Microprocessing and Microprogramming 34 (1992) 59-62
North-Holland

B3

On the design of a dynamic reconfigurable network switch

Gerard J.M. Smit, Paul .M. Havinga. Pierre G. Jansen

University of Twente, Dept. of Computer Science
P.0. Box 217, 7500 AE Enschede, the Netherlands
¢ mail: smit@cs.utwente.ni

Keywords: Kautz graphs, programmable architecture, net-
work switch, Ficld Programmable Gate Array (FPGA).

1. Introduction

In this paper we will present a reconfigurable network
switch for multi-computer systems. A multi-computer sys-
tem is detined as a collection of linked node computers
(abbreviated as nodes), in whick the nodes communicate via
message passing {Dally 87]. As a communication network
for our system we nse a Keutz network [Kautz 68).

Euch node consists of three atonomous sub-systems: a
Computation Processor (CP) with lacal memory, a Router
(R} and a Network Switch (NS). The Computation Processor
is a standard off-the-shelf type of processor that executes
application programs. The Router provides the interface to
other nodes and impl the cc ion protocol.
The routes in the network are generated by the Route Gen-
erator (RG) [Smit #1b] which is part of the Router. The Net-
waork Switch and Router are implemented with Field Pro-
grammable Gate Array (FPGA) technology [Xilinx 91]. In
this technology the gate arrays can be re-programmed an
unlimited number of times. Egsential in our approach is that
FPGAs are used as dynamic programmable units, which
function can be changed on-the-fly under program control.
Therefore they can be used in designs where hardware is
chunged dynamicaily, or when hardware ntust be adapted to
different user applications.

In order (o provide fuli connectivity in a network of comput-
ers, ruuu% mechanisms must be used. These mechanisms
fy a number of requirements such as: irce of dead-
locks, no starvation, low latency and high throughput. Well-
known routing mechanisms are store-and-forward, worm-
hole routing, virtual cut-through. When a message in the net-
work is unable to proceed because some resource it needs is
held by other messages (collision) some wction has to he
taken. Possible options are: blocking the message, buffering
the message prior to the node where the coilision aceurs,
dropping and retransmission of the messagz, or misrouting
the messape to a free link. It is known that some of these
solutions have a potential danger of deadlock. There are a
number of T for avoiding ct ion dead-
locks in networks. Most techniyues such as virtual networks
and class climbing, are based on breaking loops in the
dependency graph [Dalty 87]. Dropping and refransmission

of messages is inherently free of deadlocks. This Jast
method, also ealled the method of the nosy worms {Who-
biey 8R), is used in the configuration presented in this paper.
The method of misrouting as used in the Connection-
Machine is not applicable, because misrouting is not dead-
lock free and in case of a misroute a new route has to be
computed.

The main function of the Neswork Switch is to route mes-
sages in the communication network. The NS does not com-
pute nor change the contents of the messages. It only uses
the information in the route fietd of a message to control the
destination of that message. The route itself is computed by
the Router and the Route Generator. The NS communicates
with other switches and the Router via links. The NS man-
ages incoming ly hes the
route and passes the data of the messagea through or returns
a message if all links are busy. Because the switches are
implemented in FPGA technology, the precise message for-
mat is not fixed by design. For instance the decision for tixed
or variable length messages can be taken at a later stage in
the design process.

The Router assembles outgoing messages, sends these mes-
sages to the NS and handles incoming messages. The data of
the messages generally comes from and goes to the local
memory. The Router interacts with the memory without
intervention from the CP. The Roure Generator. 2 sub-urit of
the Router, is a logic unit that generates the d node disjoine
routes of a Kautz graph, given a source and a destination
node (see scction 2). If the NS of the source reports that a
message did not reach the destination {due to congestion or
link/oode failures), the Rowter reads a new route from the
Route Generator and assembles a new message. If all node
disjoint paths have been tried the CP is informed. The CP
can decide to try again later after a random delay [Whabrey
8]

2. Kautz networks

We vse Kautz networks in our project because these net-
works have interesting properties [Bermond 89]. Particu-
farly. they interconnect considerably more nodes than the
usual topologies. and they have @ small diameter. and a small
and fixed degree. Furtheemore the; ly fault tolerant,
admit setfrouting and trd computation

€0 G.J.M. Smit et al.

eraphs. Imase [Innse 86] showed the exisience ol d node
d:xlmnl pd(h\ between any pair of nodes in a Kautz graph of
N = d*+ d*! nodes. These propertics makes Kautz graphs
suitable as an interconnection network for large scaie paral-
lel computer systems.

Dcfinition of Kaurz graphs [Kautz 68].

</
=

Fig. 1: Example of a Kautz graph (K(2.3)).

The Kantz digraph K(d.kj with in-degree and out-degree d
and diameter K is the digraph whose vertices are labelled
with words (x.....x,) of fength k from an alphabet of u+1
fetters by removing those words in which there are two con-
seculive identical letters (x; = x;, 1. Jur | <isk-1). There is
an arc from a veriex x to @ vertex y if and only it the last
k-1 letters of x are the same as the first k-1 tetters of y.

A straightforward gencric route of fength k can be found by
simple concatenation of source and destination word. How-
ever there may be roules with fength < k [Smit 91a].

Example § (see fig. 1)

In the graph we find the route Rg = < 120201 > from
(120310 {201} via node (202) and (020). This route has
length 3 (= ki

The shortest route is Rs = < 1201 > of fength 1.

‘Fable 1 compares Kautz digraphs with “de Bruijn® digraphs
{de Bruijn 46] and the binary hypercube [Hillis 85]. [Scitz
85]. The de Bruijn digraph has been selected because its det-
inition is closely refated to Kaulz digraphs.

The diference between a de Bruijn digraph B(d.k) and a
Kaute digraph K(d.kY is that in a de Bruijn digraph two con-
seeutive letters in the word representing a particutar vertex
ma be equal. As a consequence. this digraph contains self
faops.

d=k=4 number of m)du
hypercube 10
de Bruijn - 10 729
Kauw 24 972 81920

Table 1.: Number of nodes of some graphs.

Note that for the de Bruijn and Kautz digriaphs the out-de-
gree and in-degree are hall the degree mentioned in the -
hus i Koot digraph with in-degree and out-degree 4
and a digmater of 8 connects 81920 nodes. which is signifi-

cantly more than the 256 nodes in a hypereube,

The Router Generator as described in [Smit Y1b] gencrates
the d node disjoint routes with increasing iength . The routes
are as short as possible and free of loops.

3. The Network Switch

A designer of communication systems for multi-computers
is faced with conflicting demands. due to varying applica-
tion requirements, fast changing technology, ete. Experi-
ences with existing parallel machines and simulations have
shown far instance that not one single routing mechanism is
optimal for all kinds of applications. In the case of low or
medium communication traffic, circuit switching or worm-
hole routing seem to have advantages over store-and-for-
warding. But in case of irtensive communication as for
instance due to frequent broadeasting, the store-and-forward
mechanism is more adequate {Seidel 89). If a communica-
tion network is designed with full-custom VLS compo-
nents, the designer is forced to make crucial decisions early
in the design proc

In our design the Network Switch and Router are imple-
mented with Field Frogrammable Gate Array (FPGA) tech-
nology. This lechnology aitows the gate arrays Lo be repro-
grammed for an unlimited number of times. Theretore they
are suited for designs in which the functions of the hardware
necds adaptations in order to meet changing application
requirements. This has a number of advantag ch as:

- The selection of the most suitable communication mech-
anism can he postponed 1o a later stage of the design.

- The system designer or application programmer can
‘esign application specific communication primitives
and mechanisms, Knowledge of the communication
structure of the computation can be used to tune the net-
work to the requirements af the compulation on-the-fly.

- Due o its iexibility the system can be used in a wide
variety of applications. ranging from high speed compu-
tations to dedicated real-time applications.

- The design eyele of FPGAs is very short. Minor design
changes can be made instantancously.

- Thecost ol u prototype is very low. FPGAs are standard
components, no design costs lor full-custom compo-
nents.

11 this paragraph we present a possible Network Switch cni-
figuration. The most important design decisions are:

- Uni-directional inks of 12 bits wide.

- W have chosen a fived network topology and a lixed
uember ol wires for cach link becagse we cannot change
the physical wiring of the system dynamically,

- Weuse worm-hole rewting [Dally 87]. This type of rout-
ing suits well to routing in Kautz networks and gives o
fow atency. As soon s a Network Switeh rewds the
header of w message. containing the roate information, it

A dynamic reconfigurable network switch B1

selects the neat lnk on the route and forwards the

remaining part of the message down that tink. Each NS

consumes oae byte of the route.

To avoid deadlock we use the nosy worms protocol

[Whobrey 88]. If a message is blocked it is recoiled to

the source. Because a Kautz network has d node-disjoint

routes we expect that the probability of a collision is
acceptable.

- Asthe amount of memory in a FPGA is relatively small
the store-and-forward routing mechanism seems less
obvious. Although the local memory could be used as a
bufferspace for store-and-forward routing. Store-and-
forward has a latency that is propartionat to the product
of packet length and number of hops. So worm-hole
routing or virtual cut-through are more appropriate for
our system.

- All Network Switches synct.ronize with each other via
twao synchronization signals per link.

A message consists of: a route field, a variable length data
field and an End Of Data marker. The route fieid of the
packet defines precisely the route the message takes from
source to destination.

As soon as a NS reads whe header of a message, containing
the route information. it selects the next link on the route,
“consumes” the vsed route information and forwards the
remaining part of the message down that link. However, if
the output link is occupied it returns a negative acknowledge
{NACK). Each NS between source and destination con-
sumcs one byte of the route until the message arrives at the
NS of the destination. Now the route field of the message is
empty and the message is delivered at the Router of the des-
Lination, The end of the data is indicated with an End OF
Data (EOD) mark.

We assume that the Router of the destination never refuses
an incoming message forever.

If the Router of the source receives a NACK (due 10 congy
tion or link/node failures). the Router assembles a new mes-
sage with another node disjoint route. 1t all node disjoint
paths have been tried, the CP is notified.

4. implementation

Fig. 2 shows the internal structure of the dati-path of the
Network Switch. The switch has 3 input and 3 output links.
One of the input links and one of the output links is con-
neeted o the Router. With this swilch several physical net-
works with in-degree and out-degree 2 can be buill, such as:

lorus. mesh. deBruijn networks and Kautz networks. A link

‘7——‘7 T
in0) 1} auto
— = d ﬁ—b
A ‘-—“‘
. [ourt
inl) f‘ fouy
in2l oul

Fig. 2: Internat structuie of the Network Swilch.

consists of the following 12 uni-directional signals: 8 data
bits, 1 type bit. a NACK signal and 2 synchronization sig-
nals (cl; and cla;). The type bit is used to indicate the start of
a message and the end of the message (EOD). The NACK
signal goes in the direction opposite to the data.

In the oresented system we use an externally asynchronoues
and internally clocked design methodology.

b &
Gntermal) -~ 7 Sy
clock ! "
» -
Cly & T & ...
ey inlinks outtinks .
clay i . Lt
T [e 3
! e
oy i i chy
B Muller-C 3 [
cta, o L Muller [‘ d,
<l '3 h3 chig
: { T !
clia | =
s {internalyclock cly
Fig. 3: State diagram and block diagram of a

Muller-t” element.

The design pracess of synchronous circui
compared to the design of asynchronous circuits, \Inru\\ R,
the structure of FPGAs suits well o synchronous designs.
However in large scale multi-computers there is a ditticult
and often underestimated problem of clock distribution. In
our design we found a compromise that invokes the advisa-
tages of hoth the synchronous and asynchronous desizn
methodologies. but without many ol their disadvantages.
From the perspective of the external world such a systzm
aperates asyachronously but ‘s internal clock is driven fol-
lowing a specific handshake protocol [Tinder 91 in this
way the problem of clock skew cin be iz oide,
cloek is generated by a Muller-C clement, also ¢
dezvous Module

"he internal
led “Ren-
- AlLinternal registers are clocked on the

62 G.J.M. Smit et al.

ristag edge of the inerned clock. The synchronization works
as follows: the Muller-C clement of a switch receives the
clock signals (ck) of all neighbor switches (see fig. 3). When
all clock signals are asserted it negates the internal clock.
This signal is also sent as an acknowledge (clay) to all its
neighbors. If a C element has received all the acknowledges
(all cl; signals ncgated) it asserts the internal clock and so the
cla; signals sgain_ T assure the correct synchronization of
the switches all switches must respond to the assertion and
negation of the cl; signals of the neighbors even if they have
nothing to send.

5. Realization

The above mentioned network switch configuration has
heen realized with a XC3042 Field Programmable Gate
Array of Xilinx [Xilinx 91]. It uses a decentralized control,
so six bytes can be handled simultaneously by a switch in
one “clock evele™. Table 2 gives some resulis of the realiza-
tion. The clock speed is derived from the output of the hard-
ware simulator of Xilinx. The implementation was first
described in VHDL and then simulated. After that th
was automatically synthesized by the VHDL. synth
trom Viewlogic | Viewlogic 90]. Due to the high level spec-
ification in VHDL and the powerful synthesiver. the whole
design process took only 3 weeks. We expect that the speed
of the switch can be improved significantly by a careful
(manual) redesign.

Number of CEBYs used: 120
Number of (O pins used: 73
Number of logic fevels used: 4
Maximunt “clock™ speed: 10 Mhz.
Transfer rate per link: 80 Mbit'sec.

ivailable: 144
available: 96

Table 2: Resulis of a realization with a XC3042 FPGA.

6. Conclusion

In this paper we have presented the design of a Network
Switch for a multi-computcr. It can efficiently support dif-
ferent stvles of communication. such 25 worm-hole routing,
store-and-lorward routing and virtual cut-through. Each
node of the multi-compeier consists of three autonomous
subsystems: the Computation Processor, the Router. and the
ch. The Router and the Network Switch are
imnlemented with FPGA technology. This impiies that the
svsterm designer can after the communication mechanism.
even in hetween the execution of two application programs,
ation network is hascd on a Kautz topology.
Kautz graphs form a class of interconnection networks with
imeresting properties such as: small diameter., large number
of nodes (N = d* + d*1). the depree is independent of the
network size. the network is fault-tolerant, it can embed
standard computation graphs und has a simple routing algo-

LA Contiguzable Legse Biock (CLI3) conens programaable combi-

iz

Tngic and Iwe sorage fepisiers

The presented network switch uses worm-hole routing, and
a simple deadlock avoidance protocol. Worm-hole routing
suits well to routing in Kautz networks and gives a low
latency. All Network Swiiches synchronize with each other,
such that a global clock is not required.

Processors communicate with non neighboring nodes
directly without involving the Computation Processor and
Routers at the intervening nodes.

Referances

{Bermond 89] Bermond J.C., Homobono N., Peyrat C.:
“Large Fault-Tolerant Interconnection Networxks”,
Graphs and Combinatorics, 1989,

{Dally 87] Dally W.J.: “A VLSI Aschitecture for Concurrent
Data Structures™, Ph.ID. thesis, Computer Scicnce,
California Institute of Technology, 1987.

{de Bruijn 46] de Bruijn N.G.: “A combinatorial problem™;
Koninklijke Nederlandse Academic van
Wetenschappen Froce. A49, pp 758-764; 1946.

[Hillis 85] Hillis W.D.: “he connection machine™; The
MIT press; 1985.

, Soneoka T.. Ckada K. “A fault-
tolerant processor interconnection network” (originat
in Jupanese), tranclated in Systemns and Computers in
Japan, vot 17, no & pp 21-30, 1986.

{Kautz 68] Kautz W.H.: “Bounds on directed (d.k) graphs.
Theory of cellular logic networks anit machines”,
AFCRL-68-0668 Final report, pp 20-2%, 1968,

[Seitz85] Seitz C.L.: “The cosmic cube™; Comn, ACM, Vol
28, no 1, jan. 1985,

[Smit 91a] Smit GJ.M.. Havinga PJML, Jansen P.G.: “An
algorithm for generating node disjoint routes in Kaitz
digraphs™, Pioccediags Fifth International Paralle)
Processing Symposiam, pp. 102-167, May 1991,

{Smi1t 91b] Smit G..M., Hawvinga PLM., Jansen P.G.. de
Boer F.. Molenkamp V.. “On hardware for generatisg
routes in Kautz graphs™. proceedings Euromicro91,
1991,

[Tinder 91} Tinder R.F.: *Digitai Engineering Design, A
Mudern Approach™, pp. 638-646. Prentice Hall, 1991,

[VHDL. 87] “VHDL Language Reference Manual™, IEEE-
STD-1676-1987, IEEE Computer Society.

| VIEWIogic 90] ~VHDIL-Desigaer User™s Guide™,
VIEWlogic Systems. Inc. April 1990,

[Imase Bo] imase M.,

[Whobrey 88] Whobrey D.: A communications chip for
multiprocessors™. Prac. CONPAR &8 pp 464-473,
1988,

{Xilinx Y1] ~The Programmuble Ge
Xilinx Inc.. 1991,

2y Data Book™,

