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Abstract 

In this paper a new order recursive algorithm for the efficient 9B-l factorization of Toeplitz matrices is described. 
The proposed algorithm can be seen as a fast modified Gram-Schmidt method which recursively computes the 
orthonormal columns si, i = 1,2, . ,p, of 1, as well as the elements of W- I, of a Toeplitz matrix X with dimensions 
L x p. The 2 factor estimation requires 8Lp MADS (multiplications and divisions). Matrix 9-l is subsequently 
estimated using 3p2 MADS. A faster algorithm, based on a mixed 9 and W- ’ updating scheme, is also derived. It requires 
7Lp + 3.5~~ MADS. The algorithm can be efficiently applied to batch least squares FIR filtering and system identifica- 
tion. When determination of the optimal filter is the desired task it can be utilized to compute the least squares filter in an 
order recursive way. The algorithm operates directly on the experimental data, overcoming the need for covariance 
estimates. An orthogonalized version of the proposed _?2W-’ algorithm is derived. Matlab code implementing the 
algorithm is also supplied. 

Zusammenfassung 

In dieser Arbeit wird ein neuer ordnungsrekursiver Algorithmus zur effizienten Z!g- ’ Faktorisierung von Toep- 
litz-Matrizen beschrieben. Der vorgeschlagene Algorithmus kann als schnelle Modifizierte Gram-Schmidt-Methode 
betrachtet werden, bei der die orthonormalen Spalten di, i = 1,2, . . . ,p, von 9 sowie die Elemente von W- ’ einer 
Toeplitz-Matrix .% mit der Dimension L x p berechnet werden. Der 9-Faktor wird mit einem Aufw&d von 8Lp MADs 
(Multiplikationen und Divisionen) geschgtzt. Die Matrix W- ’ wird fortlaufend unter Anwendung von 3p2 MADs 
geschltzt. Weiterhin wird ein schnellerer Algorithmus abgeleitet, der auf einem gemischten 9 und W- ’ Aktualisierungs- 
schema basiert. Er erfordert 7Lp + 3.5~~ MADs. Der Algorithmus kann effizient zur Echtzeit Least-Squares FIR- 
Filterung und Systemidentifkation benutzt werden. Wenn die Bestimmung des Optimalfilters verlangt ist, kann er zur 
Berechnung des Least-Squares-Filter in ordnungsrekursiver Form herangezogen werden. Der Algorithmus arbeitet 
direkt mit Hilfe der experimentellen Daten und vermeidet die Schiitzung der Kovarianz. Es wird eine orthogonalisierte 
Version des vorgeschlagenen 499- ’ Algorithmus abgeleitet. Eine Matlab Implementierung des Algorithmus wird 
angegeben. 

Rbumiz 

Dans cet article, un nouvel algorithme rtcursif d’ordre permettant une factorisation 1@- ’ efficace des matrices de 
Toeplitz est dCcrit. L’algorithme propost: peut &tre vu comme une mCthode rapide de Gram-Schmidt Modifit: laquelle 
calcule rCcursivement les colonnes orthonormales li, i = 1,2, , p, de 9 ainsi que les iltments de W- ’ d’une matrice 
X de Toeplitz de dimension L x p. Le facteur 9 est estimC en terme de 8Lp MADS (Multiplications et Divisions). La 
matrice W - ’ est estimte ultkrieurement en utilisant le MADS 3~‘. Un algorithme plus rapide basi: sur un schCma de 
rafraichissement mixte de 9 et de W-’ est Cgalement dtcrit. I1 nCcessite 7Lp + 3.5~~ MADS. L’algorithme peut Ctre 
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efficacement applique pour le filtrage au moindre carris FIR. Lorsque la determination du filtre optimal est l’objectif 
desire, il peut &tre utilise pour calculer le filtre au moindre carre dune maniere recursive. L’algorithme utilise directement 
les donnees expkimentales, surmontant le besoin de l’estimation des covariances. Une version orthogonalike de 
l’algorithme 2292-i est derivte. L’implementation Matlab du code est Cgalement donnte. 

Keywords: Least squares estimation; QR factorization; Efficient algorithms 

1. Introduction 

In this paper a new order recursive algorithm for the efficient .SL% ’ factorization of a Toeplitz matrix and 
the determination of the least squares solution is developed. Both topics are of general importance in a wide 
range of applications. Typical examples include the design of optimal FIR filters, linear prediction of speech, 
time series analysis, orthogonal polynomials and Pade approximation [l, 14, 18, 21, 22, 24, 253. L&S? 
algorithms have been successfully used in many signal processing applications for adaptive as well as for 
batch processing. Adaptive SW algorithms have been proposed for the efficient time update of the matrix 
factorization, taking into account the underlying Toeplitz property of the data matrix [7, 13, 17, 19, 20, 27, 
331. Efficient S& algorithms for batch (or block) processing have been derived in [4,6,8, l&12, l&28,29, 
311, where in most cases, order updating schemes that take into account the Toeplitz structure are utilized. 

The proposed 2a-i factorization algorithm is a batch processing technique. It applies to a block of data 
and operates in an order recursive way. From this perspective, it can be utilized for the batch least squares 
FIR filtering and system identification. It can be formulated in the following way. Given an input x(n) E ‘$I 
and a desired response y(n) E 3, over an observation interval n E [M, N], M < N. We seek to determine the 
optimal filter of order p, cp = [c(i)]i,1, ,,,,,, that minimizes the error norm [l, 22, 24, 321 

where b(M, N) is the input data matrix of dimensions (N - M - p + 1) x p, 

X(M, N) = 

x(M+p-1) x(M+p-2) ... x(M + 1) x(M) 

x(M + P) x(M + p - 1) 1.. x(M + 2) x(M + 1) 

x(M + p + 1) x(M + p) ... x(M + 3) x(M + 2) 

x(N - 1) x(N - 2) ‘.. x(N - p + 1) x(N - P) 

x(N) x(N - 1) ... x(N-p+2) x(N-p+l) 

(1) 

(2) 

and Y(M, N) is the desired response data vector of dimensions (N - M - p + 1) x 1, 

y(M, N) = Cy(M + P - 1) y@f + PI . . . ~0’ - 1) y(N)lT. (3) 

Matrix X(M, N) is Toeplitz. Minimization of (1) with respect to cp leads to the linear system (4), the so-called 
normal equations 

S(M, N)T b(M, N) cJM, N) = - LX(M, N) Y(M, N). (4) 

The optimal filter of order p is then obtained as the solution of (4), 

q,(M, N) = - (tt-(M, N)=S(M, N))-’ c‘T(M, N) Y(M, N), (5) 
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and the residual error is given by the formula 

E#4, N) = (ZP - X(M, N)(%(M, N)TX(M, N))- l fqkf, N)) Y(M, N). (6) 

Eq. (5) provides an algorithm for computing the optimal parameter vector cP. The Toeplitz structure of 
S(M, N) gives rise to the use of efficient methods for the solution of the normal equations. Several fast, order 
recursive algorithms exist that solve (5) using 2Lp + O(p2) MADS [S, 16, 23, 261. Throughout this paper, 
abbreviation MADS means (M)ultiplications (A)nd (D)ivisions. 

An alternative methodology for determining c,, is based on the SW factorization of the data matrix 
.%?Y(M, N). Z!@ methods are discussed for their superior performance over the normal equations approach, 
especially in badly conditioned problems. Fast =%‘a algorithms have been derived by taking into account the 
Toeplitz structure of %(M, N) [4, 6, 8, l&12, 15, 28, 29, 311. Algorithms [4, 6, 28, 311 are based on fast 
Cholesky factorization methods. In [lo] an algorithm is derived, utilizing a Toeplitz embedding technique 
and the method described in [8]. It computes the Z2 factor and the inverse BP’ using 9Lp + 13.5~~ MADS 
with L = N - M + p - 1 being the leading dimension of S(M, N). Similarly, [12] uses a Toeplitz embed- 
ding and a generalized Levinson algorithm to derive a scheme for the factorization of the data matrix. It 
requires 7Lp + 7p2 MADS for the estimation of the d factor. W- ’ can subsequently be estimated using 3p2 
MADS, thus resulting in an overall 7Lp + lop2 MADS. 

The proposed method operates directly on the data matrix. It performs a fast modified Gram-Schmidt 
algorithm on fi!Y(M, N). It recursively computes the orthonormal columns J&, i = 1,2, . . . ,p, of Z! as well as 
the elements of &%!-I. When the determination of the optimal filter is the desired task it can be utilized to 
compute the least squares solution in an order recursive way. The computational complexity for the % factor 
is 8Lp MADS. Subsequently, W- ’ is estimated using 3p2 MADS. Alternatively, a mixed Z! and B- ’ 
updating scheme that requires 7Lp + 3.5~~ MADS is derived. Finally, when the estimation of the optimal 
filter cP and the corresponding residual error is the desired task, 2Lp + 0.5~~ extra operations are required. 
Thus, the new algorithm is faster than existing ones. In the special case when x(n) = 0, n < M + p - 1 and 
n > N - p, the algorithm reduces to the classical lattice structure [8,29]. An orthonormalized version of the 
method is also derived, which can be viewed as a generalization of the normalized lattice algorithm [29]. 

The main advantages of the proposed algorithm over those presented in [lo, 121 are summarized as 
follows. First, orthogonalization is performed using the modified Gram-Schmidt method. Hence a nice 
numerical behavior is expected. Secondly, matrix embedding that is necessary in [lo, 121 is bypassed, since 
operations are now performed directly on fixed size columns of data matrix .!3Y(M, N). Therefore, the 
computational complexity is minimized. Finally, the internal variables of the proposed orthonormalized 
version remain bounded, thus being suitable for real time implementation on fixed point processors or 
CORDIC architectures. 

The paper is organized as follows. Definitions of the parameters used by the algorithm are given in Section 
2. The order updates of the pertinent variables are derived in Section 3. The orthonormalized algorithm is 
presented in Section 4. The Matlab code implementing the orthogonalized algorithm is supplied in Appendix B. 

2. _?2&? factorization and the linear least squares problem 

Let us define the vector X,,,(M, N), of dimensions (N - M - p + 1) x 1, 

X,,,(M,N)=[x(M+p-m) x(M+p-1-m) . . x(N+2-m) x(N+l-m)lT. (7) 

It represents the mth column of data matrix %(M, N). We then define the Toeplitz matrix .!i!?,,,(M, N), 

consisting of the first m columns of %(M, N), 

%,,t(M, N) = CX,(M, N) X,W, N) . . . Xv,W, W XnW, WI. (8) 
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Clearly, S,(M, N) = X(M, N). The projection matrix PXmcM. N) onto the subspace spanned by the columns of 
b,(M, N) is then defined as [2, 33 

.P s,(M, N) = Xmbf, N)@%‘f, N) ~“,(M, N))- 1 f&%M N), (9) 

and the projection matrix onto the orthogonal complement of the column space of f+Y,,,(M, N) is expressed as 

&_(M, N) = z - p%-_,M, N) . (10) 

The Gram-Schmidt orthogonalization theory [2, 31 states that the orthogonal columns of the % factor of 
matrix k(M, N) are obtained as 

(11) 

or 

The proposed algorithm provides an efficient way for the computation of orthogonal columns =5!i, 
i = 1,2, . . . . p - 1, using an order recursive scheme. A comparison of the computational flow graph between 
the fast 3W-’ method and the modified Gram-Schmidt technique is depicted in Fig. 1. 

The computation of the orthogonal columns 5!i is based on a set of residual error parameters that 
propagate through the algorithm. Reflection coefficients are then estimated as inner products of proper 
residual error parameters. They serve for the order recursive update of residual errors themselves, as well as 
for the recursive estimation of the least squares filters. Lower dimension filters and the corresponding 
residual errors, c,,,, Ek, b,, E& a,,,, Ei, w,, E,“, and v,, Ei, m = 1,2, . . . , p - 1, utilized by the algorithm are 
summarized in Table 1. They are all interpreted as least squares filters. Indeed, c,(M, IV), m = 1,2, . . . , p, are 
lower dimension least squares filters [32]. a,,,(M, IV) and b,(M, IV) are interpreted as optimal forward and 
backward predictors, respectively. The remaining two variables w,(M, N) and v,(M - 1, N - 1) may be 

Initialization : Q: = X,(M, N), i = 1,2,. p 

Q: Q: Q: Q; 
\ I 

Q; + & + : : : * ;; 

\ 1 
Q; + ::: --+ & 

\... JP 

\ i 

Q: 
(4 Q=[Q:Q;Q: Q;] 

Initialization : QI = XI(M, N) 

Q,-Q,-Qa-+...+Qp 

(W Q=[Q,Q,Qs . . Q,l 

Fig. 1. (a) Computational flow graph for the Modified Gram-Schmidt algorithm [2]. Orthonormal columns of 9i+ r are successively 
estimated from the predecessors di and a set of auxiliary column variables 9!, 1 < j < i. (b) Computational flow graph for the proposed 
fast 9W-’ algorithm. Orthonormal columns of 9, L& = ?2,!, i = 1,2, ,p, are recursively updated bypassing the need for auxiliary 
column variables 22:, 1 < j ,< i, required by the Modified Gram-Schmidt algorithm. 
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Table 1 

Least squares filters and residual error variables 

(a) 

Cost function Filter 

min IIX,(M, N) + %,,,(A4 - 1, N - l)a, /I 
am 

4M>N)= -~,_,~~,,.~~,,X,(M,N) 

min JIS” + Z,,,(M, N - 1) W, /I 
WI 

wnW> NJ = - XT,,,,, N ~, ,a’” 

min/IS”+3,(M-l,N-l)n,1l 
0’. 

YAM-l,N-I)= -x,,,_,,._,,S 

(b) 

Residual Power 

E;W, NJ = y;_,M,Nj ‘WJ, NJ aS,(M, NJ = (E:(M NW;W, NJ) 
Eb(M, N) = 9’ s.,M.N,Xm+L(~‘N) 
&‘. NJ = y;.,, ,, ,v ,,x, W> NJ 

&W N) = GJ$M N)&W, NJ) 

q$M N) = (E;Of, NP,I(M NJ) 
J%XM. NJ = &,, ,v , ,P a:(M, NJ = @,“(M, N),Em”(M NJ) 
E;(M - 1. N - 1) = 9” d.(M~I,N~I) 6” a;(M - 1, N - 1) = (E;(M - 1, N - l),E;(M - 1, N - 1)) 

Operator %.,,, Nj 
is defined in terms of %‘,(M, N) as Jr, (M, N, = X,,,(M, N) (S;(M N) g’,(M, N))- ’ 

viewed as least squares filters taking as desired response the b-signals 6” = [0 0 . . 0 llT, and 
6” = [l 0 . . . 0 O]‘, respectively, dim(P) = dim(B) = (N - M - p + 1) x 1. 

A simple glance at Table 1 reveals that the orthogonal columns of 22 and the backward prediction residuals 
E,f,(M, N) coincide. Thus, the 22 factor of the Toeplitz matrix .!%(M, N) takes the form 

A!(M, N) = [X,(M, N) Ef(M, N) . . . E;_,(M, N)]. (12) 

Moreover, 

.‘X(M, N).c?i?(M, N) = Z!(M, N), (13) 

where B(M, N) is an upper triangular matrix of dimensions p x p, with diagonal elements having a value 
unity defined in terms of the elements of the backward predictors, b,(M, IV), 

I 1 b:(M, N) b:(M, N) ... b;-,(M, N) 

0 1 b:(M, N) ... b;_ ,(M, N) 

0 0 1 ... b;_ ,(M, N) 
(14) 
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Clearly, from Eqs. (13) and (14) we deduce that the W factor of %(M, N) is obtained as the inverse 

B = W-‘(M, N) (15) 

or, equivalently, the inverse LB? - ’ factor is recursively estimated as dictated by Eq. (14). 

3. The algorithm 

In this section we develop appropriate order recursions for the efficient update of the least squares filters 
and the pertinent residuals. In this way, the orthogonal columns of 9 and the elements of 8-i are recursively 
computed. The derivation is based upon well known partitions of the increased order parameters that take 
into account the Toeplitz property of b,(M, N). 

Consider the increased order data matrix X’,+ 1 (M, N), of dimensions (N - M - p + 1) x (m + 1). It is 
partitioned as 

Xm+i(M, N) = Cz^m(M, N) &+,(M, WI = W,W, NJ zt”,W - 1, N - 1)l. (16) 

The increased order sampled correlation matrix, of dimensions (m + 1) x (m + l), is partitioned in the 
upper or in the lower form as 

R,+1(M,N)=~‘,T+1(M,N)X,+1(M,N) 

&Of, N) &(M N) 
Q,(M, N) r;‘(M, N) I[ doOK NJ r/,(M, NJ 

= 1 ~;~,T(M,N)R,(M-~,N-~) ’ 
(17) 

where 

&‘(M, N) = <-K,+,(M, N),X,+,(M N)), rfo(M N) = (X,(M m , N) X1(M, N)). 3 3 (18) 

We use notation (A, B) to indicate the inner product of vectors A and B, i.e. (A, B) = xi= 1 a(i) b(i), 
j = dim(A) = dim(B). 

Similarly, the increased order sampled correlation vectors, d,,,, 1 (M, N), r”,+ ,(M, N) and rf+ ,(M, N), of 
dimensions (m + 1) x 1, are partitioned as 

(19) 

(21) 

where 

&+ ,(M, N) = G’L+ ,(M, N), Y(M, N)), rib+~(M, N) = <X,(M, N),X,+i(M, N)). (22) 

Increased order parameters c,,,+~, Ek+l, b,+l, Ei+l, u,,,+~, E,f+l, w,,,+~, E,“+, and u,,,+~, Ei+l, are 
recursively computed on the basis of lower order counterparts. The proof is supplied in Appendix A, where 
order partitions of Eqs. (16H22) are coupled together with the matrix inversion lemma to produce an order 
updating scheme. The order recursive formulas for the estimation of the increased order parameters are 
summarized in Table 2. Notice that the error power variables &, ai, a: and c$ that are required by the 
algorithm can be efficiently computed in a recursive way [32], hereby bypassing the inner product operation. 
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Table 2 
Order update recursions for the least squares filters and the corresponding residual errors 

E’,, 1(M, NJ = EC,(M N + E;(M, N) k;+ l(M, N) 
k’,, 1M NJ = - PC,+,&‘, WC&K N) 
PC,+,@‘. NJ = (‘f”(M, W,E;(M N)) 

bm+ 1 (M, NJ = 
b (M-: .,,)+(a (: N))k’+l(M’Ni 

E;+,(M, NJ = E$M - 1:N - 1) + E,$f, N’) kf,, ,(M, N) 

kL+ ,W. NJ = - D’,“+ ,(M, Waf,(M, N) 
Bp+,(M N) = (X,(M, N),E;(M - 1, N - 1)) 
a:+ 1 (M. NJ = alOf, N) + b’;“, ,(M, NJ ki+ , (M, N) 

~m+I(M,N)=~((ll;N))+~(M-;‘N-l))k’+,(M,N) 

EL+ ,(M, N) = E;(M, N) + E;(M - 1, N - 1) k;+ ,(M, N) 

ki+ ,(M, N) = - b”,“+ ,(M, N)IaL(M - 1, N - 1) 
a:+ l(M, N) = aL(M - 1, N - 1) + /I:+ ,(M, N)ki+,(M, N) 

E;+, (M, N) = E;(M, N) + E;(M, N - 1) k;, 1 (M, N) 
kE+ ,(M, N) = K,+ ,(M, N)lak(M, N - 1) 
B~+,(M,N)=(6”,E~(M,N-l)) 
aZ+,(M,N)=$(M,N)-P:+,(M,N)k;+,(M,N) 

urn+ l(M - 1, N - 1) = 
u,,,W - 1, 

0 

N- 1) 

> 
+ 

l,N- 1) 

1 > 
k;+,(M - l,N - 1) 

E;+,(M - 1, N - 1) = E;(M - 1, N - 1) + E;(M - 1, N - 1) k;+,(M - 1, N - 1) 
K+,(M- l,N- l)= -K+,(M - l,N- l)/ak(M - l,N- 1) 
p;+,(M - 1, N - 1) = @“,E%(M, N - 1)) 

2~+1(M,N)=a~(M,N)+B~+,(M,N)~+,(M,N) 

The recursive scheme, developed so far for the computation of the 9 and B’-’ factors of the Toeplitz 
matrix X(M, N), as well as the computation of the least squares solution, requires the residual error vectors 
&(M, N - 1) and Ei(M - 1, N - 1) as well as filters b,(M, N - 1) and b,(M - 1, N - 1). The time shifts 
introduced can be accommodated using the matrix inversion lemma for modified matrices [ 16,241. Indeed, 
let us consider time shifted, sampled, autocorrelation matrices of order m, 

&,W, N) = &UK AJ - 1) + ~tW)it,W), (23) 

R,(M-l,N-1)=R,(M,N-1)+x,(M+p-2)xT,(M+p-2), (24) 

where data vector x,(n) is defined as x,(n) = [x(n) x(n - 1) . . . x(n - m + l)]‘. The shifted, sampled, 
backward correlation vectors are accordingly modified as 

&M, N) = &(M, N - 1) + x,(N)x(N - m), (25) 

&(M-l,N-l)=&(M,N-l)+x,(M+p-2)x(M+p-2-m). (26) 
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Table 3 

Time shifting updates for the backward predictor least squares filter and the corresponding residual error 

b,(M, N - 1) = b,(M, N) - w,,,(M, N)e;(N I M, N) 

Ef(M, N - 1) = 
QE;(M, N) - %!E;(M, N)&N 1 M, N) 

E;(NIM,N-1) I 

(,,(N I M, N) = (J”‘, E:(M, NJ), 
.$,(N I M, N - 1) = e!JN 1 M, N) az(M, N) 

E;(M-l,N-l)= 
E;(M + p - 2lM - 1, N - 1) 

@E;(M,N-l)-KE;(M-l,N-l)&M+p-2[M,N-1) 1 
cf,,(M + p - 2lM - 1, N - 1) = (&+ l(M - 1, N - 1), E;(M - 1, N - 1)) 

.$,(M + p - 2lM, N - 1) = ek(M + p - 2lM - 1, N - l)/al(M - 1, N - 1) 

Repetitive application of the matrix inversion lemma for modified matrices leads to the time shifting 
recursions for the backward predictor and the corresponding residual error. They are tabulated in Table 3. 
Operators & and 9 which appear in Table 3 are defined as 

* = K 01, fx = co, ZI, dimO=(N-M-p+l)xl. 

Variables &N 1 M, N) and &N 1 M, N - 1) appearing in Table 3 are interpreted as the backward 
a posteriori and a priori prediction errors at time instant N, based upon the backward predictor values 
b,(M, N) and b,(M, N - l), respectively. A posteriori and a priori backward prediction errors at time 
instant N are tied together as 

E;(NI M,N - l)= &(NI M, N)cr;(M,N), (27) 

where $(M, N) is the error power of least squares filter w,,,(M, N) defined in Table 1. Similarly, 
&(M + p - 2 1 M, N - 1) and .&(M + p - 2 1 M - 1, N - 1) can be viewed as a priori and a posteriori 
backward prediction errors, respectively. They are related by 

&(M+p-2lM,N-l)=&(M+p-2lM-l,N-l)/a;(M-l,N-l), (28) 

where &(M - 1, N - 1) is the error power of least squares filter u,(M - 1, N - 1) defined in Table 1. 
Moreover, it is easily seen that 

K+I(M,N) = &NW, N - 11, fi+1(M-1,N-1)=~~(M+p-21M-l,N-1). 

The recursions developed so far for the order update of the least squares filters and the pertinent residuals 
are tied together to form a fast order recursive scheme for the efficient dB_ ’ decomposition of E(M, N) and 
the determination of the optimal solution. The reflection coefficients are first estimated from the lower order 
residual errors. They are subsequently utilized for the update of the residual errors themselves as well as for 
the update of the least squares filters. 

The proposed algorithm for the efficient 93-l factorization of Toeplitz matrices and the determination of 
the least squares solution, is tabulated in symbolic format in Table 4. To simplify notation we drop the order 
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Table 4 

Fast SW-’ factorization algorithm with application to the estimation of the least squares FIR filter 

INITIALIZATION 

EC = Y(M, A’), Eb = E’ = Xl&f, N), E” = a”‘, E” = 6” 

cd =cth = (E’, Eb) 

uw = @ = 1 

MAIN PART 

FORm=OTOp-l,DO 

ebw = (SW, Eb) 

ebw = + uw 

E;= 
OEb - %E”‘eb 

ebw 1 
b,=b-web” 

EL, = 
EbU 

Q Ek + TE”ebv I 

b Mu = bN + wb” 

/P = (Eb, EC) 

p’* = (Eb M,.,, Ef > 

kc = - /F/u” 

kf = -/F/C&~ 

kb = - p**/,f 

k” = - e”“‘/@“, 

k” = - E”/&,, 

Ec=EcfEbkC 

0 

1 

L-1 

m 

L 

1 

L-l 

L 

Eb=Eb +E*kb 

E’ = E?“, ELN k’ 

E”=E”+EbkW N 

E”=E”fE;,k” 

ub = u”,, + B’* kb 

NJ = & + /jfbkJ 

u”‘=u’“-e*“‘k~ 

u”=a”+~bUkD 

END FOR m 

j!F=(Eb,Ec) 

kc = - /Flab 

kc 

m 

m 

m 

m 

L 

1 

P-l 

END MAIN 

and time indices. Boldface italic lower case letters c, a, W, u, bN, bnrn, r and d are used to indicate vectors of 
varying dimensions, starting from 1, 2 and going up to p - 1. Math italic characters are used to indicate 
scalar variables. For instance, vector b stands for the backward predictor b,(M, N), while k’ represents 
I&+ ,(M, N). Boldface italic capital letters&Y, Eb, El, E”, E”, Ei and Eb MN represent the residual error vectors, 
of fixed dimensions L x 1. EC, for example, stands for Ei(M, N). Subscript N denotes a time shift with respect 
to N, and subscript M denotes a time shift with respect to M, i.e. bN denotes b,(M, N - 1) and EkN stands for 
E;(M-l,N-1). 
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The computational complexity of the fast _%?W- ’ decomposition algorithm of Table 4 is 8Lp MADS for the 
?! factor and 3p2 for the W- ’ part. A reduced complexity mixed updating scheme can also be derived, 
utilizing the identity 

&k(M+p-21M-l,N-1) 

= (X,,,+l(M - 1, N - l), E;(M - 1, N - 1)) 

=(x(M+p-2-~)+~T,(M+p-2)u,(M-1,N-1))c~~(M-1,N-1). (29) 

The computation of the least squares filter of Eq. (1) and the corresponding residual error contribute to an 
additional amount of 2Lp + p2 MADS. 

A Matlab function called lsfqr.m, implementing the proposed algorithm for the efficient Z!g- ’ 
factorization of Toeplitz matrices and the determination of the least squares solution, is supplied in 
Appendix B. 

4. Orthonormalized 2?92- 1 algorithm 

The algorithms presented in the previous section for the efficient _.%!g- ’ factorization of the Toeplitz 
matrix S,(M, N) can be viewed as orthogonalization methods. Orthogonal matrix 3 may be directly 
normalized to produce the orthonormal matrix &, as 

i2p = 9,(.!?$ ii!,)- 1’2 

or 

3, = 3,D- ‘I’, 

where 

(31) 

Db = diag[ab,(M, N) at(it4, N) . . . I$~(M, N)]. (32) 

Similarly, 

3, = BP D- ‘I’. (33) 

An alternative method for determining the orthonormalized factorization of S,(M, N) is presented in the 
sequel. A different internal parametrization is utilized and the computation of the orthonormalized columns 
of .?& is carried out recursively. To introduce the method we define the so-called normalized filters and errors 
which are tabulated in Table 5(a). 

Consider the order update recursion that computes the increased order backward filter, b,+l(M, N) of 
Table 2. Using the normalized variables it is rewritten in the form 

B, + I W, NJ di: I 04, N) 

or 

&,+I(M, N) = C?XW N) B,(M _“1, N _ 1,) + (“-‘y N))&(M,W), 

(34) 

(35) 
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Table 5 

Normalized least squares filters and residual errors, normalized reflection coefficients and the corresponding scaling factors 

(a) 

Nomalized filters Normalized residuals 

C,(M, N) = 

B,,,(M, N) = 

A,(M, N) = 

W,(M, N) = 

?‘,,,(M - 1. N - 1) = a;“‘*(M - 1, N - 1) 

Bi(M, N) = E:(M, N)ai”*(M, N) 

$(M, N) = Ei(M, N)amb”(M, N) 

bJ(M, N) = E’(M, N)a;l”(M, N) In It! 

BI(M, N) = El(M, N)a;““(M, N) 

&l(M - I, N - 1) = Ei(M - 1, N - 1)a;“‘2(M - 1, N - 1) 

Reflection coefficients Scaling factors 

&+ I Of, N) = V:tM, N, g:W’, N) > P,+,(M,N)=(l -&,?+I(M,N))~“2 

&+ ,(M, N) = (If,@4 - 1, N - 1), dP;(M, N)) Pp+I(M, N) =(l - E$f,(M, N))- I” 

E:+l(M, N) = W:(M, N - lb I,“(M, N)) P;+,(M,N)=(l +,t;:I(M,N))-“2 

&+ ,(M - 1, N - 1) = (&;(M - 1, N - l),&;(M - 1, N - 1)) PU,+,(M-1,N-1)=(1-~+I(M-1,N-1))-”2 

where 

Pi”, 1 (M, N) = ct,:‘:(M, N) az2(M - 1, N - 1) (36) 

and 

6ib,&V, N) = c$~(M, N)k;+,(M, N)cx,~‘~(M - 1, N - 1). (37) 

The normalized backward error variables are updated in a similar way as 

&,+&‘M, N) = P;$p,,(M, N)(&(M - 1, N - 1) + &i(M, N)k?+dM, N)). (38) 

Recalling that Ei(M, N) is orthogonal to Eb,+ ,(M, N), and thus (c%‘;+ I(M, N), b#f, N)) = 0, we get 

EL: ,(M, N) = - (b;(M - 1, N - l)&,(M, N)). (39) 

Eq. (37) yields 

@+&I4, N) = - tl,,f’f(M, N)/?;$&‘M, N)GL,~“(M - 1, N - 1) (40) 
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Table 6 

Fast orthonormalized BW-’ factorization algorithm with application to the estimation of the least squares FIR filter 

INITIALIZATION 

d = (Y(M, N), Y(M, N)>-1’2 

fF = Y(M, N) ac 

a* = a’ = (X, (M, N), X1 (M, N) j- II2 

Ib = I* = X,(M, N)ab 

8” = 6”, 8” = a”, aw = a” = 1 

MAIN PART 

FORm=OTOp-l,DO 

pw = (SW, 8”) 

pw=pwaw 

pbw = (1 _ ;bwz)- 112 

BN = Pb”(B - We*“) 

E”U=(Xn,+l(M,N),d”) 

t ” = &*‘/a; 

pb” = (1 - p-w 

B MN = Pb”(BN + V?“) 2m 

rF = - (69, 8’) 

iP = - (CT”,,, 8’) 
pc=(l -p-w 

pfb = (1 _ &fb2)~1/2 

END MAIN 

0 

1 

1 

2L - 1 

2m 

L 

1 

1 

2L - 1 

1 

p” = (1 - pz)- l/Z 

p” = (1 - ,QQ~‘iZ 

6 = P(cF + I* R) 

Ib = Pfb(C MN + If l?) 

Bf = P’b(bf + bb MN Efb) 

I” = P”(I” + 8; I?) 

b” = P”(8” + ff;, k) 

B = P’f(gOnn) + (;)krb) 

‘4 = PJfQ + (“;y> 

w= PW((3 + (y)Kw) 

Y= Py) + fyy) 

END FOR M 

/7 = (Bb, &) 

1 

1 

2L 

2L 

2L 

2L 

2L 

2m 

2m 

2m 

2m 

2m 

L 

2p - 1 

Oi 

oT+1(~, wz = ~~+1W, w4+1M N). 

Thus, 

P/,b+l(M,N) =(l -(E;~#4,N))y2. 

(41) 

(42) 
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A similar argument leads to recursive equations for the remaining normalized filters and residuals. 
The formulas for the corresponding reflection coefficients and the scaling factors are tabulated in 
Table 5(b). 

The resulting orthonormalized algorithm is presented in symbolic format in Table 6. It can be viewed as 
the generalization of the normalized lattice algorithm presented and analyzed [9, 301. 

5. Conclusions 

A fast algorithm for the Z!C!%?-’ decomposition of a Toeplitz matrix X(A4, N) has been presented. The 
computational complexity of the proposed method is 8Lp + 3p2 MADS, where L is the leading dimension of 
X(M, N). A reduced complexity mixed scheme that requires 7Lp + 3.5~~ MADS has also been derived. The 
least squares filter and the corresponding residual error can be computed using 2Lp + 0.5~~ additional 
operations. The algorithm can be efficiently applied to batch least squares FIR filtering and system 
identification. The orthonormalized version proposed uses approximately twice as much MADS and O(p) 
square root operations. 
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Appendix A. Proof of main recursions 

A comprehensive proof of the basic formula utilized by the algorithm is supplied. Two basic recursions are 
analyzed, a two term Levinson type formula that updates filter vectors of increasing dimensions starting from 
1,2 and going up to p - 1, and a two term lattice type formula that computes residual error vectors of fixed 
dimensions L x 1 (see Table 2). 

We will concentrate on the order recursions for the least squares filter and the corresponding residual 
error. The remaining recursions summarized in Table 2 are proved in a similar way. The increased order least 
squares filter c,+ ,(M, N) of dimensions (m + 1) x 1 is obtained as the solution of the increased order linear 
system 

R,+I(M, N)G,+I Wf, N) = - d,+ 104, NJ, (A.1) 

or equivalently by applying the increased order operator X,r,+,(M,N, onto the data vector Y(M, N) (see 
Table l), 

cm+ l(M, N) = - ~;_+~wv$W, NJ, (A.21 

where 

JErf,+,(M,N, = z’,+ 1 (M, WG: ,(M, NJ. (A.31 
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Taking into account partition (16), the matrix inversion lemma for partitioned matrices and definitions of 
Table 1, we obtain 

R,‘(M, N) + 
bfl(M, wbT,M N) 

&Of, W x S-m+,(M,N) = [zm(Mv N) xm+l(“, N)l 
GM N) 
ab,(M W 

or 

X exM, NJ Ei,(M, W 
- S.+ ,W. N) - x.%-_(M,N) + d#f, N 

bT,(M, NJ abm(M, W 1 . 

Application of (A.4) to (A.2) results in 

where 

and 

En+ I@& N) = (WC N), Eb,(M, NJ) = <E%M, NJ, Eb,(M ND. 

The increased order lattice type recursion for the filter residual is obtained as 

Operator %k.+ ,(M, N) g iven by (10) can be written in terms of XzI+,CM,N) as 

%.+,(M,N) = I- &+,(M,N)~:+ Of, W 

Applying partition (16) and (A.4) we obtain 

or 

Finally, Eqs. (A.6) and (A.9) result in 

64.4) 

(A.51 

(A-6) 

(A-7) 

(A@ 

(~4.9) 

E’,, ,(M, N) = E’,(M, N) + Eb,(M, NJ K,,+ AM, NJ. 
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Appendix B. Matlab function 1 s_fqr.m 

function [Q,B,c,Ec,ac,Aux_LS,Aux_E,Aux_powl=ls_fqr(x_col,x_row,z) 

% 

% FAST ALGORITHM FOR QR FACTORIZATION OF TOEPLITZ MATRICES 

% 

% bY G.O. GLENTIS, December 1993 

% 

% Function Name: ls_fqr (Least Squares Fast QR) 

% 

% Least squares solution on : toeplitz(x_col,x_row)*c=-z 

% by performing a fast QR-(-1) factorization. 

% ________________________________________-----______--____ DIMENSIONS __ 

% Inputs (3) x-co1 : first column of Toeplitz matrix (N-M-p+i) x i 

% x-row : first row of Toeplitz matrix Pxl 
% z : desired response vector (N-M-p+i) x 1 

% 

% Outputs (12) Q : orthogonal matrix factor (N-M-p+l) x p 

% B : inverse R factor PXP 
% C : least squares solution Pxl 
% EC : least squares residual (N-M-p+i) x 1 

% Aux_LS=[a b w VI : Auxiliary parameters (LS forward (p-l) x 4 

% and backward predictors and pinning filters) 

% Aux_E=[Ef Eb Ew Evl : Auxiliary parameters residuals (N-M-p+l) x 4 

% Aux_pow=[af ab aw avl: Auxiliary parameters powers 1x4 

% 

% 
N=max(size(x_col)); p=max(size(x_row)); 

aw=l .; av=l .; ab=x_col'*x_col; af=ab; ac=z'*z; 

Ef=x_col; Eb=x_col; Ew=[zeros(N-l,l); 11; Ev=[l; zeros(N-l,l)l;Ec=z; 

Q=x_col; B=[l;zeros(p-1,l)l; 

c=[l; b=[]; a=[]; w=Cl; v=Cl; 

% 

% Main part 

% 
for i=l:p-1 

% 
% Time shifting of the backward residual errors 

% 
ebn=Eb(N); 



34 G.-O. Glentis J Signal Processing 42 (1995) 19-36 

Ebn(l:N-l,l)=Eb(l:N-l)-Ew(l:N-l)*ebn; 

Ebn(N)=ebn*aw; 

x_aux=[x_row(i+l:-1:2);x_col(l:N-i)]; 

Ebmn(l)=x_aux'*Ev; 

ebm=Ebmn(l)/av; 

Ebmn(2:N,l)=Ebn(l:N-l)+Ev(2:N)*ebm; 

abn=ab-ebn*Ebn(N); 

abm=abn+ebm*Ebmn(l); 

% 

% Estimation of the reflection coefficients 

% 

bf=Ef'*Ebmn; 

bc=Ec'*Eb; 

kc=-bc/ab; 

kb=-bf/af; 

kf=-bf/abm; 

kw=-Ebn(N)/abn; 

kv=-Ebmn(l)/abm; 

% 
% Order updates of 

% 
Ec=Ec+Eb*kc; 

Eb=Ebmn+Ef*kb; 

Ef=Ef+Ebmn*kf; 

Ew=Ew+Ebn*kw; 

Ev=Ev+Ebmn*kv; 

% 
% Order updates of 

'/, 
ab=abm+bf*kb; 

af=af+bf*kf; 

aw=aw-Ebn(N)*kw; 

av=av+Ebmn(l)*kv; 

ac=ac+bc*kc; 

% 
% Time shifting of 

% 
bn=b-w*ebn; 
bmn=bn+v*ebm; 

the residual errors 

the error powers 

the backward predictor 



c=[c; O]+[b; l]*kc; 

b=[O; bmn]+[l ; a]*kb; 

a=[a; Ol+[bmn ; l]*kf; 

w=[w; O]+[bn; ll*kw; 

v=[v; O]+[bmn; l]*kv; 

% 
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‘/, Order updates of the least squares filters 

% 

% Construction of the Q factor and the R inverse 

% 

Q=[Q Ebl; 
B=C B [ b; 1; zeros(p-i-1,1)]]; 

end 

% 

% Last update for filter estimation 

% 
bc=Ec'*Eb; 

kc=-bc/ab; 

c=[c; O]+[b; l]*kc; 

ac-ac+bc*kc; 

% 
% Prepare output 

% 
Aux_LS=[a b w VI; 

Aux_E=[Ef Eb Ew Evl; 

Aux_pow=[af ab aw av]; 

% 

% ______---------~~~ END OF Is_fqr.m __------------------ 

% 
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