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Abstract 

We present a construction of a visually smooth surface which interpolates to position 
values and normal vectors of randomly distributed points on a 3D object. The method is 
local and uses quartic triangular and bicubic quadrilateral patches without splits. It heavily 
relies on an edge deleting algorithm which, starting from a given triangulation, derives a 
suitable combination of three- and four sided patches. 

Keywords: 3D reconstruction; Interpolation to scattered data; Visually smooth interpolants; 
BCzier patches 

1. Introduction 

The construction of visually smooth surfaces which interpolate to position 
values and normal vectors of randomly distributed points on a 3D object, is an 
important issue in CAGD. For easy evaluation and manipulation, one often aims 
at a local method which uses low degree polynomial patches. A recent review and 
classification of such methods can be found in (Peters, 1990a). 

The first task that one encounters, but that we do not address to here, is the 
construction of a polygon with vertices in the interpolation points such that a 
polynomial element can be rendered over each of the facets. Usually, the most 
simple and versatile polygons result from a triangulation of the data points (see, 
e.g., (Schumaker, 1987)), and we will start with such a configuration. Our challenge 
is to avoid the use of blending methods, which would enforce the use of rational 
polynomials, and of splits, which would enlarge the total number of facets. 

An interesting and thorough discussion of the conditions under which a polyno- 
mial interpolant over three- and four-sided facets can be constructed without splits 
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is given in (Peters, 1991). It turns out that the interpolation problem can be solved 
in a local fashion with polynomial patches of coordinate degree 4, provided that 
certain compatibility conditions are satisfied. The major difficulties arise if an even 
number of patches meets around one vertex. 

The interpolation method that we present in this paper overcomes these 
problems by deriving, from a given triangulation, a combination of three- and 
four-sided patches such that only odd numbers of patches around each vertex 
occur. (In the sequel such vertices will be called “odd vertices”, in contrast with 
“even vertices”.) This enables us to construct a smooth quartic/bicubic interpolant 
by using certain well-known VCl conditions developed by Farin (1982, 1983). The 
reason for choosing Farin’s conditions is that the resulting algorithm is relatively 
simple as it does not contain a lot of free parameters and the necessary computa- 
tions are fairly easy to perform. We remark however, that in principle our 
construction could of course be carried out in combination with other (more 
complex) VCl conditions, since it is a general phenomenon that the case of odd 
vertices is easier to handle than the one of even vertices. 

In Section 2, we briefly review the VCl conditions used for the construction of 
our interpolant. The interpolation algorithm is outlined in Section 4. It heavily 
relies on an edge deletion algorithm which we present in Section 3. 

2. A sufficient VCl condition 

In (Farin, 1982, 19831, Farin derived simple conditions for a visually smooth 
(I/Cl) transition between two triangular or rectangular polynomial patches, i.e., a 
join with continuously varying tangent plane. He pointed out that the conditions 
for such a join between any combination of two bicubic four-sided and quartic 
three-sided patches with cubic boundary curves are basically the same. We repre- 
sent the polynomial patches in the well-known BCzier-Bernstein form. Let 
s O,. . . , S, denote the control points along the common cubic boundary curve. 

The interior control points of the bicubic quadrilateral or quartic triangular 
patches are denoted by R,, R,, Tl and T2 (See Fig. 1). The boundary curves are 
always taken to be cubic. Therefore we can describe them by four control points 
S,, S,, S, and S,. Moreover, we let R,, R,, To and T3 be the neighbouring control 
points on the edges, also in their cubic representation. 

For actual computation of a triangular patch in a final stage, these boundary 
points in the quartic representation can be obtained by the degree elevation 
algorithm, i.e., 

TO= $S, + ;R,, 

and so forth (Boehm et al., 1984). 
If we suppose that, for fixed control points on the edges, there exist numbers V, 

w,, and w2 such that 
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Fig. 1. A quadrilateral-triangle join (a) and a join between hvo triangles (b). 

then a I/Cl join can be obtained by choosing 

T,-vR,=(l-v)S,+~w,(Sz-S1)+~w,(S,-S,), 

T2-vR2=(1-v)S2++w1(S3-S2)+$w2(S1-S2). (2) 

The factor A,, (Adown > in (1) equals f or 1 when the upper (lower) patch is a 
triangle or a quadrilateral, respectively, and stems from the degree elevation 
process. 

We stress that the conditions (2) are only sufficient and not necessary. However, 
they are easier to handle than more general ones which can be found, e.g., in 
(Peters, 1991, 1990b). 

By (l), we arrive at the geometrical interpretation of the coefficient u that 

area( TO, &,, S,) A down =a( T3, S,, &) 

area( R,, S,, S,) = -VT = area(R,, S,, S,> ’ 
(3) 

Now we consider one vertex V with A4 surrounding three- and four-sided patches. 
The interior control point of patch II, next to V is denoted by C,, and the 
control points on the mth edge by P,,, and R,, respectively, see Fig. 2. Here and in 
the sequel the indices are defined modulo M. 

We suppose that, for each edge, Eq. (1) is satisfied with suitable numbers vm, 

w;“, w2. m Trying to satisfy (2) around I/, leads to the equations 

c m+1- v”‘C,,, = B,, (4) 
with 

B, = (1- vm)Pm -I- +wr”(R, -Pm) + +w,“(V-P,,,). 

Since the coefficient - vm denotes a ratio of two areas (3), we have that 
M-1 

rIol:)“= (-1)“. (5) 
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Fig. 2. A vertex and the surrounding BCzier points. A vertex and the surrounding B6zier 

that C,, _1 and C, correspond to Tl resp. R, in the previous figure. 

points. Note 

Hence, the determinant of the linear system (4) is 1 + (- l)Mf’, and thus there 
always exists a unique solution for the A4 points C,,,, if M is odd. If A4 is even, the 
points P,,, and R, have to satisfy certain rather complicated additional conditions 
in order to guarantee existence of a solution; compare also the discussion in 
(Peters, 1991). 

3. An edge deletion algorithm 

The main idea of the VCl construction presented here is based on the previous 
observation that system (4) can easily be solved for vertices with an odd number of 
surrounding three- and four-sided patches. Starting with a given triangulation, we 
delete edges in a suitable way such that we end up with only such odd vertices. If 
we are dealing with closed bodies, this is always possible under the mild restriction 
that the total number of vertices is even. Then also the number of even vertices is 
even, equal to 2N, say. The proof of this statement can be given as follows: Let E, 

T, V, be the number of edges, triangles and vertices (with n edges connected to 
it). Then Euler’s formula (docarmo, 1976) gives 

where x E N is the Euler-Poincare characteristic, which is even for closed bodies 
(x = 2 for sphere-like objects). The following identities are straightforward: 

3T= 2E = CnV,, 
n 
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leading to 

c(6 - n)v, = 6x. 
n 

With this one easily proves that the number of odd vertices is always even, from 
which the assertion follows. 
Of course for non-closed surfaces the restriction that the number of even vertices 
must be even is not necessary, because boundary vertices may also be even. 

In principle, the edge deletion can be carried out by forming N (disjoint) pairs 
of all even vertices, and by deleting a connecting path of edges for each couple. 
The main problem is that we must guarantee that, in doing so, no n-sided patches 
with n > 4 are generated. To this end, we formalise the edge deletion algorithm in 
the following way. 

A path consists of edges (e,, . . . , eK_ 1) and vertices (Vi,. . . , V,), where ek = (V,, 
V,,,). A path is called allowed if any two edges of this path are not part of the 
same triangle. From any path between two even vertices, the following algorithm 
constructs an allowed path without adding new vertices on this path. 

Algorithm Reduce Path (N: path number) 
1. If any two vertices of the path are identical, then the path intersects itself. 

We delete the unnecessary loop from the path and repeat this procedure 
until all self-intersections are eliminated. 

2. Without the path intersecting itself, two adjacent edges may still be part of 
the same triangle. We replace any such pair by the third edge of their 
common triangle, and remove their common vertex from the vertex-list of the 
path. By repetition of this step, we obtain an allowed path. (See Fig. 3.) 

End Algorithm Reduce Path 

Difficulties may also arise from “unsuitable” intersections between two paths. 
We call an intersection between two paths allowed if no pair of edges at the 
intersection point is part of the same triangle. If, for all N pairs of even vertices, 
we have found allowed paths with only allowed intersection points, then the 
deletion of all corresponding edges leaves us with the desired configuration of 

Fig. 3. Reduction of two adjacent edges in one triangle. 
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triangles and quadrilaterals. A suitable procedure, which again does not include 
any new vertices, can be formulated in the foIlowing way. 

Algorithm Delete Even Edges 
Form IV pairs of even vertices and form paths between them. For example, this 
can be done with the following algorithm: 

Algorithm Initial&e 
Make a list A of all the vertices that have to be paired, i.e., initially the even 
vertices. For all the vertices from A we determine the vertices (even or odd) 
that are at distance 1. 
As soon as one encounters a possible pair, add this to the list of pairs, the 
path being essentially the shortest path between these two vertices. Subse- 
quently both vertices are deleted from list A. 
If all the (remaining) vertices in A are treated in this way, and A is 
non-empty, we proceed by determining all vertices at distance 2, 3, . . . of the 
remaining vertices in A, repeating the previous step until A is empty. 

End Algorithm Initiahe 

Let the path number of the first path be J = 1. (A path with path number J will 
always be referred to as path J.) Reduce this path by algorithm Reduce Path(l). 
While J <N Do 
(1) 
(2) 

J := J f 1. Perform algorithm Reduce Path(J). 
Detect the first (in terms of the vertex-list of path J) non-allowed intersec- 
tion with any of the previously considered paths. If no such intersection 
exists, then perform step 1. Else call the intersecting path 1 and the point of 
intersection I/. Now there are two possibilities: 
(a> Path Z and J intersect at least once more. Then we determine the 

intersection W with the largest index in the vertex-list of 1. So the 
vertex-list v(J) of J has the form 

u(J) = (VJl )...) V )...) w= VJ, )...) I&), 

and the one of Z can be written as (after a possible reversion) 

u(Z) = (VIK ,...) I/= V,m )...) w )...) VI). 

1 
5 

2 SC- 6 6*.:._ ; 

3 

4 7 

Fig. 4. u(J) = (1, 2, 3,4), u(l) = (5, 2, 6, 3, 7) + u(J) = (1, 2, S), u(l) = (7, 3,4). 
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Fig. 5. Second possibility: only one intersection between two paths. u(I) = (1, 2, 

6) + u(Z) = (1, 2, 6), u(J) = (3, 5, 4). 

31, u(J) = (4, 5, 2, 

Now we re-define the paths I, J as follows (for an example see Fig. 4): 

v(J) = p-J,‘...‘~’ I/lm+,‘...‘I/IK): 

v(l) = (v,,...JK l/J,+,Y..>l/JK). 

(b) Paths I and J intersect exactly once: As this is a non-allowed intersec- 
tion, and I and J have been reduced, there exist edges e, of I, and e, of 
J which belong to one triangle. We redefine I, J such that this pair 
belongs to one path and that J contains V,, (see Fig. 5). 
Since one of the two paths can be reduced, the intersection point 
disappears. 

Perform Reduce Path(I), Reduce Path(J), and repeat step 2. 
l Delete all edges which are part of one of the constructed paths. 
End Algorithm Delete Even Edges 

Observe that step (2a) covers in particular the case that two paths have one or 
more common edges. The case that several paths intersect in one point is treated 
successively by the aIgorithm. Moreover, step (2b) also works if the intersection 
point is an euerz vertex, which can happen if it is the first (or Iast) point of a path. 

Since the algorithm Reduce Path does not generate new vertices, no new 
intersections can be created, and therefore this algorithm is finite: at each step the 
number of non-allowed intersection points decreases. Moreover, the newly created 
path I in both (2a) and (2b) cannot intersect any other of the previously consid- 
ered paths at that point. Therefore it can be treated as an “old” one. 

The previous considerations show that there always exists a solution to our edge 
deleting problem. Of course the construction of an appropriate configuration is by 
no means unique. A good way to fix the algorithm would be a minimisation of the 
number of edge deletions: Each edge deletion reduces the number of available 
control points, and quadrilaterals more-over demand more care than triangles 
since we have to avoid degeneracies (i.e., angles 2 IT). In general this is an 
immense optimisation problem. 

But it is also clear that a good initialisation of the N pairs and their connecting 
paths will reduce the time necessary to from a proper configuration. Obviously one 
never can guarantee that there exists no initial triangulations for which algorithm 
Initialise will perform poorly and/or the number of deletions is high with respect 
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to the real minimal solution. We can only validate it by saying that in almost in all 
our test cases it immediately yielded a proper configuration (so the procedure 
Delete Even Edges was not even called upon) and the number of deletions was 
optimal. 

As a possible improvement of the total algorithm we mention that possibly a 
sort of division of space can lead to larger efficiency of the second step of 
algorithm Delete Even Edges. Theoretically however, it is clear that our algorithm 
is polynomial in N. Moreover in all our examples (with data sets of several 
hundreds of vertices) almost all time was spent in the reconstruction part of 
Section 4 and almost none in creating a proper configuration. Therefore we did 
not take further effort in creating such an optimised method. 

4. The VCl Construction 

In this section, we carry out a VCl construction that results from the observa- 
tions in Section 2. 

For a given triangulation, we perform the edge deletion algorithm from Section 
2 such that we end up with a configuration of triangles and quadrilaterals, and that 
each vertex is surrounded by an odd number of patches. The BCzier points at the 
vertices must equal the data points, as we demand interpolation. 

In the next step, we compute target control points for the cubic wire frame 
curves; i.e., control points which are, in some sense, in an ideal position. We chose 
to do it as in (Cottin and van Damme, 1990): For all edges (W, as in Fig. 2) we 
determine a plane 7 in which the wire frame curve should lie such that it forms a 

Fig. 6. Boundary curve construction: the two possible choices of X. 
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reasonably short path between V and V,. A possible choice is the plane through I/ 
and V, which makes equal and minimal angles with the two normals at the 
vertices. The intersection of 7 with the two tangent planes at the vertices 7 and 
S, defines two tangent lines t and t, through I/ and V, respectively. Now let Z 
be the intersection of t and t,. If I Z - I/ I > I Z - V, I, we pick X on t, such that 
I X - Z I = I V- Z 1 (and visa versa). Then we construct P,* and Rz as in the 
functional case with domain axis X- I/, X- V, respectively. There are always 
two possible choices for X (cf. Fig. 6) but only one is consistent with the 
orientation of the tangent planes. Note that this also works in the case of parallel 
tangent planes. Only in the case that Y and S, coincide but both normals are 
opposite in direction, it is clear that a cubic method can never work. 

There is no need to impose the planarity of the boundary curves, but it it seems 
to be the simplest choice. In fact, P,*,Rz are only targets points and as regularity 
demands 

angle( P, - I/, P, + 1 - V) < T 

the final reconstruction will in general not contain only planar boundary curves. 
We will come back to this later on. 

We now have to prescribe the coefficient v”’ for all edges e, with abutting 
patches ZZ,,, and ZZ,,,, r. As follows from Section 2, the only principal restriction on 
P is that it can be written in the form 

V m- 
- -Mr,+r, (6) 

where r,,, for every m are positive numbers that depend only on ZZ,. In Farin’s 
I/Cl construction (based on splits) presented in (Farin, 1983), the quantity rm was 
taken as the area of the (in that case triangular) patch ZZ,. Since we have already 
computed the target points, we prefer to use them in the determination of r,,,. This 
also avoids difficulties in the case of quadrilaterals. We choose r,,, as the average 
area of the three or four triangles formed by each vertex of the patch ZZ,,, and its 
closest two BCzier target points on the edges of this patch. E.g., for the triangle ZZ,,, 
in Fig. 2, we take: 

r, = $A,(area( I/, Pjf_l, P,*) + area(V,, R*,, Y,*) 

+area(G-,, XZ, R*,-,)), (7) 

where fA, = $ . 4 = a (see Eq. (3)); in the case of a quadrilateral there are four 
terms with the same factor: iA, = 1 . d = b. 

The motivation for this choice is obvious from (3): The right-hand and the 
left-hand side of (3) are not necessarily equal for the target control points; thus we 
compute r, as a suitable average. Since it must be the same constant for all edges 
of the patch ZZ,,,, (7) seems the natural choice. 

In the next step, we fix the wire frame control points P, such that a solution of 
(4) exists. According to (l), these points should satisfy the equations 

A,+r(P,+r - V = v”A,(P,,_,-V)+w;“(P,-I/). (8) 
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The coefficients w;” in (8) are free parameters. Hence, since all P,,, lie in the given 
tangent plane at I/, (8) consists of 2M equations for the 3M parameters Pm, WY, 
Wl=O , . . . , M - 1. One can easily convince oneself that this system always has a 
meaningful solution (i.e., one without the P,,, being in a meaningless position, e.g., 
all identical). One particular solution could be obtained along the lines of the 
construction in (Farin, 1983, Section 2.5) where a very similar equation is solved. In 
order to possibly obtain better results, we minimise 

M-l 

c (Pm* -L)’ 

m=O 

subject to (8), where the P,* are the previously computed target control points. 
Moreover, as we wish to exclude patches with angles larger than r we add the 
inequality constraints: 

a<aangle(P,-V,P,+,-V)<r(l-cz), 

with (Y some small positive constant. In practise these constraints are easy to fulfill. 

Fig. 7. Example of the “triangulation” after the edge deleting algorithm, discussed in Section 3. 
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Fig. 8. Smooth surface as a result of our algorithm discussed in Section 4, with data as in Fig. 7 

supplemented with normals. 

Now that we have fixed P, and w;“, and thus also wr and R, by performing 
the same procedure for each vertex, the missing interior control points can 
uniquely be determined from (4). 

5. Example 

We implemented the algorithms described in this paper and we now wish to 
present a resulting example. The triangulated data set after edge deleting is given 
in Fig. 7, whereas the final smooth surface is depicted in Fig. 8. 

For the numerical optimisation we used a simple quadratic programming 
method, which, due to the low dimensionality of all the subproblems had no 
difficulty in finding a local optimum. 

The method as we propose it, has hardly any free parameters, only the 
construction of the wire frame can be changed and furthermore one could vary the 
choice of the numbers rm in (6). In fact we experimented with the last possibility 
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for different 3D objects, but the results are pretty insensitive to the different 
choices. Also other constructions of the initial wire frame led to similar results. 
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