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A simple one-dimensional model is presented for the motion of a Brownian particle. It is shown how
the collisions between a Brownian particle and its surrounding molecules lead to the Langevin
equation, the power spectrum of the stochastic force, and the equipartition of kinetic energy.
© 1999 American Association of Physics Teachers.
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I. INTRODUCTION

In the last several years many techniques have bec
available that enable the study of individual molecules. E
amples are imaging techniques such as the scanning tu
ing microscopes1 and the atomic force microscope~AFM!,2

direct measurement of the forces between individual m
ecules using AFM3 and optical trapping techniques,4 the
measurement of the fluorescence of single molecules u
confocal laser scanning microscopes,5 and near-field scan
ning optical microscopy.6 These techniques have made
possible to study the dynamical behavior of individual fun
tional systems such as motor proteins7 and DNA transcrip-
tion enzymes.8

These techniques also confront us with the fundame
limits due to thermal fluctuations. The motion of a cantilev
of an AFM due to its interaction with the surrounding mo
ecules limits the accuracy by which we can measure
forces between the tip and the sample.9 Attempts to obtain
DNA sequence information by measuring the rupture for
upon unzipping the strands of a single DNA molecule
hampered by the thermal motions of the two single stra
formed.10

To obtain a better physical understanding of the dynam
behavior of individual biomolecules,11 a good understanding
of thermal fluctuations is needed. The usual starting poin
the Langevin equation, whose form is assumed in most t
books without a discussion of how the collisions betwee
Brownian particle and its much lighter surrounding mo
ecules give rise to a dissipative and a stochastic fo
Gillespie has shown recently that a simple Markov proc
leads to a dissipative force.12 The goal of this article is to
discuss an even simpler model for the dynamics of a Bro
ian particle and to show in detail how it leads to the essen
features of more realistic systems.

The model consists of a relatively heavy particle~the
Brownian particle! moving in one dimension subject to ran
dom collisions with the surrounding molecules. We w
show that a straightforward analysis leads to two forces
the Brownian particle: a dissipative force proportional to t
velocity of the Brownian particle and a random fluctuati
force with zero average. Because both terms are the co
quence of the collisions between the Brownian particle a
the surrounding molecules, we obtain a direct relation
tween the two forces leading to the fluctuation dissipat
theorem.

In Sec. III we show how the model can be used to obt
an algorithm for doing numerical simulations of a Browni
particle in the presence of arbitrary forces. In Sec. IV
model is used to determine the power spectrum of the
chastic force, and in Sec. V it is shown how this pow
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spectrum is related to the power spectra of the position
velocity of a Brownian particle for a particle in a harmon
potential. Finally, in Sec. VI we summarize our results.

II. SIMPLE ONE-DIMENSIONAL MODEL LEADING
TO THE LANGEVIN EQUATION

We consider a one-dimensional system consisting o
relatively large particle~the Brownian particle! with massM
which is hit from both sides by molecules of massm, with
M@m. The collisions are assumed to be elastic. We fi
consider a single collision and designate the velocity of
Brownian particle before and after the collision byV andV8,
respectively. Similarly, the velocity of a molecule before a
after the collision isv andv8. If we combine the equations
for conservation of momentum and energy, we can write
velocities after the collision in terms of the velocities befo
the collision:

V85
M2m

M1m
V1

2m

M1m
v, ~1!

v85
m2M

M1m
v1

2M

M1m
V. ~2!

We first show that the behavior of the system satisfies
equipartition theorem provided that~i! v is independent of
V, and~ii ! the time between successive collisions is indep
dent ofV. In a system consisting of a very large number
molecules of massm that behave as a thermal bath, the fi
condition is fulfilled. The second condition is not obvious
satisfied, because we might expect that the time betw
collisions would be smaller for a fast moving Brownian pa
ticle. However, if v@V, the number of collisions per uni
time is dominated by the movement of the molecules.13 The
second condition implies that the time average of a quan
equals the average over a large number of collisions:

^V2&5 lim
T→`

1

T E
0

T

V~ t !2dt5 lim
N→`

( i 50
N21t iVi

2

( i 50
N21t i

5 lim
N→`

t̄( i 50
N21Vi

2

( i 50
N21t i

5 lim
N→`

1

N (
i 50

N21

Vi
25V2, ~3!

whereVi is the velocity of the Brownian particle between th
i th and (i 11)th collision, t i is the time interval between
these collisions, andN is the number of collisions during th
time intervalT. The brackets denote a time average and
bar denotes averages over collisions. The average time in
val between collisions is given byt̄ 5( i 50

N21t i /N. We have
1248© 1999 American Association of Physics Teachers
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used condition~ii ! to obtain the third equality in Eq.~3!.14

We take the square of Eq.~1! and average over theN
collisions. In the limitN→`, we obtain:

V825
~M2m!2

~M1m!2V21
4m2

~M1m!2v2

12S M2m

M1mD S 2m

M1mDVv. ~4!

For a stationary system we haveV825V2, and condition~i!

implies thatVv5V̄v̄50. Hence, we obtain the result

MV25mv2. ~5!

We see that given these two conditions, the average of
kinetic energy of the Brownian particle is the same as tha
the surrounding molecules, in agreement with the equipa
tion theorem.

We now proceed to obtain the Langevin equation. We
the assumptionM@m to write:

M2m

M1m
'122

m

M
1OS S m

M D 2D , ~6!

M

M1m
'12

m

M
1OS S m

M D 2D , ~7!

m

M1m
'

m

M
1OS S m

M D 2D . ~8!

With these approximations Eq.~1! can be rewritten as:

V85S 12
2m

M DV1
2m

M
v. ~9!

From Eq. ~9! we see that the change in momentum of t
Brownian particle due to a single collision equals

DP52mv22mV. ~10!

Equation ~10! shows that the change of momentum of
Brownian particle due to collisions with its surrounding mo
ecules results in two contributions. The momentum cha
due to the first term is positive or negative, but on the av
age this contribution is zero because collisions from the
and right have the same probability. The second contribu
tends to reduce the speed of the Brownian particle and
damping term proportional and opposite to the velocity
the Brownian particle.15

Let us look at what happens during a time intervalDt
which is small enough that the velocity of the Brownia
particle does not change appreciably, but becauseM@m, we
still have a large number of collisions. From Eq.~10! we can
write the momentum change of the Brownian particle due
N collisions as:

DPN52m(
i 50

N21

v i22m(
i 50

N21

Vi . ~11!

Because the velocity of the Brownian particle is assumed
not change appreciably duringDt, we can approximate the
second sum in Eq.~11! by 2mNV52mnV(t)Dt, whereV(t)
is the velocity of the Brownian particle at timet, andn is the
mean number of collisions per second so thatN5nDt.
Hence, we write
1249 Am. J. Phys., Vol. 67, No. 12, December 1999
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DPN52m (
i 50

nDt21

v i22mnV~ t !Dt. ~12!

We divide both sides of Eq.~12! by Dt and obtain a formal
expression for the time derivative of the Brownian particle
velocity:

M
dV

dt
5Fs2gV, ~13!

where the stochastic forceFs is defined as

Fs5
1

Dt (
i 50

nDt21

2mv i , ~14!

and the damping constantg is given by

g52mn. ~15!

Equation~13! has the form of the Langevin equation16 with
explicit expressions for the damping and stochastic force
the model. From Eq.~15! we see that the damping constantg
is proportional to the number of collisions per second and
mass of the surrounding molecules. In the above deriva
we assumed thatDt contains a large number of collisions
For this reasondV/dt in Eq. ~13! should be interpreted with
caution. It is referred to as a ‘‘coarse grained tim
derivative.’’17

The equipartition theorem can be used to arrive at the w
known relation between the fluctuations of the position o
Brownian particle~in the absence of an external force! and
g:16

^Dx2&5
2kBT

g
t, ~16!

wherekB is Boltzmann’s constant andT is the absolute tem-
perature. Equation~16! is an example of the fundamenta
relation between fluctuations and dissipation. We can und
stand the basis of this relation from Eq.~15!. A large damp-
ing constant implies many collisions per second, which
sults in a reduction of the persistent motion of the Brown
particle.

Dissipation would also occur if the collisions with th
molecules were not randomly distributed, but occurred a
regular interval of 1/n. In that case the motion of the particl
would be damped~dissipation!, but would not fluctuate and
hence Eq.~16! would not be applicable. The reason for th
relation between dissipation and fluctuation is that the ti
between collisions is a random variable.

III. NUMERICAL SIMULATIONS OF BROWNIAN
MOTION

To obtain a better understanding of Brownian motion u
der different conditions, computer simulations can be v
helpful. We start with the Langevin equation~13! and divide
the time intoq intervals so thatt5qDt. Using Eq.~13!, the
new velocityVq11 can be expressed in terms of the previo
velocity Vq as

Vq115Vq2g
Vq

M
Dt1DVs , ~17!

whereDVs is the velocity change due to the stochastic te
in Eq. ~13!. The damping term poses no difficulty as long
1249Bart G. de Grooth
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the velocity change during the intervalDt is small compared
to AkBT/M . Our main problem is to find a useful expressi
for the stochastic term in Eq.~17!. If the time between itera-
tions were sufficiently small, the procedure would
straightforward. For each iteration we determine from a r
dom drawing whether a collision has taken place or not. T
probability of a collision is such that on the average, th
are 1/n collisions with an equal chance of a collision fro
the left or the right. If there is no collision, the new veloci
can be calculated from Eq.~17! with DVs50. If a collision
occurs, the stochastic term in Eq.~17! is given by@see Eq.
~10!#:

DVs5
2mv
M

5
2

M

v
uvu

Am2v25
2

M

v
uvu

AmkBT

5
1

M

v
uvuA

2g

n
kBT. ~18!

We have used Eq.~15! and have set the kinetic energy of th
molecules to be1

2kBT. For simplicity, we have assumed th
all molecules have the same kinetic energy.

The difficulty is that in practice the number of collision
necessary to change the velocity of the Brownian part
appreciably is so high that the above algorithm would ta
too much computing time. Therefore, we have to find
expression for the contribution of a relatively large numb
of collisionsp, wherep@1. For a realistic Brownian particle
of 1 mm, the velocity change ofp51000 collisions with the
surrounding molecules would still be very small. Because
collisions occur randomly from the left and right, the effe
of p collisions follows a binomial distribution with no aver
age velocity change and a half width equal to the square
of p/2 times the magnitude of the velocity change due t
single collision. Forp sufficiently large, the binomial distri-
bution can be approximated by a Gaussian distributi
Therefore, we can write for the velocity change afterp col-
lisions:

DVp5wqAp

2
DV15

wq

M
A p

n
gkBT5

wq

M
AgkBTDt, ~19!

where we used Eq.~18! and Dt5p/n. The variablewq is
sampled randomly from a Gaussian distribution with ze
average and a variance equal to 2. Such a random var
can be obtained by calculating the sum:

wq5&(
i 51

12 S r i2
1

2D , ~20!

wherer i is uniformly distributed in the unit interval.
These considerations lead to the following algorithm

the simulation of the Langevin equation:18

Vq115Vq2g
Vq

M
Dt1

wq11

M
AgkBTDt1

Fext

M
Dt, ~21!

Xq115Xq1Vq11Dt. ~22!

An additional external forceFext has been added for gene
ality. The algorithm in Eqs.~21! and ~22! is primarily in-
tended to illustrate the physical origin of the stochastic te
More efficient algorithms can be found in the literature.19
1250 Am. J. Phys., Vol. 67, No. 12, December 1999
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An interactive computer program which uses this alg
rithm to simulate a Brownian particle in a single or doub
potential well ~the Kramers problem20! can be downloaded
from the author’s Web site.21

IV. POWER SPECTRUM OF THE STOCHASTIC
FORCE

Because the statistical behavior of the motion of a Brow
ian particle is related touF̃s(v)u2, the power spectrum of the
stochastic forceFs ~see Sec. V!, we now derive an expres

sion for uF̃s(v)u2. From the Wiener–Khintchine theorem

uF̃s(v)u2 is determined from the autocorrelation function
Fs :22

uF̃s~v!u252E
2`

`

e2 ivt^Fs~ t8!Fs~ t81t !& dt, ~23!

whereF̃s(v) is the Fourier transform ofFs(t). The brackets
indicate time averaging overt8.

To obtain an expression for the autocorrelation function
Fs , we first consider a single collision whose duration istc .
The momentum change of the Brownian particle from t
stochastic force due to a single collision is according to E
~10! given by

DPs52mv. ~24!

Hence, the average force during the collision is

f 5
2mv
tc

. ~25!

The simplest model for the interaction is to assume a c
stant forcef during the collision timetc as shown in Fig. 1.

Due to the stochastic nature ofFs , the correlation between
Fs(t8) and Fs(t81t) differs from zero only ifutu,tc . To
obtain the time average ofFs(t8)Fs(t1t8), it is sufficient to
average this function during the mean time between co
sions,t51/n. If utu,tc , the average correlation is given b

^Fs~ t8!Fs~ t81t !&5
1

t K E
0

t

Fs~ t8!Fs~ t81t !one collisiondt8L
5^ f 2&

@tc2utu#
t

, ~26!

whereas ifutu.tc , the correlation is zero~see Fig. 2!. Using
Eqs.~25! and~15!, the relationt51/n, and writing 1

2kBT for
the average kinetic energy of the molecules, we can rew
Eq. ~26! as:

Fig. 1. The stochastic force is approximated by a constant forcef during a
collision timetc and is otherwise zero.
1250Bart G. de Grooth
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^Fs~ t8!Fs~ t81t !&5^ f 2&
@tc2utu#

t
5

^4m2v2n&
tc

2 @tc2utu#

52gkBT
@tc2utu#

tc
2 ~27!

for utu,tc .
In summary we have:

^Fs~ t8!Fs~ t81t !&5 H 2gkBT@tc2utu#/tc
2 for utu,tc

0 for utu.tc
.

~28!

This function is drawn in Fig. 3.
If we assume that the duration of the collisions is ve

short, we can approximate the autocorrelation function b
delta function. In order to obtain the correct normalizatio
we integrate Eq.~28! with respect tot which gives:

E
2tc

tc

^Fs~ t8!Fs~ t81t !&dt52gkBT, ~29!

where we have used:

E
2tc

tc
@tc2utu#dt52E

0

tc
~tc2t !dt5tc

2 . ~30!

It follows that the form

^Fs~ t8!Fs~ t81t !&52gkBTd~ t ! ~31!

is consistent with Eq.~29!. Equation ~31!, which gives a
direct relation between the spectral properties of the stoc
tic force and the dissipation of the system, is sometimes
ferred to as the fluctuation dissipation theorem.23 Using Eq.
~23!, we obtain the power spectrum ofFs :

uF̃s~v!u254gkBT. ~32!

We see that the power spectrum is independent of the
quency, that is, there is a white noise spectrum. In reality
know that there are correlations during the collision tim

Fig. 2. To calculate the time average of the autocorrelation function ofFs ,
we can average during a single ‘‘cycle,’’ the time between two collisio
1/n. The autocorrelation is indicated by the area of the dashed square

Fig. 3. The average autocorrelation function of the stochastic force
function of the time intervalt.
1251 Am. J. Phys., Vol. 67, No. 12, December 1999
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which means that frequencies above 1/tc are absent~see
Fig. 4!.

V. POWER SPECTRUM OF THE DISPLACEMENT
AND THE VELOCITY OF A BROWNIAN
PARTICLE

Because the behavior of a particle subjected to Brown
motion is stochastic, we have to look at its statistical pro
erties to obtain a quantitative description. From experime
it is easy to determine the power spectra of the square
position and velocity. By analyzing these spectra we c
deduce the relevant parameters.

We consider a one-dimensional system consisting o
particle of massM in a harmonic potential~with force con-
stantk), dampingg, subject to a stochastic forceFs . For this
system we can write the Langevin equation in Eq.~13! as

Mẍ1g ẋ1kx5Fs~ t !. ~33!

We can express the statistical behavior ofx and v of this
particle by taking the Fourier transform of Eq.~33!. We
write

F̃~v!5E
2`

`

Fs~ t !e2 ivtdt,

~34!

Fs~ t !5
1

2p E
2`

`

F̃~v!eivtdv

and a similar expression forx̃(v), and we obtain for the
Fourier transform of Eq.~33!:24

x̃~v!@k2 igv2Mv2#5F̃s~v!. ~35!

If we multiply Eq. ~35! by its complex conjugate, we find:

^ux̃~v!u2&5
^uFs~v!u2&

~Mv22k!21g2v2 . ~36!

We see that the power spectrum ofx is directly related to
that of the stochastic force. Using Eq.~32! for the stochastic
force originating from random collisions, we obtain:

^ux̃~v!u2&5
4gkBT

~Mv22k!21g2v2 . ~37!

Similarly, we find for the power spectrum of the squar
velocity:

^uṽ~v!u2&5
4v2gkBT

~Mv22k!21g2v2 . ~38!

Equations~37! and~38! can be used to fit the experimental
measured power spectra from which the values of the par
etersM , k andg can be deduced.25

We have approximated the power spectrum ofFs(v) by a
constant function, which means that all frequencies are
a

Fig. 4. The power spectrum of the stochastic force given by Eq.~32! is
independent of the frequency. In reality, it drops to zero for frequenc
above the inverse of the collision time.
1251Bart G. de Grooth
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,’’
sumed to be present~white noise!. As we have noted, in
reality, frequencies above the inverse of the collision ti
are absent. We can now see that this approximation does
change the frequency dependence of the power spectra fo
practical cases. The numerator in Eq.~36! goes to zero for
v.k/g, which in realistic systems occurs at frequencies t
are much smaller than 1/tc . In other words, whether or no
the stochastic force contains frequencies higher than 1/tc is
not important for the behavior of the system because
system is much too slow to respond to such high frequenc

Finally, it is reassuring to find that the derived expressio
for v andx are in agreement with the equipartition theore
To see this we use Parseval’s theorem

E uy~ t !2dt5
1

2p E u ỹ~v!u2dv, ~39!

and perform the integration using Eq.~37! or ~38!. Note that
we have not made use of the equipartition theorem, so
outcome indicates that our model implies the equipartition
kinetic energy between the Brownian particle and the m
ecules, in agreement with our expectations at the beginn
of Sec. II.

VI. CONCLUSIONS

We have studied a simple one-dimensional model for
interaction of a Brownian particle with its surroundings. W
obtained insight into how this interaction leads to the flu
tuations and a dissipation force in the Langevin equation,
equipartition of kinetic energy, and the power spectra. I
hoped that this simple model can lead to a better underst
ing and physical intuition of about real systems.
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24The Fourier transform ofẋ and ẍ can be expressed in terms ofx by

integration by parts, yielding:x̃̇52 iv x̃ and x̃̈52v2x̃.
25K. Svoboda and S. M. Block, ‘‘Biological applications of optical forces

Annu. Rev. Biophys. Biomol. Struct.23, 247–285~1994!.
1252Bart G. de Grooth


