
ELSEVIER Data & Knowledge Engineering 17 (1995) 245-262

DATA &
KNOWLEDGE
ENGINEERING

Set-oriented data mining in relational databases

Maurice Hou t sma" '* , Arun Swami b't

"University of Twente, Enschede, The Netherlands
blBM Almaden Research Center, San Jose, CA, USA

Received 25 July 1994; revised 14 March 1995; accepted 28 July 1995

Abstract

Data mining is an important real-life application for businesses. It is critical to find efficient ways of mining large
data sets. In order to benefit from the experience with relational databases, a set-oriented approach to mining data
is needed. In such an approach, the data mining operations are expressed in terms of relational or set-oriented
operations. Query optimization technology can then be used for efficient processing.
In this paper, we describe set-oriented algorithms for mining association rules. Such algorithms imply performing
multiple joins and thus may appear to be inherently less efficient than special-purpose algorithms. We develop new
algorithms that can be expressed as SQL queries, and discuss optimization of these algorithms. After analytical
evaluation, an algorithm named SETM emerges as the algorithm of choice. Algorithm SETM uses only simple
database primitives, viz., sorting and merge-scan join. Algorithm SETM is simple, fast, and stable over the range of
parameter values. It is easily parallelized and we suggest several additional optimizations. The set-oriented nature
of Algorithm SETM makes it possible to develop extensions easily and its performance makes it feasible to build
interactive data mining tools for large databases.

Keywords: Data mining; Optimization; Set-oriented algorithms

I. Introduction

The competitiveness of companies is becoming increasingly dependent on the quality of
their decision making. Hence, it is no wonder that companies often try to learn from past
transactions and decisions in order to improve the quality of decisions taken in the present or
future. In order to support this process, large amounts of data are collected and stored during
business operations. Later, these data are analyzed for relevant information. This process is
called data mining [3, 18, 23, 5] or knowledge discovery in databases [13, 21, 15, 17]. Data

* Communicating author. M. Houtsma's research was made possible by a fellowship of the Royal Netherlands
Academy of Arts and Sciences; his current affiliation is Telematics Research Centre, P.O. Box 217, 7500 AE
Enschede, The Netherlands.

Current affiliation is Silicon Graphics Computer Systems, 2011 N, Shoreline Blvd., Mountain View, CA 94043.

0169-023X/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI: 0 1 6 9 - 0 2 3 X (9 5) 0 0 0 2 4 - 0

246 M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262

mining is . "~levant to many different types of businesses. As examples, retail stores obtain
profiles from customers and their buying patterns and supermarkets analyze their sales and the
effect of advertising on sales. Such "target marketing" [6] is becoming increasingly important.

Different aspects of data mining have been explored in the literature. In classification, data
units (tuples) are grouped together based on some common characteristics, and rules are
generated to describe this grouping. This has been done both in the context of AI [22] and in
the context of databases [2, 13, 5]. Work has been done to search for similar sequences or time
series [1]. In finding association rules, one tries to discover frequently occurring patterns
within data units [20, 4]. In this paper, we focus on the problem of finding association rules.
There has been a lot of work in rule discovery that is related but not directly applicable, for
example, [8, 9, 10, 12, 16, 19, 22].

Business applications deal with an uncontrolled real world, where many rules will overlap in
their components and uncertainty is common [20]. Examples of rules could be: "Most sales
transactions in which bread and butter are purchased, also include milk," or "Customers with
kids are more likely to buy a particular brand of cereal if it includes baseball cards." Work on
finding these kinds of rules has been done in AI for some specific applications (see [21] for an
overview). Although the work done in AI is usually very general, the computational
complexity of the proposed algorithms is high, and the algorithms are feasible only for small
data sets [17]. Performance is a problem with these algorithms for the kind of applications we
consider, which involve mining large databases. In [18] a small example is described of
generating rules from data, but the emphasis is more on architectural issues than on
performance and large data sets. In [4], the problem of rule discovery is addressed in a
database context. The paper describes an algorithm for rule discovery on a large data set.
However, the algorithm in [4] still has a tuple-oriented flavor (tuples are represented as
strings, and the algorithm consists of string manipulation operations) and is rather complex.

Our focus is on achieving good performance in mining association rules on large datasets in
relational databases. This differentiates our work from much of the work in AI. Problems of
optimization of discovered rules, subsumption, etc. are beyond the scope of this paper. The
perspective is one of analysis on existing data, i.e. the data is static. Though we use retailing
transactions as an example application throughout the paper, the work here is applicable to
mining of association rules from any domain. In an illustrative example, we assume that the
items are distributed almost uniformly. However, our method does not require any such
assumptions.

We address rule discovery in database systems from a set-oriented perspective. The
motivations for a new approach to this problem are several. A set-oriented approach allows a
clearer expression of what needs to be done as opposed to specifying exactly how the
operations are carried out. The declarative nature of this approach allows consideration of a
variety of ways to optimize the required operations. This means that the ample experience
that has been gained in optimizing relational queries can directly be applied here. Eventually,
it should be possible to integrate rule discovery completely with the database system. This
would facilitate the use of the large amounts of data that are currently stored on relational
databases. The relational query optimizer can then determine the most efficient way to obtain
the desired results. Finally, our set-oriented approach has a small number of well-defined,
simple concepts and operations. This allows easy extensibility to handling additional kinds of
mining, e.g. relating association rules to customer classes.

M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262 247

The structure of this paper is as follows. In Section 2 we define the problem of set-oriented
data mining and give an initial sketch of our approach. In Section 3 we present an initial
set-oriented algorithm expressed in SQL and analyze its performance. In Section 4 we present
a second set-oriented algorithm expressed in SQL and analyze its performance. In Section 4.4
we describe the latter algorithm (called Algorithm SETM) in terms of simple database
operations: sorting and merge-scan join. We also illustrate the algorithm by means of a small
example. Section 5 explains how rules are generated and how rules with multiple items in the
consequent can be obtained. In Section 6 we describe several experiments we did with an
implementation of our algorithm on a large data set. Section 7 describes several possible
optimizations to Algorithm SETM that could further improve the response time. We also
discuss different ways to parallelize the algorithm. Finally, Section 8 presents our conclusions.

2. Moving towards set-oriented mining

Consider the problem of finding association rules in sales data. Typically, a retail store
records information for each customer transaction, where a customer transaction involves the
purchase of a variable number of items. We can store this information in a relational database
system using a table with the following schema: SALES_DATA(t rans_ id , item). For each
customer transaction that takes place, tuples corresponding to the items sold are inserted in
S A L E S _ D A TA.

In order to find association rules, we need to scan transactions for reoccurring patterns that
occur often enough to be of interest (this is made more precise later). We use the term pattern
to capture the concept of itemset introduced in [4]. This is more in line with existing
terminology [21]. A pattern can be defined as follows. If items A, B, and C frequently occur
together in a single customer transaction, this means that the pattern A B C occurs often. This
observation might allow us to conclude (among other rules) the association rule A A B ~ C
Here, A B is called the antecedent of the rule and C is called the consequent of the rule.
Usually, some constraints need to be met before we conclude that an association rule holds.
As in [4], we define support for a pattern to be the ratio of customer transactions supporting
that pattern to the total number of customer transactions. Also, the confidence factor for a
rule obtained from a pattern is defined as the ratio of the support for the pattern to the
support for the antecedent of the rule. For the rule A A B ~ C, this would be [ABCI/]AB I,
where [ABC] denotes the support for pattern ABC.

We are interested only in association rules where the support for the pattern(s) involved in
the rule is greater than some minimum value called minimum support. We also require that
qualifying rules have a confidence factor greater than some value. In our example, patterns
can be generated in a straightforward fashion by repeated joins with S A L E S _ D A T A . For
instance, generating all patterns of exactly two items, is expressed by the following SQL
query:

SELECT r~.trans_id, rl.item , rz.item
FROM SALES_DATA rl, SALES_DATA r 2

t Causality is not necessarily implied. Also, the ordering of A and B in the antecedent of the rule is arbitrary.

248 M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262

W H E R E r I . trans_id = re. trans_id AND
r~.item < > re.item

For each pair of items (x, y), we count the number of transaction-ids in order to find the
number of transactions supporting this pattern. All patterns of exactly three items can now be
obtained by joining the result of the previous step again with S A L E S _ D A T A and so on. The
order in which items appear is not relevant right now; (x, y) is equivalent to (y, x) since both
pairs have the same support. Order only becomes important when generating the rules
because confidence factors can be different for different orders.

This strategy is elaborated in Sections 3 and 4 and expressed in terms of a set-oriented query
language, viz., SQL. The first expression that is generated naturally leads to nested-loop based
joins. A rough analysis of its expected performance indicates that such an implementation
would perform very poorly. Consequently, we generate an equivalent expression in SQL that
naturally leads to sort-merge based joins. A first analysis shows it to be very promising, and
we pursue this implementation in the remainder of the paper.

We include the discussion of both SQL-expressions of our strategy, because we wish to
emphasize the methodology that we used in this research. Taking a set-oriented approach does
not immediately lead to great results but it clearly helps in getting a good understanding of the
problem. In our case, by first having studied the nested-loop strategy, we were able to develop
the strategy based on sort-merge joins fairly easily, by taking into consideration the ways a
relational query optimizer deals with these types of (complex) queries.

3. Strategy leading to nested-loop joins

We discuss a first formulation of our set-oriented data mining strategy. It naturally leads to
nested-loopbased joins. We express the algorithm in SQL and then analyze its expected
performance.

3.1. Formulat ion

All customer transactions are stored in the relation S A L E S _ D A T A . From this relation, we
first generate the counts for each item x, i.e. the number of transactions that support item x.
We check that the minimum support requirement is met. The output is stored in relation C1,
with schema (item, count) .

INSERT INTO C 1
SELECT r~.item, COUNT(*)
FROM SALES_DATA r 1
GROUP BY r 1.item
HAVING COUNT(*) > = :min_support

The next step is to generate all patterns (x, y) and check if they meet the minimum support

M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262 249

criterion. For a specific item A, this is easy to express. For example, all patterns (A, y) can be
generated using a self-join of S A L E S _ D A T A , as in the following SQL-expression.

SELECT r~ . i t em, r2 . i t em , COUNT(*)
F R O M S A L E S _ D A T A rl, S A L E S _ D A T A r 2
W H E R E r 1.trans_id = r 2 . t r a n s _ i d AND

r~ . i t em = 'A' AND
r2 . i t em < > 'A'

G R O U P BY r~ . i t em, r2 . i t em

HAVING COUNT(*) > = :min_support

This kind of expression only generates patterns with a specific i tem in the first position. The
expression has to be generalized in order to generate arbitrary patterns. As stated earlier, the
order of the items in a pattern is not relevant at the time of generation. The order is important
only in the final rule generation process. We take advantage of this fact by generating patterns
with the items in lexicographical order. For instance, we generate A B , but we do not generate
B A . We generalize over all values of i t em having minimum support, by using the following
S Q L expression to generate all lexicographically ordered patterns of length k (k > 1) having
min imum support (in case k = l , the query presented before for C~ is used).

INSERT INTO C k
SELECT r~ . i t em, . . . , r k . i t e m , COUNT(*)
F R O M Ck_ 1 c, S A L E S _ D A T A rl, S A L E S _ D A T A r 2 S A L E S _ D A T A r k
W H E R E r ~ . t r a n s _ i d = r 2 . t r a n s _ i d r k . t r a n s _ i d AND

r ~.i tem = c . i t e m t AND
r2 . i t em = c . i t e m 2 AND

r k_ ~. i tem = c . i t e m k_ ~ AND
r k . i t em > r~_ ~.i tem

G R O U P BY r~ . i t e m , . . . , r k . i t em

HAVING COUNT(*) > = :min_support

Relation C k has schema (i t em~, i t e m 2 , . . . , i t emk , c o u n t) . All feasible rules are found by
consecutively generating all qualifying patterns from length 1 to k until Ck+~ = { }. Since the
items in the patterns are lexicographically ordered, a single inequality test in the SQL query is
sufficient.

3.2 . A n a l y s i s

Before pursuing this strategy any further, we first perform a rough analysis of its expected
performance. Let us consider how a relational query optimizer could optimize the final SOL
expression in Section 3.1. If the joins are performed using the nested-loop join method, we
need indexes to allow efficient evaluation of the join. It seems we need two indexes on table

250 M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262

S A L E S _ D A T A : an index on (item, trans_id) and another index on (trans_id). Given these
indexes, the query can be evaluated as follows:
(1) Take a tuple c from C k E, and use the index on (item, trans_id) for r~ to get qualifying

tuples with r~.item = c.item~.
(2) For each of these tuples, use the index on (item, trans_id) for r 2 to get tuples that satisfy

r2.item = c.item 2 and r:.trans_id = r ~.trans_id.
(3) Similarly for relations r~ rk_ I.
(4) Finally, use the index on (trans_id) for r k to compute rk.trans_id = r k ~.trans_id and

check the remaining condition rk.item > r k . ~.item.
(5) The qualifying tuples are sorted on the item values and the count is used to check the

minimum support constraint.
Let us consider a hypothetical retailing database to characterize the per formance of this

strategy. There are 1000 different items that can be sold. The data consists of 200,000
customer transactions. The average number of items sold in a transaction is 10. Thus, the
relation S A L E S _ D A T A contains about 2 million tuples. To make the analysis tractable, we
assume that the items have approximately equal probability of being sold (in the actual data
set, the items are not sold with equal probability). Hence, the chance of an item appearing in
a particular transaction is 1%. We will assume the following characteristics for the database
system. Page size is 4 Kbytes, and each item and transaction id is represented using 4 bytes
(i tem values are represented by integers). Hence, each initial tuple consists of 8 bytes.

Consider the B +-tree index on (item, trans_id). Since all the data is contained in the index,
we do not need a pointer in the leaf page entries. Assuming little overhead, we can store up to
500 entries in each leaf page. The number of leaf pages in the B+-tree index on (item,
trans_id) is 2,000,000/500 ~ 4,000. Assuming 4 bytes for a pointer, an index entry in the
non-leaf pages has a size of 12 bytes. Assuming very little overhead, we can store about 333
key-value /poin ter pairs on a non-leaf index page. The following inequality holds for the
number of levels L of the index tree: 333 L/> 1,000,000 > 333 L ~, hence, L = 3. The number of
non-leaf pages in this index is (1 + 4 ,000/333)= 14. Similar calculations for the index on
(trans_id) show that the number of leaf pages is 2,000 and the number of non-leaf pages is 5.
Since the number of non-leaf pages is small, we can assume that they reside in memory .
Hence , accessing non-leaf pages does not require page fetches from disk.

Let the minimum support desired be 1000 transactions, i.e. 0.5% of the total number of
transactions. On the average, each item appears in about 1% of the transactions. Assuming
uniform probabilities, all items qualify as having minimum support. Therefore , the cardinality
of C~ will be 1000, i.e. each item is present.

To obtain C~, we take each tuple c from CI and access the index on (item, trans_id). This
requires 1% × 4,000 leaf page fetches, i.e. ~40 page fetches. The result consists of about 2,000
transaction-ids (1%). For each of the resulting transaction-ids we now have to access the index
on (trans_id) resulting in 1 page fetch.

From this, we may conclude that the first step alone will require about 1000 x (40 + 2000 ×
1) ~ 2,000,000 page fetches. Most of these page fetches are random. A random page fetch
costs about 20 ms. Hence, the time for the first step alone is -~40,000 seconds, which is more
than 11 hours!

Clearly, an implementat ion based on nested-loop joins is very inefficient. However , one

M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262 251

could consider a different implementat ion for the same basic pattern finding strategy, viz.,
sort-merge joins. We will consider this strategy in the next section.

4. Strategy leading to sort-merge joins

We now discuss the second formulation of our set-oriented data mining strategy, based on
using sort-merge joins. We again express the algorithm in SQL and then analyze its expected
performance.

4. I. Formu la t ion

In the previous implementat ion we would generate intermediate relations Ri (t rans_ id ,
item~ , i temi) , extract support information from these relations, and then discard them.
But what if, after each step, we saved the last R i that was generated? Fur thermore , let us save
Ri sorted on (trans_id , i t e m l , . . . , i temi) . We could then generate all lexicographically ordered
patterns of length k using the following expression:

INSERT INTO R~
SELECT p . t rans_ id , p . i t em~ , . . . , p . i t em k 1, q . i tem
F R O M R k_l P, S A L E S _ D A T A q
W H E R E q . t rans_ id = p . t r a n s _ i d AND

q. i tem > p . i t em k_

After generating all lexicographically ordered patterns of length k in R;,, we now have to
generate counts for those patterns in R~, that meet the minimum support constraint. This can
be done as follows:

INSERT INTO C k
SELECT p . i t e m ~ , . . . , p . i t e m , , COUNT(*)
F R O M R~, p
G R O U P BY p . i t em~ , . . . , p . i t em k
HAVING COUNT(*) > = :min_support

Before we go on to generate patterns of length k + 1, we first have to select the tuples from
R~ that should be extended, viz., those tuples that meet the minimum support constraint. We
also wish the resulting relation to be sorted on (trans_id, i t e m ~ , . . . , i temk) . This is done as
follows:

INSERT INTO R k
SELECT p . t rans_ id , p . i t e m l , . . . , p . i t em k
F R O M R~, p, C k q
W H E R E p . i t e m ~ = q . i tem ~ AND

252 M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262

p.itemk = q.itemk
O R D E R BY p.trans_id, p . i t e m l , . . . , p. i tem k

We can now repeat this process, until at some point R k = ~. Note that the sorting we did in
the last step is not really required. It does, however, enable an efficient execution plan if the
sort order of the relations is t racked across iterations.

4.2. Example

We illustrate this strategy by means of an example. The example database consists of 10
transactions where each transaction has 3 items. We require a minimum support of 30%, i.e. 3
transactions. The desired confidence factor is 70%. The customer transactions are shown in
Fig. 1. For brevity, we have presented the transactions as non-normalized tuples. The
algorithm, however, uses the tuple format described before; a subset of this corresponding
relation is shown too. The contents of the count relation C 1 are also shown in Fig. 1. As in the
algorithm we use R~ and R k to distinguish the R relations before and after elimination of
pat terns that do not meet the minimum support count. In the first i teration, R 2 is genera ted
and sorted on items and C 2 is genera ted from R 2. The contents of R 2, R 2 and C 2 are as shown
in Fig. 2. In the next iteration, R 3 is genera ted and sorted on items and C 3 is genera ted from
R 3. The contents of R 2, R 2 and C 2 are as shown in Fig. 3. The next i teration will not genera te
any new tuples, and the algorithm terminates.

4.3. Analysis

In this section the performance of the sort-merge strategy is analyzed using the same data
set as for the nested-loop strategy.

The I / O complexity of the sort-merge strategy can easily be expressed, by a formula derived
as follows. Let [[R~[[denote the number of pages used to store the relation in i teration k. In
the worst case, applying the minimum support constraints does not eliminate any tuples from
R k. Assume that no patterns of length n have the minimum support, i.e. the relation R n is
empty. By then, we have made (n - 1) passes, this means (n - 1) merge-scans requiring

Fig. 1. Customer transactions, corresponding relation, and relation C~.

M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262 253

tx_id

10
10
10
20
20
20
30
30
30

item~

A
A
B
A
A
B
A
A
B

item~

B
C
C
B
D
D
B
C
C

C
B
B
C

C
C

Fig. 2. Re la t ions R' 2, C2, and R 2.

(n - 1)IIR,II + ZT-? IIRill page accesses. The number of page accesses to store the result of
n-i these merge-scans is Zi= 2 R~. After each merge-scan, the output is read in again, sorted, and

n--1 written out to disk; this requires 2 Ei= 2 HR, II page accesses. (We assume R 1 to be sorted, and
the sort operations to take place in pipelining mode; see Section 7 for details.) In each step, C~
will be small enough to keep in memory as it is the result of an aggregation query. Hence, no
page accesses are required for storing or retrieving C i. Therefore, the total number of page
accesses is bounded by:

n--1

n IIR, II + 4 ~ IIR, II
i = 2

txdd

10
30
20
40
80
90
99

item~

A
A
A
B
D
D

item2

B
B
B
C
E
E
E

item~

C
C
D
D
F
F
F

item,]item, [itemz l entJ
D J E J F 1 3 l

Fig. 3. Re la t ion R ' C 3 and R~. 3~

tx-id item1 item2 item3

254 M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262

k := 1;
sort R1 on item;
C1 := generate counts from R~;
r e p e a t

k := k + 1;

sort Rk ~ on trans_id, item1,.. . , itemk_~;
R~ := merge-scan Rk-1, R1;
sort R~, on item~, . . . , itemk;
C~ := generate counts from R~;
Rk := filter R~ to retain suppor ted patterns;

un t i l Rk = {}

Fig. 4. Ou t l i ne o f a lgo r i t hm S E T M .

Let us calculate the time to generate C 2 as we did for the nested-loops strategy. Let R 3 be
empty. Using the same numbers as in Section 3.2, the cardinality of Ri is given by
(lO) × 200,000. The size of a tuple from R i is (i + 1) × 4 bytes. This gives us the following:
IIR,II =4,000 and IIR211 = 27,000. The number of page accesses is thus:

3 × 4,000 + 4 × 27,000 = 120,000

Reading and writing all the R i relations can be done in a sequential fashion. We estimate the
time for each page access as 10 ms. Hence, the total time spent on I / O operations is 1200
seconds or 10 minutes. In comparison, the nested-loop strategy required more than 11 hours.

This rough analysis shows that the implementat ion based on sort-merge joins will be much
more efficient than the algorithm based on using nested-loop join with indexes. We will there-
fore proceed with further experimental evaluation of the algorithm based on sort-merge joins.

4.4. Algorithm S E T M

The sort-merge strategy is described in pseudocode in Fig. 4. We refer to it as Algori thm
SETM. The algorithm consists of a single loop, in which two sort operations and one
merge-scan are performed. The first sort is needed to implement the merge-scan join that
follows it. The second sort is used in order to generate the support counts efficiently.
Generat ing the counts involves a simple sequential scan over R k. Deleting the tuples from R k
that do not meet the minimum support, involves simple table look-ups on relation C k. The C k
relations are of interest to us for rule generation. Note that we have not included in this
algorithm the optimizations ment ioned in Section 4.3.

5. Rule generation

We have omitted so far any discussion of how the rules are generated from the count
relations. The rule generation algorithm is straightforward. For any pattern of length k, we
consider all possible combinations of k - 1 items in the antecedent. The remaining item not

M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262 255

used in the combinations is in the consequent. For each combination of antecedent and
consequent, we check if the confidence factor meets or exceeds the minimum confidence
factor desired. If the confidence factor is high enough, the rule is written to output. In order to
check the confidence factor, we need the count for the current pattern (available in the current
count relation Cg) and the count for the pattern comprising the antecedent (available by
lookup in a previous count relation Ci_ 1).

5.1. Examples

Let us consider the example from Section 4.4. The minimum support is 30% (3 transactions)
and the minimum confidence factor is 70%. After relation C 2 is obtained, the rules obtained
are shown below. Rules have been written in the form X ~ I , [c, s], where X is the list of
items in the antecedent of the rule, I is the item in the consequent of the rule, s is the support
expressed as a percentage and c is the confidence factor. Let us see how we obtain the rule
B f f A. The pattern A B is supported since its support is 3 and the minimum support desired is
3. The ratio IABI/IBI = 3/4 = 75% which is greater than the minimum confidence factor of
70%. The ratio IABI/IAI = 3/6 = 50% which is less than the minimum confidence factor of
70%. Hence, we do not obtain the rule A ~ B .

B ==> A, [75.0%, 30.0%]
C ==> A, [75.0%, 30.0%]
B ==> C, [75.0%, 30.0%]
c ==> B, [75.0%, 30.0%]
E ==> D, [75.0%, 30.0%]

F ==> D, [100.0%, 30.0%]
E ==> F, [75.0%, 30.0%]
F ==> E, [100.0%, 30.0%]

After the second iteration, relation C 3 is available. The rules generated from C 3 are:

D E ==> F, [30.0%, 100.00%]
DF ==> E, [30.0%, 100.00%]
E F ==> D, [30.0%, 100.00%]

In [4], a data set was used that consists of sales data obtained from a large retailing company
with a total of 46,873 customer transactions. At the level of granularity in the original data set,
each transaction contains the department numbers from which a customer bought an item in a
visit. Hence, the algorithm finds if there is an association between departments in the
customer purchasing behavior. There are a total of 63 departments. The rules obtained for this
data set for a minimum support of 1% and a minimum confidence factor of 50% are given
below (these rules also appeared in [4]).

256 M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262

(Home Laundry Appliances) ==> (Maintenance Agreement Sales), [66.6%, 1.25%]
(Auto Accessories) ==> (Automotive Services), [79.5%, 11.81%]
(Automotive Services) ==> (Auto Accessories), [71.6%, 11.81%]
(Children's Hardlines) ==> (Infants and Children's wear), [66.2%, 4.24%]
(Men's Furnishing) ==> (Men's Sportswear), [54.9%, 5.21%]
(Tires) ==> (Automotive Services), [98.8%, 5.79%]
(Auto Accessories) (Tires) ==> (Automotive Services), [98.3%, 1.47%]

5.2. Multiple items in consequent

We may now observe, that the generation of rules from the count relations that are
generated by program SETM allows a very easy generalization of the kinds of rules that can be
generated. For patterns of size k, it is easy to consider combinations of k - 2 items in the
antecedent with the remaining two items in the consequent. This allows us to generate rules
with two items in the consequent. Similarly, by considering combinations of k - q items in the
antecedent, we obtain rules with q items in the consequent. Here are some of the rules we
obtained for the retailing data set for a minimum support of 0.01% and a confidence factor of
8O%.

(Junior Apparel) (Men's Sportswear) (Tires) ==>
(Women's Sportswear) (Automotive Services), [80.0%, 0.01%]

(Junior Apparel) (Men's Sportswear) (Tires) ==>
(Auto Accessories) (Automotive Services), [80.0%, 0.01%]

(Women's Sportswear) (Men's Furnishing) (Tires) ==>
(Men's Sportswear) (Automotive Services), [80.0%, 0.01%]

(Boy's Clothing) (Children's Hardlines) (Automotive Services) ==>
(Auto Accessories) (Infants and Children's wear), [80.0%, 0.01%]

(Boy's Clothing) (Girl's Clothing) (Tires) ==>
(Infants and Children's wear) (Automotive Services),
[100.0%, 0.01%]

The generation of rules with multiple items in the consequent was facilitated by the
set-oriented nature of Algorithm SETM.

5.3. Filtering o f rules

We observe that some of the ruJes generated may not carry very valuable information. For
example, consider the following rules obtained for the retailing data set with a minimum
support of 1%.

(Tires) ==> (Automotive Services), [98.8%, 5.79%]
(Auto Accessories) (Tires) ==> (Automotive Services), [98.3%, 1.47%]

The second rule has the same consequent as the first rule and is more specific since it has an
/

M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262 257

additional item (Auto Accessories) in the antecedent. However, the confidence factor for
the second rule is smaller than that for the first rule. Thus, the inclusion of a new item has not
increased our confidence. In many cases, this might be good reason to filter out the second
rule before it is output . Such filtering is straightforward to implement and can often reduce
substantially the number of rules to be considered. For example, when filtering was used in
the retailing data set for a minimum support of 0.1% and a confidence factor of 50%, the
number of rules without filtering is 52. When filtering is used, the number of rules drops to 18!

6. Experiments

In previous sections we have described the new algorithm and given some analysis to show
that we expect it to be efficient. We implemented the algorithm to run in main memory and
read a file of transactions. The execution times given are for running the algorithm on the
IBM Risc/System 6000 350 with a clock speed of 41.1 MHz. The experiments were conducted
using the retailing data set described in Section 5.

6.1. Variation of relation sizes

We first study how the size of the R i (trans_id and items) relation varies with each iteration
of algorithm SETM. In Fig. 5 we show the variation in the size (in Kbytes) of R i with iteration
i for the retailing data set. Curves are shown for different values of minimum support , where
min imum support is varied from 0.1% to 5%. The maximum size of the rules is 3, hence in all
c a s e s [R41 = 0 (with]Ri] denoting the cardinality of Ri). Also, the starting relations are the
same and hence IR,I = 115,568 in all cases.

t Y \ ' '
 oooo [. - . o.,%1

~ , ~ \ / *-" °'~%1 200000 I- \ X ~ \ / ' - " 1o/o I
\\X "~ \ I'-" 2% I

120000/ y X ~ \ I._. 5o/° I

100000 [
° oooor

100081: `
1 2 3 4

Iteration Number

Fig. 5. Size of relation R i.

258 M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262

If the minimum support is small enough (~ 0.1%), the size of relation R i can first increase
and then decrease. But the general trend is that the size relation R i decreases. For large values
of minimum support, IRil decreases quite rapidly from the first iteration to the second. This
sharp decrease is delayed somewhat for the smaller values of minimum support. Hence, using
small values of minimum support allows us to obtain more rules. In general, it also allows us
to obtain rules with more items in the antecedent. For example, if the minimum support is
reduced to 0.05%, we obtain rules with 3 items in the antecedent.

We expect the C~ (count) relations to be small enough to fit in memory. We now study how
the cardinality (ICi]) of these relations varies with iteration number. Fig. 6 shows curves for
different values of minimum support. The values of]Ci] measure the number of item
combinations that could garner enough support. We observe that for small values of min imum
support the value of I C~] increases initially before decreasing with later iterations. Since I Cil is
a measure of how many rules can possibly be generated, we again see the importance of
handling small values of minimum support in a timely fashion. The maximum size of the rules
is 3, hence in all cases IC41 = 0. Also, the starting relations are the same and hence IC~] = 59
for all minimum support values.

6.2. Execution times

We now measure the execution times of our set-oriented algorithm SETM for various values
of the minimum support. As we saw in Section 6.1, the interesting values of minimum support
are the small values. For large values of minimum support (greater than, say, 5%) very few
rules are obtained, and the rules tend to have small antecedents and be uninteresting. Hence,
we vary the minimum support from 0.1% to 5%. The execution times are shown in Table 1.

400

300

._~

o
~ 20O
e -

o
o

100

60
30

0

\ .- . o,%j
\ " - ° o.so/o I
\ - - , , 1O/o I
\ - - . 2°,'o I

° ° ,o,,, I

1 2 3 4
Iteration Number

Fig. 6. Cardinality of C,.

M. Houtsma, A. Swami Data & Knowledge Engineering 17 (1995) 245-262

Table 1

Minimum support Execution Ume
(%) (seconds)

259

0. l 6.90
0.5 5.30
1 4.64
2 4.22
5 3.97

We see that algorithm SETM is very stable. The execution time varies from ~7 secs for
0.1% minimum support to =4 secs for 5% minimum support. By contrast, the algorithm
described in [4] had a running time of 2 minutes 53 seconds for a minimum support of 0.1%.

6.3. Scaling with transaction file size

In order to see how Algorithm SETM scales with the transaction file size, we replicated the
transaction file a number of times and ran the algorithm on the scaled files. Since all the
transactions are replicated, the support counts as a fraction of number of transactions do not
change. Hence, the rules obtained are identical with those obtained when the file is not
replicated.

In Fig. 7, we show the effect on execution time of Algorithm SETM when the transaction
file is replicated 1 to 5 times. We show three different curves for minimum support values of
0.1%, 0.5% and 1%. We observe that Algorithm SETM scales linearly with the transaction file

I i I I 1

32 I'-" °.1%1
28 I °5%1 / "

.~ 16

~ 12
LU

8

4

0 I T N i

1 2 3 4 5
Replication Degree

Fig. 7. Execution time of SETM for different replications of the transaction file.

260 M. Houtsma, A. Swami / Data & Knowledge Engineering I7 (1995) 245-262

size. This is important when the algorithm is used to mine association rules
databases,

for large

7. Reducing response time

We see that the running time of algorithm SETM (a few seconds) is good enough to
facilitate interactive rule discovery. We now describe some optimizations that can be used if
further reductions in response time are desired.

Pipelining between the different steps can be used to great advantage in algorithm SETM,
especially when the steps involve access to external storage. The output of the step that
applies the minimum support constraint can be piped to the step that sorts the resulting
relation in (rid, items) order. This optimization saves writing and reading relation R i once for
each i > 2. The output of the final merge of the step that sorts on (rid, items) can then be piped
to the step that joins relation R i with the initial relation. This optimization saves writing and
reading relation Ri once for each i/> 2. The result of the join can be piped to the step that
sorts the join result by items, saving a read and write of the join result for all the joins. The
output of the final merge of the step that sorts on items can be piped to the step that applies
the minimum support constraint, saving another read and write of the join result for all the
joins.

An attractive feature of algorithm SETM is that it offers opportunities for parallelism that
can be implemented easily. Clearly, all the steps that involve sorting can be parallelised using
any of the existing parallel sorting techniques (see, for example, [11, 24]). Applying the
minimum support constraints can easily be parallelised. The only requirement on the
distribution function is that all the tuples containing a particular pattern are sent to the same
processor. Both hash and range functions for distributing tuples meet this requirement. The
join step can be parallelised by replicating the initial relation among the processors and
fragmenting the relation R k. We can use any distribution function including the round robin
distribution function.

A straightforward scheme for parallelizing algorithm SETM is as follows. The transactions
are distributed in round robin fashion amongst the processors. Each processor performs a
single iteration of the algorithm on its local data in order to generate the counts obtained from
the local transactions. One processor acts as a coordinator. The local count relations are sent
to the coordinator. The coordinator combines the local count relations to form the global
count relation and applies the minimum support constraint. The global count relation is then
broadcast to all the processors. After receiving the global count relation, the processors can
continue their processing and generate the local counts for the next iteration and so on, until
the global count relation is empty. The coordinator stores all the global count relations, which
can then be processed in the usual way to generate the rules.

We thus see that there are many opportunities for reducing the response time for algorithm
SETM even further. The techniques used are primarily pipelining and use of parallelism. Such
techniques are easily used because the algorithm SETM is set-oriented and can be applied
orthogonally. The basic simplicity and ease of implementation of the original algorithm is still
retained.

M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262 261

8. Conclusions

In this paper, we have investigated a set-oriented approach to mining association rules. The
algori thm is s t r a igh t fo rward -bas i c steps are sorting and merge scan j o i n - a n d could be
implemented easily in a relational database system. The algorithm is easily ex tended to
genera te rules with multiple items in the consequent .

Not only is the algorithm simple, its per formance is remarkable . It exhibits very stable
behavior , with execution time almost insensitive to the chosen min imum support. For a
real-life data set, execution times are on the order of 4-7 seconds. We fur ther indicated
several optimizations for disk-based environments. We have shown how the algorithm can be
parallelized easily and outl ined such a parallel implementat ion. The simple and clean form of
our algorithm makes it easily extensible and facilitates integration into a (interactive) data
mining system.

It may be noted that the approach we have taken is similar to work on set-or iented
processing of recursive queries (see e.g. [7]), in particular work on transitive closures. Indeed ,
we have expressed our algorithms in recursive SQL as supported by the Starburst system [14].

We are currently investigating additional uses of algorithm SETM. For example, it is
possible to use algorithm SETM not only for finding association rules, but also for
classification purposes. Given a relation CUSTOMER(c id , age, income, elevel) for which the
at tr ibutes can be discretized, we may 'denormalize ' the relation to get tuples of the form (cid,
age-group-encoding), (cid, income-group-encoding) and (cid, elevel-group-encoding) and
execute algorithm SETM on the set of tuples thus obtained. This will result in a meaningful
classification: if the support for a pat tern is large enough, we have identified a relevant class.
Finally, the next plausible step is to refine rule generat ion by generat ing rules per class of
customer.

Acknowledgements

We thank Rakesh Agrawal and Bill Cody for their comments on the paper.

References

[1] R. Agrawal, C. Faloutsos and A. Swami, Efficient similarity search in sequence databases, in: Proc. Fourth
Int. Conf. on Foundations of Data Organization and Algorithms (Springer-Verlag, Berlin, Oct. 1993) 69-84.
Lecture Notes in Computer Science, V303.

[2] R. Agrawal, S. Ghosh, T. Imielinski, B. Iyer and A. Swami, An interval classifier for database mining
applications, in: Proc. Eighteenth Int. Conf. on Very Large Data Bases, Vancouver (August 1992) 560-573.

[3] R. Agrawal, T. Imielinski and A. Swami, Database mining: A performance perspective, IEEE Trans.
Knowledge and Data Engineering 5(6) (Dec. 1993) 914-925, Special issue on Learning and Discovery in
Knowledge-Based Databases.

[4] R. Agrawal, T. Imielinski and A. Swami, Mining association rules between sets of items in large databases, in:
Proc. ACM-S1GMOD Int. Conf. on Management of Data, Washington, DC (June 1993) 2(17-216.

262 M. Houtsma, A. Swami / Data & Knowledge Engineering 17 (1995) 245-262

[5] T.M. Anwar, H.W. Beck and S.B. Navathe, Knowledge mining by imprecise querying: A classification-based
approach, in: IEEE 8th Int. ConJ~ on Data Engineering, Phoenix, Arizona (1992).

[6] D. Shepard Associates, ed., The New Direct Marketing (Business One Irwin, Homewood, IL, 1990).
[7] F. Cacace, S. Ceri and M.A.W. Houtsma, A survey of parallel execution strategies for transitive closure and

logic programs, Distributed and Parallel Databases 1(3) (Oct. 1993) 337-382.
[8] J. Catlett, Megainduction: A test flight, in: 8th Int. Conf. on Machine Learning (Morgan Kaufman, June

1991).
[9] P. Cheeseman, Autoclass: A bayesian classification system, in: 5th Int. Conf. on Machine Learning (Morgan

Kaufman, June 1988).
[10] G. Cooper and E. Herskovits, A bayesian method for the induction of probabilistic networks from data, in:

Machine Learning (1992).
[11] D.J. DeWitt, J.F. Naughton and D.A. Schneider, Parallel sorting on a shared-nothing architecture using

probabilistic splitting, in: Proc. 1st Int. Conf. on Parallel and Distributed Information Systems (Dec. 1991)
280-291.

[12] D.H. Fischer, Knowledge acquisition via incremental conceptual clustering, in: Machine Learning (1987).
[13] J. Han, Y. Cai and N. Cercone, Knowledge discovery in databases: An attribute-oriented approach, in: Proc.

Eighteenth Int. Conf. on Very Large Data Bases, Vancouver (Aug. 1992) 547-559.
[14] M. Houtsma and A. Swami, Set-oriented mining for association rules, Technical report, IBM Research

Division, Oct. 1993, IBM Research Report RJ 9567.
[15] R. Krishnamurthy and T. lmielinski, Practitioner problems in need of database research: Research directions

in knowledge discovery, ACM-SIGMOD Record 20(3) (Sep. 1991) 76-78.
[16] P. Langley, H. Simon, G. Bradshaw and J. Zytkow, eds., Scientific Discovery: Computational Explorations of

the Creative Process (MIT Press, 1987).
[17] D.J. Lubinsky, Discovery from databases: A review of AI and statistical techniques, in: IJCAI-89 Workshop

on Knowledge Discovery in Databases (1989) 204-218.
[18] R.S. Michalski, L. Kerschberg, K.A. Kaufman and J.S. Ribeiro, Mining for knowledge in databases: The

INLEN architecture, initial implementation, and first results, J. Intelligent Information Systems 1 (1992)
85-113.

[19] J. Pearl, ed., Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference (Morgan
Kaufman, 1992).

[201 G. Piatetsky-Shapiro, Discovery, analysis, and presentation of strong rules, in: Knowledge Discovery in
Databases (AAAI/MIT Press, 1991) 229-248.

[21] G. Piatetsky-Shapiro, ed., Knowledge Discovery in Datbases (AAAI/MIT Press, 1991).
[22] J.R. Quinlan, Induction of decision trees, Machine Learning 1 (1986) 81-106.
[231 S. Tsur, Data dredging, 1EEE Database Engineering Bull 13(4) (Dec. 1990) 58-63.
[24] H.C. Young and A. Swami, A family of round-robin partitioned parallel external sort algorithms, Technical

report, IBM Research Division , Nov. 1992, RJ 9014.

Maurice A.W. Houtsma is a senior
member scientific staff at the Tele-
matics Research Centre, where he is
responsible for coordination of re-
search into multimedia, computer
supported co-operative work,
heterogeneous systems, and public
information systems. From 1992 to
1994 he held a position as research
fellow of the Royal Netherlands
Academy of Arts and Sciences, at the
University of Twente. In that posi-
tion he studied topics like distributed

and parallel databases, replicated data, data mining, and
geographical information systems. He spent several months
as visiting researcher at Stanford University and at IBM
Almaden Research Center, to co-operate with other re-

searchers on those topics. His Ph.D. Thesis appeared in 1989
at the University of Twente, on data model and query
processing in data and knowledge base management systems.

Arun Swami received his B.Tech. degree in Computer
Science and Engineering from the Indian Institute of Tech-
nology, Bombay (1983), his M.S. degree in Computer
Science (1985) and his Ph.D. degree in Computer Science
from Stanford University (1989). From June 1989 to July
1994, he was a Research Staff Member at the IBM Almaden
Research Center. He is currently at Silicon Graphics Com-
puter Systems. Arun's technical interests include query
optimization, random sampling, and parallel processing in
database systems. He is now doing research and development
in the emerging area of database mining. He has published
extensively in these different areas of research and has
patents and patent applications for work in these areas.

