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Abstract-A first-principles model for a gas-fluid&d bed based on the so-called “two-fluid model” (TFM) 
has been developed_ In the TFM approach, both phases are considered to be continuous and fully 
interpenetrating. The equations for mass, momentum and thermal energy conservation, supplemented with 
the necessary constitutive equations, have been sotved by a finite-difference technique on a mini-computer. 
The computer model calculates the porosity, the pressure, the fluid phase temperature, the solid phase 
temperature and the velocity fields of both phases in two-dimensional Cartesian or axi-symmetrical 
cylindrical coordinates. Contrary to previous modelling work, all important terms have been retained in the 
transport equations. As a test of the theoretical model, the phenomena associated with the formation, 
propagation and eruption of a single bubble in a cold-flow two-dimensional air-fluidized bed with one 
central orifice have been calculated theoretically. The calculation was done for mono-sized spherical solid 
particles with a diameter of 500 pm and a true density of 2640 kg/ma. Our preliminary calculations indicate 
strong leakage of bubble gas into the emulsion phase, especially during the initial stage of bubble formation. 
In its present state, the model does not correctly display all the details associated with the propagation of 
bubbles in gas-fluidized beds. The further development of the model, both from a physical (bed rheology) 
and mathematical (finite-difference approximations) point of view, Seems highly desirable. 

1. fNTRODUCTlON 

The motion of a system of solid particles suspended in 
a Newtonian gas or liquid can, at least in principle, be 
completely described by the Navier-Stokes equa- 
tions for the fluid (i.e. the gas or the liquid) and the 
Newtonian equations of motion for each suspended 
solid particle. Specification of the proper initial and 
boundary conditions would enable the determination 
of the mechanics of fluidized beds. However, fluid&d 
beds contain a very large number of closely spaced 
solid particles, and consequently a very large number 
of governing equations have to be solved when this 
theoretical approach is followed. A direct solution of 
the basic conservation equations, even with the pre- 
sent-day supercomputing capabilities, is not feasible 
for practical purposes, and therefore a drastic reduc- 
tion of the number of governing equations must be 
made. 

Such a reduction is possible through the introduc- 
tion of a continuum mathematical description of the 
fluidized system. There is an extensive literature 
dealing with the derivation of continuum equations 
for multiphase systems and a number of continuum 
models have been proposed (Anderson and Jackson, 
1967; Ishii, 1975; Pritchett et al., 1978). In the so-called 
“two-fluid model” (TFM), both phases are considered 
to be continuous and fully interpenetrating. Both 
phases are described in terms of separate conservation 
equations with appropriate interaction terms rep- 
resenting the coupling between the phases. Fluid 
phase properties and the physical characteristics of 
the solid particles, such as shape and size, are included 
in the continuum representation. 

The derivation of the continuum equations is usu- 
ally based on spatial averaging techniques where the 
point-hydrodynamic variables, describing processes 
on the scale of particle size, are replaced by local 
averaged variables which describe these processes on 
a scale large compared to the particle size, but small 
compared to the size of the macroscopic system of 
interest. The resulting theoretical description is based 
on a relatively small number of partial differential 
equations which reflect the principles of conservation 
of mass, momentum and thermal energy for both 
phases. 

2. THEORETICAL MODEL 

2.1. Governing equations 
In the TFM, two sets of conservation equations 

are formulated, governing the balance of mass, mo- 
mentum and thermal energy in each phase. Since the 
averaged fields of one phase are dependent on the 
other phase, interaction terms appear in the balance 
equations. These terms represent the momentum and 
energy transfer between the phases. In the present 
model, phase changes and chemical reactions are not 
included. 

Continuity equations 
Fluid phase: 

ww,) -+(V~&pfP)=O. at (1) 

Solid phase: 

a[(1 - &)A1 
at + [V-(1 - E)&J*V] = 0. (2) 
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Momentum equations 
Fluid phase: 

WP,U) ___ + (V- Epfuu) at 
= - &VP - /?I(u - v) - (V * EZ,) + &P/II- (3) 

Solid phase: 

a C(l - *)Psvl 
at + [V-(1 - E)p,VV] 

= -(I -&)Vp+B(U-V)-[V-(1 -E)Z,] 

- VP. + (1 - e)P,g- (4) 

Thermal energy equations 
Fluid phase: 

Interphase momentum transfer coeficient 8. For 
porosities E < 0.80, the interphase momentum trans- 
fer coefficient can be obtained from the well-known 
Ergun equation. Because of the multidimensional 
flow patterns in fluid&d beds, the vectorial Ergun 
equation, formulated by Radestock and Ieschar 
(1971), has to be used as the constitutive equation for 
the interphase momentum transfer coefficient. This 
equation relates the pressure gradient to the superfi- 
cial velocity for the flow of a fluid through a porous 
medium as follows: 

%PfZ/) 
[ 

a& 
at 

+(v.&pfl,u)= --p ~+(V*EU) 
1 

Solid phase: 

- (V-E*/) - a(Ty - T.). (5) 

a[(1 - mJ,l 
at + IT-(1 - *)PsZ,vI 

= --p 

{ 

a(1 - E) 

at 
+ [V-(1 - E)V] 

I 
- [V-(1 - e)er] + a(TI - T,). (6) (84 

For the purpose of solution of the balance equations, 
the basic variables must be specified. For the present 
study, the porosity, E, the pressure, p, the fluid phase 
temperature, TX, the solid phase temperature, T,, the 
fluid phase velocity vector, u, and the solid phase 
velocity vector, v, have been chosen as the basic 
variables. For closure of the set of balance equations, 
specification of the constitutive relations is required. 
This means that all other’ variables in the balance 
equations must be specified in terms of the basic 
variables E, p, T,, T,, u and v. 

For porosities E > 0.80, the interphase momentum 
transfer coefficient can he derived in a similar way 
from the correlation of Wen and Yu (1966). These 
authors extended the work of Richardson and Zaki 
(1954) for the prediction of the pressure drop in partic- 
ulate beds. In this porosity range, the interphase 
momentum transfer coefficient hecomes 

PflU - vlf (*I W-0 

where 

f(E) = E-2.65. (8e) 
2.2. Constitutiue equations 

The conservation equations described in the pre- 
vious section involve a number of unknown functions 
which must be specified. Through the incorporation 
of the constitutive equations, the necessary empirical 
information is introduced in the present theoretical 
model of gas-fluidized beds. 

The drag coefficient, C,, is related to the particle 
Reynolds number, Re,, by (Rowe, 1961) 

C, = 
E[l + 0.15(Re,)0*687], Re, -c 1000 
Re, 

(8f) 

Re, > 1000 (8s) 

Fluid phase density J+ and solid phase density pS. The 
fluid phase density is related to the pressure and the 
fluid phase temperature by the ideal-gas law: 

where 

Re 
I, 

= EP,IU - 44 
cr/ . 

@h) 

In eq. (Sd), f(s) accounts for the presence of other 
particles in the fluid and corrects the drag coefficient 
for a single particle. Gidaspow (1986) has derived 
similar expressions for the interphase momentum ex- 
change coefficients, /I,, in the x-direction and & in the 
y-direction. In his expressions for j3, and &, the 
lu - vl term in eqs (8~) and (8d) has been replaced by 
I% - v,l and I u,, - v,l. respectively. 

M, Pf = RT* p- 

For the solid phase, microscopic incompressibility 
and temperature independence of the density was 
assumed. Thus, for the solid phase, a specified con- 

stant density p.., was taken, i.e. 

P, = P.,.. VW 

- vp = 

(8a) 

The momentum equation for the fluid phase with no 
inertial, viscosity and gravity terms reduces to 

- &VP = /3(u - v). (W 

For the flow in fluidied beds, v, = E(U - v); so, from a 
comparison of eqs (8a) and (Sb), we arrive at the 
following expression for the interphase momentum 
transfer coefficient j3: 

fi = lSO(l - d2 flf 
E th4d2 + 1.75(1 - E)c4;;;,j lU - VI_ 
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Fluid phase viscous stress tensor rf ati solid phase 
viscous stress tensor 2,. The viscous stress tensors, rf 
and Z= are expected to depend on the void fraction and 
the spatial derivatives of II and v, and there may be 
memory effects. However, such a general formulation 
with proper values of material constants is not yet 
available. In fact, studies concerned with the rheology 
of fluidized powders have not yet led to a unified 
rheological model of these systems. 

For fluidixed powders, approximate Newtonian be- 
haviour has been found by Schiigerl et al. (1961) and 
Hagyard and Sacerdote (1966), who used a rotating- 
cylinder viscometer and a suspended torsion 
pendulum, respectively. Van den Langenberg-Schenk 
(1982) found that a Bingham plastic model provides a 
better approximation for the rheology of fluid&d 
powders. This seems to be consistent with the results 
of Gabor (1972), who showed that the observed par- 
ticle drift caused by a rising bubble is inconsistent 
with the simple rheological models, but found that a 
model based on Bingham plastic behaviour of the 
particulate phase yielded satisfactory results. 

In the present study, as a first approximation, it has 
been assumed that 7, is related only to the fluid 
motion, and rs only to the solid motion, and that both 
have the general Newtonian fluid form (Bird et al. 
1960): 

rf = - {(A/ - 3pr)(P.u)E + /+C(Vu) + (Vu)‘I) 
Pa) 

Jackson (1985) has used similar expressions for his 
linear stability analysis. In eqs (9a) and (Sb), 1, and 1, 
denote the bulk viscosity of the fluid phase and the 
solid phase, respectively, and pLI and cz, denote the 
shear viscosity of the fluid phase and the solid phase, 
respectively. As a first approximation, it is assumed 
that all viscosity parameters are constants. 

Solid phase pressure p.. The term Vp, in the solids 
momentum equation can be associated with the solid 
phase pressure or the particle-to-particle interaction 
and is important both from a physical and numerical 
viewpoint as discussed by Gidnspow et al. (1983) and 
Gidaspow (1986). It prevents the particles from reach- 
ing impossibly low values of void fraction, and it also 
helps to make the system numerically stable by 
converting imaginary characteristics into real ones, as 
shown by Fanucci et al. (1979). Similar to the hydro- 
dynamic model of Pritchett et al. (1978) and 
Gidaspow et al. (1983), the constitutive relation for the 
solid phase pressure, p.. is expressed by p. = p,(s); 
thus, the solid phase pressure is assumed to depend 
only on the porosity. In the theoretical formulations, 
it is often convenient to use the solid phase elastic 
modulus G(E) defined by 

instead of P,(E). By applying the chain rule it follows 
that the gradient of the solid phase pressure Vpz can 
be written as 

Vp, = G(E)VE. (lob) 

Rietema and Mutsers (1973) ‘have determined the 
functional dependence for the solid phase elastic 
modulus, G(E), by measuring the interaction of a 
vibrating body of wire netting with homogeneously 
fluidized beds of cracking catalyst. Gidaspow and 
Ettehadieh (1983) and Ettehadieh et al. (1984) fitted 
these data to obtain an expression for the solid phase 
elastic modulus, G(s). However, our preliminary nu- 
merical computations and computational experience 
of others (Ettehadieh et al., 1984; Gidaspow, 1986; 
Bouillard et al., 1989) have shown that the G(E) fit 
obtained from the Rietema and Mutsers data is in- 
appropriate to keep the bed from compacting. Un- 
realistically low porosities (as low as 0.2 in bubble 
wakes) are predicted with this correlation. To over- 
come this problem, Bouillard et al. (1989) proposed a 
generalized solid phase elastic modulus, G(E), based 
on Orr’s (1966) simple theory of powder compaction, 
of the form 

G(E) = - G,{exp [c(E* - E)]} (lh) 

where Go represents the normalizing units factor, c the 
compaction modulus and E+ the compaction gas 
phase volume fraction. This generalized form of the 
solid phase elastic modulus, G(E), has also been in- 
corporated in our theoretical model, where G, has 
been taken to be 1 Pa, c = 100 and E* = 0.45. This 
particular choice results in a rapidly decreasing solid 
phase elastic modulus for E > E* and a rapidly in- 
creasing solid phase elastic modulus for E < E*, thus 
preventing solids phase volume fractions becoming 
much larger than (1 - E*). Without gas throughflow, 
this modulus “predicts” the correct packed-bed poros- 
ity with a very small axial porosity gradient. 

Fluid phase internal energy I, and solid phase inter- 
nal energy I,. Through the specification of the caloric 
equations of state, the internal energies of both phases 
can be related to their respective temperatures: 

dl, = C,,, dT, 

dl, = C,. s dT,. 

(1 la) 

(lib) 

Here, Cp,, and C,., denote, respectively, the heat 
capacity of the fluid phase and the solid phase. 

Fluid phase heat Bux vector mr and solid phase heat 
flux vector a,. It is assumed that the heat transport by 
thermal conduction can be represented by Fourier’s 
law of heat conduction in both phases: 

a, = - r+VT, (12a) 

@, = - x,VT,. Wb) 

The thermal conductivities of the fluid phase and the 
solid phase, respectively, K/ and K,, in the TFM 
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formulation should be interpreted as effective trans- 
port coefficients, which means that the corresponding 
microscopic transport coefficients, K,,, and us.,, can- 
not be used. It can be anticipated that the constitutive 
equations for xf and IE~ can be represented in general 
as 

‘cf = Kf(K_f,0, %,0* E, particle geometry) (12~) 

% = J&(kf.or Ic,,,, E, particle geometry). (12d) 

However, such a general fcrmulation is not yet avail- 
able for fluidized beds and approximate constitutive 
equations have to be used. These approximate equa- 
tions have been obtained from the work of Zehner 
and Schliinder (1970) on modelling the effective radial 
thermal conductivity, rcb. in packed beds. 

Interphase heat transfer coeflcient CL. Due to the 
interphase heat transport, the heat transfer processes 
in the fluid phase and the solid phase are coupled. The 
volumetric interphase heat transport coefficient, a, 
can be obtained from eq. (I 3): 

6(1 - E) 
a= 

d, ap- (13) 

The correlation proposed by Gunn (1978) was 
selected to obtain an expression for the fluid-particle 
heat transfer coefficient, ap. This correlation relates 
the Nusselt number to the Reynolds number for heat 
transfer to fixed and fluidized beds of particles within 
the porosity range 0.35-1.00. Experimental data are 
correlated up to a Reynolds number of 105. 

3. COMPARISON WITH PREVIOUS WORK 

Gidaspow (1986) has recently reviewed three hy- 
drodynamic models of fluidization for which nu- 
merical solutions have been obtained. Hydrodynamic 
models of fluidization use the principles of mass, 
momentum and energy conservation, and have been 
developed by the Systems, Science and Software 
group (Pritchett et al., 1978; Schneyer et al., 1981; 
computer code: CHEMFLUB), the JAYCOR group 
(Klein and Scharff, 1982, Scharffet al., 1982, computer 
code: FLAG) and the IIT group (Gidaspow and 
Ettehadieh, 1983; Ettehadieh et al., 1984; Syamlal and 
Gidaspow, 1985; computer code: K-FIX). 

Contrary to the present computer code, in the 
CHEMFLUB code, the gas inertial terms have been 
neglected because of the relatively low density of 
gases, and local thermodynamic equilibrium has been 
assumed because of the high volumetric interphase 
heat transfer coefficients prevailing in dense gas-fluid- 
ized beds. A modification of Darcy’s law for flow in 
porous media, to account for the movement of the 
solid particles, has been employed in the 
CHEMFLUB code instead of the gas phase mo- 
mentum eq. (3). However, the gas inertial terms be- 
come important for high-speed jets entering fluidized 
beds and become important also at elevated pressures 
which makes the unconditional neglect of the gas 
inertia doubtful from a physical viewpoint. 

The K-FIX code, developed originally by Rivard 
and Torrey (1977) for gas-liquid two-phase flow, has 
been adapted by Gidaspow and Ettehadieh (1983) and 
Ettehadieh et al. (1984) to gas-solid two-phase flow. 
In the modified K-FIX code, the viscous interaction 
terms for both phases have been neglected: both 
phases are considered to constitute an ideal (inviscid) 
continuum. Thus, in eqs (3) and (4), respectively, the 
terms (V . ETA) and [V . (1 - E)z,] have been neglected 
in the modified K-FIX code. For the gas phase, this 
assumption can be justified, but, in general, the solid 
phase canno.t be considered as an ideal (inviscid) 
continuum. The present model incorporates, as a first 
approximation, Newtonian behaviour for both phases 
although it is recognized that this rather simple rheo- 
logical model of fluidized suspensions is not con- 
sistent with all available experimental data (Gabor, 
1972). The neglect of the viscous interaction terms is 
attractive from a computational viewpoint, as experi- 
enced by the developers of the K-FIX code (Rivard 
and Torrey, 1979), but the a priori deletion of these 
terms by Gidaspow (1986) in the modified K-FIX 
code seems doubtful in view of the rather high appar- 
ent bed viscosities measured in dense fluidized beds. 
Similar to the present model, separate thermal energy 
equations have been incorporated in the (modified) K- 
FIX code allowing for the computation of unequal 
temperature fields of the fluid (gas) phase and the solid 
phase. 

The conventional multiphase approach, in which 
the void fraction is used as a dependent variable, was 
not adopted by the JAYCOR group in developing 
their FLAG code. This code solves the hydrodynamic 
equations for a single “representative” particle and 
calculates the void fraction distribution from the 
number of representative particles in a given unit cell. 
Their momentum equation for the particles is simply 
a balance between particle momentum, gravity and 
fluid particle drag. Their approach in modelling dense 
fluidized beds is in fact a generalization of the “dusty 
model” of Rudinger and Chang (1964). In the gas 
phase momentum equation employed in the FLAG 
code, both the inertial and viscous momentum trans- 
port terms have been retained. Similar to the present 
computer code and the K-FIX code, the FLAG code 
employs two separate thermal energy equations. 
Computational experience with the FLAG code 
(Henline et al., 1981) has shown that, in some cases, 
even in cold-flow simulations severe numerical stabil- 
ity problems arose, necessitating the termination of 
the calculations at fractions of one second real time. 

4. NUMERICAL SOLUTION 

The set of conservation equations, supplemented 
with the constitutive equations and the initial and 
boundary conditions cannot be solved analytically, 
and therefore a numerical method must be used to 
obtain an approximate solution. Stewart and 
Wendroff (1984) have recently reviewed the state of 
the art with respect to the numerical modelling of 
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multiphase flow problems. The numerical method 
used in the present investigation is based on a finite- 
difference technique developed by Harlow and 
Amsden at the Los Alamos Scientific Laboratory in 
1974 [see Harlow and Amsden (19731. The numerical 
technique has been embodied in an unsteady two- 
dimensional computer code written in VAX- 
PASCAL. The computer model calculates the poros- 
ity, the pressure, the fluid phase and solid phase 
temperatures (if required) and the velocity fields of 
both phases in two-dimensional Cartesian or axi- 
symmetrical cylindrical coordinates. For a detailed 
explanation of the numerical technique and the modi- 
fications made to enhance the computer solution, the 
interested reader is referred to Kuipers (1990). 
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laterally by impermeable no-slip rigid walls for both 
phases, and is confined below and above by per- 
meable walls for the fluid phase (air) and impermeable 
no-slip rigid walls for the solid phase. The proper 
prescription of the boundary condition for the 
tangential velocity component (free slip, no slip or 
partial slip) of the solid phase constitutes a funda- 
mental problem. However, preliminary computations 
revealed that the sensitivity of the model predictions 
to the imposed boundary condition (free slip for the 
inviscid version of the model and no slip for the mode1 
version including the viscous interaction terms) was 
quite small. 

The present two-dimensional hydrodynamic model 
does not account for the presence of the front and 
back wall of “real life” two-dimensional beds, and 
consequently the momentum exchange with these 
walls cannot be represented by the model. To investig- 
ate theoretically the effect of the front and back wall, 
the extension of the present two-dimensional mode1 to 
a three-dimensional model would be required, which 
will be the subject of future work. 

5. RESULTS 

As a test of the present model, the phenomena 
associated with the formation, the rise and the erup- 
tion of a single bubble in a two-dimensional cold-flow 
gas-fluidized bed with one central orifice have been 
calculated theoretically. For this specific example, the 
solution of the thermal energy equations (5) and (6) is 
not required. 

Figure 1 shows the geometry of the two-dimen- 
sional fluid&d bed considered in the numerical simu- 
lations; the corresponding numerical data are speci- 
fied in Table 1. The two-dimensional bed is confined 

freeboard 

p, = 2660 kg/m’ 

dp= 500 pm 

Initially, the fluidizing gas introduced at the bottom 
of the bed at the minimum fluidization velocity, un,, 
flows in the vertical y-direction and leaves the bed at 
the top. At zero time, the velocity of the gas injected 
through the central orifice was increased from the 
minimum fluidization velocity, a,,,,, to the required 

initial conditions 

&=l p=po 
ux= 0 uy= Umf 

“xv = 0 
x Y 

&=Emf U 
U =o UY=f 

X 
E 

mf 

vx= vy= 0 

P = PO+ (l-amfNP,-Pf,~gQ-Y 

Umf Umf 
U 

0 

D no slip rigid wall for both phases 

prescri~ fluid phase influx wall, no slip rigid wall for solid phase 

m continuative fluid phase outflow wall, no slip rigid wall for solid phase 

Fig. 1. Geometry chosen for the two-dimensional gas-flukiized bed. The corresponding data are given in 
Table 1. 
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Table 1. Data for numerical simulation 

Minimum fluidization porosity 
Minimum fluidization velocity 
Orifice velocity 

Fluid phase shear viscosity 
Solid phase shear viscosity 

Particle diameter 
Particle density 

Orifice diameter 
Bed width 
Initial bed height 

Initial freeboard pressure 

Horizontal (x-) grid size 
Vertical (y-) grid size 
Time step 

0.402 
0.250 m/s 
10.00 m/s 

2 x lOA Pas 
I.00 Pas 

5.00x10-4m 
2660 kg/m3 

1.50 x lo-+ m 
0.57 m 
0.50 m 

101,325.O Pa 

7.50 x 10e3 m 
1.00 x 10mz m 
3.00 x 1o-4 s 

orifice velocity, u,, and after detachment of the formed 

bubble, the gas was again injected at u,,,~ (see Table 1). 

Thus, in fact, the injection of a single bubble into a 
two-dimensional gas-fluid&d bed was simulated 
here. As Fig. 1 shows, a freeboard of the same size as 
the initial bed height was provided to allow for bed 
expansion induced by the additional gas injection 
through the central orifice. To save computer time, 
symmetry was assumed in the simulation which can 
be justified on the basis of the symmetrical initial and 
boundary conditions. 

Figure 2 shows the theoretically calculated bubble 
formation in the two-dimensional gas-fluidized bed. 
From Fig. 2 it can be seen that, at time t = 0.210 s, a 
practically circular bubble has detached from the 
orifice. In the present study, the bubble contour was 
defined as a void fraction of 0.85. This particular 
choice defines the bubble boundary as a contour with 
very strong porosity gradients which is consistent 
with experimental observations. Figure 3 shows a 
number of porosity contours near the detached 
bubble at time t = 0.210 s. It can be seen that very 
sharp porosity gradients exist near the bubble base; 
near the bubble roof these gradients are considerably 
weaker. Table 2 shows the sensitivity of the computed 
bubble diameters with respect to the adopted bubble 
definition. 

At time t = 0.210 s the bubble wake has not been 
formed yet, but at time t = 0.240 s the bubble wake 
begins to develop, which can be seen from the small 
indention at the rear of the bubble (see Fig. 2). Accord- 
ing to the two-phase theory of fluidization (Toomey 
and Johnstone, 1952) all gas injected in addition to the 
supplied gas at minimum fluidization conditions ap- 
pears as bubbles, and thus the predicted equivalent 
bubble diameter D* according to this simple theory 
becomes 

0*=2 J~,i.e.D*=O.l98m. (14) 

A comparison of the numerically calculated equival- 
ent bubble diameter (E > 0.85) at time t = 0.210 s and 
the prediction according to the two-phase theory of 

-0.20 -0.i5 -0.10 -0.05 0.00 0.05 0.10 0.15 a 

x + (m) 

_o.u, -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 

x - (m) 

Fig. 2. The formation and detachment of a bubble at a 
central orifice in a two-dimensional gas-fluidized bed. 

Bubble definition E > 0.85. 

-0:10 -0105 0100 0105 0110 

Fig. 3. Theoretically calculated porosity contours near a 
detached bubble at t = 0.210 s. 

fluidization suggests that, in this case, approximately 
25% of the injected gas, in excess of that required to 
just fluidize the bed (“excess gas flow”), has leaked 
from the formed bubble into the surrounding porous 
emulsion phase. 
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Table 2. Sensitivity of the calculated horizontal, 
vertical and equivalent bubble diameters 
with respect to the adopted bubble definition 

(t = 0.210 s) 

Bubble definition 

E 2. 0.80 E > 0.85 B > 0.90 

Dh 0.191 0.179 0.162 
D” 0.200 0.181 0.154 
D, 0.188 0.172 0.149 

Cm) 

t 
Y 

n=wm?h cos(W) 
0.30 

. circle 
0.25 . t=o.210 s 

n 

0.00 ! . I - I . I . ! * I . I - I - 1 
-0.20 -0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 0.20 

x - Cm) 

-8.00! . I - I . I . I . i 
0.00 0.20 0.40 0.60 0.80 1.00 

A- 
x 

Fig. 4. Calculated mass efflux profile for the gas phase at the 
boundary of a circular bubble with bubble centre. S, and 

equivalent bubble radius, rb. Time t = 0.210 s. 

Figure 4 shows the numerically calculated mass 
efflux profile for the gas phase at the boundary of a 
circular bubble approximating the detached bubble at 
time t = 0.210 s. In Fig. 4, S and rb denote, respect- 
ively, the bubble centre and the equivalent bubble 
radius which have been obtained from an analysis of 
the calculated porosity distribution based on the 
“method of composite bodies”. For a circular bubble, 
the mass efflux at the bubble boundary depends only 
on the angle 4 (see Fig. 4) and is given by 

J(d) = (&pzu. n) = twf~,) sin (4) + (w~~J~) ~0s (4) 
(15) 

where n represents the unit outward normal vector at 

the bubble boundary. According to Fig. 4, the bubble 
gas leaks through the bubble roof into the porous 
emulsion phase, whereas at the bubble base emulsion 
phase gas flows into the bubble. At approximately 
4 = 0.57r, thus at the “bubble equator”, a gas flow 
reversal occurs. 

The average mass efflux of the gas at the bubble 
boundary <J> can be obtained from 

<J>=$ (&P/u-n) dS 
b 

(16) 

where S, represents the bubble surface. Evaluation of 
the integral (16). which is in fact a contour integral 
because of the t%o-dimensional geometry considered 
here, yields (J > z 0 kg/(m’ s), indicating an approx- 
imate balance between the gas outflow at the bubble 
roof and the gas inflow at the bubble base for the 
detached gas bubble at time t = 0.210 s. However, it 
has already been shown that, during the time of 
bubble formation, approximately 25% of the excess 
gas flow leaks from the bubble into the emulsion 
phase. These results suggest that strong leakage of 
bubble gas into the surrounding porous emulsion 
phase occurs, especially during the initial stage of the 
bubble formation, and this agrees qualitatively with 
the model proposed by Caram and Hsu (1986) for 
spherical bubble formation in fluidized beds. A de- 
tailed comparison between theory and experiment 
will be the subject of a forthcoming publication. Ex- 
perimental evidence for the phenomenon of gas 
leakage during bubble formation at a single orifice has 
been obtained by Nguyen and Leung (1972). They 
injected air through an orifice into an incipiently 
fluidized two-dimensional bed of alumina particles 
and correlated the observed bubble volumes, V,, with 
the air flow rate, Q, through the orifice and the meas- 
ured frequency of bubble formation, nb, as 

v, = 0.53 e 
nb 

(17) 

indicating considerable leakage (47%) of the injected 
gas into the emulsion phase. Rowe et al. (1979) and 
Yates et al. (1984) used X-ray tine-photography to 
investigate the entry of gas from an orifice into vari- 
ous fluidized powders. From their measurements con- 
siderable gas Ieakage during bubble formation was 
also evident. 

Figure 5 shows similar results as in Fig. 4, but now 
for time t = 0.300 s. The marked indention at the rear 
of the bubble shows clearly the developing bubble 
wake causing the deviation from the spherical bubble 
shape. Inspection of Fig. 5 shows again the outflow of 
bubble gas through the bubble roof and the inflow of 
emulsion phase gas through the bubble base. From 
Fig. 5, it follows that the bubble acts as a short-circuit 
for gas flow. 

Figure 6 shows a number of pressure contours for 
the rising gas bubble at time t = 0.300 s. Well-re- 
moved from the bubble, the horizontal pressure 
gradient is practically zero and the vertical pressure 
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gradient is approximately constant. However, close to 
the bubble, considerable pressure gradients in the 
horizontal direction exist and the vertical pressure 
gradient is no longer constant, causing a drastic 
change of the undisturbed gas phase flow pattern at 
minimum fluidization conditions. It may be noted 
that the pressure distribution in the emulsion phase is 
not symmetrical about the “bubble equator” and also 
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Fig. 5. As in Fig. 4. Now for time t = 0.300 s. 

that the line of zero pressure difference, approximately 
represented by the pressure contour, f (p 
= 105,000 Pa), is less than one radius of curvature 

(rb) below the upper stagnation point. Davidson’s 
model, describing the steady motion of a fully de- 
veloped bubble in an unbounded incipiently fluidized 
bed, predicts a symmetrical pressure distribution 
about the bubble equator in the emulsion phase and 
the presence of the zero pressure difference line at 
exactly one radius below the upper stagnation point. 
Littman and Homolka (1973) have measured the en- 
tire pressure field around a two-dimensional bubble 
rising in an incipiently fluidized bed. Their experi- 
mental results show, in agreement with our numerical 
computation, an asymmetrical pressure distribution 
in the emulsion phase and the presence of the zero 
pressure difference line at less than one radius of 
curvature (rb) below the upper stagnation point. How- 
ever, compared to the experimental results of Littman 
and Homolka, the shift of this line towards the bubble 
nose is much more pronounced. 

In order to obtain a visual representation of the 
computed results, the calculated instantaneous 
solidity distributions have been converted into dot 
plots by a laser printer. The dots are distributed 
randomly throughout each computational cell in such 
a manner that the resulting dot density of cell (i, j) 
corresponds to the computed instantaneous solidity 
[l - E(i, j)] of cell (i, j). In accordance with the 
adopted bubble definition, no dots are distributed in 
the computational cells whenever E( i, j) z=- 0.85. Figure 
7 shows a number of these plots which clearly illus- 
trate the bubble formation at the central orifice and 
the resulting expansion of the bed, the bubble rise in 
the bed and the bubble eruption at the bed surface. 
The bubble shape and the wake fraction change con- 
siderably during the rise through the bed. Especially 
near the bed surface, an increasing horizontal bubble 
diameter can be observed. The calculated average 
bubble velocity, ub (for 0.240 s -Z t < 0.450 s), equals 
0.74 m/s. 
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Fig. 6. Numerically calculated pressure contours for a rising gas bubble in a two-dimensional gas-fluicliid 
bed. Bubble definition e > 0.85. 
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t = 0.480 s 

A numerical model of gas-fluid&d beds 

r f = 0.720 s 

Fig. 7. Computer-generated solidity distributions showing the formation, the rise and the eruption of a 
single bubble in a two-dimensional gas-fluid&d bed. 

It may be noted that the porosity transition near 
the bubble base is much sharper than the transition 
near the roof of the bubble (also see Fig. 3). This 
phenomenon is related to the coarseness of the com- 
putational grid (6x = 0.75 cm and 6y = 1.00 cm), 
which introduces some “computational smearing” of 
the field variables. A better resolution can be obtained 
by using a much finer grid, or alternatively by ap 
plying more advanced computational schemes which 
possess less numerical diffusion. 

Figure 8 shows the disturbance of a horizontal 
“layer” of solid phase marker particles, initially dis- 
tributed uniformly throughout the lower half of the 
bed, due to the formation and rise of the injected 
bubble. Inspection of Fig. 8 shows a number of inter- 
esting phenomena which have been found experi- 
mentally by Rowe (1971X but have never before been 
calculated theoretically. The 6rst two plots of Fig. 8 
show the fmtion and the detachment of the bubble 
and the resulting expansion and deformation of the 
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t = 0.480 s 

t = 0.240 s 

t = 0.600 s 

t = 0.360 s 

t = 0.720 s 

Fig. 8. Disturbance of a horizontal “layer” of solid phase marker particles due to the formation and rise of a 
single injected bubble in a two-dimensional gas-fluidized bed. 

initially horizontal layer of marker particles. Also 
note the “shearing” of the particles at the left and right 
no-slip rigid walls. From the third and fourth plots, 
the mechanism of the wake formation can be seen 
beautifully. Obviously, the particles constituting the 
bubble boundary flow down and around the bubble 
collide “head on” near the rear stagnation point. Due 
to this impact the particles are tossed upwards and 
form the bubble wake. 

From visual observations in two-dimensional gas- 
fluidized beds and also from X-ray analysis of three- 
dimensional gas-fluidized beds, it is well-known that 

the transport of solid particles in the bubble wake is 
an important mechanism for the mixing of bed par- 
ticles. Another phenomenon depicted in Fig. 8, which 
also contributes to mixing of particles in fluidized 
beds, is the well-known particle drift induced by the 
rising bubble. In the central part of the bed, particles 
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flow upwards behind the rising bubble and in the 
remaining part of the bed particles flow downwards. 
Experimental particle drift profiles obtained by Rowe 
(1971) give qualitatively the same picture. 

However, the agreement between theory and ex- 
periment is not perfect. As anticipated on the basis of 
the reported Bingham plastic behaviour of fluid&d 
suspensions (van den Lange&erg-Schenk, 1982) and 
observations made in two-dimensional gas-fluidizecl 
beds (Gabor, 1972), the experimental particle dis- 
placement, contrary to the theoretically calculated 
particle displacement, is confined to a small region in 
the immediate lieighborhood of the rising bubble. In 
the case of zero solid phase viscosity, the theoretically 
calculated particle displacement shows similar results. 
Although the results of our hydrodynamic model look 
promising, further development of its rheological as- 
pects seems desirable. 

6. CONCLUSIONS 

A first-principles model for a gas-fluidized bed 
based on the so-called two-fluid model has been de- 
veloped. It has been demonstrated that the model can 
predict satisfactorily the formation, rise and eruption 
of a bubble in an incipiently fluidized bed. The correct 
understanding and prediction of gas bubbles behavi- 
our in fluidized beds is a key issue because bubbles are 
responsible for many unique properties of fluidized 
beds. 
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The bubble formation, rise and eruption and the 
associated flow patterns of both phases evolve nat- 
urally from the numerical computations. Unlike the 
two-phase and three-phase models of fluidization, no 
specific assumptions concerning the gas flow distribu- 
tion between the “bubble phase” and “emulsion 
phase” have to be made in the present model. Our 
preliminary calculations suggest that, especially dur- 
ing the initial stage of the bubble formation, strong 
leakage of bubble gas into the surrounding porous 
emulsion phase occurs. For a detached and rising 
bubble, bubble gas leaks through the bubble roof into 
the pdrous emulsion phase, whereas the emulsion 
phase gas enters the bubble at the bubble base. It can 
be anticipated that, during the final stage of the 
bubble fomiation, where the bubble base has been 
formed to a large extent, a similar process occurs. This 
implies that the assumption of a uniform exchange 
velocity at the bubble boundary, as made by several 
authors (Zenz, 1968; Yang et al., 1984; Caram and 
Hsu, 198(S), is an oversimplification of the actual pro- 
cess. 
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The theoretically calculated particle displacement, 
due to the formation and the rise of a single gas 
bubble, has been visualized and shows similarity with 
the experimentally observed particle displacement in 
two-dimensional gas-fluidized beds with respect to a 
number of important features. However, the experi- 
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NOTATION 

compaction modulus 
drag coefficient 
heat capacity, J/(kg K) 
bed diameter, m 
orifice diameter, m 
particle diameter, m 
equivalent bubble diameter, m 
horizontal bubble diameter, m 
vertical bubble diameter, m 
unit tensor 
interaction function defined in eq. (Se) 
gravitational force per unit mass, m/s2 
particle-particle interaction modulus, Pa 
particle-particle interaction modulus for 
E = E*, Pa 
initial bed height, m 
lateral cell index 
internal energy, Jjkg 
vertical cell index 
fluid phase mass flux at the bubble bound- 
ary, kg&n’ s) 
bubble-surface-averaged fluid phase mass 
flux, kg/(m2 s) 
molecular weight, kg/km01 
unit outward normal vector at bubble 
boundary 
bubble frequency, l/s 
pressure, Pa 
solid phase pressure, Pa 
gas flow rate through orifice, m3/s 
gas constant, J/(kmol K) 
particle Reynolds number 
bubble radius, m 
bubble centre pos’ition 
bubble surface, m2 
time, s 
temperature, K 
fluid phase velocity, m/s 
superficial injection velocity through orifice, 

m/s 
solid phase velocity, m/s 
superficial slip velocity, m/s 
bubble volume, m3 
x-coordinate, m 
y-coordinate, m 

mentally observed particle movement is confined to a Greek letters 
smaller region, indicating non-Newtonian (i.e. a volumetric interphase heat transfer coeffi- 
Bingham plastic) behaviour of fluid&d suspensions, cient, W/(m3 K) 

of gas-fluidized beds 1923 

while in the present model Newtonian behaviour of 
both phases has been assumed. The further develop- 
ment of the model, both from a physical (bed 
rheology) and mathematical (finite-difference approx- 
imations) point of .tiew, seems highly desirable. 
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fluid-particle heat transfer coefficient, 

W/(m2 K) 
B volumetric interphase momentum transfer 

coefficient, kg/(m3 s) 
Auid phase volume fraction 
compaction gas phase volume fraction 
thermal conductivity, W/(m K) 
bulk viscosity, kg/(m s) 
shear viscosity, kg/(m s) 
density, kg/m3 
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Subscripts 
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bed, bubble 
fluid phase 

mf minimum fluidization conditions 
0 microscopic property 

P particle 
s solid phase 
x x-direction 

; 
y-direction 
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