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Abstract Sensitization is an example of malfunctioning of
the nociceptive pathway in either the peripheral or central
nervous system. Using quantitative sensory testing, one can
only infer sensitization, but not determine the defective sub-
system. The states of the subsystems may be characterized
using computational modeling together with experimental
data. Here, we develop a neurophysiologically plausible
model replicating experimental observations from a psy-
chophysical human subject study. We study the effects of
single temporal stimulus parameters on detection thresh-
olds corresponding to a 0.5 detection probability. To model
peripheral activation and central processing, we adapt a
stochastic drift-diffusion model and a probabilistic hazard
model to our experimental setting without reaction times.We
retain six lumped parameters in both models characterizing
peripheral and centralmechanisms.Bothmodels have similar
psychophysical functions, but the hazard model is computa-
tionally more efficient. The model-based effects of temporal
stimulus parameters on detection thresholds are consistent
with those from human subject data.
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1 Introduction

Increased insight into neurophysiological mechanisms of the
nociceptive pathway may contribute to more reliable mon-
itoring of chronification of pain and patient-tailored pain
therapies (Dworkin et al. 2003; Baron 2006). To achieve
this goal, a computational model of stimulus processing may
be an in-dispensable tool. For instance, the model could
provide a mechanism-based interpretation of experimental
observations. In turn, this may explain or predict effects
of pharmaceutical interventions in the nociceptive system.
Another, prospective, use may be to estimate model parame-
ters from measurements. The estimate might inform about
the state of the nociceptive system and possibly indicate its
malfunctioning, e.g., due to central sensitization,which could
result in chronic pain (Latremoliere and Woolf 2009).

Hyperalgesia is a clinically important example of mal-
functioning of the nociceptive system and is characterized
as an increased response to a painful stimulus. It indi-
rectly indicates central sensitization resulting from increased
responsiveness, a decreased threshold, or changes in the
receptive field (Sandkühler 2009; Latremoliere and Woolf
2009; Treede 2012). Quantitative sensory testing (QST)
(Rolke et al. 2006) and electrical QST (Vaneker et al. 2005)
may be used to demonstrate hyperalgesia by longitudi-
nal measurements of thresholds. To study the underlying
nociceptive system, one may use low-intensity electrocu-
taneous stimulation with intra-epidermal needle electrodes,
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since it was shown to recruit nociceptive Aδ-fibers preferen-
tially, while bypassing mechanoreceptors (Inui et al. 2002;
Mouraux et al. 2010; Steenbergen et al. 2012). Because of
the low amplitudes, thresholds can only be determined from
a sensory detection task rather than from a pain detection
task.

Currently, there are few computationalmodels of the noci-
ceptive system (Britton and Skevington 1989; Britton et al.
1996; Xu et al. 2008; Farajidavar et al. 2008), but these focus
on different stimulus modalities, i.e., thermal and tactile, and
have a different outcome, i.e., pain sensation. As they do not
include any stochastic component, they cannot simulate trial-
to-trial variability. Hence, there is no neurophysiologically
plausible model for a detection task with electrocutaneous
stimuli. Detection tasks yield binary responses (yes/no). In
general, this involves a two-alternative forced choice task
which can be modeled with a drift-diffusion model (DDM)
that accumulates noisy sensory evidence until a decision
threshold is reached (Ratcliff and Rouder 1998; Bogacz et al.
2006; Ratcliff and McKoon 2008). The DDM may be inter-
preted as a stochastically spiking neuron model with a spike
corresponding to the detection of the stimulus. Here we con-
sider a detection taskwith electrocutaneous stimulation (Doll
et al. 2014), where subjects only report the detected stimuli.
The DDM also yields reaction times, but, as they are not
recorded in the experiment, this is less relevant.

The electrical stimulus is a square-wave pulse train char-
acterized by four parameters, i.e., the amplitude (A) and three
temporal stimulus parameters: the pulse width (PW), the
number of pulses (NoP) and the inter-pulse interval (IPI),
see also Fig. 2. The detection threshold is the amplitude at
which half of the stimuli are perceived (Treutwein 1995).
This threshold was shown to depend on temporal stimu-
lus parameters for various related stimulus modalities. The
strength-duration curve describes the relationship between
the stimulus amplitude and its pulsewidth to activate a neuron
(Lapicque 1907;Mogyoros et al. 1996; Irnich 2010). As NoP
increases, the threshold for first sensation of vibrotactile stim-
uli decreases (Nunziata et al. 1989). Gescheider et al. (1999)
found that the decrease in the detection threshold of vibro-
tactile stimuli when decreasing IPI was due to superposition
of neural responses. Other studies suggest that with multiple
pulses, the afferent input to secondary neurons is increased
by temporal summation (van der Heide et al. 2009; Mouraux
et al. 2014). However, this effect shouldwear off for large IPI,
and then, the subject may perceive both pulses independently
(Zwislocki 1960; Viemeister and Wakefield 1991). This still
increases the probability of perception. Hence, for a stimu-
lus consisting of two pulses, a lower detection threshold is
expected. However, the presence of temporal summation in
the sensory detection task using nociceptive electrocutaneous
stimuli has not been studied varying each single temporal
parameter.

The aim of this study is to develop a computational model
representing the essential peripheral and central mechanisms
of processing of electrocutaneous stimuli. We want to repli-
cate the experimental effects of all temporal parameters on
detection thresholds within this model. To facilitate parame-
ter estimation, the model should be computationally efficient
and have as few parameters as possible. We take the drift-
diffusion model as a starting point for trial-to-trial variability
in psychophysical experiments. Although widely applied, a
disadvantage of thismodel is that it is analytically intractable,
especially for time-dependent input. The alternative is to
use simulations, which is time-consuming. We follow an
approach by Plesser and Gerstner (2000) to replace the sto-
chastic problem by a probabilistic hazard model through an
escape process. This leads to an efficient model for a detec-
tion task without reaction times.

As a motivation for the modeling, we first present pre-
liminary experimental data from a human subject study.
Next, we describe how electrical stimulation induces neural
activity and leads to psychophysical responses. For the mod-
eling, we incorporate peripheral fiber activation and sensory
inputs at secondary neurons giving a drift-diffusion model.
The activity can be close to threshold, and this is different
from the original hazard model. We propose a different haz-
ard function and show that our hazard model fits nicely to
the drift-diffusion model with respect to the psychophysi-
cal functions. Next, we determine detection thresholds in
the model and relate these to the experimentally observed
thresholds. We discuss how the temporal parameters affect
detection thresholds based on the model and conclude with
further applications of the hazard model.

2 Psychophysical human subject experiment

For illustrative purposes, we present data from a psychophys-
ical human subject study with a yes–no detection task using
electrocutaneous stimulation. The experiment considered in
the present work is part of a more extended experiment. The
psychophysical data and analysis in this manuscript illus-
trates the effects of temporal parameters on the detection
task. A manuscript presenting the methodology and results
of this human subject study in more detail is in preparation.

2.1 Methods

Fifteen healthy human subjects participated in this study.
The Medical Ethics Committee Twente approved all exper-
imental procedures. All subjects provided written informed
consent and were rewarded with a gift voucher after their
participation in the experiment. Subjects visited the labora-
tory on two consecutive days. Experiments were conducted
under the same conditions on each day. Electrical stimuli
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Table 1 Four combinations of temporal stimulus parameters for the
electrocutaneous pulse train stimulus

Index 1 2 3 4

NoP (#) 1 1 2 2

IPI (ms) − − 10 50

PW (ms) 0.42 0.84 0.42 0.42

If NoP = 1, then IPI is undefined

consisted of cathodic square-wave current pulses using an
intra-epidermal needle electrode that was attached to the left
forearm (Steenbergen et al. 2012; Doll et al. 2014). The elec-
trical stimulus is characterized by the amplitude and three
temporal parameters: the number of pulses, the interpulse
interval and the pulse width. The experimental procedure
lasted for ten minutes. Stimuli were selected according to an
adaptive probing procedure (Doll et al. 2014). Subjects were
instructed to press and hold a response button until a stimulus
was detected. After the release, they were instructed to re-
press the button after about a second. The inter-onset interval
between two consecutively applied stimuli varied from 2 to
5s. Stimuli with four combinations of temporal parameters,
see Table 1, were presented in a pseudo-random order, but
with an equal number of trials for each combination of tem-
poral stimulus parameters. Logistic regression was used to
obtain a detection threshold estimate from stimulus–response
pairs per subject per day per combination of temporal para-
meters. A two-way repeated measures ANOVA was used to
study the effect of parameter combination and the effect of
study day on the detection threshold.Mauchly’s test was used
to check violations of the sphericity assumption. Post hoc
comparisons were performed without correcting for possible
type I errors, as the analysis here is onlymeant to demonstrate
the experimental phenomena.

2.2 Results

Two subjects were removed from the dataset due to techni-
cal issues on the second study day. The detection thresholds
from individual subjects and the group are shown in Fig. 1.
Mauchly’s test indicated that the assumption of spheric-
ity for parameter combination had been violated (χ2(5) =
.350; p = .047). Therefore, the degrees of freedom were
corrected as using the Greenhouse–Geisser estimates of
sphericity (ε = .614). The results show that there was a sig-
nificant effect for parameter combination [F(1.84, 22.10) =
66.82; p < .001]. Study day had no significant effect on the
detection thresholds [F(1, 12) = .19; p = .67]. Post hoc
comparisons showed that increasing the pulse width (i.e.,
comparison between combinations 1 and 2) or the number of
pulses (i.e., comparisons between combinations 1 and 3, 1
and 4, 2 and 3, and between 2 and 4) significantly reduced the
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Fig. 1 Detection thresholds for each subject, study day, and combina-
tion of temporal stimulus parameters (Table 1). The larger solid circles
and crosses present the mean detection thresholds for day 1 and day 2,
respectively

threshold (p ≤ .001). The difference in threshold between
the two two-pulse combinations 3 and 4 was at the signifi-
cance level (p = .051).

3 Computational modeling

Application of electrocutaneous stimulation charges nerve
endings of Aδ-fibers. Action potentials are generated given
sufficient stimulation. When this neuronal activity reaches
the synapses that project to neurons in the dorsal horn,
this triggers the release of neurotransmitter from the presy-
naptic terminal, inducing an excitatory postsynaptic current
(EPSC). Consequently, the membrane potential of postsy-
naptic neurons increases and ultimately an action potential is
generated. Sufficient neuronal activity leads to a supraspinal
response where a subject responds ‘yes.’ Otherwise, the sub-
ject did not detect the stimulus as the neuronal activity was
not sufficiently high. To quantitatively describe this detec-
tion process, signal conduction from skin to supraspinal part
is modeled. First, we formulate the dynamic process in a
single signal channel. Each signal channel consists of noci-
ceptors, a synapse and a secondary neuron. Second, for the
trial-to-trial variability, we include small background noise
as additional input for secondary neurons. We also propose a
convenient alternative based on escape noise (Plesser and
Gerstner 2000). Lastly, we derive lumped models for the
ascending nociceptive pathway by simplifying the multiple
signal channels. The organization of the neuronal system is
sketched in Fig. 2 with multiple signal channels.

3.1 Activation of afferent fibers

For simplicity, we assume that the skin is a homogeneous
medium with conductivity c0, and the needle electrode is an
infinitesimal point source generating an electric potential Ve.
Hence, applying electrocutaneous stimulation with a con-
stant current amplitude A, the electric potential is given by
Ve(r) = A

4πc0r
, where r is the distance from the needle elec-
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Fig. 2 An electrode is attached to the skin of a subject to deliver pulse
train stimulation. The dot-dashed concentric half circles represent the
electric potential. Charging the nerve endings leads to traveling action
potentials in the Aδ-fiber. The arrival of spikes at the presynaptic termi-
nal triggers the release of the glutamate from the synapse resulting in an
EPSC. The secondary neuron is charged, and the activity will converge
upto the supraspinal part and lead to a binary response. Note that the
number of signal channels is the number of secondary neurons, i.e., four
in this diagram

trode. This electric potential generates the induced input to
theAδ-fibers.Usually, the effective input is the second spatial
derivative of the potential along a fiber (Rattay 1999). How-
ever, in our experimental setup, relatively low amplitudes
are applied, similar to (Mouraux et al. 2010). As a result,
only the afferent fibers near the skin are recruited. In addi-
tion, the afferent fibers terminate in this region and mostly
with the nerve endings perpendicular to the skin. For these
nerve endings, the effective input at distance r is given by the

first spatial derivative of the potential IA(r, t) := 1
c1

∂Ve
∂r

=
− I (t)

4πc0c1r2
,where c1 describes the resistance of nerve endings

per unit length. For simplicity, we denote c := c0c1.
We use a cathodic electrode, so that the generated current

I (t) is always negative, and the induced input depolarizes
the membrane of nerve endings. In the sequel, we will write
A instead of |A|. For simplicity, we take the nerve ending as
a point in the three-dimensional space. Next, we model the
dynamics of the membrane potential of the ending V1 as a
leaky integrator

C1V̇1 = −G1V1 + IA(r, t), V1(r, 0) = 0, (1)

where C1 is the electrical capacitance of the nerve ending,
and G1 is the electrical conductance of the nerve ending. If
V1 exceeds a threshold Vth, the fiber spikes. Given a single-
pulse stimulus with duration PW, the maximal potential of
V1(r, t) is a function of the distance

Vm(r) := max
t∈[0,T ] V1(r, t)

= G−1
1 A

4πcr2

(
1 − exp

(
− PW

C1G
−1
1

))
, (2)

where T is the interval of a single trial. As the distance
increases, the induced input decreases. So, the threshold Vth

Fig. 3 Illustration of the geometry of nerve endings under skin, a min-
imal depth is denoted by h. The endings with solid tips are recruited
and those with empty tips are not recruited. The gray surface represents
the recruited space, i.e., within critical distance rc

results in a critical value for the distance: All endings with
a distance larger than this critical value are not activated.
This critical value rc is computed by solving the equality
Vm(rc) = Vth:

rc =
(

G−1
1 A

4πcVth

(
1 − exp

(
− PW

C1G
−1
1

))) 1
2

. (3)

So given the distance of a single nerve ending to the needle
electrode, we can determine whether this ending generates a
spike. Next, spikes from activated fibers drive the secondary
neuron. We ignore the differences in the moments of action
potential generation and also the arrival times of spikes at
the secondary neuron. To describe the total input, we need to
determine howmany nerve endings are recruited.We assume
that there is a homogeneous density ρ of nerve endings under
the stimulated tissue beneath the electrode and a lower bound
on the depth h of the nerve endings from the skin, see Fig. 3.
The number of the recruited endings Nr is approximated to
be proportional to the area of a circlewithin a sphere of radius
rc at depth h and is given by

Nr = πρ
(
r2c − h2

)
H(rc − h), (4)

where H is a Heaviside step function: H(x) = 1, when
x ≥ 0; H(x) = 0, when x < 0. Here we approximate the
actually integer number of recruited endings by a continuous
quantity. If Nr is small, thismaybeunsatisfactory.Wediscuss
this later, but for a more elaborate modeling study on this
issue, we refer to Mørch et al. (2011).

3.2 Postsynaptic dynamics

We describe the postsynaptic potential (PSP) V2(t) of a sec-
ondary neuron also as a leaky integrator

C2V̇2 = −G2V2 + Ip(t), V2(0) = 0, (5)

where C2 is the electrical capacitance of the secondary neu-
ron,G2 is the electrical conductance of the secondary neuron,
and Ip(t) is the EPSC. This EPSC is proportional to the
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potential gradient between the postsynaptic andAMPArever-
sal potentials, (V2−EAMPA). As the inter-stimulus interval in
repetitive electrocutaneous stimulation varied from 2 to 5s,
it is justified to assume that synaptic plasticity did not occur
between trials. The IPI used for double-pulse stimuli is in the
order of tens of milliseconds. This might involve short-term
synaptic facilitation or depression at synapses from affer-
ent fibers onto dorsal horn neurons. As recently reviewed
in Luo et al. (2014), both may occur for various synapses,
and the net effect is uncertain. Therefore, we do not include
it here. Hence, we choose a simple reset-decay model for
fast AMPA synapses (Roth and van Rossum 2009), whose
impulse response is g(t) = ḡ exp (−t/τs) for t ≥ 0 with
decay constant τs = 1.5 ms and maximal conductance ḡ
as a constant (Gabbiani et al. 1994). It is justified to set
V2 − EAMPA ≈ VR − EAMPA to some constant K , as we
consider V2 only below but close to the firing threshold VR .
Themore the afferent fibers are activated, themore the presy-
naptic spikes are expected. To determine the precise timing of
presynaptic spikes, both spike propagation and the variability
of conduction velocitymight play a role. First, themyelinated
Aδ fibers permit generated spikes recruited by relatively low
stimulation frequency at nerve endings propagate along the
nerves robustly. Second, the variability of conduction veloc-
ities of Aδ fibers could lead to the variability in the arrival
times at presynaptic terminals. However, the variability of
conduction velocity for fibers from the same area is expected
to be small. With a typical value of the conduction velocity
for the Aδ fiber 20 m/s and a distance of 50 cm, the spread of
compound presynaptic spikes at the dorsal horn is expected
to at most a few milliseconds. To determine postsynaptic
activity, we do not take the variability of the conduction vari-
ability or the arriving times into account as the secondary
neuron has a much larger time constant (Weng et al. 2006).
These considerations encourage us to simplify presynaptic
spikes from the activated afferent fibers by

u(t) = Nr

NoP−1∑
k=0

δ(t − k IPI) (6)

with δ the Dirac delta function. Its convolution with Kg(t)
gives the EPSC Ip(t):

Ip(t) := (Kg ∗ u)(t) = ∫ ∞
0 Kg(τ )u(t − τ)dτ

= Nr τs ḡK
τs

∑NoP−1
k=0 exp

(
− t−k IPI

τs

)
H(t − k IPI).

(7)

Note that Nrτs ḡK is a factor from afferent fibers, synapses
and secondary neurons; the remaining τs-normalized term
facilitates the computation of V2 by its convolution with the
transfer function of the cascaded leaky integrator (5).

3.3 Stimulus detection by randomly spiking secondary
neurons

The activity evoked in afferent fibers induces postsynap-
tic activity in secondary neurons of the dorsal horn. This
synaptic activity is noisy so that secondary neurons spike
stochastically. We consider two descriptions of this random
behavior: one stochastic and one probabilistic.We define that
a stimulus is detected if at least one secondary neuron spikes.

3.3.1 Stochastic description: a drift-diffusion model

To describe the noisy dynamics of V2, we employ the drift-
diffusion model (Ratcliff and McKoon 2008). In contrast
to the stimulation-induced presynaptic pulses, background
presynaptic pulses are relatively weak. Assuming a large
number of background pulses impinges on the neurons per
membrane time constant, the net input to postsynaptic neu-
rons can be modeled as additive white noise (Capocelli and
Ricciardi 1971). Hence, the model (5) becomes a stochastic
differential equation (SDE) with a deterministic term Ip(t)
and white noise input

C2dV2 = (−G2V2 + Ip(t))dt + σξdW, V2(0) = 0, (8)

where σξ is the noise strength and W is a standard Wiener
process. We describe the binary outcome of ‘spiking or not’
of a single secondary neuron by

Rs := H

(
max
t∈[0,T ] V2(t) − VR

)
, (9)

where we fix the trial interval T = 500 ms. When Rs = 1, it
means that the neuron generated at least one spike within the
trial interval T , otherwise none.We use the Euler–Maruyama
scheme to obtain a single realization of the DDM with a
fixed timestep of 0.01 ms (Kloeden and Pearson 1977). We
approximate the probability of at least one spike ΨD,s by the
average of N = 200 realizations

ΨD,s := Pr(spike) = Rs ≈ 1

N

N∑
i=1

Rs,i . (10)

At the level of the spinal cord, there are multiple secondary
neurons that receive the stimulus-induced input. We assume
this input is identical, but that the noise is independent. Then,
for a population with l signal channels, the probability that
at least one spike occurs is given by

ΨD := 1 − (
1 − ΨD,s

)l
. (11)

Note that this also defines the corresponding psychophysical
curve for the DDM.
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3.3.2 Probabilistic description: a hazard model

Escape noise (Plesser and Gerstner 2000) is another way to
describe random spiking, given noise-free dynamics of sec-
ondary neuron (5) and (7). In other words, at each moment,
the neuronal activity could exceed the firing threshold with a
certain probability, even if the deterministic activity is below
the firing threshold. We describe this stochastic firing with
a nonhomogeneous Poisson process. For the time-varying
firing rate of the Poisson process, we must choose a hazard
function λs , which depends on the noise-free PSP. We take
the widely used sigmoidal activation function for the hazard
function

λs(t) := λs(V2(t)) = λh

1 + exp (−(V2(t) − αh)/σh)
, (12)

where αh is the activation threshold, λh is the maximal firing
rate and σh is the slope parameter. Note that the activation
threshold αh has a different interpretation from the firing
threshold VR in the DDM. In the DDM, given a realization
of noise, the firing threshold determines the spiking in a deter-
ministic way. In the hazard model, even if the noise-free PSP
is below αh , there is still a probability to spike.

For a single neuron, the expected value of the number of
spikes during this interval is given by

λsT :=
∫ T

0
λs(t)dt. (13)

Thus, the probability of at least one spike in a single sec-
ondary neuron is given by

ΨH,s := 1 − Pr (no spike|0 ≤ t ≤ T ) = 1 − exp
(−λsT

)
.

(14)

For a population of neurons, similar to Eq. (11), we obtain
the psychophysical function

ΨH := 1 − (
1 − ΨH,s

)l = 1 − exp
(−lλsT

)
. (15)

3.4 Lumped models

We have built two models to represent the stimulus process-
ing from electrocutaneous stimulation to random binary
responses. However, these models have more than ten
unknown physical quantities. To reduce the number of para-
meters, we introduce six lumped parameters for each model.

If we let the time constant of secondary neurons τ2 :=
C2G

−1
2 , the lumped PSP x := G2V2/q, the strength of white

noise σ := σξ/q, the lumped EPSC I ∗
p := Ip/q and the

scaled firing thresholdα2 := G2VR/q where q is an arbitrary
but nonzero constant, then the SDE can be rewritten as

τ2dx =
(
−x + I ∗

p(t)
)
dt + σdW, x(0) = 0. (16)

For a single neuron, the binary response is given by Rs =
H

(
maxt∈[0,T ] x(t) − α2

)
, fromwhichwe can derive the psy-

chophysical curves using Eqs. (10) and (11).
The gain factors in peripheral activation, central process-

ing, and synaptic transmission are given by
κ := ρ (4πcG1Vth)−1, K and ḡτs , respectively. All those
gain factors are independent of the dynamics in underlying
mechanisms. Hence, lumping those factors into the fac-
tor q := ḡτsκK , also see (7), we meet the requirement
to get as few parameters as possible. Denoting the time
constant of afferent fibers τ1 := C1G

−1
1 , we can write

Nr = κ[ f A − α1]+, where [z]+ := π zH(z) is a threshold-
linear function, α1 := 4πcG1Vthh2 is the lumped activation

threshold, and f A := A
(
1 − exp

(
−PW

τ1

))
= 4πcG1Vthr2c

is the amount of activation of afferent fibers.
Lumping the hazard model, we introduce α1, τ1, τ2 as for

the DDM, the lumped activation threshold of secondary neu-
rons αL := G2αh/q, the lumped slope parameter σL :=
G2σh/q and the population firing rate λL := lλh . It is
now straightforward to compute the psychophysical function
using the scaled noise-free dynamics x0(t) := G2V2(t)/q

x0(t) := [ f A − α1]+
τ2 − τs

NoP−1∑
k=0

(
exp

(
− t − k IPI

τ2

)

− exp

(
− t − k IPI

τs

))
H (t − k IPI) (17)

by evaluating the integral

ΨH = 1 − exp

(
−

∫ T

0
λ(t)dt

)
, (18)

where λ(t) = λL
(
1 + exp

(− (
x0(t) − αL

)
/σL

))−1
.

To summarize, the lumped DDM involves six parameters:
the threshold α1 and the time constant τ1 in the peripheral
nervous system; the threshold α2, the noise strength σ , the
time constant τ2 and the number of secondary neurons l in
the more central system. Note that the lumped parameters α2

and σ combine properties of the peripheral and the central
system as they are scaled by q. For the lumped hazard model,
we have the same α1, τ1 and τ2, but the other three αL , σL

and λL have a different interpretation. We will write θD :=
(α1, τ1, τ2, α2, σ, l) and θH := (α1, τ1, τ2, αL , σL , λL) for
the DDM and the HM, respectively.

3.5 Comparison of the dynamics and psychophysical
functions of DDM and HM

We formulated twomodels for the same detection task. These
two models have the same fiber activation, but different for-
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mulations for spiking of secondary neurons.We present their
dynamics and study how their psychophysical functions dif-
fer.

3.5.1 Activation of afferent fibers

FixingPW, the activation of afferent fibers [ fA−α1]+ follows
a threshold-linearity about A. Fixing the amplitude, the acti-
vation of afferent fibers grows by increasing PW saturating to
rheobase. This is illustrated in Fig. 4 fixing parameter values
α1 = 0.2 mA, τ1 = 0.12 ms and either (a) PW = 0.42 ms
or (b) A = 0.5 mA.

3.5.2 Dynamics of secondary neurons

We set stimulus parameters A = 1 mA, NoP = 2, IPI =
50 ms and PW = 0.42 ms and system parameters α1 =
0.5 mA, τ1 = 0.1 ms, τ2 = 50 mA, σ = 0.05 A/s and
l = 1. The values of time constants τ1 and τ2 are based on
(Mogyoros et al. 1996; Weng et al. 2006). In Fig. 5, we show
realizations with and without noise.

To demonstrate the dynamics of the HM, we use the same
parameter values but for the parameters associated with sec-
ondary neurons we use αL = 0.01 A/s, σL = 0.001 A/s
and λL = 0.01 kHz using three different stimuli with the
same PW = 0.42 ms: NoP = 1 (thick dashed); NoP = 2
and IPI = 50 ms (solid); NoP = 2 and IPI = 150 ms (dot-
dashed). The dynamics and the expected firing rate λT are
shown in Fig. 6. As the trial interval T is much larger than the
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Fig. 4 Activation of afferent fibers. a activation has a threshold non-
linear relation with amplitude A; b peripheral activity increases by
increasing PW, eventually saturating
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Fig. 5 Stochastic dynamics of the DDM using a pulse train current
input with (A = 1 mA, NoP = 2, IPI = 50 ms, PW = 0.42 ms).
a Noise-free dynamics (solid) with σ = 0 and a stochastic realiza-
tion (dashed). b N = 200 Realizations of the stochastic dynamics (thin
solid). Statistics of the potential are also shown, mean (solid), andmean
plus or minus the standard deviation (dashed). See text for system para-
meter values

time constant τ2, the psychophysical function value ΨH (A)

does not change for larger values of T .
We implemented both models in MATLAB R2010b on a

desktop with an Intel Core i7 processor. The time needed to
evaluate a single psychophysical function valueΨ (A = 0.1)
was 0.21 s for the DDM using 4 cores and 0.0088 s for the
HM. Hence, the HM is computationally much cheaper than
the DDM.

3.5.3 Comparing psychophysical functions of DDM
and HM

Since the psychophysical function of the HM is smooth, we
start by choosing parameters that lead to experimentally plau-
sible psychophysical functions for the DDM. Next, we fit the
psychophysical function of the HM to the DDM at discrete
stimulus amplitudes. The parameters τ1, τ2 and α1 are the
same for bothmodels, and hence, wewill use the same values
for the DDM and the HM. We do this for several combina-
tions of the temporal parameters, see Table 2.

We use the relative fitting error to assess the difference
between the HM and the DDM

E =
∑
j

∑
i

(
ΨD, j (Ai ) − ΨH, j (Ai )

)2∑
i ΨD, j (Ai )2

, (19)

where i is the index of amplitudes, Ai ranges from 0 to 2 with
a step 0.01 mA, j is the index of the combination of temporal
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Fig. 6 Activities of secondary neurons using three different stimuli
with the same PW = 0.42 ms: NoP = 1 (thick dashed); NoP = 2 and
IPI = 50 ms (solid); NoP = 2 and IPI = 150 ms (dotted-dashed).
a Lumped PSP stimulated by an electrical train of two pulses with
amplitude A = 1mA, IPI = 50ms and PW = 0.42ms; b instantaneous
firing rate; c the expected value of the number of spikes within a trial
[0, T ]; d psychophysical function value ΨH depending on T

Table 2 Combinations of the temporal stimulus parameters

Index A B C D E F G H

NoP (#) 1 1 1 2 2 2 2 2

IPI (ms) − − − 10 20 50 100 150

PW (ms) 0.21 0.42 0.84 0.42 0.42 0.42 0.42 0.42
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Fig. 7 Using 8 different combinations of temporal stimulus para-
meters. Temporal parameters used in panels (a–h) correspond to
combinations A–H in Table 2, psychophysical function values ΨD(A)

using the DDM (solid lines) and best fitted ΨH by the HM (dashed
lines) with fitting error E = 0.0029. The common parameters are set
to α1 = 0.5 mA, τ1 = 0.1 ms, τ2 = 50 ms, and τs = 1.5 ms. The
parameters corresponding to neuronal variability are different in these
two models. In the diffusion model, we set the values of parameter as
α2 = 0.02 A/s, σ = 0.05 A/s, and l = 1, while the fitting results
in αL = 0.0220 A/s, σL = 0.0021 A/s, and λL = 0.4020 kHz. The
asymptotic behavior of the detection threshold with two independent
pulses and its relation to the psychophysical curve with NoP = 1 are
illustrated by the thin dashed lines in panels (b) and (h)

parameters,ΨD means the psychophysical function based on
the DDM, and ΨH is the psychophysical function based on
the HM.

For a particular choice of parameter values, the psy-
chophysical functions after fitting are shown in Fig. 7. The
realizations of the binary responses for exactly the same
amplitude follow a binomial distribution. Hence, we com-
pute the confidence interval (CI) using the Clopper–Pearson
method (Clopper and Pearson 1934).

For stimulus combinations D and H, the psychophysical
curves of the fittedHMliewithin the 95%CI ofΨD . For other
combinations, the fitted ΨH deviates negligibly from ΨD , in
particular for amplitudes far below or above the detection
threshold.

We also study the fitting performance over a larger range
of parameters for the DDM. We set two restrictions on the
choice of the parameter values. First, we set ranges for the
lumped threshold parameters so that the model detection
thresholds are in the range of experimental observations,
see Table. 3. For the time constants, the range of τ1 is set

Table 3 Parameter space for the DDM

Parameter Lower bound Upper bound

α1 0.05 1.00

τ1 0.01 0.50

τ2 5 200

α2 0.01 0.30

σ 0.02 0.20

l ∈ Z
+ 1 20

The upper three denote that the parameters are the same for the DDM
and the HM
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Fig. 8 Distribution of the fitting error of the DDMby the hazardmodel
with randomly chosen values of system parameters τ1, α1, τ2, α2, σ and
l in the DDM

according to Mogyoros et al. (1996); the range of τ2 is 5–
200 ms based on time constants of wide dynamic range
neurons in rat dorsal horn (Weng et al. 2006). Second, as
the electrode only delivers stimulation with low intensity,
when A = 0, the detection probability should be relatively
low, i.e., near 0; when A = 2 mA (the highest amplitude
experimentally used), this probability should be close to 1.
Therefore, our second restriction is ΨD(A = 0) < 0.35 and
ΨD(A = 2.0) > 0.65.

With these restrictions, we apply a Monte Carlo method
to study the fitting performance among the parameter space
with the following steps. First, we sample a parameter vector
θD within the parameter space randomly. Next, we verify
whether the sampled parameter vector satisfies the sec-
ond restriction; if yes, we continue, otherwise, we discard
this sample and redo the first step to sample another para-
meter vector. Then, we compute ΨD , estimate parameters
(αL , σL , λL) for the HM and compute the fitting error E . We
do these steps 500 times so that we obtain a set of errors.
Finally, we determine the empirical distribution of the fitting
error denoted by FE , see Fig. 8.

This plot describes how well the HM can be fitted to the
DDM in the parameter space. The ideal result of fittingwould
be E ≡ 0 while, in practice, model differences cause differ-
ences between psychophysical functions. The goodness of fit

123



Biol Cybern (2015) 109:479–491 487

can be assessed by looking at the error level when FE cross-
ing 50%, i.e., the level which half of fittings do not exceed.
According to Fig. 8, we have 50% to have a fitting error
E ≤ 0.040. This result shows that psychophysical functions
of the HM are similar to those generated by the DDM, for
most choices of the parameters of the DDM.

4 Effects of temporal stimulus parameters
on detection thresholds

Detection thresholds are important psychophysical quanti-
ties and they depend on stimulus parameters. We compare
model-based thresholds with experimental values. We give a
neurophysiological interpretation of the effects of temporal
stimulus parameters on detection thresholds using the two
models.

We can determine the threshold A50 in a model by solv-
ing Ψ (A50) = 0.5. This definition only makes sense if
Ψ (A = 0) < 0.5, i.e., spontaneous activation is unlikely
in the absence of stimuli. Therefore, for the HM, we impose
the condition TλL < ln(2)(1 + exp(αL/σL)). If this is sat-
isfied, it is straightforward to obtain the unique threshold as
the psychophysical function is a monotone function of the
stimulus amplitude in the hazard model. For the DDM, it is
nontrivial to derive such a condition as it would require to
evaluate infinite-dimensional integrals for which no closed-
form formula exists. Hence, for the DDM, we rely on (many)
simulations to find ΨD and determine A50 by interpolation.

We now consider the experimentally observed detec-
tion thresholds using our models. Given a parameter set
and the experimental combinations, for which we refer
to Table 1, we can compute the detection thresholds of
the models. Varying parameters systematically, we found
parameter sets θD = (0.06, 0.4, 50, 0.031, 0.09, 8) and
θH = (0.06, 0.4, 50, 0.006, 0.001, 0.01) such that detection
thresholds of both models were close to the experimen-
tal values, see Fig. 9a. This illustrates that both models
replicate the experimental phenomena, i.e., increasing PW
and NoP decreases detection thresholds. From Fig. 4, we
see that increasing PW leads to more activated fibers. This
increases the input to secondary neurons making them more
likely to spike, hence decreasing the threshold. The models
also explain why more pulses lower the detection thresh-
old. For the HM, the activity x0 after the first pulse returns
to base-line if IPI is large. Hence, for two independent
pulses, the expected firing rate doubles, i.e., λT (A,NoP =
2) = 2λT (A,NoP = 1), illustrated in Fig. 6c. So we see
ΨH (A,NoP = 2) = 1 − (1 − ΨH (A,NoP = 1))2 >

ΨH (A,NoP = 1). The resulting ΨH (NoP = 2) is shifted to
the left and steeper. This reflects that it ismore likely to detect
at least one of the two independent stimuli. A similar reason-
ing holds for the DDM as a spike is more likely to occur, as
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meter values. The horizontal lines for NoP = 2 indicate the asymptotic
value A2,50 for two independent pulses (DDM: solid line, HM: dashed
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Fig. 10 Model-simulated non-monotone effects of the IPI on the prob-
ability to detect when in the DDM (circles) and the HM (squares) for
NoP = 2. The amplitude is fixed as A = 0.35mA, and values of system
parameters are identical to those used in Fig. 9

two pulses increase the probability for the stochastic PSP to
exceed the firing threshold. We can also use the latter rela-
tion to predict the threshold A2,50 for two pulses with large
IPI based on the psychophysical function of one pulse giving

the equation ΨH (A2,50,NoP = 1) = 1 −
√
2
2 . The detection

thresholds A2,50 computed from this relation is indicated in
our comparison of DDM and HM in Fig. 7b, h and for the
experimental data by the horizontal lines in Fig. 9a.

In addition, changing IPI from 10 to 50 ms, we see that
both experimental and model-based thresholds do not vary
much. We have computed the thresholds for varying IPI, see
Fig. 9b.This relation exhibits a value of IPIwithminimal A50.
At this value, temporal summation of the PSP maximizes
the expected value of the number of spikes for the hazard
model. Likewise, for the drift-diffusionmodel it increases the
time window where the dynamics is just below the thresh-
old. Therefore, also for the DDM we find a value of IPI that
minimizes A50. Now for the data, the experimentally used
IPI in Table 1 may have been either on both sides of such
an optimal value or on the long flat tail, see the horizontal
lines in Fig. 9a. In both cases, the models explain why the
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effect of IPI on threshold may be nonsignificant and at best
small. The psychometric function describes the probability
to detect stimuli at various amplitudes. To demonstrate the
effect of temporal summation, one can fix the amplitude and
compute this probability as a function of IPI. In Fig. 10, we
show similar non-monotone trends of the detection probabil-
ity as IPI is increased for both models for the same parameter
values. These simulated trends are in line with the IPI effect
in an eyeblink response task (Blumenthal et al. 1987).

5 Discussion

We modeled a detection task with an electrocutaneous pulse
train stimulus. We derived a stochastic drift-diffusion model
and a probabilistic hazard model with six lumped parameters
characterizing the underlying neurophysiological mecha-
nisms.Using themodels,we explained the effects of temporal
stimulus parameters on thresholds in a human subject study.
Bothmodels have similar psychophysical curves, but the haz-
ard model is computationally more convenient and hence
more suitable for follow-up studies.

5.1 Effects of temporal parameters on detection
thresholds

The pulse train stimulus has three temporal stimulus para-
meters. Increasing PW,more nerve endings are activated, see
Fig. 4b, which increases the activity of secondary neurons.
This lowers the detection threshold in accordance with many
other studies on neural activation (Mogyoros et al. 1996;
Irnich 2010). Increasing NoP, we noted two effects depend-
ing on the value of IPI. For large IPI, each pulse may be
perceived independently, increasing the detection probabil-
ity. This is known as probability summation (Zwislocki 1960;
Gescheider et al. 1999). For shorter IPI, temporal summa-
tion of neural responses may further decrease the detection
threshold.Ourmodel differs froman earlier one byZwislocki
(1960), as we describe also trial-to-trial variability, account-
ing for awide range of IPI values. Our experimental detection
thresholds showed only a small increase when changing IPI
from 10 to 50 ms, which was at the significance level. This
differs from the phenomenon observed in another study of
tactile sensory processing (Gescheider et al. 1999). One pos-
sible explanation is based on the non-monotonic relationship
from our model simulations due to the following reasons.
First, tactile sensory processing relies mostly on Aβ-fibers.
The Aδ-fibers activated by the electrocutaneous stimulation
differ in two aspects: their intrinsic neurophysiological prop-
erties and the neurophysiological characteristics of central
neurons located in different laminae in the dorsal horn (Todd
2010). Such differences could be reflected by the time con-
stant of 200 ms for neural response used in Gescheider et al.

(1999), which is much larger than the time constants of affer-
ent fibers and secondary neurons in the nociceptive system
(Mogyoros et al. 1996; Weng et al. 2006). Second, Geschei-
der et al. (1999) utilized a merely deterministic model for the
neural response, which did not account for the noisy neural
activity with paired pulses. Third, the agreement on the non-
monotone IPI effect on the detection probability between our
model simulation and (Blumenthal et al. 1987) further sup-
ports our hypothetical explanation of the small IPI effect on
detection thresholds. Future experiments could use a wider
range for IPI to study the effect of IPI in more detail.

Other processes, such as threshold noise (Coombes et al.
2011), could also account for trial-to-trial variability. It is
unclearwhat the plausible autocorrelation of the noise should
be. Including threshold noise would also increase the number
of lumped parameters by introducing parameters to charac-
terize the autocorrelation. In addition, we encounter the same
difficulty as for the DDM when we want to determine the
distribution of the first passage times (FPTs) to compute the
psychophysical function. Because of a lack of an analytically
tractable expression of the distribution of the FPTs (Ricciardi
and Sato 1986; Di Nardo et al. 2000), model-based detection
thresholds can only be simulated by generating a large set
of realizations of threshold noise. Hence, a model consid-
ering threshold noise would be computationally expensive.
This restricts the usage of a model with threshold noise in
follow-up studies, e.g., parameter estimation.

5.2 Interpretation of lumped parameters

In both models, six lumped parameters characterize periph-
eral and central mechanisms. In the hazard model, the time
constant τ1 and the threshold α1 affect the activation of
peripheral fibers. The time constant τ2 and the firing rate
λL describe central properties. The threshold αL and the
slope parameter σL depend on peripheral and central com-
ponents. The physical quantities h, C1, C2, αh , and σh
occur solely in the lumped parameters α1, τ1, τ2, αL , and
σL , respectively. When one of these lumped parameters
changes, one can attribute this to the corresponding phys-
ical quantity. For other physical quantities, this may not be
the case. We discuss two pathological phenomena: hyper-
algesia and central sensitization. When considering several
possible causes of hyperalgesia (Sandkühler 2009) with
either a change in excitability of afferent fibers or secondary
neurons or a change in synaptic strength, we can deter-
mine the corresponding change in the lumped parameters.
Membrane excitability of afferent fibers and secondary neu-
rons, and synaptic strength are characterized by κ , K and
ḡ, respectively. In peripheral activation, increased periph-
eral excitability κ reflects in the simultaneous decrease in
α1 ∝ κ−1, αL ∝ κ−1 and σL ∝ κ−1. In central processing,
the product of ḡ and K can be considered as the compound
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excitability of synapses and membranes of secondary neu-
rons. As the lumped parameters αL , σL ∝ (ḡK )−1, lower
values of αL and σL indicate a higher compound excitability.
However, individual contributions of ḡ or K to the compound
excitability cannot be distinguished from these lumped para-
meters. In addition, central sensitization can manifest itself
as a reduced outward flux of potassium ions of secondary
neurons (Latremoliere and Woolf 2009). This inhibition can
be cast in a decrease of G2. Such a decreased value of G2

would result when τ2 ∝ G−1
2 increases, and both αL ∝ G2

and σL ∝ G2 decrease simultaneously. So different patterns
of changes of these lumpedparameters reflect distinguishable
changes in either peripheral activation or central processing.
Hence, these lumped parameters may be used in a patient-
specific interpretation of (mal-)functioning in the nociceptive
system. In addition, such understanding of effects of parame-
ters would be used to guide new experimental design based
on the model, such as predicting the effect of certain medica-
tion on thresholds based onmodulation of synaptic efficiency
in the dorsal horn. When such experimental measurements
with detection thresholds under a perturbed nociceptive sys-
tem become available, in turn, our understanding of parts of
nociceptive processing might advance as well. As the model
behavior depends nonlinearly onmultiple parameters, effects
of these system parameters on detection thresholds will be a
subject of future work.

5.3 Model identifiability

For apractical applicationof ourmodeling study, oneneeds to
infer systemparameters frompsychophysicalmeasurements,
as most of the lumped parameters are not measurable in a
direct way. Obviously, we will not be able to determine the
physical quantities, but only the lumped parameters. Here we
have chosen parameter sets to match model-based thresholds
to experimentally obtained values, since an appropriate para-
meter estimation procedure is currently lacking. Standard
system identification techniques are based on time-varying
input and output (Ljung 1999). In contrast, QST for pain
diagnosis and monitoring yields psychophysical characteris-
tics like thresholds rather than time-varying measurements
(Wilder-Smith and Arendt-Nielsen 2006; Doll et al. 2014).
In future work, we will investigate whether one can use these
characteristics or stimulus–response pairs for system identi-
fication. The hazard model provides a good starting point as
it is efficient and captures the experimental effects of tempo-
ral stimulus parameters. However, different from the logistic
curve which is a generalized linear model, the nonlinearity
in the HM challenges the assessment of model identifiability.
Prior to performing parameter estimation, the identifiability
of the hazard model should be explored, i.e., a unique esti-
mate can be determined provided sufficient information is
available (Bellu et al. 2007; Raue et al. 2009). In our setting,

it is a challenge to design suitable combinations of temporal
stimulus parameters.

5.4 Model extensions

So far, we have considered the essential neural mecha-
nisms of stimulus processing in the ascending pathway.With
respect to fiber activation, our model could be extended in
two ways. First, we simplified the discrete number of acti-
vated nerve endings by the continuous variable Nr (Eq. 4).
However, as both the strength of the induced electric field
and the density of nerve endings determine this number, it
is a challenge to improve this approximation for human sub-
jects. If the Aδ-nerve endings would be sparsely distributed,
we recommend to minimize variations of the electrode–skin
interface in experiments. Second, we assumed robust spike
propagation and small variability in conduction velocity,
because of the myelination of normal Aδ-fibers. However,
a demyelinating disease could amplify the contribution of
these two factors on the postsynaptic activity, making these
two terms necessary. Hence, on the one hand, more work is
required to adequately describe the mechanisms for patients
with a demyelinating disease; on the other hand, using our
model, we suggest to use the presence of demyelinating dis-
ease as an exclusion criterion. Short-termplasticity is another
process relevant for sensory synaptic transmission. We have
not included this mechanism in our current model for several
reasons. First, experimental evidence is collected for vari-
ous synapses between afferent fibers and different laminae
in the dorsal horn, see the review (Luo et al. 2014). As both
synaptic depression and facilitation may occur, the net effect
is uncertain. Second, our model already explains the effect
of the IPI on detection thresholds. Short-term plasticity may
interfere with temporal summation, but both the data and
the model suggest a small effect of the IPI. Nevertheless, if
new experimental data provide conclusive evidence on the
net effect due to the short-term plasticity, such an effect can
be effectively modeled by modifying (7) such that ḡ depends
on IPI. Third, chronification of pain states is accompanied
by the long-term plasticity, e.g., central sensitization. Such
clinical relevancedrawsmore attentionon the long-termplas-
ticity rather than short-term forms. To induce and maintain
central sensitization, NMDA receptors (NMDAR) play an
important role (Woolf and Thompson 1991). Our models
do not represent signal transduction, like protein kinase in
postsynaptic neurons induced by the influx of calcium ions
via NMDAR (Latremoliere and Woolf 2009). Such mecha-
nisms affectmembrane excitability of secondary neurons and
synaptic strength. Their compound effect is characterized by
the two lumped parameters αL and σL . Hence, parameters
in the hazard model can still reflect the (mal-)functioning
caused by involvement of NMDAR. An extended model rep-
resenting more mechanisms due to NMDAR might increase
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insights into central sensitization. However, the substan-
tially increased number of parameters for complex signaling
pathways would challenge parameter estimation using psy-
chophysical data from QST.

In addition, stimulus processing can be modulated by the
descending pathway, but under normal circumstances it is
inactive. Yet, it is clinically important as its malfunction-
ing may be related to chronic pain (Yarnitsky 2010). The
descending pathway may be activated by a conditioning
stimulus such as the cold pressor test (CPT) through con-
ditioned pain modulation (CPM) (Pud et al. 2009; Yarnitsky
et al. 2010). It has been shown that the CPT leads to tem-
porally increased detection thresholds (Doll et al. 2014). It
is possible to incorporate descending inhibition to stimulus
processing along the ascending pathway although the precise
form, multiplicative due to shunting or additive due to nor-
mal inhibition, is unknown. If parameters of the ascending
system can be estimated, it would then encourage to identify
the descending pathway.
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