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Abstract 

Data mining is an important real-life application for businesses. It is critical to find efficient ways of mining large 
data sets. In order to benefit from the experience with relational databases, a set-oriented approach to mining data 
is needed. In such an approach, the data mining operations are expressed in terms of relational or set-oriented 
operations. Query optimization technology can then be used for efficient processing. 
In this paper, we describe set-oriented algorithms for mining association rules. Such algorithms imply performing 
multiple joins and thus may appear to be inherently less efficient than special-purpose algorithms. We develop new 
algorithms that can be expressed as SQL queries, and discuss optimization of these algorithms. After analytical 
evaluation, an algorithm named SETM emerges as the algorithm of choice. Algorithm SETM uses only simple 
database primitives, viz., sorting and merge-scan join. Algorithm SETM is simple, fast, and stable over the range of 
parameter values. It is easily parallelized and we suggest several additional optimizations. The set-oriented nature 
of Algorithm SETM makes it possible to develop extensions easily and its performance makes it feasible to build 
interactive data mining tools for large databases. 

Keywords: Data mining; Optimization; Set-oriented algorithms 

I. Introduction 

The competitiveness of companies is becoming increasingly dependent on the quality of 
their decision making. Hence, it is no wonder that companies often try to learn from past 
transactions and decisions in order to improve the quality of decisions taken in the present or 
future. In order to support this process, large amounts of data are collected and stored during 
business operations. Later, these data are analyzed for relevant information. This process is 
called data mining [3, 18, 23, 5] or knowledge discovery in databases [13, 21, 15, 17]. Data 
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mining is . "~levant to many different types of businesses. As examples, retail stores obtain 
profiles from customers and their buying patterns and supermarkets analyze their sales and the 
effect of advertising on sales. Such "target marketing" [6] is becoming increasingly important.  

Different aspects of data mining have been explored in the literature. In classification, data 
units (tuples) are grouped together based on some common characteristics, and rules are 
generated to describe this grouping. This has been done both in the context of AI [22] and in 
the context of databases [2, 13, 5]. Work has been done to search for similar sequences or time 
series [1]. In finding association rules, one tries to discover frequently occurring patterns 
within data units [20, 4]. In this paper, we focus on the problem of finding association rules. 
There has been a lot of work in rule discovery that is related but not directly applicable, for 
example, [8, 9, 10, 12, 16, 19, 22]. 

Business applications deal with an uncontrolled real world, where many rules will overlap in 
their components  and uncertainty is common [20]. Examples of rules could be: "Most  sales 
transactions in which bread and butter are purchased, also include milk," or "Customers  with 
kids are more likely to buy a particular brand of cereal if it includes baseball cards." Work on 
finding these kinds of rules has been done in AI for some specific applications (see [21] for an 
overview). Although the work done in AI is usually very general, the computational  
complexity of the proposed algorithms is high, and the algorithms are feasible only for small 
data sets [17]. Performance is a problem with these algorithms for the kind of applications we 
consider, which involve mining large databases. In [18] a small example is described of 
generating rules from data, but the emphasis is more on architectural issues than on 
performance and large data sets. In [4], the problem of rule discovery is addressed in a 
database context. The paper describes an algorithm for rule discovery on a large data set. 
However,  the algorithm in [4] still has a tuple-oriented flavor (tuples are represented as 
strings, and the algorithm consists of string manipulation operations) and is rather complex. 

Our  focus is on achieving good performance in mining association rules on large datasets in 
relational databases. This differentiates our work from much of the work in AI. Problems of 
optimization of discovered rules, subsumption, etc. are beyond the scope of this paper. The 
perspective is one of analysis on existing data, i.e. the data is static. Though we use retailing 
transactions as an example application throughout the paper, the work here is applicable to 
mining of association rules from any domain. In an illustrative example, we assume that the 
items are distributed almost uniformly. However,  our method does not require any such 
assumptions. 

We address rule discovery in database systems from a set-oriented perspective. The 
motivations for a new approach to this problem are several. A set-oriented approach allows a 
clearer expression of what needs to be done as opposed to specifying exactly how the 
operations are carried out. The declarative nature of this approach allows consideration of a 
variety of ways to optimize the required operations. This means that the ample experience 
that has been gained in optimizing relational queries can directly be applied here. Eventually, 
it should be possible to integrate rule discovery completely with the database system. This 
would facilitate the use of the large amounts of data that are currently stored on relational 
databases. The relational query optimizer can then determine the most efficient way to obtain 
the desired results. Finally, our set-oriented approach has a small number  of well-defined, 
simple concepts and operations. This allows easy extensibility to handling additional kinds of 
mining, e.g. relating association rules to customer classes. 
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The structure of this paper is as follows. In Section 2 we define the problem of set-oriented 
data mining and give an initial sketch of our approach. In Section 3 we present an initial 
set-oriented algorithm expressed in SQL and analyze its performance. In Section 4 we present 
a second set-oriented algorithm expressed in SQL and analyze its performance. In Section 4.4 
we describe the latter algorithm (called Algorithm SETM) in terms of simple database 
operations: sorting and merge-scan join. We also illustrate the algorithm by means of a small 
example. Section 5 explains how rules are generated and how rules with multiple items in the 
consequent can be obtained. In Section 6 we describe several experiments we did with an 
implementation of our algorithm on a large data set. Section 7 describes several possible 
optimizations to Algorithm SETM that could further improve the response time. We also 
discuss different ways to parallelize the algorithm. Finally, Section 8 presents our conclusions. 

2. Moving towards set-oriented mining 

Consider the problem of finding association rules in sales data. Typically, a retail store 
records information for each customer transaction, where a customer transaction involves the 
purchase of a variable number of items. We can store this information in a relational database 
system using a table with the following schema: SALES_DATA( t rans_ id ,  item). For each 
customer transaction that takes place, tuples corresponding to the items sold are inserted in 
S A L E S _ D A  TA. 

In order to find association rules, we need to scan transactions for reoccurring patterns that 
occur often enough to be of interest (this is made more precise later). We use the term pattern 
to capture the concept of itemset introduced in [4]. This is more in line with existing 
terminology [21]. A pattern can be defined as follows. If items A, B, and C frequently occur 
together in a single customer transaction, this means that the pattern A B C  occurs often. This 
observation might allow us to conclude (among other rules) the association rule A A B ~ C 
Here,  A B  is called the antecedent of the rule and C is called the consequent of the rule. 
Usually, some constraints need to be met before we conclude that an association rule holds. 
As in [4], we define support for a pattern to be the ratio of customer transactions supporting 
that pattern to the total number of customer transactions. Also, the confidence factor for a 
rule obtained from a pattern is defined as the ratio of the support for the pattern to the 
support for the antecedent of the rule. For the rule A A B ~ C, this would be [ABCI/]AB I, 
where [ABC] denotes the support for pattern ABC.  

We are interested only in association rules where the support for the pattern(s) involved in 
the rule is greater than some minimum value called minimum support. We also require that 
qualifying rules have a confidence factor greater than some value. In our example, patterns 
can be generated in a straightforward fashion by repeated joins with S A L E S _ D A T A .  For 
instance, generating all patterns of exactly two items, is expressed by the following SQL 
query: 

SELECT r~.trans_id, rl.item , rz.item 
FROM SALES_DATA rl, SALES_DATA r 2 

t Causality is not necessarily implied. Also, the ordering of A and B in the antecedent of the rule is arbitrary. 
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W H E R E  r I . trans_id = re. trans_id AND 
r~.item < >  re.item 

For each pair of items (x, y), we count the number of transaction-ids in order to find the 
number of transactions supporting this pattern. All patterns of exactly three items can now be 
obtained by joining the result of the previous step again with S A L E S _ D A T A  and so on. The 
order in which items appear is not relevant right now; (x, y) is equivalent to (y, x) since both 
pairs have the same support. Order only becomes important when generating the rules 
because confidence factors can be different for different orders. 

This strategy is elaborated in Sections 3 and 4 and expressed in terms of a set-oriented query 
language, viz., SQL. The first expression that is generated naturally leads to nested-loop based 
joins. A rough analysis of its expected performance indicates that such an implementation 
would perform very poorly. Consequently, we generate an equivalent expression in SQL that 
naturally leads to sort-merge based joins. A first analysis shows it to be very promising, and 
we pursue this implementation in the remainder of the paper. 

We include the discussion of both SQL-expressions of our strategy, because we wish to 
emphasize the methodology that we used in this research. Taking a set-oriented approach does 
not immediately lead to great results but it clearly helps in getting a good understanding of the 
problem. In our case, by first having studied the nested-loop strategy, we were able to develop 
the strategy based on sort-merge joins fairly easily, by taking into consideration the ways a 
relational query optimizer deals with these types of (complex) queries. 

3. Strategy leading to nested-loop joins 

We discuss a first formulation of our set-oriented data mining strategy. It naturally leads to 
nested-loopbased joins. We express the algorithm in SQL and then analyze its expected 
performance. 

3.1. Formulat ion 

All customer transactions are stored in the relation S A L E S _ D A  T A .  From this relation, we 
first generate the counts for each item x,  i.e. the number of transactions that support item x. 
We check that the minimum support requirement is met. The output is stored in relation C1, 
with schema (item, count) .  

INSERT INTO C 1 
SELECT r~.item, COUNT(*) 
FROM SALES_DATA r 1 
GROUP BY r 1.item 
HAVING COUNT(*) > =  :min_support 

The next step is to generate all patterns (x, y) and check if they meet the minimum support 
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criterion. For a specific item A, this is easy to express. For example, all patterns (A, y) can be 
generated using a self-join of S A L E S _ D A T A ,  as in the following SQL-expression. 

SELECT r~ . i t em,  r2 . i t em ,  COUNT(*)  
F R O M  S A L E S _ D A T A  rl,  S A L E S _ D A T A  r 2 
W H E R E  r 1.trans_id = r 2 . t r a n s _ i d  AND 

r~ . i t em = 'A' AND 
r2 . i t em < >  'A' 

G R O U P  BY r~ . i t em,  r2 . i t em 

HAVING COUNT(*)  > =  :min_support  

This kind of expression only generates patterns with a specific i tem in the first position. The 
expression has to be generalized in order to generate arbitrary patterns. As stated earlier, the 
order  of the items in a pattern is not relevant at the time of generation. The order is important  
only in the final rule generation process. We take advantage of this fact by generating patterns 
with the items in lexicographical order. For instance, we generate A B ,  but we do not generate 
B A .  We generalize over all values of i t em  having minimum support,  by using the following 
S Q L  expression to generate all  lexicographically ordered patterns of length k (k > 1) having 
min imum support  (in case k = l ,  the query presented before for C~ is used). 

INSERT INTO C k 
SELECT r~ . i t em,  . . . , r k . i t e m ,  COUNT(*)  
F R O M  Ck_ 1 c, S A L E S _ D A T A  rl,  S A L E S _ D A T A  r 2 . . . . .  S A L E S _ D A T A  r k 
W H E R E  r ~ . t r a n s _ i d  = r 2 . t r a n s _ i d  . . . . .  r k . t r a n s _ i d  AND 

r ~.i tem = c . i t e m  t AND 
r2 . i t em  = c . i t e m  2 AND 

r k_ ~. i tem = c . i t e m  k_ ~ AND 
r k . i t em > r~_ ~.i tem 

G R O U P  BY r~ . i t e m , . . . ,  r k . i t em  

HAVING COUNT(*)  > =  :min_support  

Relation C k has schema ( i t em~,  i t e m 2 , . . .  , i t emk ,  c o u n t ) .  All feasible rules are found by 
consecutively generating all qualifying patterns from length 1 to k until Ck+~ = { }. Since the 
items in the patterns are lexicographically ordered,  a single inequality test in the SQL query is 
sufficient. 

3.2 .  A n a l y s i s  

Before pursuing this strategy any further, we first perform a rough analysis of its expected 
performance.  Let us consider how a relational query optimizer could optimize the final SOL 
expression in Section 3.1. If the joins are performed using the nested-loop join method,  we 
need indexes to allow efficient evaluation of the join. It seems we need two indexes on table 
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S A L E S _ D A T A :  an index on (item, trans_id) and another  index on (trans_id). Given these 
indexes, the query can be evaluated as follows: 
(1) Take a tuple c from C k E, and use the index on (item, trans_id) for r~ to get qualifying 

tuples with r~.item = c.item~. 
(2) For each of these tuples, use the index on (item, trans_id) for r 2 to get tuples that satisfy 

r2.item = c.item 2 and r:.trans_id = r ~.trans_id. 
(3) Similarly for relations r~ . . . . .  rk_ I. 
(4) Finally, use the index on (trans_id) for r k to compute  rk.trans_id = r k ~.trans_id and 

check the remaining condition rk.item > r k . ~.item. 
(5) The qualifying tuples are sorted on the item values and the count is used to check the 

minimum support constraint. 
Let us consider a hypothetical retailing database to characterize the per formance  of this 

strategy. There  are 1000 different items that can be sold. The data consists of 200,000 
customer  transactions. The average number  of items sold in a transaction is 10. Thus, the 
relation S A L E S _ D A T A  contains about 2 million tuples. To make the analysis tractable,  we 
assume that the items have approximately equal probability of being sold (in the actual data 
set, the items are not sold with equal probability). Hence,  the chance of an item appearing in 
a particular transaction is 1%. We will assume the following characteristics for the database 
system. Page size is 4 Kbytes, and each item and transaction id is represented using 4 bytes 
( i tem values are represented by integers). Hence,  each initial tuple consists of  8 bytes. 

Consider  the B +-tree index on (item, trans_id). Since all the data is contained in the index, 
we do not need a pointer in the leaf page entries. Assuming little overhead,  we can store up to 
500 entries in each leaf page. The number  of leaf pages in the B+-tree index on (item, 
trans_id) is 2,000,000/500 ~ 4,000. Assuming 4 bytes for a pointer,  an index entry in the 
non-leaf pages has a size of 12 bytes. Assuming very little overhead,  we can store about 333 
key-value /poin ter  pairs on a non-leaf index page. The following inequality holds for the 
number  of levels L of the index tree: 333 L/> 1,000,000 > 333 L ~, hence,  L = 3. The number  of 
non-leaf  pages in this index is (1 + 4 ,000/333)= 14. Similar calculations for the index on 
(trans_id) show that the number  of leaf pages is 2,000 and the number  of non-leaf  pages is 5. 
Since the number  of non-leaf pages is small, we can assume that they reside in memory .  
Hence ,  accessing non-leaf pages does not require page fetches from disk. 

Let the minimum support desired be 1000 transactions, i.e. 0.5% of the total number  of 
transactions. On the average, each item appears in about 1% of the transactions. Assuming 
uniform probabilities, all items qualify as having minimum support. Therefore ,  the cardinality 
of C~ will be 1000, i.e. each item is present. 

To obtain C~, we take each tuple c from CI and access the index on (item, trans_id). This 
requires 1% × 4,000 leaf page fetches, i.e. ~40  page fetches. The result consists of about 2,000 
transaction-ids (1%).  For each of the resulting transaction-ids we now have to access the index 
on (trans_id) resulting in 1 page fetch. 

From this, we may conclude that the first step alone will require about 1000 x (40 + 2000 × 
1) ~ 2,000,000 page fetches. Most of these page fetches are random. A random page fetch 
costs about 20 ms. Hence,  the time for the first step alone is -~40,000 seconds, which is more  
than 11 hours! 

Clearly, an implementat ion based on nested-loop joins is very inefficient. However ,  one 
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could consider a different implementat ion for the same basic pattern finding strategy, viz., 
sort-merge joins. We will consider this strategy in the next section. 

4. Strategy leading to sort-merge joins 

We now discuss the second formulation of our set-oriented data mining strategy, based on 
using sort-merge joins. We again express the algorithm in SQL and then analyze its expected 
performance.  

4. I. Formu la t ion  

In the previous implementat ion we would generate intermediate relations Ri ( t rans_ id ,  
item~ . . . .  , i temi) ,  extract support  information from these relations, and then discard them. 
But what if, after each step, we saved the last R i that was generated? Fur thermore ,  let us save 
Ri sorted on ( trans_id ,  i t e m l , . . . ,  i temi) .  We could then generate all lexicographically ordered 
patterns of length k using the following expression: 

INSERT INTO R~ 
SELECT p . t rans_ id ,  p . i t em~ , .  . . , p . i t em  k 1, q . i tem 
F R O M  R k_l P, S A L E S _ D A T A  q 
W H E R E  q . t rans_ id  = p . t r a n s _ i d  AND 

q. i tem > p . i t em  k_ 

After  generating all lexicographically ordered patterns of length k in R;,, we now have to 
generate counts for those patterns in R~, that meet  the minimum support  constraint. This can 
be done as follows: 

INSERT INTO C k 
SELECT p . i t e m ~ , . . . ,  p . i t e m , ,  COUNT(*)  
F R O M  R~, p 
G R O U P  BY p . i t em~ , .  . . ,  p . i t em  k 
HAVING COUNT(*)  > =  :min_support  

Before we go on to generate patterns of length k + 1, we first have to select the tuples from 
R~ that should be extended,  viz., those tuples that meet  the minimum support  constraint. We 
also wish the resulting relation to be sorted on ( trans_id,  i t e m ~ , . . . ,  i temk) .  This is done as 
follows: 

INSERT INTO R k 
SELECT p . t rans_ id ,  p . i t e m l , .  . . , p . i t em  k 
F R O M  R~, p,  C k q 
W H E R E  p . i t e m  ~ = q . i tem ~ AND 
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p.itemk = q.itemk 
O R D E R  BY p.trans_id, p . i t e m l , . .  . ,  p. i tem k 

We can now repeat  this process, until at some point R k = ~. Note that the sorting we did in 
the last step is not really required. It does, however,  enable an efficient execution plan if the 
sort order  of the relations is t racked across iterations. 

4.2. Example 

We illustrate this strategy by means of an example. The example database consists of 10 
transactions where each transaction has 3 items. We require a minimum support  of  30%, i.e. 3 
transactions. The desired confidence factor is 70%. The customer  transactions are shown in 
Fig. 1. For brevity, we have presented the transactions as non-normalized tuples. The 
algorithm, however,  uses the tuple format described before;  a subset of  this corresponding 
relation is shown too. The contents of the count relation C 1 are also shown in Fig. 1. As in the 
algorithm we use R~ and R k to distinguish the R relations before and after elimination of 
pat terns that do not meet  the minimum support count. In the first i teration, R 2 is genera ted  
and sorted on items and C 2 is genera ted from R 2. The contents of  R 2, R 2 and C 2 are as shown 
in Fig. 2. In the next iteration, R 3 is genera ted and sorted on items and C 3 is genera ted  from 
R 3. The contents of  R 2, R 2 and C 2 are as shown in Fig. 3. The next i teration will not genera te  
any new tuples, and the algorithm terminates.  

4.3. Analysis 

In this section the performance of the sort-merge strategy is analyzed using the same data 
set as for the nested-loop strategy. 

The I / O  complexity of the sort-merge strategy can easily be expressed, by a formula derived 
as follows. Let [[R~[[ denote  the number  of pages used to store the relation in i teration k. In 
the worst case, applying the minimum support constraints does not eliminate any tuples from 
R k. Assume that no patterns of length n have the minimum support,  i.e. the relation R n is 
empty.  By then, we have made ( n -  1) passes, this means ( n -  1) merge-scans requiring 

Fig. 1. Customer transactions, corresponding relation, and relation C~. 
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A 
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A 
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A 
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B 
C 
C 
B 
D 
D 
B 
C 
C 

C 
B 
B 
C 

C 
C 

Fig. 2. Re la t ions  R' 2, C2, and R 2. 

( n -  1)IIR,II + ZT-? IIRill page accesses. The number of page accesses to store the result of  
n-i these merge-scans is Zi= 2 R~. After each merge-scan, the output  is read in again, sorted, and 

n--1  written out to disk; this requires 2 Ei= 2 HR, II page accesses. (We assume R 1 to be sorted, and 
the sort operations to take place in pipelining mode;  see Section 7 for details.) In each step, C~ 
will be small enough to keep in memory  as it is the result of an aggregation query. Hence,  no 
page accesses are required for storing or retrieving C i. Therefore,  the total number  of page 
accesses is bounded  by: 

n--1  

n IIR, II + 4 ~ IIR, II 
i = 2  

txdd 

10 
30 
20 
40 
80 
90 
99 

item~ 

A 
A 
A 
B 
D 
D 

item2 

B 
B 
B 
C 
E 
E 
E 

item~ 

C 
C 
D 
D 
F 
F 
F 

item, ]item, [ itemz l entJ 
D J E J F 1 3 l  

Fig. 3. Re la t ion  R '  C 3 and R~. 3~ 

tx-id item1 item2 item3 
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k := 1; 
sort R1 on item; 
C1 := generate counts from R~; 
r e p e a t  

k := k + 1; 

sort Rk ~ on trans_id, item1,.. . ,  itemk_~; 
R~ := merge-scan Rk-1, R1; 
sort R~, on item~, . . . ,  itemk; 
C~ := generate  counts from R~; 
Rk := filter R~ to retain suppor ted patterns; 

un t i l  Rk = {} 

Fig. 4. Ou t l i ne  o f  a lgo r i t hm S E T M .  

Let us calculate the time to generate C 2 as we did for the nested-loops strategy. Let R 3 be 
empty.  Using the same numbers as in Section 3.2, the cardinality of Ri is given by 
(lO) × 200,000. The size of a tuple from R i is (i + 1) × 4 bytes. This gives us the following: 
IIR,II =4,000 and IIR211 = 27,000. The number  of page accesses is thus: 

3 × 4,000 + 4 × 27,000 = 120,000 

Reading and writing all the R i relations can be done in a sequential fashion. We estimate the 
time for each page access as 10 ms. Hence, the total time spent on I / O  operations is 1200 
seconds or 10 minutes. In comparison, the nested-loop strategy required more than 11 hours. 

This rough analysis shows that the implementat ion based on sort-merge joins will be much 
more efficient than the algorithm based on using nested-loop join with indexes. We will there- 
fore proceed with further experimental evaluation of the algorithm based on sort-merge joins. 

4.4. Algorithm S E T M  

The sort-merge strategy is described in pseudocode in Fig. 4. We refer to it as Algori thm 
SETM. The algorithm consists of a single loop, in which two sort operations and one 
merge-scan are performed. The first sort is needed to implement  the merge-scan join that 
follows it. The second sort is used in order to generate the support counts efficiently. 
Generat ing the counts involves a simple sequential scan over R k. Deleting the tuples from R k 
that do not meet  the minimum support,  involves simple table look-ups on relation C k. The C k 
relations are of interest to us for rule generation. Note that we have not included in this 
algorithm the optimizations ment ioned in Section 4.3. 

5. Rule generation 

We have omitted so far any discussion of how the rules are generated from the count 
relations. The rule generation algorithm is straightforward. For any pattern of length k, we 
consider all possible combinations of k - 1 items in the antecedent.  The remaining item not  
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used in the combinations is in the consequent. For each combination of antecedent and 
consequent, we check if the confidence factor meets or exceeds the minimum confidence 
factor desired. If the confidence factor is high enough, the rule is written to output. In order to 
check the confidence factor, we need the count for the current pattern (available in the current 
count relation Cg) and the count for the pattern comprising the antecedent (available by 
lookup in a previous count relation Ci_ 1). 

5.1. Examples 

Let us consider the example from Section 4.4. The minimum support is 30% (3 transactions) 
and the minimum confidence factor is 70%. After relation C 2 is obtained, the rules obtained 
are shown below. Rules have been written in the form X ~ I ,  [c, s], where X is the list of 
items in the antecedent of the rule, I is the item in the consequent of the rule, s is the support 
expressed as a percentage and c is the confidence factor. Let us see how we obtain the rule 
B f f  A. The pattern A B  is supported since its support is 3 and the minimum support desired is 
3. The ratio IABI/IBI = 3/4 = 75% which is greater than the minimum confidence factor of 
70%. The ratio IABI/IAI = 3/6 = 50% which is less than the minimum confidence factor of 
70%. Hence, we do not obtain the rule A ~ B .  

B ==> A, [75.0%, 30.0%] 
C ==> A, [75.0%, 30.0%] 
B ==> C, [75.0%, 30.0%] 
c ==> B, [75.0%, 30.0%] 
E ==> D, [75.0%, 30.0%] 

F ==> D, [100.0%, 30.0%] 
E ==> F, [75.0%, 30.0%] 
F ==> E, [100.0%, 30.0%] 

After the second iteration, relation C 3 is available. The rules generated from C 3 are: 

D E ==> F, [30.0%, 100.00%] 
DF ==> E, [30.0%, 100.00%] 
E F ==> D, [30.0%, 100.00%] 

In [4], a data set was used that consists of sales data obtained from a large retailing company 
with a total of 46,873 customer transactions. At the level of granularity in the original data set, 
each transaction contains the department numbers from which a customer bought an item in a 
visit. Hence, the algorithm finds if there is an association between departments in the 
customer purchasing behavior. There are a total of 63 departments. The rules obtained for this 
data set for a minimum support of 1% and a minimum confidence factor of 50% are given 
below (these rules also appeared in [4]). 
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(Home Laundry Appliances) ==> (Maintenance Agreement Sales), [66.6%, 1.25%] 
(Auto Accessories) ==> (Automotive Services), [79.5%, 11.81%] 
(Automotive Services) ==> (Auto Accessories), [71.6%, 11.81%] 
(Children's Hardlines) ==> (Infants and Children's wear), [66.2%, 4.24%] 
(Men's Furnishing) ==> (Men's Sportswear), [54.9%, 5.21%] 
(Tires) ==> (Automotive Services), [98.8%, 5.79%] 
(Auto Accessories) (Tires) ==> (Automotive Services), [98.3%, 1.47%] 

5.2. Multiple items in consequent 

We may now observe, that the generation of rules from the count relations that are 
generated by program SETM allows a very easy generalization of the kinds of rules that can be 
generated. For patterns of size k, it is easy to consider combinations of k -  2 items in the 
antecedent with the remaining two items in the consequent. This allows us to generate rules 
with two items in the consequent. Similarly, by considering combinations of k - q items in the 
antecedent, we obtain rules with q items in the consequent. Here are some of the rules we 
obtained for the retailing data set for a minimum support of 0.01% and a confidence factor of 
8O%. 

(Junior Apparel) (Men's Sportswear) (Tires) ==> 
(Women's Sportswear) (Automotive Services), [80.0%, 0.01%] 

(Junior Apparel) (Men's Sportswear) (Tires) ==> 
(Auto Accessories) (Automotive Services), [80.0%, 0.01%] 

(Women's Sportswear) (Men's Furnishing) (Tires) ==> 
(Men's Sportswear) (Automotive Services), [80.0%, 0.01%] 

(Boy's Clothing) (Children's Hardlines) (Automotive Services) ==> 
(Auto Accessories) (Infants and Children's wear), [80.0%, 0.01%] 

(Boy's Clothing) (Girl's Clothing) (Tires) ==> 
(Infants and Children's wear) (Automotive Services), 
[100.0%, 0.01%] 

The generation of rules with multiple items in the consequent was facilitated by the 
set-oriented nature of Algorithm SETM. 

5.3. Filtering o f  rules 

We observe that some of the ruJes generated may not carry very valuable information. For 
example, consider the following rules obtained for the retailing data set with a minimum 
support of 1%. 

(Tires) ==> (Automotive Services), [98.8%, 5.79%] 
(Auto Accessories) (Tires) ==> (Automotive Services), [98.3%, 1.47%] 

The second rule has the same consequent as the first rule and is more specific since it has an 
/ 
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additional item (Auto Accessories) in the antecedent.  However,  the confidence factor for 
the second rule is smaller than that for the first rule. Thus, the inclusion of a new item has not 
increased our confidence. In many cases, this might be good reason to filter out the second 
rule before it is output .  Such filtering is straightforward to implement  and can often reduce 
substantially the number  of rules to be considered. For example, when filtering was used in 
the retailing data set for a minimum support of 0.1% and a confidence factor of 50%, the 
number  of rules without filtering is 52. When filtering is used, the number  of rules drops to 18! 

6. Experiments 

In previous sections we have described the new algorithm and given some analysis to show 
that we expect it to be efficient. We implemented the algorithm to run in main memory  and 
read a file of transactions. The execution times given are for running the algorithm on the 
IBM Risc/System 6000 350 with a clock speed of 41.1 MHz. The experiments were conducted 
using the retailing data set described in Section 5. 

6.1. Variation of relation sizes 

We first study how the size of the R i (trans_id and items) relation varies with each iteration 
of algorithm SETM. In Fig. 5 we show the variation in the size (in Kbytes) of R i with iteration 
i for the retailing data set. Curves are shown for different values of minimum support ,  where 
min imum support  is varied from 0.1% to 5%. The maximum size of the rules is 3, hence in all 
c a s e s  [R41 = 0 (with ]Ri] denoting the cardinality of Ri). Also, the starting relations are the 
same and hence IR,I = 115,568 in all cases. 
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Fig. 5. Size of relation R i. 
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If the minimum support is small enough (~  0.1%), the size of relation R i can first increase 
and then decrease. But the general trend is that the size relation R i decreases. For large values 
of minimum support,  IRil decreases quite rapidly from the first iteration to the second. This 
sharp decrease is delayed somewhat for the smaller values of minimum support.  Hence,  using 
small values of minimum support allows us to obtain more rules. In general, it also allows us 
to obtain rules with more items in the antecedent.  For example, if the minimum support  is 
reduced to 0.05%, we obtain rules with 3 items in the antecedent.  

We expect the C~ (count) relations to be small enough to fit in memory.  We now study how 
the cardinality (ICi]) of these relations varies with iteration number.  Fig. 6 shows curves for 
different values of minimum support. The values of ]Ci] measure the number  of item 
combinations that could garner enough support. We observe that for small values of min imum 
support  the value of I C~] increases initially before decreasing with later iterations. Since I Cil is 
a measure of how many rules can possibly be generated, we again see the importance of 
handling small values of minimum support in a timely fashion. The maximum size of the rules 
is 3, hence in all cases IC41 = 0. Also, the starting relations are the same and hence IC~] = 59 
for all minimum support values. 

6.2. Execution times 

We now measure the execution times of our set-oriented algorithm SETM for various values 
of the minimum support. As we saw in Section 6.1, the interesting values of minimum support  
are the small values. For large values of minimum support (greater than, say, 5%) very few 
rules are obtained, and the rules tend to have small antecedents and be uninteresting. Hence,  
we vary the minimum support from 0.1% to 5%. The execution times are shown in Table 1. 
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Table 1 

Minimum support Execution Ume 
(%)  (seconds) 

259 

0. l 6.90 
0.5 5.30 
1 4.64 
2 4.22 
5 3.97 

We see that algorithm SETM is very stable. The execution time varies from ~7 secs for 
0.1% minimum support to =4 secs for 5% minimum support. By contrast, the algorithm 
described in [4] had a running time of 2 minutes 53 seconds for a minimum support of 0.1%. 

6.3. Scaling with transaction file size 

In order to see how Algorithm SETM scales with the transaction file size, we replicated the 
transaction file a number of times and ran the algorithm on the scaled files. Since all the 
transactions are replicated, the support counts as a fraction of number of transactions do not 
change. Hence, the rules obtained are identical with those obtained when the file is not 
replicated. 

In Fig. 7, we show the effect on execution time of Algorithm SETM when the transaction 
file is replicated 1 to 5 times. We show three different curves for minimum support values of 
0.1%, 0.5% and 1%. We observe that Algorithm SETM scales linearly with the transaction file 
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Fig. 7. Execution time of SETM for different replications of the transaction file. 
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size. This is important when the algorithm is used to mine association rules 
databases, 

for large 

7. Reducing response time 

We see that the running time of algorithm SETM (a few seconds) is good enough to 
facilitate interactive rule discovery. We now describe some optimizations that can be used if 
further reductions in response time are desired. 

Pipelining between the different steps can be used to great advantage in algorithm SETM, 
especially when the steps involve access to external storage. The output  of the step that 
applies the minimum support constraint can be piped to the step that sorts the resulting 
relation in (rid, items) order. This optimization saves writing and reading relation R i once for 
each i > 2. The output  of the final merge of the step that sorts on (rid, items) can then be piped 
to the step that joins relation R i with the initial relation. This optimization saves writing and 
reading relation Ri once for each i/> 2. The result of the join can be piped to the step that 
sorts the join result by items, saving a read and write of the join result for all the joins. The 
output  of the final merge of the step that sorts on items can be piped to the step that applies 
the minimum support constraint, saving another read and write of the join result for all the 
joins. 

An attractive feature of algorithm SETM is that it offers opportunities for parallelism that 
can be implemented easily. Clearly, all the steps that involve sorting can be parallelised using 
any of the existing parallel sorting techniques (see, for example, [11, 24]). Applying the 
minimum support constraints can easily be parallelised. The only requirement  on the 
distribution function is that all the tuples containing a particular pattern are sent to the same 
processor. Both hash and range functions for distributing tuples meet this requirement.  The 
join step can be parallelised by replicating the initial relation among the processors and 
fragmenting the relation R k. We can use any distribution function including the round robin 
distribution function. 

A straightforward scheme for parallelizing algorithm SETM is as follows. The transactions 
are distributed in round robin fashion amongst the processors. Each processor performs a 
single iteration of the algorithm on its local data in order to generate the counts obtained from 
the local transactions. One processor acts as a coordinator. The local count relations are sent 
to the coordinator. The coordinator combines the local count relations to form the global 
count relation and applies the minimum support constraint. The global count relation is then 
broadcast to all the processors. After receiving the global count relation, the processors can 
continue their processing and generate the local counts for the next iteration and so on, until 
the global count relation is empty. The coordinator stores all the global count relations, which 
can then be processed in the usual way to generate the rules. 

We thus see that there are many opportunities for reducing the response time for algorithm 
SETM even further. The techniques used are primarily pipelining and use of parallelism. Such 
techniques are easily used because the algorithm SETM is set-oriented and can be applied 
orthogonally. The basic simplicity and ease of implementation of the original algorithm is still 
retained. 
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8. Conclusions 

In this paper,  we have investigated a set-oriented approach to mining association rules. The 
algori thm is s t r a igh t fo rward -bas i c  steps are sorting and merge scan j o i n - a n d  could be 
implemented  easily in a relational database system. The algorithm is easily ex tended  to 
genera te  rules with multiple items in the consequent .  

Not  only is the algorithm simple, its per formance  is remarkable .  It exhibits very stable 
behavior ,  with execution time almost insensitive to the chosen min imum support.  For  a 
real-life data  set, execution times are on the order  of 4-7  seconds. We fur ther  indicated 
several optimizations for disk-based environments.  We have shown how the algorithm can be 
parallelized easily and outl ined such a parallel implementat ion.  The simple and clean form of 
our  algorithm makes it easily extensible and facilitates integration into a (interactive) data  
mining system. 

It may be noted that the approach we have taken is similar to work on set-or iented 
processing of recursive queries (see e.g. [7]), in particular work on transitive closures. Indeed ,  
we have expressed our  algorithms in recursive SQL as supported by the Starburst  system [14]. 

We are currently investigating additional uses of algorithm SETM. For example,  it is 
possible to use algorithm SETM not only for finding association rules, but also for 
classification purposes. Given a relation CUSTOMER(c id ,  age, income, elevel) for which the 
at tr ibutes can be discretized, we may 'denormalize '  the relation to get tuples of the form (cid, 
age-group-encoding), (cid, income-group-encoding) and (cid, elevel-group-encoding) and 
execute  algorithm SETM on the set of tuples thus obtained. This will result in a meaningful  
classification: if the support  for a pat tern is large enough,  we have identified a relevant  class. 
Finally, the next plausible step is to refine rule generat ion by generat ing rules per class of 
customer.  

Acknowledgements 

We thank Rakesh Agrawal and Bill Cody for their comments  on the paper.  

References 

[1] R. Agrawal, C. Faloutsos and A. Swami, Efficient similarity search in sequence databases, in: Proc. Fourth 
Int. Conf. on Foundations of Data Organization and Algorithms (Springer-Verlag, Berlin, Oct. 1993) 69-84. 
Lecture Notes in Computer Science, V303. 

[2] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer and A. Swami, An interval classifier for database mining 
applications, in: Proc. Eighteenth Int. Conf. on Very Large Data Bases, Vancouver (August 1992) 560-573. 

[3] R. Agrawal, T. Imielinski and A. Swami, Database mining: A performance perspective, IEEE Trans. 
Knowledge and Data Engineering 5(6) (Dec. 1993) 914-925, Special issue on Learning and Discovery in 
Knowledge-Based Databases. 

[4] R. Agrawal, T. Imielinski and A. Swami, Mining association rules between sets of items in large databases, in: 
Proc. ACM-S1GMOD Int. Conf. on Management of Data, Washington, DC (June 1993) 2(17-216. 



262 M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262 

[5] T.M. Anwar, H.W. Beck and S.B. Navathe, Knowledge mining by imprecise querying: A classification-based 
approach, in: IEEE 8th Int. ConJ~ on Data Engineering, Phoenix, Arizona (1992). 

[6] D. Shepard Associates, ed., The New Direct Marketing (Business One Irwin, Homewood, IL, 1990). 
[7] F. Cacace, S. Ceri and M.A.W. Houtsma, A survey of parallel execution strategies for transitive closure and 

logic programs, Distributed and Parallel Databases 1(3) (Oct. 1993) 337-382. 
[8] J. Catlett, Megainduction: A test flight, in: 8th Int. Conf. on Machine Learning (Morgan Kaufman, June 

1991). 
[9] P. Cheeseman, Autoclass: A bayesian classification system, in: 5th Int. Conf. on Machine Learning (Morgan 

Kaufman, June 1988). 
[10] G. Cooper and E. Herskovits, A bayesian method for the induction of probabilistic networks from data, in: 

Machine Learning (1992). 
[11] D.J. DeWitt, J.F. Naughton and D.A. Schneider, Parallel sorting on a shared-nothing architecture using 

probabilistic splitting, in: Proc. 1st Int. Conf. on Parallel and Distributed Information Systems (Dec. 1991) 
280-291. 

[12] D.H. Fischer, Knowledge acquisition via incremental conceptual clustering, in: Machine Learning (1987). 
[13] J. Han, Y. Cai and N. Cercone, Knowledge discovery in databases: An attribute-oriented approach, in: Proc. 

Eighteenth Int. Conf. on Very Large Data Bases, Vancouver (Aug. 1992) 547-559. 
[14] M. Houtsma and A. Swami, Set-oriented mining for association rules, Technical report, IBM Research 

Division, Oct. 1993, IBM Research Report RJ 9567. 
[15] R. Krishnamurthy and T. lmielinski, Practitioner problems in need of database research: Research directions 

in knowledge discovery, ACM-SIGMOD Record 20(3) (Sep. 1991) 76-78. 
[16] P. Langley, H. Simon, G. Bradshaw and J. Zytkow, eds., Scientific Discovery: Computational Explorations of 

the Creative Process (MIT Press, 1987). 
[17] D.J. Lubinsky, Discovery from databases: A review of AI and statistical techniques, in: IJCAI-89 Workshop 

on Knowledge Discovery in Databases (1989) 204-218. 
[18] R.S. Michalski, L. Kerschberg, K.A. Kaufman and J.S. Ribeiro, Mining for knowledge in databases: The 

INLEN architecture, initial implementation, and first results, J. Intelligent Information Systems 1 (1992) 
85-113. 

[19] J. Pearl, ed., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan 
Kaufman, 1992). 

[201 G. Piatetsky-Shapiro, Discovery, analysis, and presentation of strong rules, in: Knowledge Discovery in 
Databases (AAAI/MIT Press, 1991) 229-248. 

[21] G. Piatetsky-Shapiro, ed., Knowledge Discovery in Datbases (AAAI/MIT Press, 1991). 
[22] J.R. Quinlan, Induction of decision trees, Machine Learning 1 (1986) 81-106. 
[231 S. Tsur, Data dredging, 1EEE Database Engineering Bull 13(4) (Dec. 1990) 58-63. 
[24] H.C. Young and A. Swami, A family of round-robin partitioned parallel external sort algorithms, Technical 

report, IBM Research Division , Nov. 1992, RJ 9014. 

Maurice A.W. Houtsma is a senior 
member scientific staff at the Tele- 
matics Research Centre, where he is 
responsible for coordination of re- 
search into multimedia, computer 
supported co-operative work, 
heterogeneous systems, and public 
information systems. From 1992 to 
1994 he held a position as research 
fellow of the Royal Netherlands 
Academy of Arts and Sciences, at the 
University of Twente. In that posi- 
tion he studied topics like distributed 

and parallel databases, replicated data, data mining, and 
geographical information systems. He spent several months 
as visiting researcher at Stanford University and at IBM 
Almaden Research Center, to co-operate with other re- 

searchers on those topics. His Ph.D. Thesis appeared in 1989 
at the University of Twente, on data model and query 
processing in data and knowledge base management systems. 

Arun Swami received his B.Tech. degree in Computer 
Science and Engineering from the Indian Institute of Tech- 
nology, Bombay (1983), his M.S. degree in Computer 
Science (1985) and his Ph.D. degree in Computer Science 
from Stanford University (1989). From June 1989 to July 
1994, he was a Research Staff Member at the IBM Almaden 
Research Center. He is currently at Silicon Graphics Com- 
puter Systems. Arun's technical interests include query 
optimization, random sampling, and parallel processing in 
database systems. He is now doing research and development 
in the emerging area of database mining. He has published 
extensively in these different areas of research and has 
patents and patent applications for work in these areas. 


