,  y E Rm (52) 

and 

~ y l o ~  Ay, + BY, + Cy,  + Du, + EU, = 0, 
u u ,  y u  E Rm (53) 

where the (2 ,  k)th elements of the m x m matrices 
A, B ,  C, D ,  E are given by 

(54) 
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Terms with ti: and 

+ CjkEj;) -k DjkAik - Djk& + Djkcik 

+ EjkAik - Ejk& + Ejkc,(,3'] = 0. 
and collecting terms first with y(3)  and then U we obtain 

O F @ F  a2F aF = 
au a-2 sua$ aji (60) aF a'F a2F a F  
au sua$ a d  a$ = 0 

j = l , . . . , m  . 
Hence, we have the following theorem. 
Theorem 3: Consider a minimal system (52). Then it is 

Hamiltonian if and only if the following conditions 

L1) 
L2)  BET-CDT+3CET+ DCT- EBT+3ECT=0, 
L3) 

which means that the elements of the matrix given in (59) only 
depend on y ,  5 (the state of the system), and thus (59) defines a 
symplectic form w on the state space { ( y ,  $)\y E R, y E R} 
with coordinate expression 

CET + ECT = 0,  

AET - BDT + 2BET - 2CaT + 3CET 
-DBT + 2DST. + EAT - 2EBT + 3ECT = 0,  

L,)  AD^ + A E ~  - B D ~  + s E T  - cijT 
w = (  +CE(3)T + DAT - oilT + DCT 

+EAT - EBT + EC(3)T = 0 
(58) Case 2:  Let us assume that the input-output representation 

hold along every solution (u( t ) ,  y ( t ) )  of (52). Fi, i = 1, . . , m, have the following particular form 

Elaboration of the Conditions L l ,  La, 
L3, and C4 in Special Cases 

we assume C = % # 0, then L1 yields 

N Y ,  Y, $7 U ,  U) = Si(Y, i ,  ji) - U;.  (61) 

This is the classical case (see [14]). Conditions L1, L2, L3, 
and L4 reduce to 

Case 1:  Let us first consider the case m = 1, i.e., (47). If 

dF E = - = o  dU 
which is the condition (50)-i). Then Lz reduces to 

d F  dF d F  d F  
a y a U + - - = O  du ay 

which is automatically satisfied. Furthermore L3 amounts to 

L l )  void 
,&) E- (g)'=o 
L3) g-?+(g-?)  ' ' T  - 2 $ ( $ s ) T = o  

T 2  T 

at every point ( y ,  $, y). 
- - dF - dF - - dF - dF - 2- a~ ( a ~ ) ( ' )  - +2- :(aJ1) - = o  These conditions are precisely the conditions (2.1.17) in 

ay du du ay ay du [ 141. It follows that (61) represents the input-output behavior 
or of a Hamiltonian system if and only if 

which is the condition (50)-ii), and it is easily checked that 
L4 is precisely the time-derivative of (50)-ii). 

Let us now derive a more explicit expression for the 
remainder Q in this particular case. Since E = 0, from (55) 

Q = ~BYV + tcYv - ( t C ) ( ' ) ~ v  

where Rik and satisfy (2.2.9) in [14]. 
Case 3: 

Fi(y, y, y, U ,  ti) = Si(y, 5 )  - ui, 

From the result of Santilli, it follows that 

i = 1,. . . , m. 

and from (56) 
si = Xik(y)yk + x ( y ) ,  2 = I , . ' .  ,m 

= -D-'y,. 

If the conditions (50) hold we readily obtain where Xik and Y ,  satisfy 

Now let us take a closer look at (50). Writing out 

d2F d2F d2F 
ayay d y d y  dudy follows from (18), since y: = tk and Q = ybxiky: .  

+ -y + 7y + Thus X = ( X i j )  defines the symplectic form w. This also 



610 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 4, APRIL 1995 

Example I :  As an example we consider the system given Example 2: In the case of a linear time-invariant system 
by the equations 

A y +  By+ Cy+ DU + EU = 0, U ,  y E R” 
4 = U  

p = s i n q + a p  

Y = P. 

with A ,  B,  C,  D ,  E constant m x m matrices, the conditions 
C 1 ,  CZ, C3, C4 reduce to 

C E ~  + E C ~  = 0 

 BE^ - C D ~  + D C ~  - E B ~  = 0 

A E ~  - B D ~  - D B ~  +  EA^ = 0 

The corresponding input-output differential equation is given 
by 

F ( y ,  y, y, U ,  U )  = ( 5  - ay)’ + (5  - C K ~ ) ~ U ~  - U’ = 0. (62) 

Clearly, by inspecting the state representation of the system, 
we see that the system is Hamiltonian with the Hamiltonian 
function H = cosq + up,  if and only if a = 0. This is -ADT + DAT = 0, 
not so evident, however, from the form of the input-output 
differential equation above. We shall employ condition (50) which is equivalently to the equality - -  ~, 

of Crouch and Lamnabhi [4] to show this. Condition i), 
dF/dU 

( D  + Es)(AT - B T s  + CTs2)  
0, is trivially satisfied. We calculate the quantity = ( A  + B s  + Cs2)(DT - ETs)  

for all s E C. This last equality in tum is equivalent to the 
transfer matrix G(s )  = ( A  + B s  + Cs2)- l (D + Es)  of the 
system to satisfy the condition (cf. [I], [15]) G(s )  = GT(-s).  

Example 3: It can be straightforwardly checked that the 
Euler-Lagrange equations with extemal forces U 

- 4(y - a$)[2u(?j - ay)(% - ay)  . ( E ) - ~ = U ,  d t  ay dy u , y € R m  

d F  d d F  d F  d F  d d F  
d u  [ dt  ay dy 1 dy dt  du 

z=----- 

directly from F to obtain 

Z = (-4u)(1 - (y - c ~ y ) ~ ) [ ( y ( ~ )  - ay) 
+ a(y - ay) - U 2 ( y  - ay)] 

- U(1 - (y - a y ) 2 ) ] .  
for any Lagrangian function L(y, y) satisfy (56) (see also 
Santilli [14]). From F ( y ,  1J, y, U ,  iL) = 0 we obtain 

Consider now an Euler-Lagrange system 
UU .U($ - a y ) 2  

d aL d~ (y(3) - ay) = ~ - (y - a y ) u 2  - 
(Y - ay) (Y - ay) . -&) - dyl = 211, 211, Y l  E R  

Substituting this expression into the expression for Z and again 
using the definition of F ,  we see that z 

au(1 - (y - ay)Z) ( i j  - ay) = 0. 

0 if and only if in interconnection with a static nonlinearity N (see van 
der Schaft [15] for details of interconnections), and assume 
for simplicity that L(y, y1) = $mi; - V(yl), while the 
nonlinearity N is described by a differentiable function y2 = 
h(v2). The interconnected system with outputs y 1 ,  y2 and 
inputs ul ,  u 2  is given as (after elimination of 711 and vz) 

This equation can be satisfied for all y(0), only if 
a = 0, so we conclude that the system (62) is Hamiltonian if 
and only if a = 0, as we previously concluded. 

equation (62). The variational system is given by 
It is also interesting to compare the adjoint system with d V  

a y 1  
m y 1  + -(y1) - y2 - U1 = 0 

h ( y 1  + u 2 )  - y2 = 0. U,(($ - ay)2u - U )  + yv(-au2(lj - a y ) )  

+ &,(u2(?j - a y )  - a( i  - a$))  + y,($ - a($) )  = 0. Computing the matrices A ,  B,  C, D ,  E as in (51) yields 

(63) 

Using the method of integration by parts introduced in (56), 
we see that the adjoint system is given by the equation 

Ya = I ( ($ - aY)2u - U )  

U ,  = [ a u 2 ( 7 j  - ay)  +E(U2(7j - ay)  - a($- ay ) )  -(($-a$).  

Thus = ya/((y - ay)’u - U ) .  An explicit expression 
for the adjoint variational system in input-output differential 
representation (34) is obtained by eliminating [ from the equa- 
tion above. Our theory guarantees that the resulting equation 
coincides with equation (63) if and only if a = 0. 

a2 V 

A = [ - av,(Y1 +U21 -‘I -1 ’ 

-1 

while both B and E are zero. It is readily checked that condi- 
tions CI, C2, C3, C4 are satisfied, and thus the interconnected 
system is a Hamiltonian system for every scalar differentiable 
nonlinearity y2 = h(v2).  

In the multivariable case with 311, y2, ul ,  u 2 ,  V I ,  v2 E R” 
and L(y1, $1)  = $yTM?jl - V ( y 1 ) ,  with M = MT > 0, 
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it is straightforwardly checked that the interconnected system 
satisfies L 1 ,  La, L3, Cq if and only if the nonlinearity y2 = 

h(w2) satisfies the integrability condition E = (E)', and 
thus there exists (locally) a potential function P ( w 2 )  such that 

a p  
Y2 = 7j&2). 

Iv. CHARACTERIZATION OF HAMILTONIAN SYSTEMS 
FROM THE STATE SPACE REPRESENTATION 

In this section we derive another formulation of the criteria 
for self adjointness of the variational system (12) correspond- 
ing to an input-output differential representation (1 1). In this 
derivation, however, we work directly with the state space 
representations of the variational system (12) rather than 
the input-output differential representation (15) (which we 
did in the previous section). To do this we obtain a direct 
correspondence between the representations (12) and (15). 

We first observe that the input-output map of the variational 
system Cy in equation (12) may be expressed in the form 

y v ( t )  = .It W,(t, a, U ,  zo)uw(a) d o  (64) 

where we assume that v(0) = 0, and 20 is the initial condition 
of the corresponding state space system (10). We also note 
that the input-output map of the adjoint variational system E t  
in (1 3) is expressed in the form 

y,(t) = - WT(al t ,  U ,  X O ) ~ ~ ( U )  do (65) 

where we assume that p ( 0 )  = 0. Thus (as formulated in [ 5 ] ,  
[6]) self-adjointness of the variational systems may be simply 
expressed as the statement 

I' 

Wv(t1 0, U ,  zo) = -WT(a, t ,  U ,  20) (66) 

for all t 2 a 2 0, all piecewise constant controls U ,  and one 
initial state 20. As we argued above, it is sufficient to check 
this identity for analytic controls U .  Using the notation of (12), 
we may express the kemel W, in the form 

and we define the sequence of time varying n x m matrices 
C k  ( t )  by setting 

Co( t )  = G ( t ) ,  k 2 0. 

Noting that 
d 

a 
d a  

#, 0) = F ( t )  @(t ,  a); 

-@(t, a) = -@(t,  a ) F ( a )  

we easily obtain 

(70) 
ak 
dtk 
d k  

d a k  
Lemma 1 :  In the case of analytic data the identity (67) is 

-H(t)@(t ,  a) = r k ( t ) @ ( t ,  0); k 2 0 

-@(tl a)G(O) = ( - l ) '@( t ,  a ) c k ( a ) ;  k 2 0. (71) 

equivalent to the sequence of identities 

( - l ) " + " + ' r k ( t ) C l ( t )  = C k ( t ) T r l ( t ) T ;  k ,  l! 2 0. (72) 

Proof: By applying (70) and (71) to (67) we obtain 

( - 1 ) ' r k ( t ) @ ( t ,  a)cl(O) = - ( - l ) k E k ( t ) T @ ( a ,  t)'rl(a)'. 

By setting t = a we obtain (72). Conversely, from (72) and 
analyticity we recover the identity 

( - l ) k + l r k ( t ) @ ( t ,  a)G(F) = C k ( t ) ' @ ( , ,  t)TH(C7)T. 

For IC = 0, this is the desired identity (67). 
Out main interest is to show that we may replace the infinite 

set of conditions represented by (72), with a suitable finite 
subset. We require the following results. 

Lemma 2: Consider a time varying state space system 

i = F ( t ) z  + G(t)u ,  z(0) = 0, II: E R1 
y = H ( t ) z .  (73) 

Then 

H ( t ) @ ( t ,  a)G(a)  = -G(t)'@(a, t ) T H ( t ) T  
t > a > 0 .  (67) 

Our first task is to give an equivalent formulation of the 
conditions (67) in terms of standard (time varying) linear 
system objects. We define the sequence of time varying p x n dk 
matrices r k ( t )  by setting = c @ ( r p - k C O u ) ( t )  f r p ( t ) C O ( t ) U ( t )  

k = l  

ro(t) = H ( t ) ,  IC 2 o (68) This is, then, the identity (74) with p replaced by p + 1 .  
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Lemma 3: The input-output map of the controllable time Theorem 4: Consider a minimal input-output differential 
representation Xilo, given by (11) with p = m, associated 
minimal state space representation C, given by (1 l), and the 
associated variational system E:. Then under the assumption 

k=O k=O (1) and the assumption that is invertible for all analytic 
solutions (U, y) of (1 1). is an input-output representation 
of a Hamiltonian system C, if and only if 

varying linear system (73) satisfies the system 
N N - 1  

A k ( t ) ~ ( ~ ) ( t )  = C B k ( t ) ~ ( ~ ) ( t )  (75) 

if and only if 
N 

x A k ( t ) r k ( t )  = 0 (76) ( - l )"+l+lrk( t )&(t)  = Ck(t)Tr+l( t )T;  0 5 k, 15 N 
k=O (81) 

Proofi As in [5]and [6], we know that E, is Hamiltonian (;). (77) if and only if (66) holds for all analytic controls U. We have 
shown that these conditions are equivalent to the conditions 
(72), (Lemma 1). These conditions imply those of (Sl), hence 
establishing the necessity of the conditions (81). To prove 
necessity we argue as follows. We first compute the quantities 
XI,  and r k  for the adjoint variational system C: in (13). We 
make the substitutions 

for all t and all analytic controls U. N - 1  

Bk(t)  = + q=k A q + l ( t ) ~ ( r p - t ( t ) C o ( t ) ) ( p - " )  p = k  

proofi The input-output map Of system (73) is given by 

Y ( t >  = I" H(t)@P(t, o)G(o)u(o) do. 

If this satisfies (75), we obtain the following expression using 
lemma (2) 

N - 1  

- Bk(t)?/,(k)(t) = 0. 
k=O 

Controllability of system (73) and reordering summations now 
yields the desired identities (76) and (77). Conversely, the 
identities (76) and (77) yield (78) which by Lemma 2 ensures 
that the input-output map of (73) satisfies (75) as desired. w 

We wish to employ Lemma 3 in the context of the varia- 
tional system C: in (12) and the corresponding input-output 
representation in (15). However, (76) is not written in 
terms of purely input-output quantities which we require for 
our purposes. We therefore make the following observation. 

If the system (73) is controllable, in the sense that 

rank [ ~ O ( t ) l ~ l ( t ) l ,  ' '  ' l x N - l ( t ) ]  = 1 (79) 

for all times t and all controls U, then the condition (76) may 
be replaced by the equivalent condition 

N 

A k ( t ) r , ( t ) [ C o ( t ) l C i ( t ) l  . . . l x N - l ( t ) ]  = 0. 

We may now state and prove our main result in this section. 

(80) 
k=O 

F + - F ~ ;  G + - H ~ ;  H + G~ 

in definitions (68) and (69). We obtain 

k 
+ F(t) ')  ( - H ( t ) T )  

rgT(t) = I- - F ( t )  G(t)  (i )k 

= (- l)";(t)( = (- l ) " k ( t ) ) .  

Thus 

We wish to generate conditions under which the in- 
put-output map (65) of E: coincides with that of the 
input-output map (64) of E:. By Assumption 1, the set of 
solutions (yv, U " )  generated by C: equals the set of solutions 
of represented by (15) or 

N N - 1  

A k ( t ) y L " ( t )  = Bk(t)uLk)(t). (83) 
k=O k=O 

(We also have that the set of solutions (y,, U,) of C: 
corresponding to zero initial conditions v(0) = 0, is equal 
to the subspace through the origin of the set of solutions of 
Cy/o.) Hence, we may check self-adjointness of E:, simply by 
checking that the input-output map (65) of satisfies (83). 
By Lemma 3, however, the input-output map (65) satisfies 
(83) if and only if the (76) and (77) hold with I'k and 
CI,  replaced by FE and E;, given in (82). Note that the 
controllability assumption required in Lemma 3 is translated 
into controllability of E:, which is simply observability of 
E:. Moreover, we may substitute the condition (76) by (80) 
as long as the condition (79) holds for E:. Thus we obtain the 
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following conditions by substituting (82) into (80) and (77) 
'I' 

- r , ( t p  ~ ( - i ) ~ r ~ - ~ ( t ) ~ ]  = o 

N - l  Q 

q=k p =  k 

We now note that conditions (81) are indeed sufficient to 
ensure that (84) may be simply rewritten as (77) and (80). 
These are satisfied by virtue of the fact that by assumption the 
solutions (ytJ: ut,) of E: are solutions of Cy/,. It follows that 
we have shown sufficiency of the conditions (Sl), under the 
apparent further assumption that (79) holds for Et. 

To evaluate the further assumption it is useful to make an 
explicit construction, which is required later on. It is easily 
seen that we may rewrite the system E:/o given in (83) in 
the form 

N N-I 

k=O k=O 

where A.\-(t) = A,v(t) = 6. (Clearly the matrices A k  and 
B k  are related to the operators fi and N defining the adjoint 
variational system in (41).) Under the assumption that & 
is invertible we may rewrite E:/, in the form 

N-1 N-1 

k=O k=O 

In this form we may write down the observable canonical form 
for the system (85) ,  which will be a particular realization of E l  

y ( t )  = ( I ,  0 , .  . . ,0)(21, x2,. . . , Z N ) T .  

Rank[!?o(t)Tlrl(t)TI . . .  ~r,-,(t)~] = N P  

(86) 

Clearly this time varying system satisfies the condition 

(87) 

for all t and all analytic controls U .  Thus the corresponding 
adjoint system does satisfy the controllability condition (79). 
Note that the conditions (81) are independent of the particular 
realization of E: which is chosen, and in particular there is no 
necessity for the chosen realization to be minimal (as a time 
varying system). 

Finally in this section we point out the relationship between 
the conditions (81) and the conditions (49) derived in the 
previous section. Although the conditions (8 1) are apparently 
expressed in terms of the system El,  or any other realization, 
we may interpret them directly in terms of E:/.. In particular 
we may apply the conditions (81) to the realization (85) 
constructed above. The presentation of the resulting conditions 
on the matrices Ak(t), Bk(t) defining as in (83) tums out 
to be different, but equivalent, to the conditions obtained by 
applying Theorem 2 in the previous section. We demonstrate 
the conditions obtained in this section on the system (52). 
We write the corresponding variational system in the form 
of (53) but assume C = Im, the identity matrix for ease 
of explanation. (The general conditions may be obtained by 
replacing A, B, D, and E by C-lA,  C-lB, C-lD,  and 
C-lE, respectively.) Now if the variational system is written 
as 

A ( t ) y v  + B(t)& + t,, = -E(t)iL,, - D(t)u,  

this may be rewritten in the form of (85) as follows 

$,+B( t ) y v  + ( A( t )  - B ( t ) ) y ,  = (- E ( ~ ) u ,  ) + (-D ( t )  + h( t ) )ul>.  

Thus the corresponding observable canonical form (86) be- 
comes 

The first condition in (81) is simply 

or simply 

- f f ( t ) G ( t )  = G ( t ) T H ( t ) T .  

Substituting from (88) we obtain 

E(t)  = -E(t)T. 

Replacing E by C-lE we obtain 

E(t)C(t)T + C(t)E(t)T = 0.  

But this is simply C1, in Theorem 3. 
The next condition in (81) is simply 

rl(t)co(t) = Cl(t)Tro(t)T 

or simply (I?( t ) +.H( t )  F (  t ) ) G( t ) = - ( G( t)T - G( t ) T F (  t ) T )  
H T ( t )  or since H ( t )  = o 

H ( t ) F ( t ) G ( t )  = G ( t ) T F ( t ) T H ( t ) T  - G ( t ) T H ( t ) T .  

Substituting from (88) we obtain 
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which simply reduces to the condition 

B( t )  E ( t )  - E ( t )T  B(  t )T  + D( t )T  - D( t )  + E (  t )  - 2h( t)T = 0. 

Replacing E ,  B ,  and D by C-IE,  C I B ,  and C-lD, we 
obtain 

However, from (89) we have 

By expanding the above expression and using this identity we 
obtain 

which may be reexpressed, using the invertibility of C,  as 

 BE^ + E B ~  + C D ~  - D C ~  + C E ~  + EcT 
- 2ECT - 2CkT = 0. 

By differentiating (89), however, we obtain 

CET + ECT = -ECT - CET.  

We therefore obtain the expression 

-BET + EBT + CDT - DCT - 3ECT - 3CET = 0. 

Now it is easily seen that this is just condition L 2  in Theorem 
3. Clearly, the remaining conditions L 3  and L 4  will be 
contained in the conditions (81) for N = 2 .  

We make two final comments on (81). Clearly, by inspecting 
(77) and (80), the number of conditions in (8 1)  may be reduced 
to N 2 IC 2 0, N - 1 2 1 2 0,  IC 2 1. For N = 2 this results 
in five conditions, but we already know from Theorem 3 that 
in the case N = 2 ,  there are only four independent conditions. 
Thus we expect even the reduced set of conditions (81) to 
include many redundancies. Furthermore, Theorem 4 requires 
the assumption that is invertible, which Theorem 2 does 
not. 

Conditions (8 1) do provide a satisfying generalization of 
the Brockett and Rahami result, discussed in the introduction. 
In particular, the condition that system (4) is Hamiltonian is 
simply given by the self-adjointness condition 

By setting I?,+ = CAI,, CI ,  = A”, it is clear that self- 
adjointness is indeed equivalent to condition (81) for N = 
n - 1. 
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