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Abstract

In this paper, the estimation of the thermal diffusivity from perturbative experiments in fusion
plasmas is discussed. The measurements used to estimate the thermal diffusivity suffer from
stochastic noise. Accurate estimation of the thermal diffusivity should take this into account. It
will be shown that formulas found in the literature often result in a thermal diffusivity that has a
bias (a difference between the estimated value and the actual value that remains even if more
measurements are added) or have an unnecessarily large uncertainty. This will be shown by
modeling a plasma using only diffusion as heat transport mechanism and measurement noise
based on ASDEX Upgrade measurements. The Fourier coefficients of a temperature perturbation
will exhibit noise from the circular complex normal distribution (CCND). Based on Fourier
coefficients distributed according to a CCND, it is shown that the resulting probability density
function of the thermal diffusivity is an inverse non-central chi-squared distribution. The thermal
diffusivity that is found by sampling this distribution will always be biased, and averaging of
multiple estimated diffusivities will not necessarily improve the estimation. Confidence bounds
are constructed to illustrate the uncertainty in the diffusivity using several formulas that are
equivalent in the noiseless case. Finally, a different method of averaging, that reduces the
uncertainty significantly, is suggested. The methodology is also extended to the case where
damping is included, and it is explained how to include the cylindrical geometry.

Keywords: perturbative transport, electron diffusivity, estimation, statistics, confidence bounds,
diffusion coefficient

(Some figures may appear in colour only in the online journal)

1. Introduction fusion reactors. In particular, the diffusivity of particle and

thermal transport determine the efficiency of fusion reactors
Perturbative experiments play an important role in the [1]. In practice, the observed thermal diffusivity differs one
understanding and quantification of transport mechanisms in  or two orders of magnitude from the neo-classical predictions.
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This difference is attributed to turbulent transport [2, 3]. The
detailed study of the thermal transport, in both neo-classical
and turbulent regimes, requires reliable methods for measuring
the thermal diffusivity including its confidence.

The analysis of perturbative experiments is used for the
study of various transport mechanisms in fusion plasmas
[4,5]. Examples are the electron heat transport using electron
cyclotron resonance heating (ECRH) [6,7]; the momentum
transport using modulated neutral beam injection to modulate
the torque [8, 9, 10]; the ion heat transport using ion cyclotron
resonance heating [11]; and the analysis of impurity transport
[12,13,14].

The method presented in this paper to arrive at reliable
estimates for the diffusivity is in many cases applicable to the
other transport channels as well. This certainly holds for the
confidence analysis of amplitude and phase and if a number
of additional assumptions are fulfilled also for the diffusivity
(see section 2.1). However, in this paper, we specifically
analyze the electron thermal transport using locally deposited
modulated ECRH. The ECRH induces perturbations in the
electron temperature which are measured by electron cyclotron
emission (ECE) using a radiometer [15].

The study of the harmonic components of the
perturbations induced by the modulated source at different
radial locations gives information about the transport
mechanisms, e.g. the perturbative electron heat diffusivity [16].
The perturbative electron diffusivity x can be calculated based
on the Fourier coefficients in terms of the phase and amplitude
profiles. In this paper, the perturbative electron diffusivity
is denoted as x instead of Xfp, because the power balance
electron heat diffusivity x® determined in steady-state [4] is
not analyzed here.

A number of important relationships are derived to
determine the perturbative electron diffusivity x on the
basis of a single harmonic €2 either using the spatial phase
derivative ¢’, or the scaled amplitude derivative A’/A, or a
combination of these two in slab and cylindrical geometry
using different assumptions on density gradients and non-
diffusive contributions. They are summarized with their
assumptions in [4,5,17] and are used in many papers to
characterize the electron thermal transport in tokamaks like
JET [18,19,20], RTP [21,22], ASDEX Upgrade [6,23],
DIII-D [24,25], and TFTR [26]; and in stellarators like W7-AS
[27] and LHD [28]; more recently perturbative experiments
were used to determine the diffusivity inside magnetic islands
[29,30]. However, these relationships do not consider the
uncertainty of the measurements leading to accuracy loss of
the diffusion coefficient estimate. The reason for this loss in
accuracy is the probability density function (PDF) of x, which
is directly associated with the method of calculation. This
non-Gaussian PDF has a long tail, which has two important
implications: (1) the estimated diffusion coefficients have a
high upper uncertainty; (2) taking the average of estimated
diffusion coefficients, e.g. for different harmonics, will result
in a biased diffusivity estimate. Both implications will be
demonstrated in this paper.

The standard assumption of circular complex normal
distributed (CCND) noise on the Fourier coefficients is used.

This distribution is the result of the Fourier transform of several
different additive noise distributions including a Gaussian
noise distribution. Based on the CCND and some minor
conditions on the initial signal-to-noise ratio (SNR), it is shown
that the resulting PDF of the diffusivity is an inverse non-
central chi-squared-distribution. This PDF is derived via an
analysis of the propagation of noise from the time domain to
the estimated diffusion coefficient. This analysis also gives
insight on how to arrive at the optimal diffusivity estimate
by averaging the different harmonics, amplitude, and phase.
A weighted averaging method using Maximum Likelihood
Estimation is proposed [31]. This weighting is a sub-optimal
solution in the sense that the resulting bias and variance on the
diffusivity estimate is larger than the theoretically achievable
bias and variance given the measurements. Nevertheless, it
will still increase the accuracy significantly and gives a direct
method for calculating the diffusivity. In case the damping is
included, the product ¢’ A’/ A needs to be used. As no closed-
form expression exists of the PDF for this product of random
Gaussian variables, a Gaussian approximation is used based
on recent work related to this topic [32]. This introduces
some error, which can be studied using a Monte Carlo
analysis.

The cumulative density function (CDF) of x is derived
analytically for the case without damping and approximated
in case of the damping. Hence, the accuracy of the
estimated diffusion coefficients can be determined through the
construction of confidence bounds.

This paper is structured as follows. Section 2 shortly
introduces the commonly used relationships to calculate x
and their main assumptions. Moreover, it explains that
Gaussian noise is the dominant noise on ECE-measurements.
This allows for the derivation of the PDFs of amplitude and
phase, which can be approximated under certain conditions
by Gaussian distributions. The PDFs of the phase derivative
and the logarithmic amplitude derivatives are calculated using
an alternative method, which also includes cross-correlation
terms between real and imaginary parts. Section 3 uses
these Gaussian approximations of the phase derivative and
logarithmic amplitude derivative to determine the resulting
PDFs of the diffusion coefficients. The corresponding CDFs
are used to construct confidence bounds on the diffusivity.
In addition, the PDF for yx is introduced based on the
Gaussian approximation of the product of ¢’A’/A. Section 4
focuses on the practical aspects of estimating mean values
and variances of the Fourier coefficients, where the variances
refer to the variation of the Fourier coefficients with respect
to their mean values. Direct methods for measuring the
mean values and (co-)variances of the Fourier coefficients are
presented, which are necessary to determine the PDFs of the
diffusivity.

In section 5 weighting methods are introduced to combine
amplitude, phase, and different harmonics. These techniques
are applied to simulations using realistic values for the
Fourier coefficients and the measurement noise extracted from
ASDEX Upgrade data. Moreover, the influence of static errors,
such as calibration errors is discussed. Finally, the main
conclusions are summarized in section 6.
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2. Distributions of phase and amplitude and its
spatial derivatives

The uncertainty on measurements can be quantified by
studying the PDFs of the measurement data. First, it is
motivated why the Gaussian distribution is the most probable
noise distribution on our time domain measurements. This
information is used to derive the PDFs of the Fourier
coefficients, amplitude, and phase and their spatial derivatives.
In addition, it is shown when the PDFs of amplitude and phase
may be approximated by Gaussian distributions. However,
first the common relationships to determine x based on
experimental data are reviewed.

2.1. Modeling of heat transport

In this subsection the most common relationships used to
calculate the perturbative heat diffusivity x are summarized.
These relationships are compared based on their statistical
properties in this paper. This subsection is based on the
work presented in [17,33,34,35] and for the full details and
derivations the reader is referred to [17]. All the relationships
presented here assume that the transport coefficients are
constant with respect to time and space and that on the
considered domain no source termis present. The relationships
to calculate x [-s~! or m?s~! when rescaled in SI units] are
based on a single harmonic Q [ rad s~!] either using the spatial
phase derivative ¢’ [rad or radm™'], or the scaled amplitude
derivative A’/A [- or -m~!'], or a combination of these two.
Basically, three cases have to be distinguished:

(1) The slab geometry case where both the convectivity
and damping T,y [s7'] (ty = 1 /T) are assumed zero
resulting in

3Q
Xs1 = Zp (1)
and
AV OYIES

Both imply that A’/A = ¢’. This can then also be
rewritten by stating that 2¢’ = ¢’ + A’/A resulting in
a third new relationship, i.e.

3Q 3)
X3 = .
(A/A+¢)
(ii) The slab geometry case where the damping is also
included
-2_2 @)
XA G ajAg

This product is rewritten using the individual x estimates
based on (1) and (2) to calculate the diffusivity [5]

Xn = A/ Xs1Xs2, (5)

in which xy, is the diffusivity calculated based on the
amplitude and yx;; based on the phase. Both, these
relationships can also be used to calculate x when 7,y = 0.

(iii) The cylindrical geometry case where also convectivity
and damping are also included. In addition, also density
gradients are included, which are assumed zero for the
three other presented relationships. This relationship is
derived in [17]

_3Q (A 1 n U &\ !
=Gl n ) s
(6)

where U is the convective velocity, n the density and n’
its spatial gradient. However, this relationship cannot be
used in practice. Therefore, a number of assumptions and
simplifying steps, such as assuming U = 0 and replacing
¢” with the derivative of ¢’ from the slab-geometry, are
necessary to make it applicable in practice resulting in [17]

(s (A TN ;
e=2 (G ln-al) - o

Interestingly, taking the spatial derivative of ¢’ in slab
geometry results in ¢” to be zero. This implies that ¢’ is linear
such that between two different spatial locations

/ ¢2 - 4)1
== 8

¢ A ®)
where Ap = po — p; and ¢; = ¢ (p;, )i = 1,2. It can be
shown that in slab-geometry under the assumption of constant
parameter dependencies that ¢’ is by definition given by (8) and
under these assumptions the logarithmic amplitude derivative
is given by

A_d (In (A))

_——=— n =

A dp

In(A2) —In(A))

Ap €))

In cylindrical geometry these relationships are no longer exact
and then only approximate A’/A and ¢’. Here, the derivative
of amplitude and phase are based on two measurement points
only. The reason is that under the assumptions used to derive
(1), (2), and (4) the derivatives are defined by (8) and (9).

It is common practice to approximate A’ and ¢’ using
interpolations of A and ¢ or smoothed versions of A and
¢. Here, we refrain from making such fits because: (1) they
are unnecessary as the spatial derivatives are clearly defined
and calculating x and its confidence bounds and plotting at
the different spatial locations still allows for the investigation
of its spatial relationships; (2) in the slab geometry case
such fits other than the one proposed here is inconsistent
with assumptions under which the different relationships
for x have been derived; (3) the results from such fits
and the corresponding uncertainty will heavily depend on
the chosen interpolation functions and their approximation
order; (4) making such fits does not necessarily reduce the
uncertainty and is rather a trade-off between spatial and
temporal information; (5) after interpolation the new A and
¢ have become spatially correlated due to the interpolation,
which makes it more difficult to calculate the confidence
bounds.

However, if one still prefers to use such fits, we
suggest analyzing the uncertainty of the individual A and
¢ measurement points. This uncertainty can be taken into
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Figure 1. (a) A scatter plot of the Fourier coefficients calculated per period at frequency €2 of x(¢) = 0.5sin(Qt + %) + e(?), where e(t) is
Gaussian distributed noise. The Fourier coefficients are presented in the complex plane where ®y and ®4 are its real and imaginary parts,
respectively. In addition, the 95% circular confidence bound is presented (red dashed). () The corresponding histogram/PDF of the CCND

in the complex plane.

account in the interpolation using some weighting to reduce
the risk of mixing certain A measurement points with uncertain
A measurement points. Then, when A’ and ¢’ have been
determined with corresponding variance, the steps and the
suggestions in the continuation of this paper can be used
to combine the different harmonics and to determine the
confidence bounds on .

2.2. Gaussian noise as the result of the central limit theorem

In many applications the noise on measurements can be
modeled using a Gaussian distribution function.  This
distribution is often the result of the central limit theorem,
which states that, if many noise sources of different
distributions are combined (convoluted), the resulting
distribution tends towards a Gaussian distribution. More
formal formulations of this theorem can be found in many
statistics textbooks, e.g. [36]. This is the general argument
for assuming a Gaussian distribution. However, for ECE
measurements there is a stronger argument.

In this paper, ECE-measurements are used to determine
the perturbative electron thermal diffusivity from the electron
temperature perturbations. The dominant measurement noise
on ECE-measurements is the thermal noise, which is generally
Gaussian distributed [15]. More specifically, the thermal noise
distribution on the output temperature measurements of the
radiometer depends on the ratio between the intermediate
frequency bandwidth B and the video bandwidth By. If
Bir > By, which holds for most radiometers used in fusion,
the resulting distribution is Gaussian. This is theoretically
derived in [37] and experimentally verified in [38].

2.83. Normal complex circular distributed noise

By assuming a Gaussian noise distribution in the time domain,
the distribution functions of the Fourier coefficients can be
determined. These distribution functions will be determined

for every Fourier coefficient corresponding to a specific
frequency 2.

The PDF of one Fourier coefficient at frequency €2 can
be determined by taking the Fourier transform of a sinusoidal
signal T'(¢) with amplitude M and phase # and a Gaussian
distributed additive noise term e(¢) with mean value zero and

time domain variance o2

T(@)=Mcos(QU+0)+e(). (10)
The Fourier transform of (10) is not easily calculated. It
requires the noise to be split in its harmonic components and
the use of Hilbert transform properties. This transformation is
described in [39, 40] and is easily verified using a Monte Carlo
(MC) analysis [41]. The Fourier coefficient ® at frequency 2
has a bivariate distribution (PDF) in terms of its real part Oy
and ®y imaginary part

fo (O, Og)

1 1 <@m—ltm)2 1 (93—M3)2
=—ep|l—s|——) -z (—— )
2no} 2 oF 2 oF
(11

The mean values of this distribution puy and wy can also
be related to the mean value of the Fourier coefficient, i.c.
6= Us +iuy.  The variance cr% directly depends on 0,2,
but also on the cross-correlation of the time domain noise.
Therefore, instead of calculating o2 from o2, a different
method is used, which directly estimates ol%(Qk) from the
measurements. This method is presented in section 4.2.

The distribution fg(®g, Og) is shown in figure 1 and
is called a circular complex normal distribution (CCND).
The real part ®y and imaginary part ®y are independently
identically distributed (i.i.d.) and have a Gaussian distribution,
see (11) or [39,42]. It belongs to one Fourier coefficient at
a specific frequency 2. This implies that for every Fourier
coefficient ® (£2;), where k denotes the excited harmonic, such
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a distribution can be defined, but with a different g, @y, and
o,%. Moreover, the distribution of ®(£2;) is independent from
the distribution of ® (2;1) [39, 42], which is important when
different harmonics need to be combined.

The distribution fg(®g, O3) can also be expressed in

polar coordinates using the amplitude A = ,/®3 + ©% and

the phase ¢ defined as tan(¢) = O/ Oy

1 [ Acos(¢) — Mcosf >
exXp —§< or )
1 [Asin(¢) — Msin6\?>
- €Xp —§< or ) ,

where uyp = Mcosf and puy = Msin6 [40]. This form
is more useful to calculate the PDFs of amplitude and phase,
which will be necessary to determine the diffusivity. Finally, it
is worth noting that the CCND is a good approximation of the
PDF of the Fourier coefficients for many other distributions
in the time domain. However, whether the distribution is
CCND depends on the number of time samples in the Fourier
transform and a number of noise properties, which are not so
easily derived [42,43]. This can also be easily verified using
MC simulations. Therefore, in this paper rather than assuming
a Gaussian distribution in the time domain, a CCND in the
frequency domain is assumed. This extends the subsequent
analysis to a much broader class of noise distributions in time
domain.

fag (A, ¢) =

2
2mof

12)

2.4. Amplitude and phase distributions and their confidence
bounds

The relationships introduced to determine the diffusion
coefficient are based on the amplitude and phase of the
measurements [4,5]. Therefore, the PDFs of the amplitude
and phase are investigated. If the SNR, defined here as M /o,
is large enough it can be shown that the PDFs of the phase and
amplitude can be well approximated by a Gaussian distribution
function.

The PDF of the amplitude can be found by integrating
(12) over all the phases on a circle. The PDF of the phase
can be found by integrating over all amplitudes on a line
starting at the origin. The resulting PDF of the amplitude is
the Rician distribution, which has two limit cases: the Rayleigh
distribution when M = 0 and the Gaussian distribution when
M/op —> oo [40]. The resulting PDF of the phase is
sometimes referred to as the Rician phase distribution [44] and
is defined on the range —m < 6 < m. It has again two limit
cases: the uniform distribution for M = 0 and the Gaussian
distribution for SNR M /or > 0.

The evolution of the Rician distribution and Rician phase
distribution for different values of M/op is presented in
figure 2. It clearly shows that if M /o is large enough it
can be well approximated by a Gaussian distribution function.
Consequently, the mean value . and the variance o? of this
Gaussian approximation can be determined. The mean values
of amplitude and phase are simply upa = M or puy = 6.
However, the corresponding variances o: and a(g can be
calculated using propagation of uncertainty, which is also
called propagation of errors [31,42]. It can be considered

(a) Rician Distributions (Amplitude)
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Figure 2. (a) Rician PDF of the amplitude for different values of the
SNR using v = A /o as a scaling parameter. In the special case of
M /or = 0, the Rician distribution becomes a Rayleigh distribution.
(b) The Rician phase PDF for different values of the SNR. In the
special case of M /o = 0, the Rician phase distribution reduces to a
uniform distribution.

as a first order Taylor approximation for random variables
around the mean value. In case of the phase this results in

0 = arctan(uy/ in)
0, = Jycov (Oy, O3) J; with
I = |:3 arctan (uy//Lg) 0 arctan (Ms/ltm)}
¢ ey s ’
where cov(®y;, Ox) is a diagonal matrix with on the diagonal
the variance of ®y and Oy, i.e. 01%, because fo (O, Ox)
is ii.d. This results in the phase variance od% = 01% /M>.
Similarly, also the variance of the amplitude can be calculated,

which is 03 = 0. The corresponding confidence bounds for
this Gaussian approximation are calculated as follows [31]

Cp=0+ %ﬁerr‘ (), Ca =M +opv2ert" (p) (14)

13)

in terms of a confidence p, e.g. p = 0.95. However, these
confidence bounds only hold for a significant SNR as is shown
in figure 3, where also the true confidence bounds are shown.
It shows that fora SNR > 5, the Gaussian bound approximates
the real confidence bounds well.

The Rician distribution is non-symmetric. This means that
two confidence bounds are presented, i.e. 2.5% (p = 0.025)
and 97.5% (p = 0.975) corresponding to the 95% central
confidence interval. In appendices A and B, the derivation and
calculation of the confidence bounds of amplitude and phase
using Rician (phase) distributions are given, respectively.

The determination of y requires the distributions of the
scaled amplitude derivative A’/A and phase ¢’ derivative,
which are derived next.

2.5. Distributions of ¢’ and A'/A

The previous derivations of phase and amplitude are related
directly to the CCND, which is encountered often in practice
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Figure 3. Comparison between the real Rician 95% confidence
interval compared to the approximated confidence bound based on a
Gaussian distribution. In addition, the vertical line (dotted line)
represents the SNR where the relative error

&= |(r|§ice — 0210 | /08 in terms of the variances equals 5%.

(a) The 2.5% (dashed line) and 97.5% (solid line) confidence
bounds (95% confidence interval) based on the Rician distribution
function and the Gaussian approximations (red dashed—dotted line)
of the confidence bounds for the 95% confidence interval. The
y-axis is the amplitude A scaled with . (b) The 97.5% confidence
bound of the phase (solid line) based on the Rician phase
distribution and the Gaussian approximation of the confidence
bound (red dashed—dotted line). Note, that the Rician phase
distribution is symmetric around ¢ (relative to 0) such that one
confidence bound suffices. The CDF to calculate the true confidence
bounds can be found in appendices A and in B.

even for non-Gaussian noise in time domain. Using the
previously used analysis it could in principle also be shown
that both ¢’ and A’/ A can be well approximated by a Gaussian
distribution function, for reasonable SNRs. However, this
is much more difficult as the resulting distributions depend
on five variables, the mean values, the variances, and the
covariance. In addition, two approximation steps are necessary
from the Fourier coefficients to phase and amplitude and to
their derivatives. Here, we wish to avoid these steps and
directly calculate the distributions for ¢’ and A’/A from the
Fourier coefficients. In addition, we want to make the analysis
more general allowing a broader class of distribution functions
in time domain, by allowing different variances of the real
and the imaginary parts, i.e. it is no longer assumed that
o%(pi) = o},z‘ (pi) and 0'3,2(3 (pi) = 0. However, still assuming
that the real and imaginary parts at spatial locations p; and p;4
are jointly Gaussian distributed.

Both mean values and variances can now be calculated
using the first term in a Taylor expansion (propagation of
uncertainty). The mean values are calculated using (9) and
(8) such that

o= (M(pm)) and g — ) =0 (o0
AJA = — E— e —
A\ M (o) ¢ Ap

(15)
Note, that it is important to unwrap the phase between spatial
locations such that additional 2Tk rotations are avoided. The

following symmetric covariance matrix is used to represent the
(co)-variances at

cov (2, © (0;) , © (pi+1))
o5 (i) O3 (Pi) Oty (1, pivt) Oy (01, iet)

_ 03 (p1) o4y (pis piv1) O3y (Pis Pis1)
- o (pis1) O~ (Pis1)
0§ (pi+1)
(16)

The covariance matrix cov(2;, A’/A, ¢') as function of A’/ A
and ¢’ can be approximated as follows

cov (Qk, A'JA, ¢’)

= J () cov (. O (0), O (pa)) I (), (17)
where the Jacobian is given by
_ Ha (o) s (i) ]
M2 (pi) Ap M (p;) Ap
ks (o) M (o)
M2 (pi) Ap M2 (pi) Ap
J () = , 18
(S2) U (Pir1) s (piv) (18)
M2 (pis1) Ap M2 (pis1) Ap
M3 (Pis1) H (Oi+1)
LM? (i) Ap M2 (pis1) Ap

which is based on the derivatives of (8) or (9) with respect
to the real and imaginary parts, e.g. see (13). The resulting
covariance matrix takes following form

02/ 02; ,
cov (, A'/A, ¢') = [GZA/A *:I/zAd’], (19)
A//A¢/ ¢/

where o3, /4 and aqf, are the variances of A’/A and ¢’ and

04 a4 is the covariance between A’/A and ¢/, respectively.
In case the confidence on (1) and (2) needs to be calculated
the corresponding variances o2, and aj, /4 can be extracted. In
case, (4) and (7) are used then the full covariance matrix should
be used.

The cross-correlation between A’/A and ¢’, and two
spatial locations in general, can be caused by for instance
thermal noise inside the radiometer, which both measurement
channels are subject to or it can be directly related to common
temperature fluctuations in the plasma due to other sources
(density fluctuations, ELMs, Sawteeth) than the perturbation
source. In addition, as is shown in figure 1 and figure 3
the phase distribution directly depends on the amplitude M.
This means that A’/A and ¢’ are also correlated quantities
by definition [44]. The advantage of using the (co-)variances
is that it takes into account the uncertainty based on the
measurements directly. However, this also means that the noise
source cannot be distinguished unless the Fourier coefficients
are again cross-correlated with the potential noise source.

Here, A’/A and ¢’ are approximated by a Gaussian
distribution function and using propagation of uncertainty its
(co-)variances have been calculated. In the next section, based
on the assumption of Gaussian distributed A’/A and ¢’ the
distribution of x and its confidence bounds are calculated for
the relationships presented in section 2.1.



Plasma Phys. Control. Fusion 56 (2014) 105004

M van Berkel et al

3. Distributions of the diffusivity x

In this section, the distribution functions of x for the
relationships given in section 2.1 are derived. These are used
to determine the confidence bounds on x. It is separated in
three parts: (1) the PDF for x based on (A’/A)? and (¢')? are
calculated, which corresponds to the case where the damping is
zero; (2) its corresponding CDF is calculated allowing for the
calculation of the confidence bounds for x; (3) the PDF of x
based on a Gaussian approximation of ¢’ A’/ A corresponding
to the case where the damping can also be non-zero.

3.1. Inverse non-central chi-squared distribution

Here, the resulting distributions for (1) and (2) are discussed.
The diffusivity is calculated using the squared reciprocal of
the spatial derivatives of the phase or the amplitude, which
results in a non-Gaussian distribution. The derivation of
these PDFs of x can be simplified by introducing a variable
y, where y denotes either A’/A or ¢'. The PDF of y is
then denoted by g(y). This, g(y) is transformed to h(y),
the PDF of x, using conservation of area. Then, it follows
from (1) or (2) that y = /3/4 - /x and that the derivative
equals |dy/dy|~! = /3/16-Q/x3. Hence, the resulting

distribution function of x is given by

3
0
hix{y}) = 16 {g(y)+g( V) x>

0 x <0.

(20)

If a Gaussian approximation of g(%) or g(¢') is used, then

(v = 1y)’
exp <_Tgy> , 1)

and i () is aspecial case of the inverse non-central chi-squared
distribution. This distribution is positive non-symmetric with
a large (right) tail and only resembles a Gaussian for small
variances. In figure 4 the inverse non-central chi-squared
distribution, i (y) is shown. It clearly shows that () has a
long tail especially when the variance 03 is large. The long tail
alsoresults in a bias, which is defined as the difference between
the expected value [E{ x } and the true value of x. However, it is
difficult to quantify this bias, because the expected value E{x },

defined by the improper integral

gy)=

2
2 o,

E{X}:/o xh (x) dx =00 (22)

is divergent. This has important implications, because it means
that if the diffusivity is determined a number of times from an
experiment with the same u, and 0’3, the average of these
experiments will not result in the true diffusivity y, i.e. it will
be biased. Even worse, the diffusivity estimate will diverge to
oo for an increasing number of estimates and its divergence

rate depends on the variance o}%.
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Figure 4. (a) The inverse non-central chi-squared distribution for
different values of the variance of, 1, = 0.866 and 2 = 1, which
corresponds to y = 1 (represented by the dashed line). (b) The
Cumulative Density Function H (X) of the inverse non-central
chi-squared distribution corresponding to the presented PDFs. The
dashed line represents the value of xy when of — 0. The solid line
show the values at which H(X) = 0.025 and the dashed-dotted line
where H (X) = 0.975 corresponding to a central 95% confidence
interval.

3.2. Confidence bounds non-central inverse chi-squared
distribution

The confidence bounds on the diffusivity can now also be
calculated based on (20) by calculating its CDF. The CDF
H(X) of the PDF h(y) is given by H(X) = fOXh(X)d)(,
which can be solved analytically

L 1%ty i Vi%— iy
H(X) = 2 ay\/z 2 0},«/5
X>0
0 X<O0

(23)

The CDF H(X) is non-symmetric, which means that two
confidence bounds need to be calculated. We are interested
in the central confidence interval such that the lower bound

Xmin is determined by H (X i) = 52 and the upper bound
by H(Xmax) = 1+Tp_ The CDF and the correspondlng p=0.95
central confidence interval is shown in figure 4.

In practice, H(X) is difficult to invert analytically. On
the other hand, the bounds can be easily calculated by finding
the zero crossing of H(X) — £ and H(X) — —2’1, for which
many algorithms exist.

3.3. Inverse product distribution function

The product of the Gaussian distributed variables ¢’ and A’/ A
plays an important role in (4) and (6) in which the effect
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of damping is suppressed. The distribution for x (20) is a
special case of the distribution discussed here as it assumes that
Ity = paya and o}, = o as such it is a simplification of
the general product of ¢’ and A’/ A. The distribution function
of the general product of ¢’ and A’/ A is treated here separately,
because it does not have a closed-form expression [45]. This
also holds for the PDF of x based on (4). This complicates the
calculation of the confidence bounds significantly, because the
CDF needs to be solved using a double integral.

As the closed-form expression does not exist other
approaches are necessary. Therefore, in the literature the
distribution function is generally approximated using various
distribution functions for the different limit cases [46]. In
case the ratio’s pa/a/0a/4 and pg /oy are large then the
product can be approximated well by a Gaussian distribution
[47]. However, it is difficult to translate this into numbers
as it also depends on the mean values itself. Nevertheless,
we have chosen to always approximate the product using a
Gaussian approximation. As the alternative of using other
distribution functions would result in a much more complicated
analysis [46].

The recommended approach in the literature is used to
approximate the moments of the Gaussian distribution using
the moment generating function [32,47,48]. It is used to
generate the moments of mean value

Mp = ajalg + Uﬁ//mp" 24)
which includes also a bias term equal to the covariance o2, e
The second moment, the variance, is given by

2 _ 2 2 2 2 2 2
Op = MaryaOp + My Oia+ 05,404

2 2
+20A//A¢’MA’/A/L¢’+O—A’/A¢’O'A’/AO'¢’7 (25)

which are used to replace the mean value and variance in the
Gaussian approximation. The Gaussian approximation of the
distribution function of ¢’ A’/ A is then given by

/A/ A _ 2
% (¢’A’/A) = L}%)) . (26)

1 ( (
(27 apz 2%2

The distribution function of x can then be approximated using
again preservation of area

(e (1) = 55 =

2
21 o)

exp | — 227)

This distribution is not further studied here, because it is only
an approximation of the real distribution. In section 4, it is
more extensively studied comparing it also to the distribution
of (4) calculated using a MC simulation.

The approximation can also be extended to include the
cylindrical geometry and density. If p and n’/n are assumed
to be deterministic, they can be included by replacing the mean

value of A'/A with paya = A'/A+1/(2p) +n'/n. On the
other hand, if they are assumed also to be random variables a
Taylor expansion can be used to include them given that the
linearization is a good approximation. However, in this paper
only slab-geometry will be considered.

The CDF of (27) is not presented here as it does not have
a closed-form expression. However, the CDF can be found
by numerically approximating a single integral such that the
confidence bounds can still be calculated, which is described
in appendix B.

In the next section, the mean values and variances are
estimated based on real measurements.

4. Estimating means and (co-)variances from
measurements

In the next section, we discus how to estimate the diffusion
coefficient from real measurements. In this section realistic
values for the Fourier coefficients and its corresponding
variances are calculated. These are acquired from ASDEX
Upgrade discharge 17175, where the modulated ECRH is
deposited off-axis at toroidal normalized radius p, = 0.6. A
detailed description of this discharge can be found in [49, 50].
Here, the distribution function is investigated based on the
measurement data and it is explained how to calculate the mean
values and variances of the Fourier coefficients. In addition, the
mean values and (co-)variances are calculated at two specific
spatial locations.

4.1. Noise distribution of ASDEX Upgrade measurement

In section 2.2, it is explained why ECE-measurements are
Gaussian distributed. It is possible to verify this using the
measurement data from ASDEX Upgrade. Although the
time interval where the periodic perturbations are present
can be used to extract the variances (see next section), it
is unsuitable to determine the PDF due to the low number
of periods available. Therefore, the time domain noise is
extracted from a time interval without perturbations, which
will give the natural noise distribution. The normalized
histograms of the ECE-signals considered are presented in
figure 5 (left). A Gaussian distribution can be recognized,
albeit disturbed due to quantization (discretization). However,
we are interested in frequency domain properties at the
perturbed harmonics €2;. Therefore, extra random samples
are generated, which have the same normalized distribution
function as the quantized noise distribution shown in figure 5.
Then, the Fourier transform is calculated per period, which
results in many Fourier coefficients for the ground frequency
;. This process is performed for two ECE-measurements
at different radial locations. The resulting distributions of
these Fourier coefficients are presented in figure 5. Both,
the real and imaginary parts are Gaussian distributed with
very similar variances such that it can be concluded that
they obey a CCND. In the case of perturbative measurements
other disturbances can also occur, but it is still likely that the
underlying distribution is CCND.
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Figure 5. Histograms of AUG 17175 ECE measurements at
locations p = 0.484 and p = 0.473 measured between 1.67-2s in
the plasma and PDFs (left). On the right the histograms of ®y and
®4 are, respectively, the real and imaginary part of the Fourier
coefficients at 14.71 Hz (first harmonic), respectively, at radial
locations p = 0.484 and p = 0.473. The right figures are generated
using a MC based technique. The distributions in time (left figures)
are used to generate many samples (10 000 periods at 14.71 Hz).
These periods are Fourier transformed and the real and imaginary
parts of the Fourier coefficients at 14.71 Hz are extracted. These are
used to construct the histograms of ®y and ®4, which clearly show
that the resulting distribution is CCND.

4.2. Estimating the Fourier coefficients and variances

Here, it is explained how to estimate the Fourier coefficients
and variances based on periodic perturbations. The estimated
Fourier coefficients are denoted by (:)(Qk) (hat denotes
estimates), which can also be seen as the mean value of the
Fourier coefficient. There are two possibilities to calculate
the mean values of the Fourier coefficients: (1) the Fourier
transform can be applied over the entire time interval or (2)
the Fourier coefficients can be calculated per period, which are
then averaged to find the mean values of the Fourier coefficients
O(R2%) = iy (S2) +1 - [13(S2), i.e.

. | &
0 Q) =52 0",

p=l1

(28)

where ®P1(Q;) is the Fourier coefficient of the individual
period p for frequency €2; and P is the total number of
periods. Calculating the Fourier transform (FFT) of one period
(here 68 ms) and averaging over all periods (here P = 10) is
equivalent to calculating the Fourier transform of the entire
time trace (here 680 ms) for the common frequencies (if the
number of periods P is integer and without using a window).

The advantage of determining the Fourier coefficients
per period ®P1(€,) is that they can also be used to directly
estimate the variances

P

1 . 2

~2 _ (p] ,

5O = 5 p§:1:(®m @) - 6n @0 . 29

where @5{’ 1is the real part of ®7). Similarly, also the variance
8§(Qk) of the imaginary part can be determined. The covari-
ances 03y (Q., pis piv1)s 025 (Q, piy Pir1)s O (s 01, - - -
can be approximated using [42]

P
. 1
630 (s piv1, pi) = PP_1) Z(@g[”] (S, pi+1)
p=I

— O3 (4, ,0i+1)> (95[{7] (%, pi) — O (S, ,Oi)) . (30)

The variances refer to the variation of the Fourier coefficients
with respect to their mean values and the co-variances to the
common variations of the Fourier coefficients.

In (16) is chosen to estimate the real and imaginary parts.
This is in principle not necessary for the assumption of a
CCND as in practice the real and imaginary parts are i.i.d.,
ie. 03(u) = 02(%) = 67 (%) (in practice 63() ~
62() due to uncertainty in the estimates of 63(2) and
&%(Qk)). However, if the distribution function is different
from a CCND, which generally only occurs for distribution
functions very different from a Gaussian distribution function
with low amount samples in one period, then considering also
the imaginary part and real part partly takes this into account.
The disadvantage is that the estimates o and o will have a
higher uncertainty . If one abides by the CCND then it is more
common to estimate the variance 63 in the complex plane, i.e.

L R 2
67 (%) = ;2| @0 -6 @of . 6n
1

P(P—1
-

where 6% = 6()/2, which follows from (31) by separating
the real and imaginary part,
G2 (Qu) = G () +63 ()., (32)
and using the fact that the real and imaginary part are i.i.d.
Warning: the amplitude and phase per period and its
corresponding variances should not be used to derive the
overall amplitude and phase. The reason is that 0% is P times
larger per period, such that the distributions of amplitude and
phase are not necessarily Gaussian. In addition, the phase can
also be mapped differently in the complex plane as large error
angles are added shifting the phase beyond —7 or 7, because
of the high noise level. This would result in a totally different
wrong phase average. Therefore, the amplitude and phase
distributions will be given in terms of o () and o2 ().

4.3. Resulting A'/A and ¢’ for AUG 17175 at p; = 0.473 and

Here, the mean values and variances are calculated based on
real measurements from ASDEX-U. These are necessary to
calculate y with its corresponding confidence. Here, only
the procedure to estimate x and its confidence bounds is
investigated. Therefore, only the confidence at two spatial
locations p, = 0.473 and p, = 0.484 for AUG 17175 are
investigated. This discharge is chosen as it has many low-
frequent harmonics, which thus have more harmonics with
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Table 1. The mean values and variances of A’/ A and ¢’ at different €2, for time trace t = 3.26 — 3.94 and radial locations p, = 0.484 and

p, = 0.473.
A'/A ¢’ A'/Ag' X=35
ko @ arya(S2%) Uir/A(Qk) Mg (S2%) Ué(Qk) o,iAf,A(Qk) 0'(S%)
1 92.4 5.75 0.09 3.77 0.15 0.04 3.72
2 184.8 6.40 0.34 4.94 0.70 —0.11 5.27
3 2772 8.03 1.05 5.52 1.58 —0.11 6.45
4 369.6 1229 3.28 7.72 3.07 —0.58 7.45
5 462.0 12.55 7.68 5.95 13.90 —-0.72 8.32

acceptable SNRs. On the other hand, the effect of non-diffusive
contributions such as convectivity and damping cannot be
excluded. The observation that the amplitude and phase do
not describe a purely diffusion model for AUG 17175 is also
made in [49], in which it is indicated that the heat-pinch
exhibited by the amplitude profile is not caused by an actual
heat-pinch but is attributed to an effect of the turbulent transport
when the temperature profile is just above the heat transport
threshold. Therefore, often in the analysis in this paper the
mean values are replaced with known values. This not only
excludes the effect of these non-diffusive terms, but also helps
the interpretation of the results as the true value is known.

The mean values 1y and pu/4 and their covariance
matrix are estimated as follows for the first harmonic ;.
Based on (28) the Fourier coefficients of the first harmonic
can be calculated resulting in ®(p;41, 1) = 1.67 + 28.75i
and O(p;41, 1) = 2.80 + 27.42i. Then using (15) the mean
values (a4 (821) = 5.75 and gy (21) = 3.77 are calculated.
The next step is to estimate the covariance matrix using (29)
and (30). This results in

cov (21, © (0;) , © (pi+1))

049 -0.09 045 -0.09

_[—=0.09 028 -0.10 0.30 (33)
045 —-0.10 043 —-0.09 |’
—-0.09 030 —-0.09 0.31

which including the mean values will be used extensively in
the next section. The corresponding covariance matrix of A’/ A
and ¢’ is calculated using (17). This gives

0.09 0.04] ’ (34)

cov (Q1, A'/A, ¢') = [0,04 0.15

where the diagonal terms are the variance of phase o2 and
amplitude o3, sa- The off-diagonal term is the covariance
denotedby o}, /ag» Which is sometimes also expressed in terms
of the Pearson factor ppearson = 0.3356 [31].

The steps to calculate fraya(20), pe(S2), and
cov(R2y, A’/A, @) are repeated for the first five harmonics
., which fulfill the necessary SNRs. These are presented in
table 1 and are extensively used when combining harmonics.

If the mean values pa/4(21) and ug (£2) and its
corresponding variances aé, and 02, /4 are compared, then the
confidence bounds do not overlap. This also indicates that
indeed the measurements cannot be described by a model with
diffusivity only. Hence, this uncertainty analysis also offers a
zero-order test to see if the measurements fit such a model. As

here the performance of the different methods are investigated
a known value of x is used. The first harmonic has generally
the best SNR, hence is a good choice for x. As the phase
is considered less sensitive to calibration errors the phase has
been chosen resulting in x = 4.88. This has been rounded to
the closest integer, i.e. x = 5, to simplify the interpretation of
the different figures and errors. Then, (1) is rewritten to express
e (x =5). This results in new means for uy denoted as 6.
The difference between pi4 (€2) and the new 6 (€2;) are not so
large. Therefore, the original variances okz are retained. These
new values are also included in table 1 and are used to study
the estimation of yx in the next section.

5. Estimating x

In this section a number of aspects of estimating x are
discussed namely: (a) how to combine A’/ A and ¢’ optimally;
(b) how to combine different harmonics such that the resulting
estimate of x has a small bias and high accuracy. This
is investigated for the different relationships summarized in
section 2.1. Finally, the necessary steps to estimate x are
summarized at the end of this section.

5.1. Combining amplitude and phase estimates

Here, different possibilities are proposed to combine phase
and amplitude. In the analysis the mean values are replaced
to exclude the effect of non-diffusive terms as the interest
goes out to the statistical properties. The main question of
this subsection is how to estimate x using amplitude and
phase, which can be seen as independent measurements of
X containing correlated noise.

In section 4.3 it has been shown that the cross-correlation
between A’'/A and ¢’ is significant. As such this cross-
correlation can be exploited to increase the accuracy of the
x estimate. Therefore, the generalized weighted mean can
be used to give a resulting combination of A’/A and ¢’ with
minimum variance. The Gauss—Markov theorem states that
it results in minimum variance for unbiased estimators of the
mean value [51]. This generalized weighted mean is calculated
as follows

’ n-—1 T
pwm = oy Wcov (A'/A,9") " [maya Q1) ny (2D],
(35)
and its corresponding variance is determined using
with w=[1 1]".
(36)

o = (Weov(4'/A. ¢)" W)il
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Figure 6. Normalized histograms (PDFs) for the proposed calculation methods to combine phase and amplitude, i.e. (4) represented using
(blue) x, (3) represented using (red) x, and (37) using (black) x. The distributions are generated using a MC simulation. Also the analytic
approximations of the distribution functions % (x (tsr)) and h(x (ip)) are presented using black and cyan lines, respectively. These
distributions are solely based on analytical calculations using (37) to find w) with corresponding o and (20) to calculate the PDF of y, i.e.
h(x (prr))- In the product case (24) and (25) are used to calculate p, and o*pz, which are used in (27) to calculate 2 (x (up)). Three
simulations are presented: (a) using the original mean value and variance; (b) using the corrected mean values, but the original covariance
matrix; (c) using the corrected mean value and a different covariance matrix.

There are three different possibilities presented here to
combine A’/A and ¢’ namely x,3; in (2), x4 in (4), and the
generalized weighted mean in (35). The product (4) and (5)
are theoretically the same for one harmonic. Therefore, only
(4) has been presented here. The three different possibilities
will be compared using a MC simulation, which uses (33)
and the mean Fourier coefficients. In a MC simulation
samples are generated from a distribution, which can be
seen as possible measurements. Then, these samples are
used to calculate x using the different proposed relationships.
This process is repeated many times such that the PDF of
the diffusivity estimates can be generated. The analytic
distributions for the generalized mean and (27) are also
presented.

Three simulations are performed for different cases: (a)
using the original measurement data; (b) a simulation where
the original variances are retained, but the mean values are

replaced by ®(p;4+1, 21) = 1.67 +28.75i and O(p;4+1, 21) =
2.80 + 27.42i in section 4.3 such that both mean values
aya(21) and g ($21) will give x = 5 when the variance is
zero; (c) a simulation where next to the replaced mean values
also the second diagonal element of cov(21, ®(p;), ®(pi+1))
is replaced by the first diagonal element, i.e. a§ (pi) = 0.4904
in (33).

Figure 6 shows the resulting PDFs of the diffusivity
denoted by h(x). The confidence bounds corresponding to
the distributions presented in figure 6 are given in table 2.
In figure 6(a) it is clear that the distribution function A (y/)
calculated using the weighted average has the smallest
variance. This is followed by the distribution calculated using
(3), because unlike the product, the sum of two Gaussian
distribution functions is still Gaussian before calculating the
reciprocal. Therefore, the tail is shorter compared to the
product distribution.
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Table 2. The numerically determined central interval confidence
bounds for the diffusivity xuc based on a MC simulations for the
different methods to combine phase and amplitude. In addition, the
analytically calculated confidence bounds for the generalized
weighted mean method Xn. (K, ‘71%4) and the product
approximation Xana (ip, apz) are presented. The results are presented
for the measurements (left) and the results using the adjusted
Fourier coefficients and adjusted covariance matrix (right). Note,
that the x value is calculated using the corresponding equations and
are not based on the MC analysis.

figure 6(a) figure 6(c)
conf. bnd 2.5% x 97.5% 2.5% x 97.5%
Xve = e 250 320 419 266 500 17.82
Xanal (1p. 02) 2.54 319 429 267 489 19.20
e = g 243 3.06 3.89 257 500 14.12
XMC:% 2.16 268 330 343 500 7.84
Xana(y,0%) 217 268 333 344 500 7.88

Interestingly, in figure 6(b) the PDFs are almost the same,
the reason is that their mean values have been fixed to be the
same and the covariance matrix results in an almost equal
variance for both amplitude and phase (after taking cross-
correlation into account). This means that there is hardly
any difference between the different relationships to calculate
x. The best result is achieved using (35) as it has the
smallest variance (uncertainty). This is especially clear in
figure 6(c). Moreover, this distribution can also be analytically
calculated using the variance (36). This is also supported
by the confidence bounds in table 2. Again, looking at the
confidence bounds in table 2 it shows that the sum performs
better than the product. However, the product of A’/A¢’ is
used to exclude the effect of damping. Therefore, also the
analytical approximation of h(x (up)) is shown in figure 6,
which matches quite well, but also shows some errors. On the
other hand, the analytic approximation of & (x (tt5,)) matches
perfectly.

Summarizing, the generalized weighted mean gives the
best result, which is consistent with theoretical predictions.

5.2. Combining different harmonics ¢’ and A'/A only

In this section, methods are discussed to combine different
harmonics. They are presented on the basis of the phase
derivative distribution only, because the replaced means 6’ (£2;)
are used to exclude the effect of non-diffusive terms. The same
conclusions can also be drawn if the amplitude information is
used. The calculations are based on the values presented in
table 1.

Different combining methods are compared here using a
MC simulation, which is based on samples from five Gaussian
distributions with mean values (4 (€2;) and variances cr;, (R%).
The simplest method of combining different harmonics is
by averaging the diffusivity estimates calculated for every
harmonic, i.e. E{y}. The resulting PDF of y is then denoted by
h(E{x}) and it is presented in figure 7 with (blue) crosses. The
resulting PDF of yx is non-symmetric and has a long tail. The
reason is that hZ(E{x}) is the result of averaging five PDFs
of x(€2), which are distributed according to (20). These

0.6 \ T - \
. - - -Truey,

Anal. h(x(u,))
- % = MC h(E{x})

- % = MC h(y, (E{u, /Q°})
MC h(x(u,)) 1
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0.4r x
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0.2

Probability Density Function
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Figure 7. Normalized histograms (PDFs) for the three proposed
calculation methods to calculate x from either phase (or amplitude)
using multiple harmonics generated using a MC. The PDF h(E{x})
represented by x is calculated using the mean value of the different
x’s of the different harmonics. The PDF h(x (E{ux/~/S%}))
represented by x gives the PDF of yx using the weighted average of
the phase derivatives using only /2. The PDF h(x (u,)) is
represented by x, where a weighted average in (37) is used to
calculate x. In addition, the theoretically determined PDF
h(x(E{u.}, E{crf})) based on the mean value of p, and the mean
value of o is presented. The true value of x is presented (dashed)
and the 95% confidence interval for 2(x (u.)) is presented by the
dashed—dotted vertical lines (left 2.5% and right 97.5%), which are
calculated analytically.

individual PDFs of y (€2;) already have a long tail and contain
a bias. This bias depends on the individual variances o2 ().
This tail and bias are the result of taking the squared reciprocal
of the phase derivative and are retained when averaging these
estimates.

A better option is to directly average the phase derivatives,
because their distributions are still unbiased and Gaussian.
However, the diffusivity does not only depend on ¢’, but
also on the frequency 2 in (1). Therefore, the Gaussian
distributions can only be averaged if they are first weighted
with the frequencies, i.e. g (2)/+/Q and Udf,(Qk)/Qk.
Then, a new Gaussian distribution is found and it is used
to calculate the resulting PDF of x, which is denoted
by h(x(E{ns(R%)/+/Q}). In this case, the resulting
distribution can be determined analytically by calculating
the new mean value and variance of the combined Gaussian
distribution and then using (20) again. Here, we have only
used the MC simulation to determine the PDF, which is shown
in figure 7 using x.

It is clear that the side tail is still present, but has become
smaller. The diffusivity has become more certain due to the
smaller side tail, but the uncertainty region has shifted to the
left. However, this method does not take the uncertainty
on ¢’ into account. This means that there is no difference
between estimates of the phase derivative with small variance
compared to phase derivatives with high variance. In other
words, the uncertain higher harmonics contaminate the certain
low-harmonics in the diffusivity estimates. Consequently, the
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Table 3. The central interval confidence bounds for xc using the
different combination methods based on MC simulations. In
addition, the analytically calculated confidence bounds for the
weighted mean method ), -

conf. bnd 25% 97.5%
xvc(E{x} 373 637 45.09
XMc(E{/Lk/»\/ Qk}) 3.32 6.02 8.32
xme (i) 381  5.11 6.84
Kanal (E{is}, E{0?})  3.81 5.11 6.84

diffusivity estimate can be improved by taking the variance
of the different harmonics into account, which have been
estimated from the periodic measurements. This results in
the following weighted mean with p; = w(€2;), which is also
applicable for the amplitude

K —05
_ D e WS

Z/f:l Wk

where K is the number of harmonics used. This type of
weighting gives the Maximum Likelihood Estimate of the
mean value for Gaussian distributed variables [31], which
has the smallest variance when combining a number of
independent Gaussian distributions. The resulting PDF of x
using the weighted average, i (x (u+)) is presented in figure 7
using black x. The tail of this distribution has been reduced
significantly such that the diffusivity estimate has become
much more certain. The use of the weighted mean gives
the best result and should be used to combine the different
harmonics in case of a purely diffusive model.

The distribution h(x(us)) can also be determined
analytically by calculating the variance o2

s with wy = — (37)
Ok

_ 2
21{;1 wi (e 03— 4+)
Z/f=1 Wk

taking into account that af is an estimate [31]. The confidence
bounds are calculated by setting the mean value w1, = w4,
the variance 03 = of, and 2 = 1 in (23). They can also be
used to calculate the analytic PDF, which is plotted in figure 7.
The analytic PDF (solid black line) is the same as the PDF
constructed using the MC simulations.

A comparison of the different combination methods
can also be made using the confidence bounds, which are
numerically determined from the MC simulations. These
confidence bounds are summarized in table 3. It again shows
that the weighted mean gives the best result and that in this
case the accuracy of the diffusivity estimate is increased 13
times compared to averaging the diffusivity estimate. Note
that, the diffusivity estimate still has a tailed distribution, which
is caused by the method of calculation. It is possible to avoid
this tail, but this would require a different method to determine
x. Such methods using an implicit scheme exist [31,42], but
are out of scope for this paper.

For the experimental data using both amplitude and
phase (no damping), the resulting mean value and variance
are . = 0.48 and 0> = 5.93 x 10~* based on the first

1
T K-1

g

, (38)

five frequencies. This is smaller than any of the individual
(frequency weighted) variances. The corresponding diffusivity
is x = 3.29 with the 95% confidence bounds yi, = 2.72 and
Xmax = 4.06. The confidence bounds are larger than that of the
first harmonic in absolute sense. This is a consequence of the
non-linear dependence of the confidence bounds on the mean
value.

5.3. Combining different harmonics using the product ¢’ A'/A

In section 5.2, we have established that for a purely diffusive
model the combination of the generalized weighted mean to
combine A’/A and ¢’ and weighted mean to combine the
harmonics results in the x estimate with the smallest variance
for the compared methods. However, in case no longer a
purely diffusive model is assumed, but also damping needs
to be included then only (4) and (5) can be used in a slab
geometry. Therefore, here it is investigated how to reduce the
uncertainty using (4) and (5) to estimate .

The product A’/A¢’" is used to exclude the effect of
damping, as such the amplitude and phase can no longer be
used to reduce the uncertainty using the generalized mean. In
principle, one harmonic would suffice to estimate the damping,
which then could be used in the weighting process. However,
such a weighting is difficult to apply in direct calculations of
x. Instead, the product will be applied for every harmonic.
This means that for five harmonics, four degrees of freedom
are ignored, which in principle could have been used to
reduce the uncertainty. Here, is chosen to disregard this
loss in optimality and try to combine the different harmonics
based on (4) and (5). Therefore, the original measurement
values from table 1 are used again. Again, three possibilities
are compared using a MC simulation based on g4 /4 (82%),
e (S2k), and cov(, A’/ A, ¢'): (i) the simple average of the
X estimates per harmonic using (4); (ii) the weighted average
of A’/A¢’ taking only €, into account; (iii) the weighted
average using the Gaussian approximations with mean value
(24) and variance (25) taking both €; and cov(2;, A’/A, ¢')
into account. The product of A’/A¢’ is used, thus a weighting
with € is necessary instead of /€2 in (37) as now (4) is used
instead of (1). Consequently, (37) and (38) become for the
weighted mean of the product

O ity () / 2

Pmp = with wy = —%,  (39)
! Zlf:l Wk sz
and
U we (p () / Q — )’
Oy = = . (40)

K-1 Zlf:l Wk
In the MC analysis samples are generated from the mean
values and covariance matrices in table 1 and the three
proposed techniques are applied to these samples to analyze
the difference again. In addition, the analytic Gaussian
approximation is calculated by substituting (,,, and o,,, into
(27) (2 = 1). The results are presented in figure 8. The
corresponding confidence bounds are presented in table 4. The
results are similar to that in section 5.2. Taking simply the
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Figure 8. Normalized histograms (PDFs) for the three proposed
calculation methods to calculate x from either phase (or amplitude)
using multiple harmonics generated using a MC simulation. The
PDF h(E{y}) represented by x is calculated using the mean value
of the different yx’s of the different harmonics. The PDF

h(x (E{pg () a4 (S2)/ 2})) represented by x gives the PDF
of x using the weighted average using only €2;. The PDF (MC)
h(x (mp)) is represented by x, where a weighted average in (39) is
used to calculate x. In addition, the theoretically determined PDF
h(x (t4mp)) based on the mean value of i,,, and the mean value of
a,ﬁp is presented. The 95% confidence intervals (left 2.5% and right
97.5%) are presented using dashed-dotted lines for the analytical
approximation based on /() (typ, o,ip)) and are presented using
dashed-dotted lines with x for (MC) h(x (ip)). The latter is based
on numerical calculations.

Table 4. The central interval confidence bounds belonging to the
lines in figure 8. The bounds based on MC simulations ymc are
calculated numerically. In addition, the analytically calculated
confidence bounds for the weighted mean method Xanai (tmp, Omp)
are presented.

conf. bnd 2.5% X 97.5%
xmc(E{x} —2.07 397 11.26
XMC(E{M¢//LA'/A/Qk}) 3.97 3.81 5.23
Xanal (Wmps Omp) 323 3.82 4.66

average results in a long tail distribution function. This also
implies that the use of (5) should be avoided if more harmonics
are combined. Another interesting aspect is that the lower
bound is negative. Of course this is physically not possible,
but it is a result of the fact that the product A’/ A¢’ can become
negative.

The averaging of long tail distributions can be avoided
by averaging first p1g (2x) e arya(S2;) using weight ;. This
increases the confidence on the estimate, which does not
require any knowledge of the noise variances. The confidence
is further increased using the weighting that also includes the
variances.

The analytic calculation is clearly different from the
one generated by the MC analysis due to the Gaussian
approximations used. If the error in terms of confidence
bounds is considered then it is clear that the under bound is over
approximated and the upper bound is under approximated. The

reason is that the product of A’/ A¢’ is skewed with a tail to the
right, which is not captured by the Gaussian approximation.
However, the difference between the confidence bounds of the
analytic calculation and the MC analysis is small. This means
that this method can be used to estimate x and its confidence
bounds. However, if the skewness of A’/A¢’ is large the
calculated confidence bounds will deviate significantly from
the true confidence bounds.

In this paper is chosen to use the moment generating
function (section 3.3) instead of a Taylor expansion
(section 2.5) to approximate the mean value and the variance
for the product A’/ A¢’. The advantage of this approach over
the Taylor expansion approach is that the confidence bounds
found are smaller than that of the Taylor expansion both
numerically for the MC analysis and analytically. In addition,
the distribution function, thus also the confidence bounds, are
better approximated using (27) when different harmonics are
combined using the moment generating function. On the other
hand, in (24) an error on the mean is introduced (bias term:
ol Jag)- So for a better estimate of the mean value it is
sometimes desirable to use the Taylor expansion instead.

5.4. Calibration errors

Measurements can also be prone to calibration errors. These
errors cannot be quantified by studying the perturbative
measurements.  They are constant for the entire time
trace, otherwise the fluctuation would increase the variance.
However, they will influence the uncertainty of the parameter
estimation.

The amplitude errors can be modeled by introducing
scaling factors « and B, that describe the calibration error
in the measured amplitude A, such that Al = aA; and
Az = BA,. Note, that the calibration error influences only
the gain and as such is constant for all frequencies. Hence, by
applying a weighted average similar to (37) for the amplitude
measurements an overall Al or Az can be determined. The
new amplitude with calibration error can then be substituted
in (2) giving

x =30 (i (ads/pA) /a0) (1)
and rewriting yields
X=3ap (ln (@/B) +1n (AZ/AI))_Z. 42)

The resulting uncertainty on x depends on what « and 8 exactly
represent. If o and B are stochastic, in the sense that they
can be presented by a distribution independent of time, and
In(ee/B) can be approximated by a Gaussian an extension is
possible. However, if In(c/8) cannot be approximated well
by a Gaussian, the calculation becomes more complicated
and probably numerical tools are necessary e.g. MC analysis.
Note, that in practice it can be even more cumbersome due
to possible correlations between o and 8. On the other hand,
if the calibration errors « and B are the same for both radial
locations the calibration error vanishes.
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Figure 9. Circular confidence bounds for M = 0.5 and 0 = 7 /6,
and the new circular confidence bounds for amplitude errors of 10%,
i.e. Mpin = 0.45 (blue) and My, = 0.55 (green). In addition, the
phase confidence bounds are presented for M and M,y;, only, which
clearly shows that if M is smaller due to a calibration error, i.e.

M in, the uncertainty on the phase increases, which is expressed
through the broader confidence bounds.

Commonly, it is presumed that the phase is insensitive to
calibration errors. Although, this is true for the mean value, itis
not true if ¢ is treated as being stochastic. The reason is that the
variance of the phase depends on the amplitude in (14), which
is a direct consequence of the fact that amplitude and phase are
correlated quantities. This can be understood if one considers
figure 1 again, but with varying amplitude M as a result of
calibration errors. Figure 9 clearly shows that in case of a
calibration error also the uncertainty on the phase is different.
The difference depends on the mean value of the amplitude and
the variance. However, considering uncertainty on the variance
is rather cumbersome. Therefore, in practice, it is easier to
replace the mean value M by the minimal possible M, due
to calibration errors, which gives a conservative confidence
bound on ¢.

The effect of calibration errors is of a very different nature
than the issues described in this paper. Therefore, it will not
be included in the analysis of the measurement data.

5.5. Summary estimating x with confidence

Here, a summary is given of the necessary steps to calculate
the overall diffusion coefficients:

(i) First, calculate the mean value and covariance matrices of
the different excited frequencies €.
(i1) Calculate the phase and amplitudes and determine if they
can be approximated by Gaussian distributions (SNR> 5).
(iii) Determine the mean values 14,4/ (€2;) and gy (€2;) and
the covariance matrix cov(A’/A, ¢’) for every harmonic
using the Jacobian, which is described in section 2.5.

(iv) Make a distinction between (a)(¢’)?> and (A’/A)>
and (b) the product of ¢’A’/A (including cylindrical
approximation).

(a) Case: (¢')? and (A’/A)?

1. Calculate the generalized weighted mean for
every harmonic using (35) and its variance using
(36). If phase and amplitude are analyzed
separately skip this step.

. Combine the different mean values p,,(€2;) and

variances a,%,,(Qk) using (37) to determine 1. and

its variance af using (38).

3. Calculate the overall diffusivity
3 _
X = ZH’+2' (43)
4. The corresponding confidence bounds are
calculated by replacing j1, = s, 0, = o},
and Q = 1 in (23) and determine the confidence

bounds using the CDF.
(b) Case: the product of ¢’A’/Aor ¢’A’/A+1/(2p)

1. Approximate mean values and variances using the
moment generating function for every harmonic.
Combine the different mean values p,(€2;) and
variances o (€;) using (39), but with weighting
Qi instead of /Qy to determine fi,,, and its

. 2 .
variance o,,,, using (40).

2.

3. Calculate the overall diffusivity
31
X=>— (44)
4 [mp
4. The corresponding confidence bounds are
calculated by substituting (i, %21 » andQ = lin

(27) and determining the CDF, which is acquired
by numerically integrating (27).

In practice, the diffusivity is often rescaled in terms of SI units.
The confidence bounds can also be rescaled accordingly.

6. Conclusions and discussion

In this paper, the effect of uncertainty on the estimates of the
diffusivity is studied. The properties of ECE-measurements
and of the Fourier transform are used to determine the
noise distribution of the Fourier coefficients. It is assumed
that the spatial derivatives of amplitude and phase are well
approximated by Gaussian distributions for large SNRs. In
that case the diffusion coefficient is distributed according
to the inverse non-central chi-squared distribution when the
relationships in (1) and (2) are used. Its analytically derived
CDF is used to determine the confidence bounds on the
diffusivity, i.e. its accuracy.

Based on the distributions of x and its confidence bounds
different methods to combine harmonics, amplitude, and
phase are compared including the cases with damping. The
(generalized) weighted mean gives the resulting Gaussian
distribution with the smallest variance. In case of the product
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an approximation for the product of phase and amplitude
derivatives are necessary introducing some errors.

The weighted average outperforms other methods
commonly used to combine different harmonics, amplitude,
and phase in fusion. Moreover, it gives an estimate of the
variance, which is necessary to determine the confidence
bounds on y. In addition, the direct diffusivity estimate based
on the ASDEX Upgrade data of the first harmonic already
shows a near Gaussian distribution, which is an indication that
it is close to the optimal solution. However, many issues arise
from using amplitude and phase to determine the diffusivity.
The amplitude and phase are correlated quantities in contrast
to the real and imaginary parts of the Fourier coefficients.
Taking the squared reciprocal of Gaussian distributed variables
always gives a distribution with a long tail and hence a high
upper uncertainty. This effect becomes much larger when
the variances increase. For example, this is important when
the time evolution of the diffusion coefficient needs to be
studied, because a reduced number of periods leads to a higher
variance. Therefore, relationships based on inverting Gaussian
distributed variables as the phase and amplitude should be
avoided to arrive at an optimal estimate of x. However,
this requires implicit estimation schemes to determine the
diffusivity, which often results in non-convex optimization
problems.
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Appendix A. Distributions of Amplitude and Phase

Here, the PDFs and CDFs of amplitude and phase are
introduced, which are necessary to calculate their confidence
bounds. These PDFs and CDFs are well known in the literature
[40, 44].

The PDF of the amplitude can be found by integrating (12)
over the phase

2

fa(A) = fag (A, ¢) do, (A.T)

which results in

£ (4) < A%+ M2>
= exp | —
A 2ok P 202
o AM cos (6 —
: / exp <M) do. (A2)
0 Of
The resulting amplitude distribution is given by
A A*+ M? AM
)= Sexp(-—0— b =) A3
of 20 Of

where I, denotes the modified Bessel function of the first kind
of zero order. The confidence bounds are calculated using
the CDF. The CDF of the amplitude Fa(R) can be found by
integrating the PDF f5(A) from O to R,

R M R
FA<R)=/0 fA(A)dA=1—Q1( ) (A4)

Eal—
OF OF

where Q; denotes the Marcum Q-function [40]. The
Rician distribution is non-symmetric, which means that
two confidence bounds need to be determined separately
in terms of a confidence p, e.g. p 0.95. A central
confidence interval is constructed such that the lower bound
is defined as Fa(Amin) = (1 —p)/2 and the upper bound
as Fa(Amax) = (1 +p)/2. These bounds are calculated by
inverting (A.4) numerically (see appendix B).

The PDF of the phase ¢ is derived by integrating the
CCND in polar coordinates (12) over A

fo (@) = /0 Fao (A, $) dA. (AS)

This integral can be solved using the substitution x = A —
M cos(6 — ¢) [44] resulting in

M? 1 Mcos(® —¢)
s ($) = exp (‘m) [E My
- exp (M2 cos® (0 - ¢)> erfc (MCOS © - d)))] .
20% O'F«/E

(A.6)

This distribution is sometimes referred to as the Rician phase
distribution [44]. Again, we are interested in the confidence
bounds, which can be calculated via the CDF

P

Fs (@)= | [fs (o) do

-7

(A7)

where —m < ® < m. This integral does not have a closed-
form expression, but can be approximated numerically, which
is explained next.

Appendix B. Constructing confidence bounds
numerically

The CDF of (27) necessary to calculate the confidence bounds
on x when using the product A’/A¢’ and the CDF of the
phase (A.7) necessary to calculate the confidence bounds on
the phase do not have a closed-form expression. Therefore,
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here is explained how the confidence bounds can be calculated
numerically exploiting properties of the integrals. The CDF
of h(x (up)) defined in (27) is given by the integral

2
H (X) /X3Q ! (3 - )
= - ¢ -~ - 7

oo 4 2 271%2 2UP2

xp | — dyx.

(B.1)

This integral needs to be evaluated numerically and then needs
to be inverted. However, integrating from minus infinity is
impractical. Therefore, this integral is split into two parts

0
H(X):/

where the first term can be evaluated analytically giving

= [ ))

If the diffusion coefficient is assumed to be always positive,
this term should be always smaller than the lower confidence
bound Hy < (1 — p)/2 and certainly smaller than the upper
confidence bound Hy < (1 + p)/2. This is of course not
guaranteed numerically as the product A’/A¢’ can become
negative and hence also its confidence bounds. However, both
special cases can be easily evaluated and if the lower bound
is negative we have decided to simply set it to zero (x > 0).
If both bounds are negative there is clearly something wrong
as such that case should be fully ignored. Hence, to calculate
proper confidence bounds it suffices to numerically integrate

2
3
(3 - )
202 d
%

o)) dx s [0 () ax. B2)

HMp
«/Eap

(o

B (x (p)) dx = 5

(B.3)

3 Q 1

H(X)=H0+f

e exp

2
2 ok

X

(B.4)

where 0 has been replaced by a very small number ¢ and
verifying that Hy < (1 —p)/2 and Hy < (1 +p)/2.

Calculating the CDF of the phase Fy (®) is straightforward
as the distribution f;(¢) is symmetric around the mean 6 and
its integration interval is already bounded, i.e. -7 < & < 7.

Now, the question is how to invert these relationships to
find the confidence bounds Xp,; for H(Xp,g) = (1 £ p)/2.
The CDF is a (non-decreasing) monotonic function and is
bounded in the domain O to 1. Therefore, H(X) — (1 — p)/2
has only one zero crossing at X;,; = X, which can be found
numerically using various techniques [52]. This technique is
also applied to find the confidence bounds for (A.4) and (20).
In case of (A.4) and (20) we found it useful to use the property
H(|X|) = |H(]X])|, which allows also the use of negative X
such that an unconstrained algorithm can be used.
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