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Abstract: We investigate the computational  performance of a cutting-plane algorithm for the problem of 
determining a maximal subclique in an edge-weighted complete graph. Our  numerical results are 
contrasted with reports  on closely related problems for which cutting-plane approaches perform well in 
instances of modera te  size. Somewhat surprisingly, we find that our approach already in the case of 
n = 15 or n = 25 nodes in the underlying graph typically neither produces an integral solution nor yields 
a good approximation to the true optimal objective function value. This result seems to shed some doubt 
on the universal applicability of cuttingplane approaches as an efficient means to solve linear (0, D-pro- 
gramming problems of modera te  size. 
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I. Introduction 

It is a generally observed phenomenon that 
linear programming problems are 'easy'  to solve 
in practice even for rather  large problem in- 
stances and even with theoretically inefficient 
methods like the simplex algorithm. The use of 
such methods,  however, requires that a descrip- 
tion of the set of feasible solutions via a system of 
linear inequality restrictions be available. 

Many optimization problems arising in prac- 
tice can only abstractly be formulated as linear 
programming problems over polyhedra P in the 
sense that no linear description of P is known. 
Such a well-known example is the traveling sales- 
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man problem (TSP) (cf. Lawler et al., 1985). The 
fundamental  idea for a cutting-plane algorithm to 
solve the linear optimization problem over P is as 
follows: determine a set F of inequalities that are 
satisfied by the vectors in P and run a linear 
programming algorithm relative to the set F of 
restrictions. This idea was first successfully imple- 
mented by Dantzig et al. (1954) for a TSP with 
n = 49 cities. They note: " A  surprising empirical 
observation is the use of only a trivial number  of 
the many possible restraints to solve any particu- 
lar problem."  The class F chosen by Dantzig et 
al. comprised the so-called 2-matching and sub- 
tour elimination constraints, which have the 
property that the feasible solutions to the original 
problem are exactly the (0, 1)-vectors satisfying 
all constraints in F. Adding the class of 'comb 
inequalities' to F, Gr6tschel (1980) then solves a 
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TSP with n = 120 noting that already the original 
class of constraints yielded a very good approxi- 
mation to the true optimal objective function 
value. Because of the good approximation for the 
objective function, one can try and combine a 
cutting-plane approach with a branch-and-bound 
procedure for the discrete (0, 1)-programming 
problem. This way, e.g., Padberg and Rinaldi 
(1987) successfully solve a TSP with n = 532. 

One might expect that it is relatively straight- 
forward to improve a cutting-plane algorithm rel- 
ative to the polyhedron P by looking for new 
classes of valid inequalities and adding these to 
the old set of constraints. There is a practical 
difficulty: not only is it often quite involved to 
find a new class F '  of constraints but it appears 
to be also intractable to efficiently solve the asso- 
ciated separation problem: detect some member 
of F '  that is violated by a given vector x. Thus 
existing implementations of cutting-plane algo- 
rithms typically fully exploit only a relatively small 
class of easy to check valid inequalities while 
disregarding other classes completely or checking 
them at most heuristically. 

Nevertheless, when the cutting-plane approach 
was applied to other discrete linear (0, 1)-pro- 
gramming problems, the results obtained seemed 
to suggest that the observation of Dantzig et al. 
(1954) quoted above was a general phenomenon 
not restricted to the TSP alone: for problem 
instances of moderate size, a cutting-plane algo- 
rithm exploiting a rather basic set of inequalities 
should produce either an integral and hence opti- 
mal solution for the original problem or at least a 
very good approximation to the true optimal value 
(see, e.g., Marcotorchino and Michaud, 1980; 
Reinelt, 1985; Wakabayashi, 1986; Faigle et al., 
1987). 

It is the purpose of this note to report about a 
computational study on a problem where the 
natural cutting-plane approach performs very 
poorly already in very small problem instances 
and, doing so, seems to shed doubt on the univer- 
sal applicability of cutting-plane algorithms to 
linear (0, 1)-programming problems. 

The problem we investigate is motivated by a 
facility location problem considered in Sp~ith 
(1985): find a subclique of maximal weight in an 
edge-weighted complete graph. In spite of exten- 
sive use of cutting-planes our algorithm typically 
fails to produce (0, 1)-solutions already for graphs 

with n = 15 nodes. Moreover, we illustrate with 
the data from Sp~ith (1985) for n = 25 that also 
the objective function value computed by the 
cutting-plane algorithm may be far from the true 
optimum (see Section 5 below). 

We find our results even more surprising in 
the light of the seemingly close relationship be- 
tween our max-clique problem and the partition 
problem studied in Wakabayashi (1986) and Faigle 
et al. (1987), where an edge-weighted complete 
graph is to be optimally partitioned into sub- 
cliques. In fact, many of the basic inequalities 
used in cutting-plane algorithms for the partition 
problem (e.g., the so-called triangle inequalities 
and partition inequalities in Section 2) are valid 
and facet inducing not only for the polytope 
associated with the partition polytope but also for 
the clique polytope. 

We discuss the theoretical background of our 
cutting-plane algorithm briefly in Section 2 and 
Section 3 restricting ourselves to those classes of 
facet inducing constraints that actually enter the 
algorithm. The algorithm itself is sketched in 
Section 4. 

Let us finally make it clear that our primary 
concern in this study is not to solve the max-clique 
problem efficiently but to investigate the perfor- 
mance of a cutting-plane approach to the max- 
clique problem. We have, therefore, been quite 
generous in letting our algorithm search for pos- 
sibly violated cutting-planes on the one hand and 
have, on the other hand, not tried to combine the 
cutting-plane algorithm with a branch-and-bound 
procedure. 

2. The clique polytope and related polytopes 

The basic combinatorial model for the prob- 
lem we consider can be formulated with the help 
of the complete (undirected) graph K n = (V, E) 
with [VI = n  nodes and I El = (~) edges as fol- 
lows: 

Let J___2 E be a family of subsets of edges of 
K n and w : E ~ R a weight function, w extends to 
a linear weight function w : J ~ ~ via 

w(F)  = E we 
e ~ F  

Interpreting each member F ~,,F as a (0, 1)-inci- 
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dence vector in R E, / is exactly the set of 
vertices of its convex hull 

P ( f ) = { x ~ E I x  = ~_,AF'F, AF>O, 

Hence, the optimization problem 

max{w( F) l F ~ J }  

is equivalent to the linear programming problem 

max w . x  
s.t. x ~ ( J )  

over the polytope P ( / ) .  
Let 2 < b < n be an integer and choose J to 

consist of exactly the edge sets of the non-trivial 
complete subgraphs K '  of K .  with at most b 
nodes. In this ease, we call 

P,,(b) 

the (b-restricted) clique polytope of K, .  It can be 
shown that the dimension of P.(b) satisfies 

dim P , ( b ) =  ( 2 ) - 1  if b = 2 ,  

2 i f 3 < b < n .  

Moreover, we remark that the diameter of P,(b) 
equals 1 (Faigle, 1987). This means that each 
member of / can be reached in one simplex 
iteration from any other member. The problem, 
of course, lies in not knowing how to carry out 
such an iteration optimally relative to a weight 
function w. 

If b is fixed, optimizing over P,(b) is polyno- 
mial because K~ has only a polynomial number 
of subgraphs with at most b nodes. In general, 
the linear optimization problem over P,(b) is 
NP-complete since it apparently generalizes the 
problem of finding a maximal clique in a (not 
necessarily complete) graph G on n nodes (see 
Section 4 below). The latter is known to be NP- 
complete (cf. Garey and Johnson,. 1979). 

Linear optimization problems over closely re- 
lated combinatorial polytopes have been investi- 
gated. The b-restricted partition polytope ~,(b) of 
Faigle, Schrader and Suletzki (1987) arises from 
families .2" of edge sets F that can be obtained as 
follows: partition the node set 

V=B  © . . .  GB;(J  . . .  

into pairwise disjoint blocks B; such that I B;I < b 
(i = 1 , . . . )  and let F consist of all those edges 
with both endpoints in the same block. The clique 
partitioning polytope of Wakabayashi (1986) (see 
also Gr6tschel and Wakabayashi, 1989) corre- 
sponds to the polytope ~ ( n )  in our notation. 

The linear ordering polytope Pz is derived from 
the complete directed graph K~ = (V, /~)  and 
hence is represented in n ( n -  1)-dimensional 
space. The vertices of P~ correspond to those 

// 
subsets F c E~ of cardinality t F I = ( 2 ) that con- 
tain no directed cycle (Marcotorchino and Mich- 
aud, 1980; Gr6tschel, Jiinger and Reinelt, 1984; 
Jiinger, 1985, and Reinelt, 1985). 

The vertices of the polytope defined above can 
easily be interpreted as the feasible solutions for 
certain integer linear programming problems. The 
idea thereby is to formulate combinatorial prop- 
erties of (0, 1)-vectors via linear inequalities that 
have to be also satisfied by convex combinations 
of those (0, 1)-vectors. 

Say that three edges a, b, c ~ E~ form a trian- 
gle tr(a, b, c) in K,  if they are pairwise incident: 

with each tr(a, b, c), we associate the triangle 
inequality: 

x a +x b - x  c < 1. (2.1) 

Note that (2.1) expresses a combinatorial closure 
concept for (0, D-vectors: components corre- 
sponding to two sides of a triangle can only be '1' 
if also the third side yields '1'. 

Three directed edges a, b, c, ~ / ~  form an 
acyclic triangle atr(a, b, c) in /~n if they give rise 
to the following configuration: 

With each atr(a, b, c), we associate the acyclic 
triangle inequality: 

xa +Xb--Xc < 1. (2.1') 

A directed 2-cycle in /~, is a pair 2-c(a, b) of 
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oppositely directed edges, a, b E / ~  n with the 
same endpoints: 

b 

a 

We consider for each 2-c(a, b) the linear restric- 
tion 

X a "~-X b : 1. (2.1.1') 

Combinatorially, (2.1.1') precludes directed 2- 
cycles in a (0, 1)-solution and, furthermore, guar- 
antees an orientation between every pair of nodes, 
i.e., a tournament. (2.1') bars directed cycles from 
that tournament. Hence it is straightforward to 
verify the following facts. 

Proposition 1. A (0, D-vector 

x = ( . . . , x ,  .... ) ~ o  

is a vertex o f  Pn if  and only if x satisfies all linear 
restrictions of  type (2.1') and (2.1.1'). [] 

Proposition 2. A (0, D-vector 

x = (  . . . .  xa . . . .  ) ~ E .  

is a vertex of  the partition polytope Pn(b ) i f  and 
only if  x satisfies all linear restrictions o f  type (2.1) 
and, additionally, for all v ~ V, 

E x a < b - 1 .  [] (2.2) 
u E a  

Note that (2.2)just ensures that the partition is 
indeed b-restricted. 

Clearly, every vertex of the clique polytope 
Pn(b) is in particular a vertex of the partition 
polytope P,(b). Hence, every linear restriction 
that is valid for Pn(b) is also valid for Pn(b). In 
order to single out the vertices of Pn(b) among 
those of Pn(b), we introduce a new class of linear 
restrictions. 

If i, j, l, m ~ V are four distinct nodes of K n, 
then the associated Z-inequality Z(i, j, l, m) is 

Xi j  "~- Xjl  -{- X lm - -  Xil  - -  X jm ~__ 1 (2.3) 

(ij denotes here the edge with endpoints i and j 
etc.). 

l m 

Proposition 3. A non-zero (0, D-vector 

X - ~ ' (  " ' ' ' x  . . . . .  ) ~ E n  

is a vertex of  the clique polytope Pn(b) if and only 
if x satisfies all linear restrictions of  type (2.1), (2.2) 
and (2.3). 

Proof. It is straightforward to check that each 
vertex of P,(b) satisfies (2.3). 

Conversely, consider an arbitrary partition of 
V with at least two non-trivial blocks B 1, B 2. Let 
x be the associated (0, 1)-incidence vector. We 
claim that x violates some Z-inequality. 

Indeed, we may choose distinct nodes i, j ~ B 1 
and I, m ~ B 2 yielding 

Xi j  : Xlm = 1 and Xjl  = Xil ~- X jm = 0 

and thus violating Z(i, £ l, m). [] 
Because a linear restriction is valid for a 

(bounded) polytope if and only if it is valid for 
each of its vertices, the integer linear program- 
ming descriptions of the foregoing pro_.posi_tions 
give approximations for the polytopes P., P.(b) 
and P.(b), where we also replace the integrality 
conditions x a ~ {0, 1} by the trivial inequalities 

0 ~ X  a <: 1. (2.4) 

Rather than solving the integer linear program 
relative to a given weight function, one may try to 
find an approximative solution to the program by 
solving the corresponding linear programming re- 
laxation implied by (2.4) with a standard linear 
programming algorithm. 

This simple idea appears to often produce 
surprisingly good results in the case of the linear 
ordering problem (see, e.g., Marcotorchino and 
Michaud, 1980 or Reinelt, 1985) and the partition 
problem (see, e.g., Wakabayashi, 1986 or Faigle 
et al., 1987). Not only seems the LP-relaxation to 
produce a very good approximation to the opti- 
mal objective function value of the integer LP 
but, in many cases, actually to yield a solution 
vector with integer components, which in view of 
Propositions 1 and 2 must then be a true optimal 
solution for the integer LP. 

When we tried to apply the same idea to the 
clique problem on the basis of Proposition 3, we 
were not so lucky. In other words, the LP-relaxa- 
tion via the linear constraints (2.4), (2.1), (2.2) 
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and (2.3) catches the structure of Pn(b) rather 
poorly. 

3. Facets of the clique polytope 

In order to obtain a better approximation of 
Pn(b) via the solution set of a suitable system of 
linear inequalities, we will now list some classes 
of valid inequalities for Pn(b). The validity of 
these inequalities is easily verified by checking 
their validity on the vertices of P,(b): 

E xe >- 1, (3.0.0) 
e ~ E  n 

x e < ( ~  ). (3.0.1) 
e ~ E  n 

Let {i 1, . . . ,  i k} be a set of k distinct nodes of K~ 
and define the edge sets 

p = {i~i2, i2i3, . . . ,  ik_lik},  

f i =  {ili3, i 2 i 4 , . . . , i k - 3 i k -  1 , i k _ 2 i k } .  

Then we obtain the path inequality associated 
with {i 1 . . . . .  i k} via 

x P, 1 
where, as usual, x ( P )  is the sum of the variables 
associated with members of P. Obviously, (3.1) 
generalizes the triangle- and Z-inequalities (k = 3 
and k = 4). We call a path inequality with k = 5 
also a W-inequality. 

In a similar fashion, we associate with a 6-ele- 
ment subset {il, i 2, i3, i4, i5, i 6} of nodes the edge 
sets 

K,  with both endpoints in T, we define the 
associated partition inequality via 

E X i t -  E Xe ~ 1. (3.3) 
t ~ T  e ~ E ( T )  

In order to evaluate how closely a given inequal- 
ity aXx < a approximates the polyhedron P~(b), 
assume that it is valid for P~(b) and consider the 
induced face 

F ( a ,  a ) =  {x ~ P , (b) :  aXx = a}. 

Recall that F(a,  a) is a facet of P.(b) if 

dim F ( a ,  a) = dim P~(b) - 1. 

Facet inducing inequalities are unique (up to 
scaling) and are not implied by other valid in- 
equalities of P,(b). In that sense, each facet in- 
ducing inequality may be viewed as a best possi- 
ble linear approximation to P~(b) 

Proposition 4. The following valid inequalities are 
facet inducing for P.(b): 

(0) each trivial inequality x a > O; 
(1) theinequality (3.0.0) for 3 < b < n ;  

(2) the inequality (3.0.1) for 3_<b_<n-2; 
(3) each trivial inequality for  4 < b <_ n; 

(4) each Z-inequality for  4 < b < n; 

(5) each W-inequality for  4 <_ b < n, n >_ 5; 
(6) each S-inequality for  4 < b < n, n >__ 6; 
(7) each partition inequality for  4 <_ b < n. 

We will sketch a proof for the fact that Z-in- 
equalities are facet inducing. The analogous 
property for the other inequalities can be derived 
by similar arguments (cf. Dijkhuizen (1989) for 
details). 

S = {iji 2 . . . . .  i5i6} , 

= {ili6, ili3, i2i4, i3i5, i4i6} 

in order to obtain an S-inequality via 

x ( S )  - x ( S )  < 1. (3.2) 

Note that path inequalities for k >_ 4 and S-in- 
equalities are generally not valid for the partition 
polytope Pn(b). The next class of inequalities is 
also valid for Pn(b). 

Let To_V, IT 1>_2, be a subset of nodes of 
K n and i ~ V / T .  Denoting by E ( T )  the edges of 

Proof of Proposition 4.4. Without loss of general- 
ity, we consider the Z-inequality 

X13 -~- X32 q-X24 --X12 --X34 ~ 1 

on the subset {1, 2, 3, 4} of nodes of K n. If suf- 
fices to show that each (incidence vector of an) 
edge of K n can be written as a linear combina- 
tion of (incidence vectors of the edge sets of) 
cliques in K n comprising at most 4 nodes and 
satisfying the given Z-inequality with equality. 
Then the induced face will have dimension at 

least ( n ) _  1. Because obviously not every sub- 
z 
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clique of K n yields equality, the induced face 
must be a facet. 

Consider first the case n = 4. Then it is readily 
verified that each edge is a linear combination of 
C13 , C23 , C24 , C123, and C1234 , where, for exam- 
ple, C234 denotes the (incidence vector of) the 
edge set of the clique on the subset {2, 3, 4} of 
nodes. 

If n > 4, we let K , _ I  be the complete graph 
on {1, 2 . . . . .  n - 1} and assume by induction that 
each edge of Kn_ 1 can be obtained as a linear 
combination of cliques on at most 4 nodes for 
which equality holds. Then we have, for instance, 

f i n  = C23 -{- C13 n -'[- C24 n - C234n , 

showing that also the remaining edges are repre- 
sentable in the desired manner. [] 

Let  us remark in passing that the trivial in- 
equalities x e _~< 1 are implied by the set of triangle 
inequalities and hence are not facet inducing. 
Moreover, it can be shown that each path in- 
equality with k < 6 is implied by the sets of trivial 
and path inequalities given in Proposition 4. 

The classes listed in Proposition 4 are far from 
exhausting all facets of the polytope Pn(b) (a 
sample of techniques leading to some additional 
classes of facets can be found in Dijkhuizen, 
1989). We restrict ourselves to these classes for 
practical reasons: we feel that these classes con- 
stitute a maximum of what an implementation of 
a cutting plane algorithm for the b-restricted 
clique problem can, at the current state of the 
art, realistically exploit. 

The  difficulty comes from the separation prob- 
lem relative to a class J of linear inequalities: 
decide if a given vector x ~ R E violates one of 
the inequalities in J. Each cutting plane algo- 
rithm that fully exploits J must be able to solve 
the corresponding separation problem. 

Already for the case where J is the class of 
partition inequalities no separation algorithm with 
polynomial running time is known. Exhaustive 
search through J is not practical since J has 
exponential size. Hence we are unable to fully 
exploit these inequalities. As in Wakabayashi 
(1986), we contend ourselves with a heuristic 
search for violated partition inequalities. 

4. A cutting-plane algorithm 

The max-clique problem relative to the weight 
vector w ~  R E and the complete graph K , =  
(V, E)  on n nodes is 

(CP) max w . x  

s.t. x ~ ~ , ( b ) ,  

where 2 _< b _< n is a given size restriction on the 
subcliques of K n. 

We will attempt to solve the linear program- 
ming relaxation (LP) below instead of (CP). It 
follows from Proposition 3 that each optimal so- 
lution x*  of (LP) is, in particular, an optimal 
solution of (CP) whenever x*  has integer compo- 
nents. 

We now set 
F 0 .'= class of trivial inequalities, 
F 1 := the inequalities (3.0.0) and (3.0.1), 
F T := class of triangle inequalities, 
F z .'= class of Z-inequalities, 
F w := class of W-inequalities, 
F s := class of S-inequalities, 
Fp := class of partition inequalities, 
F := Fo U F l u FT u Fz U Fw U Fs u F P 
and specify the linear programming relaxation of 
(CP): 

(LP) max w . x  

s.t. x satisfies all inequalities in F.  

Our cutting-plane algorithm can now be sketched 
as follows: 

(0) initialize the linear program 

max w -x 

s t  (LV) \ Z , l  e ~ E  

0 _ < X e _ < l  ; 

(1) determine an optimal solution x*  for (L-P); 
(2) if x*  is the edge-incidence vector of a 

clique in Kn, then output the optimal solution x*  
of (CP) and STOP; 

(3) search for inequalities in F that are vio- 
lated by x * ; 

(4) if search in (3) is successful, update L(L-P) 
and go to (1); 

(5) STOP; (no solution for (CP) was found). 
In our implementation of the cutting-plane 

algorithm, we carried out step (1) with the soft- 
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ware package MPS X/ 370  on an IBM 9370 com- 
puter.  

We execute step (3) in the following manner:  
we start exhaustive search through F- r until we 
have found M A X C U T  violated triangle inequali- 
ties. Then we search through F z until 3 .  MAX- 
C U T  violated Z-inequalities are obtained. 

Only if our current solution x*  satisfies all 
inequalities in F x u F z ,  we search through F w u 

F s for at most 5 * M A X C U T  violated inequali- 
ties, where the paramete r  M A X C U T  is chosen in 
advance dependent  on the problem size n. 

We try to detect violated partition inequalities 
only if all inequalities in F x u F z U F w u F z hold 
for x*.  Our search through Fp is not exhaustive 
but based on a heuristic. Thus, if the algorithm 
halts in step (5), we have no guarantee that F 
was completely exploited. We do exploit, how- 
ever, all path inequalities and all S-inequalities. 

The update  of (L--P) in step (4) always retains 
the inequalities of F 0 U F 1. Among the other in- 
equalities in the set of restrictions of the current 
~ ) ,  those are removed that are not binding for 
x *. Then all inequalities found in (3) are adjoined 
to yield the updated set of restrictions for (-L-P-). 

Without going into details, let us mention that 
the subroutines we employ in step (3) have run- 
ning time complexity O(n 4) for F- r U F z and O(n 6) 
for F w u F s while the heuristic for F e runs in 
t ime O(n3). This indicates that the running time 
of our cutting-plane algorithm quickly increases 
with n. For the examples we describe in Section 
5, it ranges between a few minutes (for n = 10) to 
several hours (n --- 25). 

We want to make it clear, however, that our 
objective in this study was not to implement  a 
time-efficient cutting-plane algorithm for the 
max-clique problem but to test the feasibility of 

trying to solve (CP) via a cutting-plane approach.  
The only allowance for real-world time restric- 
tions consisted in replacing exhaustive search 
through the class Fp by a fast heuristic and to 
limit the number  of iterations (i.e., executions of 
step (1)) in the algorithm to 100 (or 200 for the 
problem of Sp~ith, 1985). 

5. Computational results 

In this section, we report  about some of the 
computational  results we obtained for three types 
of test problems: the 'classical' max-clique prob- 
lem, problems with positive and negative weights 
on the edges and problems with only non-nega- 
tive weights. 

There  is a philosophical problem about how 
test examples should be chosen: on the basis of 
random generated data or of ' real-world'  data. If  
the widely held belief that random problems are 
'easier '  is true, we have given our algorithm a fair 
chance. For the classical max-clique problems, 
the weight function of course is predetermined 
while we have generated random graphs with 
various edge densities. For the problems on K n, 
the edge weights are uniformly drawn within a 
given range. A critical case are the data for the 
location problem of Sp[ith (1985): the original 
data were randomly generated; since we took 
them over identically we must consider them as 
' real-world '  data. 

The pa ramete r  M A X C U T  was typically set 

M A X C U T  = 
50 f o r n = 1 0 ,  
75 f o r n = 1 5 ,  

100 for n = 2 0 .  

Table 1 

n Density Problems Total 
Given Solved iterations 

Total Total Total Average 
TZ WS P facets 

10 25% 10 9 42 
50% 10 6 255 
75% 10 8 284 

15 10% 10 8 62 
25% 10 0 314 
75% 3 0 300 

20 10% 10 6 128 
25% 5 0 500 

21 20 1 50 
170 81 4 54 
211 70 3 70 
27 34 1 71 

187 129 1 72 
294 6 0 112 
72 56 0 78 

379 121 0 100 
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5.1. The classical max-clique problem 

In the classical max-clique problem, we are 
given a graph G = (I.I, E ' )  on n nodes and are to 
find a subclique of G of maximal cardinality. We 
can model this problem on Pn(n) by interpreting 
E '  as a subset of the edge set of the complete 
graphs K n = (F, E)  and choosing the weight 

1 for e ~ E ' ,  
we= - M  f o r e ~ E \ E ' ,  

where M is ' large'  (e.g. M = (~)). 
For our test problems we obtained the results 

given in Table 1. Table 1 reports a problem as 
'solved' only if the corresponding problem (CP) 
has been solved, i.e., only if the sequence of 
cutting plane relaxations (L-P-) produces an inte- 
gral optimal solution. Furthermore, an account of 
the total number of iterations of type (-L--P) for 
each class of test problems is given, from which 
the average per test problem can easily be recov- 
ered. The total number of iterations is subdivided 
according to the types of violated constraints in- 
volved in the update for the next iteration (L-P-). 
For example, for n = 10 and density 50% of the 
test problems, 6 out of 10 problems were solved. 
The attempt to solve the 10 problems led to 225 
LP's of type (L--P-), 170 updates involved only 
triangle or Z-inequalities, 81 updates used W- or 
S-inequalities, and 4 updates included partition 
inequalities. The last column of Table 1 yields a 
measure for the average size of (L-P) during the 
algorithm. 

In the cases (n = 15, 75%) and (n = 20, 25%) 
we stopped the test run after having observed 
that our algorithm had produced no solution 

within the set limit of 100 iterations on the first 
examples. 

5.2. Positive and negative weights 

We have generated random weights w e in the 
range 

- 1 0 0  <We < +100 

for 5 test examples of size n = 10 and have ap- 
plied the cutting plane algorithm to the parame- 
ter values b = 3, 4, 10 in each of the five exam- 
pies. In 12 of the resulting 15 test runs, the 
algorithm was able to find the optimal solution 
for the corresponding max-clique problem (CP). 

The observed performance for examples of 
size n = 15 was drastically worse. In this case, we 
considered random weights in the range 

- 5 0 0  ~ w  e ~_ q-500 

for 5 test examples and tried to solve the max- 
clique problem for b = 3, 4, 5. Only in 2 of the 
resulting 15 test runs was the algorithm success- 
ful! 

5.3. Nonnegative weights 

We consider 10 test examples of size n = 10 
and 10 test examples of size n = 15. The weight 
range is 

0 ~_ w e ~_ 1000 

and the results are given in Table 2. Notice again 
the drop in the performance of the algorithm as 
the problem size increases from n = 10 to n = 15. 
We also tried to run the algorithm for n = 15 and 

Table 2 

n b Problems Total Total Total Total Average 
solved iterations TZ WS P facets 

10 3 7 126 70 48 8 30 
4 9 159 117 41 1 52 
5 8 151 108 39 4 78 
6 9 89 79 10 0 102 
7 9 72 66 6 0 109 
8 8 41 39 2 0 119 
9 10 29 28 1 0 105 

15 3 4 116 64 52 0 47 
4 3 482 246 234 2 80 
5 5 781 580 201 0 78 
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b > 6. In  each  case,  however ,  our  l imit  of  100 
i t e ra t ions  was r eached  and  hence  no resul t  was 
ob ta ined .  

5.4. A facility location problem 

In Sp~ith (1985) a ce r t a in  facil i ty loca t ion  p rob-  
lem is m o d e l l e d  as follows: in the  c o m p l e t e  g raph  
K n = (V, E )  wi th  nonnega t ive  edge  weights  de, 
e ~ E,  f ind a c l ique on  b nodes  o f  smal les t  possi-  
b le  edge  weight .  

I f  M is a strict  u p p e r  b o u n d  on  the  de'S we 
can fo rmula t e  an equ iva len t  m o d e l  in ou r  con- 
text.  W e  work  with the  posi t ive edge  weights  

w e = M - d  e ( e ~ E )  

and  try to solve the  p r o b l e m  

max w • x 

s.t.  X E P n ( b  ). 

Sp~ith (1985) gives a set  of  da t a  for  n = 25 ( and  
M = 1000) to which he appl ies  a s imple  exchange  
heur is t ic  and  thus  achieves  op t ima l  so lu t ions  at  
leas t  for  the  cases  b = 3, 4, 5, 6 in Tab le  3. 

W h e n  we used  Sp~ith's d a t a  in our  a lgor i thm,  
we were  no t  so much  in t e r e s t ed  in solving the  
a s soc ia t ed  in t ege r  p r o g r a m m i n g  p r o b l e m s  (in fact ,  
none  was solved).  W e  w a n t e d  to know how closely 
the  objec t ive  funct ion  va lue  of  our  LP- re l axa t ion  
a p p r o x i m a t e s  the  va lue  of  the  t rue  op t imum.  To  
achieve b e t t e r  p e r f o r m a n c e ,  we p e r m i t t e d  200 
i t e ra t ions  in each  run  of  our  a lgor i thm.  T h e  re-  
sults were  as in Tab le  3. 

Ana lyz ing  our  c o m p u t a t i o n s  resul ts ,  it is ap-  
p a r e n t  tha t  a pu re  cu t t ing -p lane  a p p r o a c h  to the  
max-c l ique  p r o b l e m  is not  advisab le  even for  small  

ins tances  ( e n u m e r a t i o n  of  all c l iques  may  be  com- 
pe t i t ive  in runn ing  t ime  and  offers  the  g u a r a n t e e  
of  f inding  the  t rue  op t imum) .  

A n  a l t e rna t ive  might  be  to e m b e d  a cut t ing-  
p lane  a lgor i thm as a subrou t ine  in a b r a n c h - a n d -  
b o u n d  p roc e du re .  F o r  this  to be  successful ,  the  
cu t t ing -p lane  sub rou t ine  should  be  t ime efficient.  

A cons ide rab l e  s p e e d - u p  could  be  ach ieved  by 
bas ing  the a lgor i thm on the  subset  

F '  = F o U F  I U F T U F  z 

of  l inear  res t r ic t ions  ins t ead  of  F .  I t  is in te res t ing  
to no te  tha t  F e seems  to ha rd ly  play any role for  
the  c o m p u t a t i o n  in our  test  p r o b l e m s  ( the  same 
p h e n o m e n o n  is obse rved  in W a k a b a y a s h i  (1986), 
w h e r e  only 7 examples  out  of  a to ta l  of  24 with 
12 < n < 137 make  use of  pa r t i t i on  inequal i t ies) .  
O u r  resul ts  also suggest  tha t  the  t r i ang le  and 
Z- inequa l i t i e s  a re  more  impor t an t  t han  the W- 
and  S- inequal i t ies .  

O n  the  o the r  hand ,  Tab le  3 suggests  tha t  a 
cu t t ing -p lane  a lgor i thm may vastly ove res t ima te  
the  va lue  of  the  t rue  o p t i m u m  and  thus  not  lend  
i tself  to an eff ic ient  b r a n c h - a n d - b o u n d  proce-  
dure .  F r o m  a p rac t ica l  po in t  of  view, we feel  tha t  
the  (edge-)  we igh t ed  max-c l ique  is cur ren t ly  be-  
yond  eff ic ient  exact  so lu t ion  m e t h o d s  even for  
very m o d e r a t e  p r o b l e m  instances.  A cu t t ing -p lane  
a p p r o a c h  seems  to do  l i t t le  to improve  tha t  pic-  
ture .  

6. Discussion 

T h e  poo r  p e r f o r m a n c e  of  a cu t t ing -p lane  ap-  
p roach  to the  max-c l ique  p r o b l e m  a p p e a r s  even 

Table 3 

b TZ WS P Facets Iterations Sp~ith 

50 100 200 

3 3 5 0 85 
4 18 13 0 101 
5 76 51 2 112 
6 147 53 0 130 
7 164 36 0 187 
8 164 36 0 257 
9 177 23 0 361 

10 189 11 0 334 
11 195 5 0 401 

2 945 - - 2 853 
5 757 - 5 471 
9 339 9 258 9 224 8 478 

13 572 13 422 13 309 12 325 
18379 18139 17758 16559 
23 730 23 384 23 015 21025 
29 932 29 224 28 718 26 235 
35 798 35 295 34 705 3 1508 
43185 41620 41 116 37 834 
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more striking when contrasted with the perfor- 
mance of similar approaches to seemingly closely 
related problems. 

Wakabayashi (1986) has investigated the 
(edge-) weighted partition problem (cf. Section 2) 
and based a cutting-plane algorithm on the sets 
of triangle and partition inequalities (in addition 
to the trivial inequalities). In all of the 24 test 
problems considered with n up to 137, the algo- 
rithm is able to produce the optimal (integral) 
solution. Moreover, in 17 cases already the trian- 
gle inequalities suffice to obtain the optimal solu- 
tion. Acceptable results are also achieved in 
Faigle, Schrader and Suletzki (1987) for the b-re- 
stricted partition problem with n up to 70, where 
the cutting-plane method is incorporated into a 
branch-and-bound algorithm. 

For the linear ordering problem (cf. Section 2), 
Marcotorchino and Michaud (1980) suggest a cut- 
ting-plane algorithm based on the acyclic triangle 
and the directed 2-cycle inequalities alone. They 
report about computational experience with n up 
to 72 and note that the cutting-plane algorithm 
may produce a non-integral solution - but "ce 
phEnom~ne est assez rare et ne semble pas se  
produire dans les probl~mes pratiques". 

A computational study of the linear ordering 
problems is also done in Reinelt (1985) on exam- 
ples with n up to 60. The cutting-plane approach 
there includes in addition to triangle and directed 
2-cycle inequalities also so-called 'M6bius lad- 
ders'. It is observed that in most of the cases the 
cutting-plane algorithm yields the optimal inte- 
gral solution. Moreover, only in a minority of 
examples, M6bius ladders are actually invoked. It 
is further found that the objective value of the 
LP-relaxation using only triangle and 2-cycle in- 
equalities, in all instances furnishes a very good 
approximation for the true optimal objective 
function value. 

Trying to explain why our cutting-plane ap- 
proach to the max-clique problem fails already 
for small problem instances, it seems to us that 
the success of cutting-plane methods in general is 
very much problem dependent and that the max- 
clique problem is, in this sense, 'untractable' even 
for modest problem instances. 

Another explanation, of course, could be that 
we simply have failed to detect the 'appropriate' 

cutting-plane for our problem. It should be inter- 
esting to see if there are other classes of facet 
inducing inequalities for Pn(b) that are simple 
enough to be incorporated into a computationally 
feasible algorithm with superior performance 
characteristics. 
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