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The Anderson-Hubbard (A-H) model with one or two holes and with periodic boundary 
conditions on a 4M x 4N square lattice is considered. On grounds of an intuitive generaliza- 
tion of Marshall's theorem we split the A-H Hamiltonian (HA_n) into a zeroth order term 
(HI)) and a perturbation term (H'). With H0 we construct unfrustrated states: the zeroth 
order approximation of the degenerate ground state (GS). The one-hole system has a 
four-fold symmetry broken H0-GS with k = 0r/2, -+Ir/2), (-~r/2, -+~r/2). Group theory shows 
that this symmetry breaking (SB) may be stable if H' is taken into account. For the two-hole 
system we derive candidates for the H0-GS with the corresponding good quantum numbers k 
and total spin S. Here we find no SB or a two-fold SB: again, this result may hold for the 
complete H A n- Second order perturbation calculation possibly describes an effective cou- 
pling of two holes. 

1. Introduction 

Since the discovery of h i g h - T  c superconduc t ing  copper  oxides there has b e e n  

a growing  interes t  in s t rongly corre la ted  e lec t ron  systems. A n d e r s o n  [1] has 

suggested that  the physics of these oxides is con ta ined  in the two-d imens iona l  

( 2D) ,  la rge-U,  s ing le -band  H u b b a r d  model .  In  this model  doubly  occupied 

( D O )  sites are p roh ib i ted  and  the H u b b a r d  H a m i l t o n i a n  can be t r ans fo rmed  to 

an  effective H a m i l t o n i a n ,  called the A n d e r s o n - H u b b a r d  ( A - - H )  H a m i l t o n i a n  

[2]. O u r  m a i n  interes t  is the g round  state (GS)  of systems on a square  lattice 

with one  or two empty  sites (holes) and  all o ther  sites occupied by one  

e lec t ron .  We cons ider  a posit ive hopping  pa rame te r  t and  a large posit ive 

on-s i te  C o u l o m b  repuls ion  U, so that  0 < t ~ U. The  A - H  H a m i l t o n i a n  reads 

H A _ "  = H ,  + H 2 + H 3 , (1.1) 

H l = - t  ~, ~ (c*i~ci~ + H.c.),  (1.2) 
( i , j )  (7 
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t 2 
H 2 = 2 --~ ~_. ~ .  (c~,,c i * -o-C i -o-Cjo " -- nio-nj - o - ) ,  (1.3) 

( i , j )  o- 

t 2 
t H3 - g <i.j,k>~" [(c~"cj~'ctJ -~'ck -~ + ci~nj -~'ck~) + H.c . ] .  (1.4) 

The symbol (i ,  j ) denotes a pair of nearest-neighbour sites i and j and (i,  ], k ) 
indicates a triple so that i and j as well as j and k are nearest neighbours with 
i ~ k. The z-component  of an electron spin s Z equals 0-/2 with 0- = 1 or - 1  
(h = 1). At half filling, i.e. all sites occupied by one electron, only H 2 gives a 
nonzero contribution. It may be shown to be equivalent (apart from an 
irrelevant additional constant) to the antiferromagnetic (AF) Heisenberg 
Hamiltonian 

12 

HHeis = J E Si "S  j ,  J = 4 ~ ,  (1.5) 
(i, j) 

with the summation over nearest-neighbour sites only and S i denoting the spin 
opera tor  of an electron on site i. The A - H  model at half filling is a special case 
of the AF  Heisenberg models considered by Marshall [3]. He derived a 
theorem about the structure of the GS of these AF Heisenberg models. The 
GS is a linear combination of basis states of a certain space, the so-called Ising 
configurations (IC) [4]. The product of a phase factor and a positive amplitude 
represents the coefficients of the IC. The coefficients may be chosen to be real, 
so the phase factor is 1 or - 1 .  The theorem predicts the relative phases of the 
IC uniquely, apart from an overall irrelevant phase. Because of the uniqueness 
of the relative phases and the fact that all IC, spanning the mentioned space, 
contribute to the GS, the GS is unique. In general, if the phases of all basis 
states forming the GS, can be chosen uniquely (apart from an overall phase), 
the GS is called unfrustrated. 

Our  approach of the A - H  model is an intuitive generalization of Marshall's 
theorem.  In section 2 we search for the largest, unfrustrated, linear combina- 
tion of IC in the A - H  model with one hole on a square lattice. We believe that 
this linear combination gives a good zeroth order approximation of the GS of 
the system. 

2. The A - H  model and frustration 

Consider the 4M × 4N square lattice with periodic boundary conditions 
(PBC)  of fig. 1. For  convenience we introduce the four square quarter lattices 
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Fig. 1. 
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(QL) 1, 2, 3, 4 and the two sublattices A resp. B, composed of QL 1 and 3 
respectively 2 and 4. The pseudo-vacuum 

Io> = Z A ~ 
O r l , l " "  4M,4N ' ° ' 1 , 1  

° ' 1 , 1  "" "rY4M.4N 

t # .. t 

"''C4M,lCr4M.ICl,2o-I,2 "C4M.nNO-4M.4NI > , 

(2.1) 

with I ) denoting the real vacuum, is a Marshall state with (S, M) = (0, 0), i.e. 
10) is the GS of H 2. Eq. (2.1) defines the fixed order of creation operators for 
each IC throughout this article. According to Marshall the sublattice magneti- 
zation of an IC determines its phase. We choose the magnetization of sublattice 

B, M B, for this purpose, 

M B= ~-(M+-M ) .  (2.2) 

M+ (M_) is the number of up (down) spins on sublattice B. 
If one takes away from the configuration (2.1) one electron with s z = ~r/2, 

one gets a one-hole state. We call the introduced hole a "o-" hole. The 
introduction of a hole will change the amplitudes of the IC in 10). We assume 
that the phases do not change, because for a fixed position of the hole they are 
optimal, according to Marshall. We approximate the "rearranged" one-hole 
state with a " a "  hole on site (m, n) by c,,,n;~[0 ). In general, the HA_H-GS of 
the one-hole system is a linear combination of "rearranged" one-hole states 
and is approximated by 

E Am,,l(m, n; or)) = E A~,.cm..;~lO), 
rrl,tl m,n 

(2.3) 

in which the summation is over all sites (m, n). This is a suitable approach, 
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because we are primarily interested in the phases and not in the amplitudes of 
the IC. The intuitive generalization of Marshall's theorem for IC with one hole 
is expressed by 

A m , , , A m , , ( ( m ' , n ' ; c r ) l H o l ( m , n ; ~ r ) ) < ~ O ,  (rn, n ) ~ ( m ' , n ' ) ,  (2.4) 

in which H 0 is the largest part of HA_ n sO that (2.4) is satisfied with unique 
phases of the coefficients Am,n and Am,.n,. The corresponding linear combina- 
tion (2.3) is unfrustrated in this case. We believe that such an unfrustrated 
linear combination is the main contribution to the GS. 

A characteristic of high-T c superconducting copper oxides is that there is an 
A F  phase for low doping. Without doping, i.e. at half filling, the oxides are AF 
insulators. The AF background is built up by H e. The action of H 2 is of order 
Ne, with N c the number of electrons on the lattice. For contributions of H 1 and 
H 3 a pair or a triple of sites with one hole is needed. So for one-hole and 
two-hole states their action is of order  1. The amplitude of H1 is t and because 
t ~ U it is much larger than the amplitudes of H 2 and H 3, which are of order  
t2/U. In the limit t/U---~O only H t is nonzero and the system behaves as a 
Nagaoka ferromagnet  [5]. So the character of H 1 is ferromagnetic in contrast to 
H 2. Because of the observed antiferromagnetism for low doping, we believe 
that for large systems the order  Nc effect with amplitude t2/U is stronger than 
the order  1 effect of H~ with amplitude t. Looking at (2.4) one sees that H 0 
contains at least H 2, because states with holes on different sites are orthogonal. 

To find the largest possible unfrustrated states obeying (2.4) consider a 
one-hole state with the hole on QL 1: 

Az,,,,2.l(2m, 2n; o ' ) ) .  (2.5) 
m , t /  

For convenience we split H 3 into two parts: H3, 0 and H3A. Under  H3, 0 the hole 
may be displaced over the vectors 60 =- (+-2, 0), (0, - 2) and under H3,1 over 
~1 = (1, -+1), ( - 1 ,  +1).  

Optimal phases for H3, 0 may be chosen. To illustrate how the phases are 
determined,  consider only the relevant part of one IC under the action of one 
term of 143, o. Only the resulting phases (not the resulting optimal phases!) are 
written down. Amplitudes are disregarded. Consider one IC with a . . . . .  hole. 
The hole is denoted by ( - )  inside a ket. Then 

- / 4 3 0 t ( - )  - + ) I -  + ( - ) ) .  (2.6) 

Both [i) = 1- - + )  and If) = - ] -  + - )  occur in I0) with these relative phases. 
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Then ti ')=-1(-)-+) occurs in C2m,2n;_ I 0) due to the defined order of 
creation operators in (2.1). Analogously If')=l-+(-)) occurs in 
C2m+2,2~;_[0). Because this process is only one of the contributions of 113, 0 to 
n3,0C2m.2~;_[O ), this is denoted by 

930C2m 2n" I O )  ) C2m+2,2.;_10) ( 2 . 7 )  
• ' '-- AO 

in which AO means: among other contributions. 
We used the fact that the order of creation and annihilation operators and 

M B determine the phase. Proceeding in an analogous way, one may derive 

H3,oC2m,2,,;,~lO) ) C2m+2,2n;o. tO) "~- C2m_2.2~;~10 ) + C2m,2.+2;~10) 

+ C2m,2n_2;o-]O ) • (2.8) 

This gives, for optimal phases, the relation 

A2m.2n=(-1)m+~lAem.2,] . (2.9) 

By taking H 0 = H 2 +/43. 0 the lattice is split into four unfrustrated QL. We will 
show that we cannot add more parts of HA_ H to this H 0 without introducing 
frustration. Taking (2.5) with coefficients (2.9) as starting point, optimal 
phases for H3.1 cannot be chosen. 

Example.  In (2.5) we have C2m,2n;~10 ) a n d  --C2m+2.2n;~rtO ) . One may show that 
//3.1 acting on these IC gives, among other contributions, C2m+1,2~+1;~10 ) with 
opposite optimal phases. So/-/3,1 leads to frustration (in second order). 

Processes like (2.8) are given in fig. 2. A " + "  next to an arrow, denoting the 
hole's displacement, means that the two IC connected by H3, 0 or H3,1 have 
opposite optimal phases. 

+ • • 

÷ ÷ 

4- 

Fig. 2. 
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If one chooses 

Ho = H 2  + H3,1 and H '  = H 3 , 0 ,  (2.10) 

the hole can move unfrustratedly on a sublattice instead of a QL. But then 
frustration occurs in first order. 

Taking (2.5) with coefficients (2.9) as starting point, optimal phases for H~ 
cannot  be chosen either. 

E x a m p l e .  In the next four equations, C2m,2n;cr[O > contains the IC in the first 
column and -C2m +2.2n;~[0) the ones in the third column. The optimal phases of 
the IC in the second column are the result from the H~-process(es), depicted in 
the same equation. They are denoted by (+-). The symbol 0 inside a ket 
denotes a hole. 

Io ,~ -o-> ~ (+)1~ o - ~ )  +7-1~ -,~ o), (2.11) 

- Io -~ ~)-~7 (-)I-~ o ~) ~--., -I-~ ~ o), (2.12) 

(2.13) 

(-)1~ o ~5 ~------I~ ~ o>. 
H1 

(2.14) 

Eqs. (2.11) and (2.12) show that the resulting IC, ( + )  Ior0--O ") and 
( - ) ] - o - 0  o-), have AF phases for exchanging the opposite spins on the same 
sublattice. According to Marshall's theorem these IC belong to an excited state 
instead of the GS. We call this a spin excitation. Eqs. (2.13) and (2.14) lead to 

destructive interference. 

We may conclude from the study of frustration that we get unfrustrated 

H0-eigenstates if we choose 

HA_ H = H 0 + H '  , H 0 = H 2 + H3, 0 , H '  = H 1 + H3,1 . (2.15) 

Because one can start with the hole on four different QL, (2.5) is only one of 
the four realizations of the H0-GS. In section 3 we will prove that the four-fold 
symmetry breaking of the GS is likely to be stable, even if H '  is taken into 
account as a perturbation term on the zeroth order term H 0. 
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3. Symmetry breaking of the one-hole system 

We accept the Ho-eigenstate (2.5) with coefficients (2.9) as one of the four 
realizations of the H0-GS, and denote it by Igr)~. Introducing translation 
operators T x and Ty by 

• ; = t~2m+l,2n;o ~ l y C 2 m , 2 n ; o l y  2m,2n+l ;o -  (3.1) 

one may show that 

Txl0> = L I 0 )  = 10>, (3.2) 

2 T~lgr) ,  = Ty lg r ) ,  = - I g r ) , ,  i = 1, 2, 3, 4.  (3.3) 

Defining for each fixed pair (m, n) 

Z2m,2  n ~- Z 2 m + l , 2  n = m2m,2n+ 1 : A 2 m + l , 2 n +  1 , (3.4) 

we get 

Txlgr ) l  = Ig r )2 ,  Tylgr)l = [gr)4 , T~Tylgr)  ~ = [g r )3 .  (3.5) 

Combining the H0-eigenstates [gr)i gives 

Ik) = Igr), + CT~lgr)~ + ~7Tylgr)~ + (T~Tylgr), 

= [gr)~ + ¢ l g r ) 2  + ~Tlgr)4 + ~' lgr)3 • (3.6) 

The translational invariance of the system is expressed by 

T . l k  ) =- exp(ik, n) lk  ) , (3.7) 

in which n = ( -1 ,0 )  or (0,-+1). This leads to k =  (7r/2,---at/2) respectively 
( - w / 2 ,  -+'rr/2), corresponding with (~:, ~7, ~') = ( - i ,  w-i, -y- 1) respectively 
(i, ~-i, -+1). 

The four states Ik) transform according to four inequivalent 1D irreducible 
representations of the translation group. If one considers the total symmetry 
group of the square lattice, G, we get a 4D irreducible representation of G 
with the mentioned k forming the star of k [6]. Because G is not only the 
symmetry group of H 0, but also of the complete HA_H, the k correspond with 
good quantum numbers (QN) for HA_ H and states with different k are not 
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mixed by H' .  So the four-fold degeneracy of the GS is stable for the transition 
from H 0 to HA_ n, at least as long as the shift in energy because of H '  is not too 
large. Otherwise the perturbed level may cross one corresponding with differ- 
ent quantum numbers. 

The mentioned k are consistent with numerical calculations done by Trug- 
man [7]. 

4. Symmetry breaking of the two-hole system 

Consider a two-hole system on the lattice (with PBC) of fig. 1 with HA_ H 
split as in (2.15). One may show that the generalized Marshall theorem leads 
to unfrustrated states built up with H 0. We will show that the system with two 
holes on the same QL is an exception, i.e. is frustrated. We defined the order  
of creation operators in 10) as in (2.1). Furthermore one has to define a fixed 
order  of the two annihilation operators acting on 10) for a unique determina- 
tion of the phases in the GS. E.g. for holes on QL 1 and 2 the first annihilation 
opera tor  corresponds with QL 1 and the second with QL 2. A state with both 
holes fixed is a Marshall state. Again we assume that only the amplitudes and 
not the phases are rearranged by introducing two holes in 10). 

We approximate the rearranged H0-GS, for a two-hole system with e.g. one 
"o-" hole on QL 1 and one "o- ' "  hole on QL 2 by 

Igr)~,,2) = E A2m.2n;all+2p.2q;o-'C2m.2n;o-Cl+2p.2q;o-'lo), (4.1) 
m.n.p.q 

with the relation for optimal phases 

= ( 1 )  '~+n A2m,Zn;crll+2p,2q;~, - +P+q[Azm,zn;o_ll+2p.Zq;o_, I , (4.2) 

The summation in (4.1) is over all sites (m, n) and (p ,  q). 
Ten combinations of two holes are possible. Four combinations with the 

holes on the same QL and the six combinations of column 1 of table I. The 
notat ion (i, j )  denotes the defined order of annihilation operators in the 
corresponding GS. 

Table I 

I(i, j)) k s 

(1, 2), (3, 4) (~r, 0), (~r, ax) 0 
(1, 4), (2, 3) (0, at), (~r, at) 0 
(1, 3), (2, 4) (0, ~r), (~, 0) i 
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If one introduces a " + "  and a . . . . .  hole in 10), the condition that equal spin 
backgrounds have equal phases imposes a consistency condition on the basis 
states in (4.1). For example,  the introduction of a " + "  hole on site, say pl on 
Q L  1 and of a . . . . .  hole on site, say P2 on QL 2 gives a linear combination of 
spin configurations with optimal phases, symbolically denoted by 

Cl+C2_l(+, - )>  = I((+),  ( - ) ) )  . (4.3) 

One gets the same spin configurations by introduction of a " - "  hole on Pl and 

a " + "  hole on P2: 

c ,_c2+1( - ,  + ) )  = I ( ( - ) ,  ( + ) ) )  • (4.4) 

For  consistency equal spin configurations much have the same phase. If 
1 ( + , - ) )  occurs in [0), then - I ( - ,  + ) )  occurs in 10) too, according to 
Marshall. So for QL 1 and 2 we have the consistency condition 

(C1+C2_ --  C 1 _ C 2 + ) [ 0  ) • (4.5) 

This is a singlet state. 
Analogously one finds (for two holes on different sublattices) the singlet 

states 

(c,+cj - c  i cj+)lO ) for ( i , j ) = ( 3 , 4 ) , ( 1 , 4 ) , ( 2 , 3 ) ,  (4.6) 

and (for two holes on the same sublattice) the triplet states 

(ci+c i_ + cicj+)]O ) for (i, j )  = (1, 3), (2, 4), (1, 1), (2, 2), (3, 3), (4, 4 ) .  

(4.7) 

If one introduces two "o-" holes on different sublattices, e.g. Clo.C2cr]0>, o n e  
has a state with (S, M ) =  ( 1 , - o - ) .  According to Lieb and Mattis [8], the 
overall GS for a two-hole system with the holes on different sublattices and 
with fixed positions of the holes is a singlet state. A linear combination of such 
states represents the GS (4.1), which is therefore a singlet state too. Because 
we are interested in the overall GS, we need not consider the case of two "o-" 
holes on different sublattices. Analogously, the overall GS for a system with 
two holes on the same sublattice has S = 1 (see ref. [8]). So for the positions of 
the holes mentioned in (4.7) the GS may also be realized for two "o-" holes. 
But we will show that for two holes on the same QL frustration always occurs. 
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The combinat ions  (1, 3) and (2, 4) only remain as candidates for the H 0 - GS 
with two holes on the same sublattice. 

The next  example shows that  for two holes on the same Q L  frustrat ion 
occurs. Interchanging two holes on Q L  1 with optimal phases for H3. 0 gives 

li) = c2.,2,,Szm+~.2~+~:,~,1o), (4.9) 

(4.10) 

If o- = ~r', then li) and If) contradict.  If ~ ~ or', then (4.9) and (4.10) contradict  
with (4.7). 

As in section 3 we will derive the k-values of the H0-GS. With T X and T v as 
in (3.1) one may prove that  

T~lgr)( i4 ) = T~lgr)(i4 ) = Igr)(i,j) . (4.11) 

Defining for each fixed quartet  (m, n, p,  q) 

A 2rn,2n;~rl2p+ l,2q;cr, ~- A 2p+ 2,2q:cr,12m+ l,2n;c r • - A 2p+ l ,2q+ l:cr,12m,2n+ l;o_ 

= - A z m +  1,2n+ I ;c r l2p+2,Zq+ 1:o-' , (4.12) 

we get (denoting Igr)(i.i) by I(i, l ' ) ))  

T~I(1,2)) = - I ( 1 , 2 ) ) ,  Tyl(1, 2)) = +1(3, 4)),  
(4.13) 

T~TyI(1, 2)) = - 1 ( 3 , 4 ) ) .  

Combining  the H0-eigenstates I(1, 2)) and 1(3, 4)) gives 

Ik) = I(1, 2)) + ~:T~I(1, 2))  + w L I ( 1 ,  2)) + ¢LLI(a, 2 ) ) .  (4.14) 

Translat ional  invariance (cf. (3.7)) leads to 

{(7, ~), 
k =  (~r,0).  (4.15) Ik) = 21(1,2)) ¥ 21 (3 ,4 ) ) ,  

Analogous ly  one finds 

(o, ~), 
Ik) = 21(1, 4)) - 21(2, 3)) , k = [(~r,,rr), 

(o, ~) 
[k) = 21(1, 3)) ¥21 (2 ,4 ) )  , k = [(,rr, 0) ' 

The  results are summarized in table I. 

(4.16) 

(4.17) 
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Because S 2 and HA_ H commute ,  the total spin S is a good QN. As explained 

in section 3 the k correspond with good QN too. Only H0-GS with the same S 
and k are mixed by the per turbat ion term H ' .  Looking at table I, one sees that 
our k are consistent with the k of  the GS of the two-hole system, k = (rr, "rr), 
numerically found by Trugman [7]. 

Our  idea is that this mixing of H0-GS leads to an effective coupling of two 
holes in second order  per turbat ion calculation. Eqs. (2.11) and (2.12) show 
that  for certain IC in a H0-GS two steps with H~ give the same phases as one 
step with Ha. 0. But the intermediate state, reached after one step with H~, has 
a spin excitation. For a one-hole state the excitation is removed by another  
step of the hole with Hi ,  parallel or antiparallel with the first one. For a 
two-hole state one can imagine that the second hole makes  the second step 
with H1, thereby removing the excitation. The second step need not be parallel 

or  antiparallel with the first one. For example,  for S = 0 and k = (~, 7 0 one 
may  have the transition f rom (1 ,2)  to (2, 3) via the intermediate state (2, 2). 
So, two holes which interact properly have a larger f reedom of movement .  

The idea that a hole moves primarily on an "unfrustrated part  of the lattice" 
and that this may lead to symmetry  breaking is supported by the exact 
calculation of the HA_H-GS of the 1D system: a ring with one hole, two 
electrons with spin up and one with spin down. The exact GS is two-fold 
degenerate .  Each realization is built up of two parts. The first part  is an 
unfrustrated linear combinat ion of IC with the hole on one sublattice. The 
phases are optimal  for H 0 = H 2 + H a. In a 1D system H a = Ha. o. The second 
par t  is built up of IC with the hole on the other sublattice. The matrix elements  
of  H1 between the IC with their corresponding coefficients of the first and the 
second part  of a realization of the GS are all negative or zero, i.e. for 
H~-processes the phases are optimal.  But the phases of the IC of the second 
par t  are anti-optimal for H 0. So the IC of the second part  correspond with a 
spin excitation. One may show that the chance to find the hole on the 
"unfrus t ra ted  sublatt ice" is larger than to find it on the "frustrated sublattice". 

Note  that 1D and 2D frustration are different. In 1D, Ha. ~ does not exist. 
Fur the rmore  one does not have the benefit of  the order  N e effect of H 2 in such 
a small system as the ment ioned ring. So, although the ring gives supporting 
results, the need for calculations on 2D systems is clear. 
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