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A simple procedure is provided to write the equations of motion of mechanical systems 
with constraints as Hamiltonian equations with respect to a “Poisson” bracket on the con- 
strained state space, which does not necessarily satisfy the Jacobi identity. It is shown that 
the Jacobi identity is satisfied if and only if the constraints are holonomic. 

1. Introduction 

The theory of mechanical systems with nonholonomic constraints has a long history 
in classical mechanics; see e.g. the books by Neimark & Fufaev [14], Edelen [6], 
Rosenberg [16], Arnold [l] and the references quoted in there. In this literature, 
nonholonomic mechanical systems are described within the variational framework by 
Euler-Lagrange equations with extra terms corresponding to the constraint forces. 

The present note is largely influenced by a recent paper of Bates & Sniatycki 
[4], see also Stanchenko [17], where it is shown that the dynamics of mechanical 
systems with nonholonomic constraints may be alternatively described within a Ha- 
miltonian framework. However, the two-form with respect to which the Hamiltonian 
equations of motion (on a reduced state space, and without constraint forces) are 
defined is not necessarily closed, as may be demonstrated on simple examples. As a 
consequence, the resulting equations of motion, albeit of a Hamiltonian format, need 
not admit canonical coordinates and thus need not be transformable to the standard 
Hamiltonian equations: Gi = E, & = - e, i = 1, . . . , n. In the present note we will 

use, instead of the notion of a (not necessarily closed) two-form, the dual object of 
a “Poisson” bracket not necessarily satisfying the Jacobi identity. We will show in a 
simple manner that the dynamics of mechanical systems with holonomic or nonho- 
lonomic constraints is Hamiltonian with respect to such a generalized bracket. An 
explicit expression for this bracket is provided. Furthermore, we will show that this 
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generalized bracket satisfies the Jacobi identity (and thus is a true Poisson bracket) 
if and only if the constraints are holonomic. 

A second motivation for the developments in the present note comes from our 
previous work on the mathematical modelling of non-resistive physical systems (see 
[ll], [12]). Here it has been shown that the network modelling of such systems 
immediately leads to a Hamiltonian dynamics with respect to a generalized bracket. 
In fact, the Hamiltonian function is given as the total stored energy, while the bracket 
is determined by the network topology (or junction structure). From a modelling point 
of view there is no clear a priori reason why this bracket should satisfy the Jacobi 
identity (although it does in many cases); and indeed the present note shows that for 
nonholonomic mechanical systems the Jacobi identity is never satisfied. 

In this paper, we treat only the case of classical (kinematic) constraints, i.e. linear 
restrictions on the velocities. However it is clear, especially from the above mentioned 
modelling point of view, that more general constraints, as well as interconnections of 
systems, may be considered in the same framework. This and the control-theoretic 
implications (see e.g. [5], [3]) will be explored in a future paper. 

Finally, an important motivation for the Hamiltonian formulation of nonholonomic 
dynamics in [4] is the treatment of symmetry and reduction for these systems. This 
will not be considered in the present note. For related work on the reduction of 
nonholonomic mechanical systems with symmetries from the Lagrangian point of view 
we refer to e.g. [7], [lo], [2]. 

2. The Hamiltonian formulation of systems with classical constraints 

Let Q be an n-dimensional configuration manifold with local coordinates q 
= (ql, . . . , qn). Consider a smooth Lagrangian function L: TQ + R, denoted by 
L(q, G), satisfying throughout the usual regularity condition 

det dqidqj [ 1 ~ #O. 
(This is e.g. satisfied if L is given as the kinetic energy with positive definite 
lized mass matrix minus the potential energy.) Classical constraints are given 

coordinates as 

A%)4. = 0, 

(1) 

genera- 
in local 

(2) 

with A(q) a k x n matrix, k < 12, with entries depending smoothly on q. Throughout 
we assume that A(q) has rank equal to k everywhere. More intrinsically, the columns 
of A(q) define in local coordinates k independent one-forms on Q. Furthermore, (2) 
determines a k-dimensional distribution D on Q, given in every point qo E Q as 

D(qo) = ker Ar(qa). (3) 

The constraints (2) are called holonomic if the distribution D is involutive, i.e. for 
any two vector-fields X, Y on Q 

X E D, YEDJ[X,Y]ED, (4) 



HAMILTONIAN FORMULATION OF NONHOLONOMIC SYSTEMS 227 

with [X,Y] the Lie bracket, defined in local coordinates Q as [X,Y](q) = %(9)X(q)- 

- $g(q)Y(q), with g, g the Jacobian matrices. In this case we may find, by Fro- 

benius theorem, local coordinates q = (?ji, . . . , ij,) such that the constraints (2) are 
expressed as 

A 
qn_lc+l = . . . = G, = 0, (5) 

Or equivalently, ijn_lc+l = cn-_k+l,. . ., q, = C, for certain constants &_k+l,. . . ,% 
determined by the initial conditions, and we may thus eliminate the coordinates 

&-k+l,...,&* The constraints (2) are called nonholonomic if D is not involutive, 
implying that we cannot use this elimination procedure. 

The equations of motion for the mechanical system on Q with Lagrangian L(q, 4) 
and constraints (2) are given as (see e.g. [14], [16], [l]) 

- g = A(q)X, AT(q)4 = 0, (6) 

with g denoting the column vector ($$, . . . , g)T, and similarly for $$. Here the 

constraint forces A(q(t))X(t) with X(t) E IR” are uniquely determined by the require- 
ment that the constraints AT(q(t))Q(t) = 0 have to be satisfied for all t. 

Defining in the usual way the Hamiltonian H(q,p) by the Legendre transformation 

H(%P) = kPi6i - L(q, 41, 
C3L 

pi=a’ 
i = I,...,?& 

i=l 
(7) 

the constrained Euler-Lagrange equations (6) transform, due to condition (1) into 
the constrained Hamiltonian equations on T*Q 

P = -$p) + A(q)& 

ATtd~twJ = AT(q)4 = 0. 
(8) 

The constraint forces A(q)X may be computed by differentiating the constraints 
A“(q)g(q,p) = 0 along (8) i.e. 

&tATtd~ts>p) 
1 

TdH 
%(q,p) + A’(q)$(q> p) - z(q> P) + A(qP] = 0, (9) 

with @ the Hessian matrix with respect to p. This equation may be solved for X 
as long as 

d2H 
det AT(q) ap2 -(q,p)-+q) # 0, 4 E Q, (10) 

which condition is obviously satisfied because of our standing assumptions (1) and 
rank A(q) = k. Expressing A as a function of (q,p) and substituting in (8) lead to 
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the dynamical equations of motion on the constrained state space 

(11) 

A much more intrinsic and efficient way of obtaining the equations on X, is, however, 
the following. Since rank A(q) = k, there exists locally a smooth n x (n - Ic) matrix 
S(q) of rank n - Ic such that 

A%)s(q) = 0. (12) 

(Equivalently, S(q) is such that D(q) = Im S(q).) Now define F = (jLS1,jj2) = (&, . . . 

...> @n-k,i%-k+l,. . . ,&) as 

P -l := ST(q)p, p’ E rR+, F2 := AT(q)p, i;” E IL?‘“. (13) 

It immediately follows from (12) that (q,p) H (q,F1,F2) is a coordinate transforma- 
tion. The constrained Hamiltonian dynamics (8) in the new (generally not canonical!) 
coordinates (q, j?,F*) takes the following form. The cotangent bundle T*Q is equip- 
ped with its canonical Poisson bracket expressed in natural canonical coordinates 

(q,p) = (ql,...,qn,P1,...,Pn) for T*Q as 

with J the standard Poisson structure matrix (see e.g. [S]), intrinsically determined 
by the Poisson bracket {, } as 

J= ({%,!7j~)i,j t{qi,Pjl)i,j ( ({Pi,!7j))i,j ({Pi,Pj))i,j ’ 2,J = Il...>= 1 

In the new coordinates (q, 5) the Poisson structure matrix becomes 

J(%i3 = ( (1% qj l)i,j ({4%ij,l)i,, 
({pj,q,})i,j ({pi,pj}pj ’ 6.i = l,...,T > 

and the constrained Hamiltonian dynamics (8), equivalently written as 

(15) 

(16) 

(;) = J (ii;;;;;) + (A;q))X’ A’(q)g(q>p) = 0, (17) 

transforms into 
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-ai?- 
il 89 

- 

0 
A-1 [I ” 

= J(q,F) aH + 0 x, 
@l 

[ 1 K(9) 
$+LP) = 0, 

ai;T 

229 

(18) 

with K(q) := AT( an invertible Ic x Ic matrix, and H(q,F) the Hamiltonian 
H(q,p) expressed in the new coordinates q, j3. Now truncate the transformed 
Poisson structure matrix 5 in (16) by leaving out the last k columns and last k 

rows, and let 5 satisfy the constraint equation $!$ = 0. This defines a (2n - Ic) x 
P 

(2n - Ic) skew-symmetric matrix J, on X,. An explicit expression for J, is obta- 
ined as follows. Denote the j-th column of S(q) by Sj(q). Since j3’ = ST(q)p, 
we obtain {ql,jjj} = l-th element of S,(q), while {pi,&} = {ST(q)p,S~(q)p} = 

-pT[&, Sj](Q), 1 = 1,. ,n,i,j = 1,. . . , n - lc. Clearly {qi, qj} = 0, and thus 

J, = S(9) 
-L+(9) (-pT[SC Sj1(9>)i,j=l,...,n-k (19) 

where p is expressed as a function of q, jj with j? satisfying $$ = 0. Note that 

rank J, = 2(n - k) everywhere on X,. Furthermore, define the reduced Hamiltonian 

HT: X, -+ JR as g(q,F) with 5 satisfying 3 = 0. Clearly, (q, j?) serve as local 
P 

coordinates for the constrained state space X,. It immediately follows from (18) by 

disregarding the last equations involving X, and noting that $(q, ji) = 0, that the 

dynamical equations on X, expressed in coordinates (q,p’) are given as 

4 0 A-1 E XT. 
P 

(20) 

These equations are in pseudo-Hamiltonian format. Indeed, the matrix J, defines a 
bracket (; }? on X, by setting 

{F,, G]&,iil) := (T$) J&,5’) (z) 

for any two smooth functions FT, G,: X, + EC. Clearly, this bracket satisfies 
two defining properties of a Poisson bracket (see e.g. [8], [15], [9]): 

(i) {F,,G], = -{GT,FT]T (skew-symmetry), 

(ii) {FTI G, H,], = {R, G,],K + G,{F,, K], (Leibniz rule) 

(21) 

the first 

(22) 
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for every FT, G,, HT: X, + R. However, for {, }7. to be a true Poisson bracket also 
the following property: 

(iii) {K, {G K],], + {G, {K, F,],], + {% {FT: CL.],], = 0 

(Jacobi identity) (23) 

needs to be satisfied. If (23) is satisfied, then (20) defines a generalized Hamiltonian 
system on X, with respect to the Poisson bracket J, (see e.g. [15], [9], [ll]), and 
since rank J, = 2(n - k) local (canonical) coordinates (?j,p,3;) for X, may be found 
such that the system takes the form [S, 15, 111 

(with H, expressed in q,p, s), which are almost the standard Hamiltonian equations of 
motion. On the other hand, even if (23) is not satisfied, then still the pseudo-Hamil- 
tonian format may be useful, see e.g. Remark 2.2 and the Conclusions. 

The next theorem shows that the fulfilment of the Jacobi identity is actually equiv- 
alent to the constraints being holonomic. 

THEOREM 2.1. The bracket {, }T on X, satisfies the Jacobi identity (and thus is 
a Poisson bracket) if and only if the constraints AT(q)4 = 0 are holonomic. 

Proof (If) Suppose the constraints are holonomic. Then by Frobenius’ theorem 
we may find local coordinates ij = (it, . . . , ?jn) such that the constraints are expressed 

-- as in (5) i.e. AT(q) = [0 Ik]. Take corresponding (natural) coordinates (q,p) for 
T’Q, and denote p = ($,B2) = (p,, . . ,p,_k,pn_ k+l,. . . ,p,). The constraint is now 
expressed as $(ij, p) = 0, and we can take as .in (13) new coordinates F’ = p’, j? = 

p2. Since in these coordinates J = 

+j 

_“, , J, becomes the constant matrix 
n 

:; 

0, 
) ] 

4-r; 
0 > (25) 

--In-k 0 0 

and {, }T trivially satisfies the Jacobi identity. 
(Only if) Suppose the bracket {, }T defined by J, satisfies the Jacobi identity. 

Denote the Hamiltonian vectorfields on X, (with respect to Jr) with Hamiltonians 

Ql,...,Qn>Pl,.~., F,_k by Xql,. . . ,X,,, X+, , . . . , Xfin_-k. By definition, these are preci- 
sely the columns of J,. Fulfilment of the Jacobi identity implies that (see e.g. [S]) 

lx@%) xfij 1 = x{fJz,fij}T7 i,j = l,..., n-k. (26) 

In particular, this implies that [X,%, Xi))] is in the span of the columns of J,. How- 
ever, since by (19) the vector of first n entries of X& is precisely the i-th column 
of S(q), this implies by the occurrence of the left-upper zero block 0, in J, that 
[Sz, Sj](q) E Im S(q), with S, the i-th column of S, i,j = 1,. . , n - k. Hence, the 
distribution D(q) = ImS(q) is involutive. 0 
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Remark 2.2: In any case (Jacobi identity being satisfied or not) the dynamics (20) is 

energy conserving, i.e., &r remains constant along trajectories of (20), as follows from 
skew-symmetry of J,. This may be e.g. used for feedback stabilization of nonholonomic 
systems [13]. 

Remark 2.3: The dynamics (20) on X, is independent of the particular choice of 
coordinates for X,, as may be readily checked. 

Remark 2.4: Our approach is not unrelated to the approach taken in [5]. Here the 
multipliers X in the Euler-Lagrange equations (6) are eliminated by pre-multiplying 
the equations (6) by the matrix ST(q), and it is shown that the thus reduced equations 
can be written as a set of first-order differential equations in Q and n E JRY’-Ic, with 
4 = S(q)7 parametrizing the admissible velocities 4. 

We now treat two well-known examples of nonholonomic mechanical systems; the 
first one has been also considered within a (different) Hamiltonian framework in [4]. 

EXAMPLE 2.5 (see e.g. [16]). Consider the motion of a point mass m in Q = R3 
with Cartesian coordinates (z, y, Z) under the influence of a potential field with po- 
tential V(x, y, z), and subject to the nonholonomic constraint 2 = yh. The constrained 
Hamiltonian equations (8) are given as 

1 
i = -p,, 

m 
& = _g_y.x, 

jj = kp,, * - 
dV 

py--ayI 
Pz - YPX = 0, 

1 
z = ,Pz, ljz ++A. 

Define, corresponding to (13), the new coordinates 

133: = Ps +ypz, Py=Py, i%=pz-YPX, 

(27) 

(28) 

then the Poisson structure matrix J = transforms into 

-0 0 0 1 0 
0 0 0 0 1 -: 

3=_; ;_; ; O ; ) 
PZ 

(29 

0 -1 0 -P2 0 Pz 
- Y o-1 0 -p, o_ 

with p,, p, expressed in the new coordinates. The reduced structure matrix on XT = 

{~,Y,~,P,,P~,P~)IP~ = 0) becomes (note that on X,,P, = ir,(l+y2), p, = y~J(l+y2)) 
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- 0 
0 
0 

JT= -1 

0 - -1 

0 
0 
0 

-Y 

0 - 

1 
0 

Y 

0 

YL 
1 + y* 

0 

0 

(30) 

which indeed does not satisfy the Jacobi identity. The reduced Hamiltonian H, is 
given as 

(31) 

and the resulting equations are described by (20) with q = (x:, y, z), i;’ = (pz,pv). 

EXAMPLE 2.6 (Rolling vertical wheel on inclined plane, see e.g. [3].) The configu- 
ration manifold is R* x S1 x S1 with coordinates (z, y, 0, cp); i.e. (z, y) Cartesian coordi- 
nates on the plane, 19 rotation angle of the wheel, and cp heading angle. For simplicity 
we take all parameters to be 1, leading to the Hamiltonian H = i(p;+pi+pi+p$)+x. 

The rolling constraints are nonholonomic and given by i - 4 cos cp = 0, jr - 8 sin cp = 0. 
According to (13), we define new coordinates 

Pl := P,, 

52 := p0 +p,coscp +p,sincp, 

53 := Px - PO cos cp, 

iJ4 := p, - pi sin cp. 

(32) 

Then, X, = {(x, y,B,c~,p~,p~,pe,p~)(p3 = O,& = 0}, and the structure matrix J, may 
be computed as 

while the reduced 

3. Conclusions 

- 0 0 0 0 0 coscp- 
0 0 0 0 0 sincp 

Jr= ; 0 0 00 1 
0 0 01 0 

0 0 O-10 0 
_-coscp -sincp -1 0 0 0 _ 

Hamiltonian is given as H(zr:, y, 8, cp,ijt,&) = 35; + $5; + IC. 

(33) 

We have shown that the equations of motion of a mechanical system with con- 
straints may be easily formulated as Hamiltonian equations of motion with respect to 
a Hamiltonian which equals the total energy restricted to the constrained state space, 
and with respect to a bracket which satisfies the Jacobi identity if and only if the 
constraints are holonomic. This underlines the difficulties of nonholonomic constraints, 
and also motivates a further study of brackets not satisfying the Jacobi identity and 
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their Hamiltonian equations of motion. It should be noted, however, that many use- 
ful results of Hamiltonian vectorfields, such as the existence of canonical coordinates 
and Liouville’s theorem (conservation of volume) rely crucially on the fact that the 
Poisson bracket does satisfy the Jacobi identity. 
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