A simple model for Brownian motion leading to the Langevin equation
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A simple one-dimensional model is presented for the motion of a Brownian particle. It is shown how
the collisions between a Brownian particle and its surrounding molecules lead to the Langevin
equation, the power spectrum of the stochastic force, and the equipartition of kinetic energy.
© 1999 American Association of Physics Teachers.

[. INTRODUCTION spectrum is related to the power spectra of the position and
velocity of a Brownian patrticle for a particle in a harmonic
In the last several years many techniques have becon@tentiaL Finally, in Sec. VI we summarize our results.
available that enable the study of individual molecules. Ex-
amples are imaging techniques such as the scanning gunnqaj_— SIMPLE ONE-DIMENSIONAL MODEL LEADING

ing microscopesand the atomic force microscogAFM), TO THE LANGEVIN EQUATION
direct measurement of the forces between individual mol-

ecules using AFM and optical trapping techniquésthe We consider a one-dimensional system consisting of a
measurement of the fluorescence of single molecules usinglatively large particléthe Brownian particlewith massM
confocal laser scanning microscopeand near-field scan- which is hit from both sides by molecules of mass with
ning optical microscopy. These techniques have made it \j>m. The collisions are assumed to be elastic. We first
possible to study the dynamical behavior of individual func-consider a single collision and designate the velocity of the
tional systems such as motor protéimmd DNA transcrip-  grownian particle before and after the collision #yandV’,

tion enzymes. , respectively. Similarly, the velocity of a molecule before and
. These techniques also cqnfront us W't.h the fundamentaéfter the collision isy andv’. If we combine the equations
limits due to thermal fluctuations. The motion of a cantllever]cor conservation of momentum and energy, we can write the

of an AFM due to its interaction with the surrounding mol- o4 cities after the collision in terms of the velocities before
ecules limits the accuracy by which we can measure th e collision:

forces between the tip and the samplattempts to obtain
DNA sequence information by measuring the rupture forces M—m 2m

upon unzipping the strands of a single DNA molecule are V= M +mV+ M+m"’ @
hampered by the thermal motions of the two single strands
formed?®® , _m—M 2M

To obtain a better physical understanding of the dynamical vV =~ M+ mVJr M + mV' @

behavior of individual biomolecul€’$,a good understanding _ . -
of thermal fluctuations is needed. The usual starting point is Ve first show that the behavior of the system satisfies the

the Langevin equation, whose form is assumed in most texduipartition theorem provided tha v is independent of
books without a discussion of how the collisions between &/, and(ii) the time between successive collisions is indepen-
Brownian particle and its much lighter surrounding mol- dent ofV. In a system consisting of a very large number of
ecules give rise to a dissipative and a stochastic forcanolecules of masm that behave as a thermal bath, the first
Gillespie has shown recently that a simple Markov procesgondition is fulfilled. The second condition is not obviously
leads to a dissipative fordé.The goal of this article is to satisfied, because we might expect that the time between
discuss an even simpler model for the dynamics of a Browneollisions would be smaller for a fast moving Brownian par-
ian particle and to show in detail how it leads to the essentialicle. However, ifv>V, the number of collisions per unit
features of more realistic systems. time is dominated by the movement of the molecdfeEhe

The model consists of a relatively heavy partictbe  second condition implies that the time average of a quantity
Brownian particl¢ moving in one dimension subject to ran- equals the average over a large number of collisions:
dom collisions with the surrounding molecules. We will Nels v f2
show that a straightforward analysis leads to two forces on (V2)= IimEJ'TV(t)Zdtz lim o iV
the Brownian particle: a dissipative force proportional to the T Jo Nesoo Ei’\':‘lti
velocity of the Brownian particle and a random fluctuating

T—oo

force with zero average. Because both terms are the conse- TziN;OlViZ N1 _

quence of the collisions between the Brownian particle and = lim SN lim N Z Vi=V?, (3)
the surrounding molecules, we obtain a direct relation be- N—o <i=0t  N—ew!\1=0

tween the two forces leading to the fluctuation dissipationperey. js the velocity of the Brownian particle between the

theorem. ith and (+1)th collision, t; is the time interval between

In Sec. lll we show how the model can be used to obtair{h lisi N is th ber of collisi during th
an algorithm for doing numerical simulations of a Brownian ese collisions, anlil IS the number of Collisions during the

particle in the presence of arbitrary forces. In Sec. IV thetime intervalT. The brackets denote a time average and the

model is used to determine the power spectrum of the stg?@r denotes averages over collisions. The average time inter-
chastic force, and in Sec. V it is shown how this powerval between collisions is given by=3""'t;/N. We have
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used conditior(ii) to obtain the third equality in Eq3).1 nat-1

We take the square of Eql) and average over thd APy=2m Z vi—2mn\(t)At. (12
collisions. In the [imitN—, we obtain: =0
(M —m)? am? We divide both sides of Eq12) by At and obtain a formal
V2= V2t 2 expression for the time derivative of the Brownian particle’s
(M+m) (M+m) velocity:
o Mmmy( 2m 15T 4 dv
o | v VY- (4) M =Fs— WV, (13)
For a stationary system we havé2=V?Z, and condition(i) ~ Where the stochastic forde is defined as
implies thatVv=Vv=0. Hence, we obtain the result q a1
Fe=—r 2mvy;, 14
MVZ=mv2. (5) ° At |=Eo ' 19
We see that given these two conditions, the average of thand the damping constantis given by
kinetic energy of the Brownian particle is the same as that of y=2mn. (15)
the surrounding molecules, in agreement with the equiparti-
tion theorem. Equation(13) has the form of the Langevin equati6with
We now proceed to obtain the Langevm equat|on We us@Xp“CIt EXDTESSIOHS for the damplng and stochastic forces in
the assumptiotM >m to write: the model. From Eq.15) we see that the damping constant
is proportional to the number of collisions per second and the
M —m~1 2 m o 5 mass of the surrounding molecules. In the above derivation
M+m =~ M+ ® e assumed thart contains a large number of collisions.
For this reasonV/dt in Eq. (13) should be interpreted with
M ~1— m m ) caution. It is referred to as a “coarse grained time
M-+m M derivative.”’
The equipartition theorem can be used to arrive at the well
m m 8 known relation between the fluctuations of the position of a
M+m M M ®) Brl%wnian particle(in the absence of an external foyand
With these approximations E€L) can be rewritten as: ok T
B
vil1 2m Vi 2m o (Ax?)= (16)
EEEET ARV ®

wherekg is Boltzmann’s constant antlis the absolute tem-
From Eq.(9) we see that the change in momentum of theperature. Equatior{16) is an example of the fundamental
Brownian particle due to a single collision equals relation between fluctuations and dissipation. We can under-
_ stand the basis of this relation from E45). A large damp-

AP=2my—2mV. (10 ing constant implies many collisions per second, which re-
Equation (10) shows that the change of momentum of asults in a reduction of the persistent motion of the Brownian
Brownian particle due to collisions with its surrounding mol- particle.
ecules results in two contributions. The momentum change Dissipation would also occur if the collisions with the
due to the first term is positive or negative, but on the avermolecules were not randomly distributed, but occurred at a
age this contribution is zero because collisions from the leftregular interval of 1. In that case the motion of the particle
and right have the same probability. The second contributiomvould be dampeddissipation, but would not fluctuate and
tends to reduce the speed of the Brownian particle and is hence Eq(16) would not be applicable. The reason for the
damping term proportional and opposite to the velocity ofrelation between dissipation and fluctuation is that the time
the Brownian particlé® between collisions is a random variable.

Let us look at what happens during a time intery

which is small enough that the velocity of the Brownian
particle does not change appreciably, but becatisem, we Il NUMERICAL SIMULATIONS OF BROWNIAN
still have a large number of collisions. From Efj0) we can MOTION
write the momentum change of the Brownian particle due to

N collisions as: To obtain a better understanding of Brownian motion un-

der different conditions, computer simulations can be very
N-1 N-1 helpful. We start with the Langevin equati¢td) and divide
APN=2mE vi—ZmE V. (1)  the time intoq intervals so that=qAt. Using Eq.(13), the
1=0 =0 new velocityV, ., can be expressed in terms of the previous
Because the velocity of the Brownian particle is assumed toelocity V, as
not change appreciably duringt, we can approximate the v
second sum in Eq11) by 2mNV=2mn\(t)At, whereV(t) Vg+1=Vq— quAtJrAVS, (17)
is the velocity of the Brownian particle at timeandn is the
mean number of collisions per second so tiatnAt. whereAVg is the velocity change due to the stochastic term
Hence, we write in Eq. (13). The damping term poses no difficulty as long as
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for the stochastic term in E@17). If the time between itera-
tions were sufficiently small, the procedure would be - >

straightforward. For each iteration we determine from a ran-

dom drawing whether a collision has taken place or not. Théig. 1. The stochastic force is approximated by a constant foxhering a
probability of a collision is such that on the average, thereFollision timer; and is otherwise zero.

are 1h collisions with an equal chance of a collision from
the left or the right. If there is no collision, the new velocity
can be calculated from E@17) with AV¢=0. If a collision
occurs, the stochastic term in E@.7) is given by[see Eq.

the velocity change during the intervat is small compared FJ f
to VkgT/M. Our main problem is to find a useful expression 0 ﬂ u_
IC
f

An interactive computer program which uses this algo-
101 rithm to simulate a Brownian particle in a single or double
(10): potential well (the Kramers problef) can be downloaded

omv 2 v Y from the author's Web sit&"

Avszvzmm\lm \ ZM—\/kaT

\

_1v /ﬁk T. (g V- POWER SPECTRUM OF THE STOCHASTIC
Mlv|] Vn® FORCE

We have used Ed15) and have set the kinetic energy of the  Because the statistical behavior of the motion of a Brown-
molecules to bekgT. For simplicity, we have assumed that ian particle is related tfF (o) |?, the power spectrum of the

all molecules have the same kinetic energy. ; ;
o , . X - stochastic forcd- (see Sec. ¥, we now derive an expres-
The difficulty is that in practice the number of collisions s ( % P

necessary to change the velocity of the Brownian particléion for [Fs(w)|?. From the Wiener—Khintchine theorem
appreciably is so high that the above algorithm would takdF(w)|? is determined from the autocorrelation function of
too much computing time. Therefore, we have to find anF:??

expression for the contribution of a relatively large number
of collisionsp, wherep>1. For a realistic Brownian particle
of 1 um, the velocity change gh= 1000 collisions with the
surrounding molecules would still be very small. Because the
collisions occur randomly from the left and right, the effect\yhereF (w) is the Fourier transform df4(t). The brackets

of p collisions follows a binomial distribution with no aver- jygicate time averaging ovet.

age velocity change and a half width equal to the square root T gptain an expression for the autocorrelation function of
of p/2 times the magnitude of the velocity change due 10 &, we first consider a single collision whose duratiomjs
Single collision. Forp SuffiCient|y |arge, the binomial distri- The momentum Change of the Brownian partic|e from the

bution can be approximated by a Gaussian distributionstochastic force due to a single collision is according to Eq.
Therefore, we can write for the velocity change aftecol- (10 given by

lisions:

Fuawl=2[ e ™(FaF+n)at (23

APs=2mv. (24)
p Wq [P Wq . S
AV,=wy EA\/l:V FkaTz ™ VykgTAL, (19 Hence, the average force during the collision is

where we used Eq18) and At=p/n. The variablew, is f= va_ (25)

sampled randomly from a Gaussian distribution with zero Tc
average and a variance equal to 2. Such a random varia
can be obtained by calculating the sum:

bJIene simplest model for the interaction is to assume a con-

stant forcef during the collision timer; as shown in Fig. 1.
Due to the stochastic natureBf, the correlation between

. (200  Fg(t") andF(t' +t) differs from zero only if|t|<7.. To

obtain the time average &f,(t")F¢(t+t"), it is sufficient to

wherer; is uniformly distributed in the unit interval. average this function during the mean time between colli-
These considerations lead to the following algorithm forSions,7=1/n. If [t|<c, the average correlation is given by

the simulation of the Langevin equatid®:

12 1
Wo=V2 ;1 (ri— >

1 T
<Fs(t,)Fs(t,+t)>: ;< fo Fs(t")Fs(t"+1)one coIIisiondt,>

\ Wg+1 Fext

VqH:Vq—quAH- I‘\*A \/kaTAt+ﬁAt, (21) S

.

=(f)———, (26)
Xq+1:Xq+Vq+lAt- (22) T

An additional external forc& ., has been added for gener- whereas ift|> ., the correlation is zer¢see Fig. 2 Using
ality. The algorithm in Eqgs(21) and (22) is primarily in-  Egs.(25) and(15), the relationr= 1/n, and writing3kgT for
tended to illustrate the physical origin of the stochastic termthe average kinetic energy of the molecules, we can rewrite
More efficient algorithms can be found in the literattite. Eq. (26) as:
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T=1/Mn o A
E
£ E \\ 4‘YkBT
E()A by

'S

<> >

T 1/, [0}
Fy(t' + 1) T £ Fig. 4. The power spectrum of the stochastic force given by (B9). is
= independent of the frequency. In reality, it drops to zero for frequencies
t above the inverse of the collision time.

Fy(t' + OF(t) ¢ £ D

t— which means that frequencies abover.lare absentsee

Fig. 4).

Fig. 2. To calculate the time average of the autocorrelation functidy of 9 )

we can average during a single “cycle,” the time between two collisions

1/n. The autocorrelation is indicated by the area of the dashed square. V. POWER SPECTRUM OF THE DISPLACEMENT
AND THE VELOCITY OF A BROWNIAN
PARTICLE

[7.—|t|]] (4m?v?n) Because the behavior of a particle subjected to Brownian
(Fo(t")Fy(t"+1))=(f?) = 7 tl] motion is stochastic, we have to look at its statistical prop-
Te erties to obtain a quantitative description. From experiments
[7e—|t]] it is easy to determine the power spectra of the square of
=2ykgT——=— (27)  position and velocity. By analyzing these spectra we can
Te deduce the relevant parameters.

for |t|<7.. We consider a one-dimensional system consisting of a

In summary we have: particle of massM in a harmonic potentialwith force con-

2 stantk), dampingy, subject to a stochastic forég,. For this

2ykeTlre—[tll/e for Jt|<r system we can write the Langevin equation in Exp) as

0 for |t|>7. :

(Fs(t"Fg(t'+1))=
(28) MX+ yx+kx=F(t). (33

This function is drawn in Fig. 3. We can express the statistical behaviorxondv of this
If we assume that the duration of the collisions is veryparticle by taking the Fourier transform of E(B3). We

short, we can approximate the autocorrelation function by avrite
delta function. In order to obtain the correct normalization,

we integrate Eq(28) with respect ta which gives: Flw)= fx Fy(t)e '“'dt,
J% (Fo(t)F(t’ +1))dt=29kgT, (29 1 (=_ (34)
~c Fy(t)= Zf Flw)e'“'do

where we have used:
and a similar expression féf(w), and we obtain for the

fTC [TC—|t|]dt:2fTC( To—t)dt=72. (30)  Fourier transform of Eq(33):*
-7 0 ~
X(w)[k—iyo—Mo?]=F4 ). 3
It follows that the form i X(w)[l_ |I)|/5w 35wb] ) () | ) (f'5)d
t . t te, :
(FL(t)F Lt +1) = 27kg TS 31) we multiply Eq. (35) ylszcomp ex conjugate, we fin
F
is consistent with Eq(29). Equation(31), which gives a (X(w)|?)= <|2 S(wz)| >2 > (36)
direct relation between the spectral properties of the stochas- (Mo™=k)™+ 7w

tic force and the dissipation of the system, is sometimes repye see that the power spectrumofis directly related to
ferred to as the fluctuation dissipation theor&nsing Ed.  that of the stochastic force. Using E@2) for the stochastic

(23), we obtain the power spectrum Bt : force originating from random collisions, we obtain:
|Fs(w)|?=4ykgT. (32 - 4ykgT
° o ([%(w)]?)= Mol K2+ 2o (37
We see that the power spectrum is independent of the fre- (Mw )T+ Yo

quency, that is, there is a white noise spectrum. In reality wesimilarly, we find for the power spectrum of the squared
know that there are correlations during the collision timeyg|ocity:

4w ykgT
_____ <|v(w)|2>:(Mw2(jk))/2i—y2w2' (39

2ykpT/te
<Fy(t)Fy(t “)>T Equationg37) and(38) can be used to fit the experimentally
T / \ measured power spectra from which the values of the param-
Tt Te ! etersM, k and y can be deducet.

Fig. 3. The average autocorrelation function of the stochastic force as a We have apPrOXimf{‘tEd the power spectruang(fw) by a
function of the time intervat. constant function, which means that all frequencies are as-
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sumed to be preseritvhite nois¢. As we have noted, in _scanning optical microscopy,” Scien@?2, 1422-14251993. '
reality, frequencies above the inverse of the collision time K. Svoboda, C. F. Schmidt, B. J. Schnapp, and S. M. Block, "Direct
are absent. We can now see that this approximation does norebservatlon of kinesin stepping by optical trapping interferometry,” Na-

ure (London 365, 721-727(1993.
change the frequency dependence of the power spectra for & "D. Wang, M. J. Schnitzer, H. Yin, R. Landick, J. Gelles, and S. M.

practical ca_ses_. The _m*_'merator in E86) goes to Zero_ for Block, “Force and velocity measured for single molecules of RNA poly-

w>k/y, which in realistic systems occurs at frequencies that merase,” Scienc@82 902—907(1998.

are much smaller than 4/. In other words, whether or not °F. Gittes and C. F. Schmidt, “Thermal noise limitations on micromechani-

the stochastic force contains frequencies higher thagp s/ mBa'BeXplf”lmemeéE‘é’- B'Oph§~ ﬁ 75_(18?1:9?} Molecular stickeal

not important for the behavior of the system because the > .ocsma””’. : Sse"aﬁ] oulet, an ; esiol, k olecular stick-slip
tem is much too slow to respond to such high frequencies motion by opening DNA with piconewton forces,” Phys. Rev. Lete,

sys. o . : P . g q . '4489-44921997); R. E. Thompson and E. D. Siggia, “Physical limits on
Finally, it is reassuring to find that the derived expressions he mechanical measurement of the secondary structure of bio-

for v andx are in agreement with the equipartition theorem. molecules,” Europhys. Lett31, 335-340(1995.

To see this we use Parseval’s theorem M. O. Magnasco, “Forced thermal ratchets,” Phys. Rev. L&tt. 1477—
1 1481(1993.
2D, T. Gillespie, “Fluctuation and dissipation in Brownian motion,” Am. J.
24— v 2 , »
f ly(t)dt= wa [Y(w)[*do, (39 Phys.61, 1077-10831993.

The other extreme case=0 (no thermal movemehthas recently been
and perform the integration using E@®7) or (38). Note that discussed. It was shown that in this case the interactions betwesl M
we have not made use of the equipartition theorem, so thelead to a deceleration proportional\¥3. See M. I. Molina, “Body motion
outcome indicates that our model implies the equipartition of in a one-dimensional resistive medium,” Am. J. Phys, 973-974
kinetic energy between the Brownian particle and the mol- (1998. In this model the molecules of massare assumed to be at rest.

ecules, in agreement with our expectations at the beginningThUS collisions only occur due to the movementMf from which it
of Sec. Il follows that the number of collisions per second are then proportional to

V. Each collision reduces the velocity bf by an amount proportional to
V [according to Eq(10)]. Therefore the deceleration is proportionaMa
VI. CONCLUSIONS Yaccording to condition(ii), t; is independent o/, and hence we can

We have studied a simple one-dimensional model for the "ePlace the produdiV in Eq. (3) by t;VF . ForN—c, we can replace;
interaction of a Brownian particle with its surroundings. We by the average interval time from which the third equality of Eq(3)
obtained insight into how this interaction leads to the fluc-,foloWs: . . , :
tuations and a dissipation force in the Langevin equation, the -0uation(10 can be deduced directly by using a moving coordinate sys-

. L ; . . tem in which the Brownian particle is at rest. Assumikig>m, we im-
equipartition of kinetic energy, and the power spectra. It is mediately arrive at Eq(10).

hoped that this simple model can lead to a better understan@rhe original paper of Langevin on the theory of Brownian motion was

ing and physical intuition of about real systems. published in English translation by D. S. Lemons and A. Gythiel, Am. J.
Phys.65, 1079-1081(1997).
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