
IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010 343

An Overview of IP Flow-Based Intrusion Detection
Anna Sperotto, Gregor Schaffrath, Ramin Sadre, Cristian Morariu, Aiko Pras and Burkhard Stiller

Abstract—Intrusion detection is an important area of research.
Traditionally, the approach taken to nd attacks is to inspect
the contents of every packet. However, packet inspection cannot
easily be performed at high-speeds. Therefore, researchers and
operators started investigating alternative approaches, such as
ow-based intrusion detection. In that approach the ow of data
through the network is analyzed, instead of the contents of each
individual packet.
The goal of this paper is to provide a survey of current research

in the area of ow-based intrusion detection. The survey starts
with a motivation why ow-based intrusion detection is needed.
The concept of ows is explained, and relevant standards are
identied. The paper provides a classication of attacks and
defense techniques and shows how ow-based techniques can
be used to detect scans, worms, Botnets and Denial of Service
(DoS) attacks.

Index Terms—Network ows, intrusion detection, attacks, DoS,
scan, worms, Botnets.

I. INTRODUCTION

NOWADAYS hackers are continuously attacking net-
worked systems; in fact, it would be interesting to

investigate if there are still Internet users who have not been
victim of an attack yet. Considering the damage caused by the
attacks (billions of U.S. dollars) [1], it is important to detect
attacks as soon as possible, and take, if feasible, appropriate
actions to stop them. This task is particularly challenging
due to the diversity in form (information gathering, password
stealing, viruses, Trojan horses, Denial of Service (DoS)...)
attacks exhibit.
For the detection of network attacks, special systems have

been developed; these systems are called Network Intrusion
Detection Systems (NIDS). In an attempt to nd known
attacks or unusual behavior, these systems traditionally in-
spect the contents (payload) of every packet [2], [3]. The
problem of packet inspection, however, is that it is hard,
or even impossible, to perform it at the speed of multiple
Gigabits per second (Gbps) [4], [5]. For high-speed lines,
it is therefore important to investigate alternatives to packet
inspection. One option that currently attracts the attention of
researchers and operators is  intrusion detection.
With such approach, the communication patterns within the

Manuscript received 6 August 2008; revised 2 March 2009 and 2 June
2009.
Anna Sperotto, Ramin Sadre, and Aiko Pras are with the University of

Twente, Centre for Telematics and Information Technology, Faculty of Electri-
cal Engineering, Mathematics and Computer Science, P.O. Box 217, 7500 AE
Enschede, The Netherlands, (e-mail: {a.sperotto,r.sadre,a.pras}@utwente.nl).
Chistian Morariu and Burkhard Stiller are with the Department of In-

formatics, University of Zurich, CH-8050, Zurich, Switzerland (e-mail:
{morariu,stiller}@i.uzh.ch).
Gregor Schaffrath is with An-Institut Deutsche Telekom Laboratories,

Technical University Berlin, 10587 Berlin, Germany (e-mail: grsch@net.t-
labs.tu-berlin.de).
Digital Object Identier 10.1109/SURV.2010.032210.00054

network are analyzed, instead of the contents of individual
packets. Research in this eld is still relatively in its beginning,
even if initial ideas to abstract from communication details
and analyze  pairs instead can already be
found in papers published in the early 1990s (see for example
Heberlein   [6] and Staniford-Chen   [7]). Nowadays
special measurement systems are able to provide, for every
pair of IP addresses and port numbers, aggregated information,
such as the time data exchange has started, the time it has
stopped, the amount of transferred bytes and the number of
sent packets. These systems export this information in the
form of Netow [8], [9] or IPFIX [10] records to systems
that analyze them. These analysis systems can then be used
to detect intrusions.
In our opinion, ow-based detection can be seen as a

complement of packet inspection, and should not be seen
as a replacement. Both approaches can be combined into
a two-stage detection process. At the rst stage, ow-based
approaches can be used to detect certain attacks. At the second
stage, packet inspection can be used to additionally protect
critical servers or selected systems, for which the rst stage
has discovered suspicious activities.
This paper provides a survey of current research in the area

of ow-based intrusion detection. This means that we consider
only contributions in network intrusion detection that make
explicit use of network ows as their main input. To limit our
scope, we will not consider payload-based methods; readers
interested in such methods can refer to existing literature [11],
[12], [13], [14], [15]. Since we concentrate on network ows,
our paper does not consider host-based intrusion detection
systems. Last, since details of commercial products are hard
to obtain, these have also been left out of this survey.
The paper is organized as follows: Section II describes

the motivations that have encouraged researchers to start this
research. Section III explains the concept and ideas behind
ows, as well as the network infrastructure needed for ow
monitoring and analysis, such as intrusion detection. Section
IV provides a classication of current attack techniques,
whereas Section V provides a classication of defense tech-
niques. Section VI discusses how ow information can be used
to detect intrusions; in this section, the focus is on thwarting
Denial of Service (DoS), scans, worms and Botnets. Finally,
Section VII presents some conclusions and discusses the
strengths and weaknesses of current ow-based approaches.

II. MOTIVATION

The Internet is a complex system in constant evolution.
Nevertheless, it is possible to make some observations with
respect to security.
A rst observation is that the number of attacks continues

to grow. The Cert Coordination Center [16], one of the
1553-877X/10/$25.00 c© 2010 IEEE

344 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2008
year

vulnerabilities
incidents

Fig. 1. Trends in incidents and vulnerabilities (logarithmic scale).

most well-known risks, security threats and incidents response
centers, offers summaries of the yearly security situation of the
Internet. The Cert/CC maintains a database of vulnerabilities,
with the aim to categorize them according to their severity
level and damaging impact on the systems. Vendors, system
administrators and users are encouraged to submit vulnerabil-
ities. In a similar way, in the past, Cert/CC asked the Internet
community for collaboration in order to report the incidents
the users were subject to. Cert/CC denes an incident as 
         [16].
This denition, according to the Cert/CC, covers attempts to
gain access to (information on) a system, Denial of Service,
disruptions, unauthorized uses and changes to hardware and
software.
Since 1995, Cert/CC published each year the number of

catalogued vulnerabilities. In fact, the reporting of incidents
started already in 1988, but ended in 2003. The reason to
stop can easily be understood from Figure 1: the growth of
reported incidents is nearly exponential, while the number of
catalogued vulnerabilities shows a slower growth factor. The
Cert/CC itself [16] gives the following explanation:

“Given the widespread use of automated attack
tools, attacks against Internet-connected systems
have become so commonplace that counts of the
number of incidents reported provide little informa-
tion with regard to assessing the scope and impact
of attacks. Therefore, we stopped providing this
statistic at the end of 2003.”

A second observation is that Internet trafc, as well as line
speed, continues to grow. Nowadays an access speed of 1-
10Gbps is not unusual. A university network, for example,
reaches trafc averages in the order of hundreds of Mbps,
with high activity peaks in the order of Gbps. On backbone
networks, the throughput will even be higher. Internet2 [17],
for example, publishes weekly reports of the Abilene trafc.
Figure 2 shows the growths in the period 2002-2008.
It is clear that Network Intrusion Detection Systems should

be able to handle the growing number of attacks, the growth
in Internet trafc as well as the increase in line speed. Re-
searchers assess the current, payload-based, NIDS processing
capability to lie between 100Mbps and 200Mbps [4], [5].

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

2002 2003 2004 2005 2006 2007 2008

Th
ro

ug
hp

ut
 (G

bp
s)

YEARS

Internet2 throughput

Fig. 2. Network throughput (Gbps) for the network Abilene[17].

Well known systems like Snort [2] and Bro [3], exhibit high
resource consumption when confronted with the overwhelm-
ing amount of data found in today’s high-speed networks
[18]. In addition, the spread of encrypted protocols poses a
new challenge to payload-based systems. An example is the
work of Taleb   [19], [20], where the authors propose an
intrusion detection systems based on per-packet inspection that
rely only on header information in order to identify misuses
in encrypted protocols.
Given these problems, ow based approaches seem to be a

promising candidate for Intrusion Detection research.
Flows are created by specialized accounting modules usu-

ally placed in network routers. The same modules are respon-
sible of exporting the ows to external collectors (see Section
III). Flow-based Intrusion Detection Systems will analyze
these ows and detect attacks. Compared to traditional NIDS,
ow-based NIDS have to handle considerable lower amount
of data. For example, in the case of the University of Twente
network, we calculated that the ratio between packets exported
by NetFlow (containing the ow records) and the packets on
the network is in average equal to 0.1%. Moreover, considering
the network load measured in bytes, the overhead due to
Netow is in average 0.2%. Flow based intrusion detection is
therefore the logical choice for high-speed networks. However,
there might exist situations in which the benet of using
ows is not so pronounced. The worst case scenario would
be when a ow is created for each packet passing through
the monitoring point, as a consequence of a distributed DoS
attack (DDoS), for example. In this case, the number of ows
would increase dramatically and extra load would be put on
the monitoring and analysis systems. To mitigate this problem,
or, in general, to improve the performance of routers and
monitoring stations, sampling techniques or ow aggregations
[21] can be applied.
Sometimes it is argued that ows do not carry enough

information, compared to payload inspection, for being useful
for intrusion detection. The answer to this question highly
depends on the user’s goals. Flows, which represent by
nature aggregated information, do not carry any payload.
They, therefore, do not provide the detection precision of
packet-based inspection, which allows for example 

SPEROTTO  : AN OVERVIEW OF IP FLOW-BASED INTRUSION DETECTION 345

FLOW
COLLECTOR

MONITORING

ANALYSIS

STORING

FLOW EXPORTER

METERING

PACKET CAPTURE TIMESTAMPING SAMPLING
FILTERING UPDATING

Fig. 3. IP Flow exporting and collecting architecture [22], [8].

 in payload content. Flows are limited to information
regarding network interactions. With this information, it is still
possible, however, to identify communication patterns between
hosts, when communication takes place and which amounts
of packets and bytes have been moved. For many attacks,
this information is sufcient. In any case, it is important to
underline that ow-based intrusion detection is not supposed
to substitute the packet-based one, but rather complements
the approach by allowing early detection in environments in
which payload-based inspection is not feasible. As described
by Schaffrath   [23], in an ideal world payload-based so-
lutions would always outperform ow-based ones in accuracy.
In high-speed networks, however, the processing capabilities
of the NIDS may be too limited to allow payload-based
approaches.

III. IP FLOWS
In the last decade, ows have become quite popular in IP

networks. Nowadays all major vendors equip their routers with
ow accounting capabilities. Trafc information is collected
and stored in ow records that provide an overview of network
usage at different levels of granularity.

  
In literature, several denitions of an IP ow can be found

[8], [24], [9]. This article follows the denition of   as
it was described by the IPFIX (IP Flow Information Export)
working group within IETF [10], [22]:

“A ow is dened as a set of IP packets passing
an observation point in the network during a certain
time interval. All packets belonging to a particular
ow have a set of common properties.”

In the IPFIX terminology, the   are called
 : they are, for example, source and destination ad-
dresses, source and destination port numbers and IP protocol:

(ip src, ip dst, port src, port dst, proto).

Aggregated views on the network trafc can be obtained by
choosing coarser grained ow denitions, according to the
need of the network administrator, as discussed in the work
of Fioreze   [24]. It is important to underline the difference

between  and , as used in the case of TCP.
A ow can exist also in situations in which there is no TCP
connection: an example of this is a UDP ow, where a set
of packets has been sent from a certain source address/port
to a certain destination address/port. Moreover, a ow does
not have size restrictions: each communication between source
and destination hosts will generate a ow, even if a single
packet has been exchanged.
Accounting ows is a two-step process:  , and

 . These tasks are performed by two compo-
nents:   and  . Figure 3 shows this
exporting/collecting process.
The  , also known as  , is

responsible for the  process, i.e., creating ow records
from observed trafc. The   extracts the packet
header from each packet seen on the monitored interface. Each
packet header is marked with the  when the header
was captured. After that the header is processed by a 
 module, where it can be  (see Section III-C)
or . The nal step is the  module. Each incoming
packet header triggers an update to a ow entry in the 
. If there is no ow matching the packet header, a new
ow entry is created. Once a ow record , it is sent to
the ow collector. In case of Cisco NetFlow [8] and similarly
in IPFIX [25], a ow is considered expired when:

• the ow was idle (no packets have been detected in the
ow) for a longer time than a given threshold (known
as  ). The default value for the inactive
timeout for Cisco Netow [8] is, for example, 15 seconds,
but it can be changed according to the requirements of
the network to be monitored.

• the ow reaches the maximum allowed lifetime. When
this happens, its corresponding ow record is exported
to the collector and, if necessary, a new ow record is
created for that ow ( ). For Cisco Netow,
the active timeout is 30 minutes, but our experiences
showed that shorter timeouts are also common. At the
University of Twente, for example, an active timeout of
1 minute is used.

• the FIN or RST ags have been seen in a TCP ow.
• the ow-cache memory gets full. In this case, certain
ow records are marked as expired and exported to the

346 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

collector. Least Recently Used (LRU) algorithms may be
used to free the ow-cache memory, as well as heuristic
algorithms.

The aim of the   is to retrieve the ows created
by the ow exporter and to store them in a form suitable for
further monitoring or analysis.

   
A ow export protocol denes how ow records are trans-

ported between an exporter and a collector. Netow version 5
[8], developed by Cisco, has a very simple ow export protocol
that transports ow records of xed size (48 bytes in total).
A Netow v5 ow record contains source and destination IP
addresses and ports, start and end timestamps, type of service,
level 3 protocol, TCP ags, next hop router, input and output
SNMP interfaces, source and destination autonomous systems
and network masks. Moreover, each ow carries aggregated
information about the amount of packets and bytes exchanged.
Netow version 9 and IPFIX propose exible protocols in

which ow record formats can be dened by using templates.
The latter protocols allow also a larger set of parameters to
be used as ow keys. An IPFIX packet is logically divided
into sections known as . A message can normally consist
of three kinds of sets, namely   (format template
exchange),   (ow records) and   
(necessary for the correct interpretation of a Template set). For
a more detailed treatment of the IPFIX message format, see
[22].

 
IP ow accounting requires state information to be kept for

each active ow. On high-speed links, there may be millions
of packets per second and hundreds of thousands of active
ows. If for each incoming packet, a ow lookup is performed
and state information is kept for each ow, a heavy demand
will be put on the CPU and memory resources of the ow
exporter. In order to reduce this demand, sampling meth-
ods can be deployed. The IETF PSAMP (Packet Sampling)
working group [26] is currently discussing the creation of
possible standards in this area. It should be noted, however,
that sampling not only lowers the demands put on the ow
exporter, but also makes detection of intrusions harder. Several
studies discuss the impact of sampling on intrusion detection
and ow accounting. Examples are Brauckhoff   [27], Mai
  [28] and Zseby   [29].
Two main categories of sampling can be identied: packet

sampling and ow sampling.
• Packet Sampling: as explained in Izkue   [30], Wang
  [31] and He   [32], sampling techniques can be
divided into  and  ones. In 
packet sampling, a packet is deterministically selected on
the base of a time interval ( ) or a
sequence of packet arrivals ( ). For
example, it is possible to select a packet every t seconds,
or a packet every n packets. In  packet sampling,
on the other hand, the sampling process relies on a
probability distribution function. The two main classes
of random sampling are:

–  : The trafc is split into sequences
of  packets. Out of these,  are randomly selected.

–  : Each packet is sampled with
probability p. This sampling probability p can be
xed, or can depend on specic packet characteris-
tics, such as for example the packet size.

The deployment of one or more packet sampling strate-
gies depends on which trafc characteristic the adminis-
trator is interested in. NetFlow is using an  sam-
pling technique, usually in the form of  sampling.

• Flow sampling: similarly to random packet sampling,
random ow sampling algorithms sample each ow with
a random probability.   , for example,
is a sampling method proposed by Estan   [33]
that accurately accounts for large ows. In this case,
when the system detects the presence of a new packet
that does not belong to any already existent ow, it
creates a ow entry with probability p. If the new ow
is created, all following packets belonging to the ow
will be accounted, as opposed to packet sampling in
which each packet independently undergoes the sampling
procedure. It is easy at this point to imagine why this
sampling strategy is biased towards large ows. Dufeld
  [34], [35] and Alon   [36] proposed 
 as a method to dynamically control the size
of sampled data.  , both in the form of
  [35] and   [36], is
based on the observation that packets and bytes in ows
follow a heavy tailed distribution. A simple ow sampling
strategy may omit ows that have large impact on the
estimation of the total trafc of the network. To overcome
this problem, Dufeld   and Alon   propose
sampling schemes in which the probability that a ow
will be sampled depends on its size.

This section gave an overview of how ows are created. To
understand how ows can be used for intrusion detection, we
are now going to give a brief overview of the attacks present
in our networks.

IV. ATTACK CLASSIFICATION

Several attack classications have been described in liter-
ature [37]. These classications usually distinguish between
the following basic categories [38], [39]:

• Physical attacks: attacks based on damaging the com-
puter and network hardware.

• Buffer overows: attacks that gain control or crash a
process on the target system by overowing a buffer of
that process.

• Password attacks: attacks trying to gain passwords,
keys, etc. for a protected system.

• (Distributed) Denial of Service attacks: an attack which
leads to situations in which legitimate users experience a
diminished level of service or cannot access a service at
all.

• Information gathering attacks: an attack that does not
directly damage the target system, but gains information
about the system, possibly to be used for further attacks

SPEROTTO  : AN OVERVIEW OF IP FLOW-BASED INTRUSION DETECTION 347

in the future. This category comprises network trafc
snifng and (port) scans.

• Trojan horses: a program disguised as a useful applica-
tion, which deliberately performs unwanted actions.

• Worms: a program that self-propagates across a network.
Self-propagation is the characteristic that differentiates
worms from viruses (see below). A worm spread can
be extremely fast: an example is the Sapphire/Slammer
worm, which is known to have infected 90% of the
vulnerable hosts in 10 minutes [40].

• Viruses: a virus is regarded as a worm that only repli-
cates on the (infected) host computer. Hence, it needs
user interactions to propagate to other hosts. Often, the
denition also requires that a virus has to attach itself
to les on the host, e.g., executable les, in order to
be activated. As a consequence, the speed of spreading
cannot be compared with a worm spread.

In addition, Hansman   [39] summaries under the
category “Network attacks” various other attacks, such as
spoong, session hijacking and parameter tampering.
The previous categories should not be regarded as mutual

exclusive classes of attacks. For example, buffer overows and
port scans can be regarded as separate categories of attacks,
but also as specic techniques used by worms and DoS attacks.
Rather, these categories describe general “concepts” of attacks
that have been frequently observed in practice. Note that not
all taxonomies provide a classication like the one given
above. For example, Howard [41] focuses on a process-driven
taxonomy, based on the objective of the attacker, the used
tools, etc.
Nowadays, an additional threat has evolved pertaining

Botnets. Botnets are groups of computers “infected with
malicious program(s) that cause them to operate against the
owners’ intentions and without their knowledge”, as dened in
Lee   [42]. Botnets are remotely controlled by one or more
. Moreover, Botnets are the perfect infrastructure
for setting up and supporting any kind of distributed attack,
such as, for example, DoS attacks and SPAM campaigns.
Infected hosts unknowingly become part of Botnets, and take
part in malicious activities [43], [44]. The threats posed by
Botnets are such that we decided to include them in our attack
classication.
Flow-based intrusion detection, since it relies only on

header information, can address only a subset of the attacks
presented above. In particular, the research community cur-
rently provides approaches to detect the following classes of
attacks:

• Denial of Service;
• Scans;
• Worms;
• Botnets.

Approaches to detect these attacks will be further discussed
in Section VI.

V. DETECTION CLASSIFICATION

According to Halme   [45], an Intrusion Detection
System is an   that aims to 
      

 . Since the rst papers on intrusion detection
appeared in the Eighties of the previous century, several
taxonomies of intrusion detection techniques were proposed.
Our study identies two main contributions to the eld, the
work of Debar   [11], [12] and that of Axelsson [13].
Debar   [11], [12] were among the rst to propose

an intrusion detection system taxonomy. Their classication
focuses on the following elements:

• Detection Method: if a system bases the detection on a
denition of  behavior of the target system, it is
called . If it matches the input data against
a denition of an attack, it is known as 
. In literature, the community usually refers to these
classes with the names of  and 
 solutions [46], [13], [14], [47], [48].

• Behavior on detection: a system can be proactive and
act against the intruder ( ) or can generate
alerts that will be later processed by a different system
or a human operator ( ).

• Audit source location: the data processed in order to
detect intrusion can be  or  , 
 or  generated by other detection systems.

• Detection Paradigm: the IDS can detect the current
status of the target system (secure or insecure) or can
alert on a state transition (from secure to insecure).

• Usage frequency: the system can perform its task in real-
time ( ) or post-mortem (
)

Axelsson [13] bases his taxonomy on the one proposed
in Debar   [11], [12], but extends and completes it. In
particular, beside the previously described characteristics, a
system is described also on the basis of the following:

• Locus of data-processing: a system can be 
or , irrespectively of the origin of the data.

• Locus of data-collection: the data collection can be
 or .

• Security: the intrusion detection system can be itself
target of security threats.

• Degree of inter-operability: a system can be built to
work in with other systems (exchanging data)
or .

In his work, later followed by Almgren   [49], Axelsson
focuses on detection methods, once again divided in two
classes: anomaly-based and misuse-based. In that work, an
 system can be described as:

• Self-learning: the system is able to automatically build
a model of the normal behavior of the system, or:

• Programmed: the denition of normality has to be
provided by the system developer.

A  system, on the other hand, presents a
unique subclass, : the system is provided with
a knowledge-base of attacks, against which it matches the
inputs.
Figure 4 shows the detection capabilities of legal and

illegal activities, for misuse (knowledge-based) and anomaly
(behavior-based) systems, respectively. A misuse-based model
is supposed to describe only illegal activities. In some cases,
however, if the system is not  enough, legal activities

348 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

Fig. 4. Detection capabilities of different intrusion detection models [46].

can be agged as intrusions; such events are called 
. At the same time, if the model is not ,
it will not be able to report all malicious activities; unagged
illegal activities are known as  . An anomaly-
based model, on the other hand, is supposed to describe only
legal activities (). Also in this case, incompleteness
and inaccuracy can lead to false positive and false negatives.
Finally, in [13], Axelsson introduces a third class of systems

in which both anomaly-based inspired characteristics and
misused-based ones coexist. In his work, such systems are
known as .
In their taxonomies, Debar   [11], [12] and Axelsson

[13] consider a wider spectrum of categories, including some
that are outside the scope of this paper. For example, they
distinguish between  and  detection
approaches. The former analyses the status of a single host,
monitoring internal functionality (e.g., CPU usage, system
call traces, log-in attempts). The latter bases its analysis
on network information and can monitor an entire network.
In this paper, we are only interested in this second kind
of systems, since we are analyzing network data only. In
particular, we are interested in ow-based approaches; since
such approaches are relatively new, the taxonomies found
in literature do not explicitly consider them. Despite this,
since ows represent network-based aggregated data, we still
consider the taxonomies useful for our purpose.

VI. FLOW-BASED SOLUTIONS

This section presents the state of the art solutions for each
category of attack that can be detected using ows (see Section
IV). Moreover, it classies each contribution according to the
taxonomies presented in Section V.

   
Detection of Denial of Service is often addressed in ow

based intrusion detection. These attacks, by their nature, can
produce variations in the trafc volume that are usually still
visible at ow scale.
It is important to underline, nevertheless, that in case of

ow-based detection we are implicitly addressing the problem
of   DoS attacks, i.e., a type of DoS that relies on
resource exhaustion or network overloading. Unfortunately, it
is almost impossible to directly detect   attacks,
i.e., attacks in which the service interruption is caused by the
payload contents. For example, let us consider the (nowadays

out-of-date) Ping of Death attack. In such attack, the attacker
sends malformed or otherwise malicious ping packets, which
causes the victim system to crash. Since this attack does
generate a single ICMP ow, the attack would most likely
go undetected. There would be, indeed, no change in ow
frequency and intensity. A different case of semantic attack
would be one that changes the distribution of ows. An
example is the DoS effect related to the scanning phase of
the Sapphire/Slammer worm [40]: while spreading, the worm
provokes the crash of Microsoft SQL Server hosted on the
target machine. Nevertheless, at ow basis, the detection of
this attack would be most probably related to the scanning
phase, and not to the DoS itself.
An overview of how often DoS attacks appear in practice

is given in Moore   [50]. They estimate that, based on
an analysis conducted over multiple one-week traces for a
period of three years, on average the number of different
victim IPs on the entire Internet is 24.5/hours. Even though
Moore   do not specify if they investigated brute force or
semantic attacks, the statistics clearly show that DoS attacks
detection is, still in these days, a problem that requires experts’
attentions.
There are two main examples of anomaly-based DoS detec-

tion in high-speed networks, using ow information only. The
work of Li   [51] and Gao   [52], in the rst place,
approach the problem using aggregate ow measures collected
in appropriate data structures, named . A sketch is
originally a one-dimensional hash table suitable for fast storing
of information: it mainly counts occurrences of an event.
In their papers, the authors work with 2D sketches, a more
powerful extension of the original ones, in which, for each
dimension, a set of ow-derived elds is hashed. Sketches
permit to statistically characterize how the trafc varies over
time, simply by tracking the presence of a ow in a specied
time frame. An anomaly-based engine triggers alarms based
on a forecast value of the measure the system is supposed
to monitor: a sharp variation from the mean is agged as an
anomaly. A simple example of the use of sketches in DoS
attacks is the detection of SYN Flooding attacks [53], as
described in Gao   [52]. In this case, the sketch is supposed
to store, for each time frame and each tuple (dest_IP,
dest_port), the difference between the number of SYN
packets and the number of SYN/ACKs. If the stored value
for the current time deviates from the expected one, a DoS
SYN Flooding attack is going on. The sketch-based approach
could potentially be deployed also without the use of ows,

SPEROTTO  : AN OVERVIEW OF IP FLOW-BASED INTRUSION DETECTION 349

relying in this case on header inspection. Nevertheless, in this
case the data reduction gain provided by ows would be most
probably lost. Gao   developed a prototype that receives
exported ows from a netow-enable router in real time.
A similar approach is proposed by Zhao   [54]. In

this case, a data-streaming algorithm is used to lter part of
the trafc, and identify IPs that show an abnormal number
of connections. The authors consider both the case in which
a host is the source of an abnormal number of outgoing
connections ( ), as well as the case in which a
host is the destination of an unusual number of connection
attempts ( ). The rst case matches the denition
of a scanning host, while the second is used for detecting
DoS victims. The method is based on 2D hash tables, clearly
resembling the work of [51] and [52]. In their paper, Zhao
  also apply a ow  algorithm (see Section III),
to reduce the amount of data to be processed and signicantly
raise processing speed. At the same time, since sampling fur-
ther reduces the available information, the authors developed
statistical formulas to accurately estimate the  of
the considered hosts.
A more detailed approach is presented by Kim   [55]: in

this paper many different DoS attacks are described in terms
of trafc patterns, based on ow characteristics. In particular,
the authors focus on the number of ows and packets, the
ow and packet sizes, total bandwidth used as well as average
ow size and number of packets per ow. An example of
attack pattern is the one produced by a SYN Flooding attack:
a large ow count, yet small packet counts, as well as small
ow and packet sizes and no constraints on the bandwidth
and the total amount of packets. The pattern is signicantly
different from the one generated by an ICMP or UDP ooding
attack, in which we have large bandwidth consumption and
the transfer of a large number of packets. Kim   clearly
identify the metrics they are interested in and formalize them
into   that give the likelihood of a trafc
pattern representing an attack.
In the context of DoS monitoring and detection, it is impor-

tant to cite also the work of Münz   [56], which propose
a general platform for DoS detection. The system, known as
TOPAS (Trafc Ow and Packet Analysis System), acts as
a ow collector for multiple sources and locations, offering
preprocessing capabilities in order to obtain an information
format suitable for further processing. On this platform, many
different detection modules can run in real-time according
to the necessities of the network administrator. Examples of
modules are a    , a  
(to allow identication of the entry point of spoofed packets in
the attacked network) and a    
(focusing on DoS attacks using HTTP requests). The work has
been developed within the context of the European Diadem
Firewall project, which specically focuses on DoS and DDoS
detection [57].
Attention must also be given to the work of Lakhina

  [58], [59], [60], [61]. The analysis is conducted on
ow aggregation, namely on origin-destination ows between
Points of Presence (PoP) on the Abilene [17] and Sprint-
Europe [62] networks. On this small set of pairs (only n2,
where n is the number of PoPs), it is possible, through

principal component analysis, to decompose the trafc owing
through the backbone in time related trafc trends (
). There are three types of eigenows: deterministic
eigenows that show a periodical trend (day-night pattern),
spike eigenows that show isolated values that strongly deviate
from the average and noise eigenows that appears to be
roughly Gaussian. The spike components reveal the presence
of a trafc anomaly. The proposed method is general enough to
capture various kinds of anomalies, due to failures or attacks,
and is appropriate for almost all the attack classes we are
interested in (DoS, scans and worms).

 
Scans are usually characterized by small packets that probe

the target systems. Keeping this characteristic in mind, it is
easy to imagine that scans can easily create a large number of
different ows. There are three categories of scans: (i) a host
scanning a specic port on many destination hosts (
); (ii) a host scanning several ports on a single destination
host ( ); (iii) a combination of both ( ).
Irrespectively of the kind of scan, the result will be a variation
of the ow trafc in the network. At the same time, scans are
less likely to have impact on the total trafc volume, as shown
in Sperotto   [63].
Figure 5 shows an example of SSH ows captured in 2007

at the University of Twente (UT) and SURFnet [64], the UT
Internet service provider. The byte time series (Fig. 5(a)) is
quite irregular, with sharp high- and down-peaks that do not
clearly indicate the presence of an attack. On the other hand,
the ow time series (Fig. 5(b)) shows sudden and frequent
peaks, during which the number of ows can rise to several
hundreds of thousands per observation bin (10 minutes, in the
case of Figure 5). After a more detailed analysis, these peaks
appeared to correspond to multiple SSH scanning sessions,
trying to guess user names and passwords. An interesting
difference between SURFnet and the UT is that SURFnet
applies 1:100 packet sampling, whereas the UT does not apply
packet sampling. Still Figure 5 shows that scans can even be
detected in SURFnet, despite the sampling.
In literature, scans have generally been investigated by

considering their most obvious characteristic: the scanning
source shows an unnaturally high number of outgoing con-
nections. The problem has been approached in this way by
Zhao   [54], already cited in the previous section. Look-
ing at host behavior from an incoming/outgoing connection
perspective allows addressing DoS and scan attacks as faces
of the same problem: hosts with an inadequate and unusual
fan-in/out. Similarly, Kim   [55] attempt to describe a scan
in terms of trafc patterns, as already explained in the case of
DoS. The authors differentiate between network (horizontal)
scans and host (vertical) scans.
The approach described in Wagner   [65] is not re-

lated to trafc volume anomalies. In this case, the proba-
bilistic measure of entropy is used to disclose regularity in
connection-based trafc (ows). Entropy has been introduced
in Information Theory in 1948 [66] and, generally speaking,
is a measure of randomness and  of a stochastic
process. Entropy is also related to lossless data compression:

350 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

 0

 0.5

 1

 1.5

 2

 2.5

 3

01/08
04:00

01/08
08:00

01/08
12:00

01/08
16:00

01/08
20:00

02/08
00:00

02/08
04:00

02/08
08:00

02/08
12:00

02/08
16:00

02/08
20:00

by
te

s
(G

B)
UT

SURFnet

(a) Bytes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

01/08
04:00

01/08
08:00

01/08
12:00

01/08
16:00

01/08
20:00

02/08
00:00

02/08
04:00

02/08
08:00

02/08
12:00

02/08
16:00

02/08
20:00

flo
w

s
(M

)

UT
SURFnet

(b) Flows

Fig. 5. Byte (a) and ow (b) time series for SSH trafc at the University
of Twente network and SURFnet [63].

the theoretical limit of the compression rate of a sequence of
bits is exactly the entropy of the sequence. Starting from this
well-known result, Wagner   created an efcient analysis
procedure based on compression of sequences of network
measurements. They observe that, in the case of a scanning
host, the overall entropy in a specic time window is subdued
to a change. In particular, the presence of many ows with
the same source IPs (the scanning host) will lead to an abrupt
decrease of the entropy in the distribution of the source IP
addresses. At the same time, the scanning host will attempt to
contact many different destination IPs on (possibly) different
ports, generating an increase in these entropy measurements.
The combined observation of multiple entropy variations helps
in validating the presence of an attack. Other approaches are
based on logistic regression [67] and distances from baseline
models [68].

 
Worm behavior is usually divided into a target discovery

phase (the worm explores the network in order to nd vulner-
able systems) and a transfer phase (the actual code transfer
takes place) [71], [72]. Code Red [73] and Sapphire/Slammer
[40] are examples of this mechanism. Flow-based detection
systems usually focus on the target discovery phase, since the

Fig. 6. Host classes and their intersections [69], [70].

transfer of malicious code cannot easily be detected without
analyzing the payload. In many cases, worm detection can be
similar to scan detection, and many researchers use the same
approach for both threats. The approach adopted by Wagner
  [65], for example, can naturally be extended to worms,
as well as the ones of Zhao   [54] and Gao   [52].
Dübendorfer   [69] and Wagner   [70] attempt to

characterize the host behavior on the basis of incoming and
outgoing connections. The proposed algorithm assigns hosts to
a set of classes. The denition of these classes is such that only
suspicious hosts will belong to them. The   groups
hosts that send more trafc than what they receive. Hosts that
show an unusual high number of outgoing connections are
part of the  . Finally, hosts involved in many
bidirectional connections belong to the  . In
the proposed model, a host can belong to more than one
class. Figure 6 describes the three classes and their possible
intersections. The method aims to periodically check the status
of the hosts of an entire network. In this way, it is able to
detect worm spreads, as they cause massive changes in the
cardinality of one or more classes. Moreover, Dübendorfer
  [69], by properly ltering the interesting ows, manage
to identify both e-mail spreading worms and scanning worms,
without concerns about their scanning strategies.
A different approach is taken by Dressler   [74], that

uses the correlation between ows and honeypots logs. In
this case, the need for a  , i.e., a trusted source
of information for the system validation, made the authors
rely on a honeypot. In this way, deploying at the same
time honeypot, ow monitor and a collecting database, it is
possible to carefully identify  , that is
sequence of connections and ow-related information about
the scanning and transmitting behavior of a worm. According
to the presented results, the approach seems to be promising.
Finally, Collins   [75] propose a solution to the problem

of   detection. A hit-list worm is a worm that
bases its scanning strategy on the sequential probing of a pre-
dened list of hosts that are supposed to be always online. This
technique is used because worms usually have a slow initial
spreading phase, and the use of a hit-list consistently increase
the initial infection speed. Since hit-lists are commonly used

SPEROTTO  : AN OVERVIEW OF IP FLOW-BASED INTRUSION DETECTION 351

S S

CC

C

C

C
C

C

S

S

CC

C

C

C
C

C

A

S
S

S

S

S S

CC

C

C

C
C

C

A

C

S

CLIENT

SERVER

A ATTACKER

Fig. 7. Example of graph based hit-list worm spreading analysis [75].

to start infections, detecting them as soon as possible may
be quite useful. Collins   employ a graph-based algorithm
that slices the network according to a monitored protocol (like
HTTP, FTP, SMTP, or Oracle). They argue that the number
of hosts normally involved in the use of a certain protocol,
i.e., the number of vertexes in the graph, is in average regular
over time. Also the pattern of communication between hosts,
i.e., the cardinality of the connected components in the graph
(connected subgraphs with a maximal number of vertexes),
has the same property. This regularity is disturbed only when
a new host starts to scan the network following a hit-list: in this
case, the authors observe a larger number of vertexes in the
graph (the scanned hosts) and a drastically enlarged cardinality
of the connected components. The scanning host, indeed,
will communicate with servers (in its hit-list) that in normal
conditions do not have any connection. Figure 7 shows cases
of hit-list infections that modify the number of vertexes in the
graph and the cardinality of the largest connected component.
In the example, two servers, depicted at the bottom of the
gure, communicate with, respectively, four and three clients
during a normal observation period. The two disjoint sets of
hosts will form two connected components in the 
. During a malicious observation period, i.e., while a hit-
list worm is spreading, two situations can be observed. In the
rst one, on the upper left of the gure, the attacker contacts
servers that do not normally appear in the monitored trafc: as
consequence, the cardinality of the vertex set in the protocol
graph will increase, meeting the rst detection condition in
[75]. In the second case, on the upper right corner, an attacker
will contact both servers, since they are on its hit-list. As a
consequence, the two connected components described in the
example will be reduced to one, meeting the second detection
condition.

 
As explained in Section IV, Botnets consist of infected

hosts (bots) controlled by a central entity, known as master
(or bot-master). As these networks tend to be spread over

multiple administrative zones, complete identication of bots
is a difcult problem. Since bots are no longer harmful once
the master is isolated, a straightforward mitigation approach is
to identify the master. Nevertheless, as Zhu   [79] pointed
out in their survey on Botnet research, the defense against
botnets is not yet efcient and the research in this eld is still
in its infancy.
As a fact, many Botnets used to rely on IRC channels, which

can be identied at ow level, as described in the work of
Karasaridis   [76]. The authors propose a model of IRC
trafc that does not rely on specic port numbers. Karasaridis
  address two main points. First, they propose a multistage
procedure for detecting Botnets controllers. Starting from re-
ports of malicious activity obtained from diverse sources (e.g.,
scan logs, spam logs, and viruses), the authors identify groups
of ows involved in suspicious communications (
 ). These conversations may happen
between a host and a candidate server () that use
either an IRC port (e.g., 6667, 6668 or 7000) or that hides
the control trafc using a different protocol. In the second
case, the candidate conversation is checked against the ow
model. The second aim of Karasaridis   is, once the
controllers have been identied, to group the suspected bots
into behavioral groups, i.e., clusters of bots that show the same
activity pattern. For this purpose, they suggested a hierarchical
clustering procedure that groups the hosts based on their
port activities. In [76], the authors also explain why Botnet
detection slightly differs from scan or DoS detection. For scans
and DoS, current research aims at   identication,
with alerts that permit the network administrator to intervene
as soon as possible. In the case of Botnets, only long time
observations can lead to the identication of the bots and
controller.
In a similar way, the work of Livadas   [77] and

Strayer   [44] approach the problem by modeling the TCP
ows of IRC chats. The authors present the rst results of a
study pertaining to the use of machine learning techniques
for Botnet trafc identication. In particular, they structure
their approach in order to answer two research questions: is
it possible to distinguish between i) IRC and non-IRC trafc;
ii) botnet IRC trafc and normal IRC trafc. In the paper,
the effectiveness of machine learning methods, such as Naive
Bayes classiers, Bayesian networks and classication trees,
is tested. The input is an enriched version of ows (including
additional information, such as variance of the bytes per packet
in the ow, or the number of packets for which the PUSH ag
is set). The work shows that automatic identication of Botnet
IRC trafc seems possible.
A different approach is proposed by Gu   [78]. They

developed a Botnet detector, , which is independent
of Botnet Command and Control (C&C) protocols and struc-
tures. Gu   developed a detection framework that aims to
characterize a Botnet according to the following denition:

A   of  instances that are
 via C&C channels.

BotMiner sniffs the trafc at the observation point and
conducts two parallel analyses. On one side, it relies on ows
for detecting groups of hosts with similar communication
patterns. On the other side, it inspects packet payloads (via

352 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

TABLE I
CATEGORIZATION OF THE PROPOSED SOLUTIONS ACCORDING TO THE TAXONOMY.

System Detection Behaviour on Usage Data Data
Method detection Frequency processing collection

Li   [51] Gao   [52] anomaly active real-time centralised distributed
Zhao   [54] not spec not spec real-time centralized distributed
Kim   [55] misuse passive real-time centralized distributed
Münz   [56] compound passive real-time centralized distributed
Lakhina   [58], [59], [60], [61] anomaly passive real-time centralized centralized
Wagner   [65] anomaly passive real-time/batch centralized centralized
Gates   [67] misuse passive batch centralized centralized
Stoecklin   [68] anomaly passive batch centralized centralized
Dübendorfer   [69] [70] compound passive real-time centralized centralized
Collins   [75] anomaly passive real-time centralized centralized
Dressler   [74] misuse passive real-time centralized centralized
Karasaridis   [76] misuse passive real-time centralized centralized
Livadas   [44] [77] not spec passive batch centralized centralized
Gu   [78] anomaly passive real-time centralized centralized

Snort) in order to detect anomalous activities. These activities
are then clustered together in order to detect groups of hosts
that have similar malicious behavior. In both steps, unsuper-
vised clustering techniques have been used. As the authors
describe, both step are necessary in order to properly identify
possible bots, and a   phase is performed in
order to merge the results of the previous analyses and extract
meaningful groups of malicious host that form a Botnet. The
approach, which has already been implemented in a working
prototype, shows good detection results. Moreover, it clearly
shows that the problem of Botnet detection is more complex
than the general problem of attack detection. A misbehaving
host, indeed, is not sufcient to indicate the presence of
a Botnet. A more sophisticated intra-host communication
analysis is needed to characterize the group nature of Botnets.
Even though Gu   [78] and Karasaridis   [76]

present better results than Livadas   [77] and Strayer
  [44], all the contributions clearly show that the problem
of Botnet detection still remains unsolved. This is mainly due
to the subtle and highly dynamic evolution of the Botnets
themselves. Since the research on Botnet identication is still
in its beginning phase, a strong research effort is needed to
develop effective detection procedures. In this regard, ow-
based approaches play an important role.

  
The intrusion detection taxonomies presented in Section V

allowed us to categorize the state of the art in the eld of ow-
based intrusion detection. However, in our specic case, not all
the categories in the taxonomies are relevant to our problem.
For example, network information is the only   we
are interested in, so this category has been omitted from our
study. The   (state/transition-based) is appli-
cable mainly to host-based solutions, and for this reason has
also been discarded. We also have not considered Axelsson’s
 class. Only one of the contributions, indeed, explicitly
addresses the problem of attack resilience [52]. Finally, it is
important to notice that, at the moment, the main research
concern is still on developing ow-based detection engines,
and less effort is put on problems like  of
different instances of the IDS, or between the IDS and other
network components (rewalls, routers...). In our survey, only

a few contributions specically address this subject, such as
Li   [51] and Gao   [52].
Table I, which presents our classication, gives some insight

in the current research trends in ow-based intrusion detection.
As it has been for payload-based solution, also in this case, the
 classes play an important role: we can
see contribution in both elds. Moreover, some researchers,
such as Münz   [56], Dübendorfer   [69] and Wagner
  [70], developed  methods. This is due to the
interest in joining the strengths of both anomaly and misuse-
based approaches, as well as to the increasing interest in
multi-purpose platforms that offer a shared base for different
detection modules. The work of Gu   [78], on the other
hand, is classied as anomaly-based. It indeed uses Snort
only as a complementary source of data, while the entire
detection engine is based on anomaly techniques. On some
occasions [44], [54], [77], the detection approach is unclear
or not specied. This happens when these works address
more general problems than detection, and attack identication
serves only as a possible application. For example, Zhao
  [54] are interested in  as a
more general problem of  . On the other
hand, Strayer   [44] and Livadas   [77] do not
specify if they aim at modeling either the normal behavior
of IRC conversations or the anomalous one pertaining to
the command-and-control streams. Therefore, it has not been
possible to classify the contribution regarding this category.
By considering the behavior on detection, the focus seems

to be on passive solutions, which complete their task with
the rising of an alert to the network administrator. This also
means that the majority of the solutions heavily rely on human
intervention for attack mitigation and blocking. At the same
time, nevertheless, our classication shows that there is a clear
preference for  , which clearly signals the
need for fast responses in ow-based security.
The majority of the contributions rely on centralized 

. Flows are a powerful approach to data reduction,
as already pointed out in Section II. In many cases, a stand-
alone machine will have enough processing power to deal
with the ow-data stream. On the other hand, ows are
particularly suitable to be exported towards remote collection
points, making it extremely easy to develop a system based on

SPEROTTO  : AN OVERVIEW OF IP FLOW-BASED INTRUSION DETECTION 353

1980 2000 Today

 Payload-based Intrusion Detection

1998
Snort Bro

2000
IDS taxonomies 2004

Netflow v9 Spam detection

Distributed detection

Botnet detection

 Flow-based technologies

Future Research

 Flow-based Intrusion Detection

Fig. 8. Time line of evolution of intrusion detection and ow-based technologies.

distributed   points. The majority of the solutions
that we studied assume a single (centralized) collection point
for the ease of analysis, but the authors do not explicitly
exclude the possibility of distributed collection.

VII. CONCLUSION
This paper presented a survey of the state of the art of ow-

based intrusion detection, focusing on the period 2002–2008.
During this time, ow-based techniques attracted the interest
of researchers, especially for analysis of high-speed networks.
The recent spread of 1-10Gbps technologies, and the day by
day increasing network usage and load, have clearly pointed
out that  is a growing problem. In this context, ow
based solutions to monitor and, moreover, to detect intrusions
help to solve the problem. They achieve, indeed,  
  , opening the way to high-speed
detection on large infrastructures.
This paper also showed, however, that in some cases the

complete absence of payload should still be perceived as the
main drawback of ow-based approaches. For example, the
use of ow-based techniques makes it very difcult to detect
so-called   (see Section VI-A); attacks for
which the disruptive power is in the payload, and which do
not create visible ow variations (bytes, number of packets
or number of ows). Nevertheless, as mentioned in Section
II, ow-based intrusion detection is not meant to substitute
payload-based solutions, but to complement them in situ-
ations where technological constraints make payload-based
techniques infeasible.
Figure 8 shows, in a schematic time line, the evolution

of payload-based intrusion detection, ow-based technologies
and ow-based intrusion detection. Payload-based solutions
constituted the rst effort in developing network-based intru-
sion detection. Nevertheless, they are, still today, a meaningful
approach to security. Figure 8 also shows the rise of ow-
based technologies (see Section III). Once ow-based monitor-
ing became an established technology, we can see how ows
became also a source of data for intrusion detection (see also
Section VI). The paper showed that the major efforts in ow-
based detection concentrate on DoS, scan and worm detection,
while Botnet detection appears to be a more recent research
eld.
Figure 8 also identies some open issues that should be

addressed in future research. First, the emphasis will be

on improving the   of threats. An example
would be to extend the current research to the detection of
unsolicited e-mail. For this, as far as we know, only sporadic
ow-based contributions have been proposed [80]. Detection
of SPAM sources would address one of the most serious
issues in our networks, since it has been estimated that the
percentage of SPAM in the rst half of 2008 has been 75-
85% [81]. Moreover, Ramachandran   [82] estimated
that ∼80% of the spam messages are sent by Botnets. In
our opinion, Botnet detection is the second major research
challenge. Botnet detection will involve long-term analysis
of   as well as integration of multiple
detection methods (Botnets are the source of diverse attacks).
Since Botnets are naturally spread over multiple networks,
a single monitoring point will probably not be sufcient for
detection. To overcome this problem, a third area for future
work is the development of   
systems. Distributed detection is particularly important, also
because the amount of trafc on high-speed network is still
increasing, suggesting that scalability will remain an issue in
the future.

ACKNOWLEDGEMENT

This work was supported in part by the IST Network of
Excellence EMANICS funded by the European Union under
contract number FP6-2004-IST-026854-NoE.

REFERENCES

[1] Computer Economics, “2007 malware report: The economic impact
of viruses, spyware, adware, botnets, and other malicious code,” Jul.
2008. [Online]. Available: http://www.computereconomics.com

[2] M. Roesch, “Snort, intrusion detection system,” Jul. 2008. [Online].
Available: http://www.snort.org

[3] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
 , vol. 31, no. 23–24, pp. 2435–2463, 1999.

[4] H. Lai, S. Cai, H. Huang, J. Xie, and H. Li, “A parallel intrusion
detection system for high-speed networks,” in    
      
, May 2004, pp. 439–451.

[5] M. Gao, K. Zhang, and J. Lu, “Efcient packet matching for gigabit
network intrusion detection using TCAMs,” in    
       
, 2006, pp. 249–254.

[6] L. Heberlein, G. Dias, K. Levitt, B. Mukherjee, J.Wood, and D. Wolber,
“A network security monitor,” in     
      , May 1990, pp. 296–
304.

354 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

[7] S. Staniford-Chen, S. Cheung, R. Crawford, M. Dilger, J. Frank,
J. Hoagl, K. Levitt, C. Wee, R. Yip, and D. Zerkle, “GrIDS - a graph
based intrusion detection system for large networks,” in    
      , 1996, pp.
361–370.

[8] Cisco.com, “Cisco IOS NetFlow Conguration Guide, Release 12.4,”
http://www.cisco.com, Jul. 2008.

[9] B. Claise, “Cisco Systems NetFlow Services Export Version 9,”
RFC 3954 (Informational), Jul. 2008. [Online]. Available: http:
//www.ietf.org/rfc/rfc3954.txt

[10] J. Quittek, T. Zseby, B. Claise, and S. Zander, “Requirements for
IP Flow Information Export (IPFIX),” RFC 3917 (Informational), Jul.
2008. [Online]. Available: http://www.ietf.org/rfc/rfc3917.txt

[11] H. Debar, M. Dacier, and A. Wespi, “Towards a taxonomy of intrusion-
detection systems,”  , vol. 31, no. 9, pp. 805–822,
Apr. 1999.

[12] ——, “A revised taxonomy for intrusion detection systems,” 
 , vol. 55, no. 7–8, pp. 361–378, Jul. 2000.

[13] S. Axelsson, “Intrusion detection systems: A survey and taxonomy,”
Chalmers Univ., Tech. Rep. 99-15, Mar. 2000.

[14] H. Debar and J. Viinikka, “Intrusion detection: Introduction to intrusion
detection and security information management,” in  
    , Sep. 2005, pp. 207–236.

[15] A. Lazarevic, V. Kumar, and J. Srivastava, “Intrusion detection: A
survey,”   , pp. 19–78, June 2005.

[16] CERT Coordination Center, http://www.cert.org/certcc.html, Jul. 2008.
[17] Internet2 NetFlow Weekly Reports, http://netow.internet2.edu/weekly,

Jul. 2008.
[18] H. Dreger, A. Feldmann, V. Paxson, and R. Sommer, “Operational

experiences with high-volume network intrusion detection,” in 
       
 , 2004, pp. 2–11.

[19] Z. Fadlullah, T. Taleb, N. Ansari, K. Hashimoto, Y. Y. Miyake,
Y. Nemoto, and N.Kato, “Combating against attacks on encrypted
protocols,” in      
, June 2007, pp. 1211–1216.

[20] T. Taleb, Z. M. Fadlullah, K. Hashimoto, Y. Nemoto, and N. Kato,
“Tracing back attacks against encrypted protocols,” in   
       
  , 2007, pp. 121–126.

[21] S. Song and Z. Chen, “Adaptive network ow clustering,” in  
       ,
April 2007, pp. 596–601.

[22] B. Claise, “Specication of the IP Flow Information Export
(IPFIX) Protocol for the Exchange of IP Trafc Flow Information,”
RFC 5101 (Proposed Standard), Jul. 2008. [Online]. Available:
http://www.ietf.org/rfc/rfc5101.txt

[23] G. Schaffrath and B. Stiller, “Conceptual integration of ow-based and
packet-based network intrusion detection,” in    
      
 , 2008, pp. 190–194.

[24] T. Fioreze, M. O. Wolbers, R. van de Meent, and A. Pras, “Finding
elephant ows for optical networks,” in    
       ,
May 2007, pp. 627–640.

[25] S. Leinen, “Evaluation of Candidate Protocols for IP Flow Information
Export (IPFIX),” RFC 3955 (Informational), Jul 2008.

[26] “Packet Sampling (PSAMP) working group,”
http://www.ietf.org/html.charters/psamp-charter.html, Jul. 2008.

[27] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and A. Lakhina,
“Impact of packet sampling on anomaly detection metrics,” in 
         
, 2006, pp. 159–164.

[28] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang, “Is sampled data
sufcient for anomaly detection?” in      
    , 2006, pp. 165–176.

[29] T. Zseby, T. Hirsch, and B. Claise, “Packet sampling for ow accounting:
Challenges and limitations.” in      
    , 2008, pp. 61–71.

[30] E. Izkue and E. Magaña, “Sampling time-dependent parameters in
high-speed network monitoring,” in     
       
      , 2006, pp.
13–17.

[31] H. Wang, Y. Lin, Y. Jin, and S. Cheng, “Easily-implemented adaptive
packet sampling for high speed networks ow measurement,” in 
       ,
2006, pp. 128–135.

[32] G. He and J. C. Hou, “An in-depth, analytical study of sampling
techniques for self-similar internet trafc,” in    
      ,
2005, pp. 404–413.

[33] C. Estan and G. Varghese, “New directions in trafc measurement
and accounting: Focusing on the elephants, ignoring the mice,” 
    , vol. 21, no. 3, pp. 270–
313, 2003.

[34] N. Dufeld, C. Lund, and M. Thorup, “Flow sampling under hard
resource constraints,”    , vol. 32, no. 1,
pp. 85–96, 2004.

[35] ——, “Learn more, sample less: control of volume and variance in
network measurement,”     ,
vol. 51, no. 5, pp. 1756–1775, May 2005.

[36] N. Alon, N. Dufeld, C. Lund, and M. Thorup, “Estimating arbitrary
subset sums with few probes,” in     
      
  , 2005, pp. 317–325.

[37] V. Igure and R. Williams, “Taxonomies of attacks and vulnerabilities in
computer systems,”     , vol. 10,
no. 1, pp. 6–19, 2008.

[38] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A taxonomy
of computer worms,” in        
, 2003, pp. 11–18.

[39] S. Hansman and R. Hunt, “A taxonomy of network and computer
attacks,”   , vol. 24, no. 1, pp. 31–43, Feb. 2005.

[40] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver, “Inside the slammer worm,”    , vol. 1,
no. 4, pp. 33–39, Jul.-Aug. 2003.

[41] J. D. Howard, “An analysis of security incidents on the internet 1989-
1995,” Ph.D. dissertation, Carnegie Mellon University, 1998.

[42]       . Spinger,
2008, vol. 36.

[43] D. Dagon, G. Gu, and C. Lee, “A taxonomy of botnet structures,” in
 , vol. 36, Oct. 2007, pp. 143–164.

[44] W. Strayer, D. Lapsely, R. Walsh, and C. Livadas, “Botnet detection
based on network behavior,” in  , W. Lee, C. Wang, and
D. Dagon, Eds., vol. 36, 2008, pp. 1–24.

[45] L. R. Halme and R. K. Bauer, “AINT misbehaving – A taxonomy
of anti-intrusion techniques,” in     
   , 1995, pp. 163–172.

[46] B. Morin and L. Mé, “Intrusion detection and virology: an analysis of
differences, similarities and complementariness,”   
, vol. 3, pp. 39–49, Apr. 2007.

[47] P. Li, M. Salour, and X. Su, “A survey of internet worm detection and
containment,”     , vol. 10, no. 1,
pp. 20–35, 2008.

[48] M. Garuba, C. Liu, and D. Fraites, “Intrusion techniques: Comparative
study of network intrusion detection systems,” in    
       
, Apr. 2008, pp. 592–598.

[49] M. Almgren, E. L. Barse, and E. Jonsson, “Consolidation and evaluation
of IDS taxonomies,” in        
  , Oct. 2003.

[50] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage,
“Inferring Internet denial-of-service activity,”   
 , vol. 24, no. 2, pp. 115–139, May 2006.

[51] Z. Li, Y. Gao, and Y. Chen, “Towards a high-
speed router-based anomaly/intrusion detection system,”
http://conferences.sigcomm.org/sigcomm/2005/poster-121.pdf, Aug.
2005.

[52] Y. Gao, Z. Li, and Y. Chen, “A dos resilient ow-level intrusion
detection approach for high-speed networks,” in     
      
, 2006, p. 39.

[53] S. M. Specht and R. B. Lee, “Distributed denial of service: Taxonomies
of attacks, tools, and countermeasures,” in      
       
 , Sep. 2004, pp. 543–550.

[54] Q. Zhao, J. Xu, and A. Kumar, “Detection of super sources and des-
tinations in high-speed networks: Algorithms, analysis and evaluation,”
      , vol. 24, no. 10,
pp. 1840–1852, Oct. 2006.

[55] M.-S. Kim, H.-J. Kong, S.-C. Hong, S.-H. Chung, and J. Hong,
“A ow-based method for abnormal network trafc detection,” in
       
, Apr. 2004, pp. 599–612.

SPEROTTO  : AN OVERVIEW OF IP FLOW-BASED INTRUSION DETECTION 355

[56] G. Münz and G. Carle, “Real-time analysis of ow data for network
attack detection,” in      
    , 2007, pp. 100–108.

[57] Diadem Firewall European Project, http://www.diadem-rewall.org,
Jul. 2008.

[58] C. D. A. Lakhina, M. Crovella, “Characterization of network-wide
anomalies in trafc ows,” in      
    , 2004, pp. 201–206.

[59] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies using trafc
feature distributions,”    , vol. 35, no. 4,
pp. 217–228, 2005.

[60] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. D. Kolaczyk,
and N. Taft, “Structural analysis of network trafc ows,” 
  , vol. 32, no. 1, pp. 61–72, 2004.

[61] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide
trafc anomalies,” in       
      
 , no. 4, 2004, pp. 219–230.

[62] Sprint.net, http://www.sprint.net, Jul. 2008.
[63] A. Sperotto, R. Sadre, and A. Pras, “Anomaly characterization in

ow-based trafc time series,” in      
        
, Sep. 2008, pp. 15–27.

[64] SURFnet, www.surfnet.nl, Jul. 2008.
[65] A. Wagner and B. Plattner, “Entropy based worm and anomaly detection

in fast IP networks,” in      
      
 , June 2005, pp. 172–177.

[66] C. E. Shannon, “A mathematical theory of communication,”  
  , vol. 27, no. 3, pp. 379–423, 1948.

[67] C. Gates, J. McNutt, J. Kadane, and M. Kellner, “Scan detection on
very large networks using logistic regression modeling,” in  
       ,
2006, pp. 402–408.

[68] M. Stoecklin, J.-Y. L. Boudec, and A. Kind, “A two-layered anomaly de-
tection technique based on multi-modal ow behavior models,” in 
        
, 2008, pp. 212–221.

[69] T. Dübendorfer and B. Plattner, “Host behaviour based early detection
of worm outbreaks in internet backbones,” in     
      
  , 2005, pp. 166–171.

[70] T. Dübendorfer, A. Wagner, and B. Plattner, “A framework for real-time
worm attack detection and backbone monitoring,” in   
      
, Nov. 2005.

[71] A.Wagner, T. Dübendorfer, B. Plattner, and R. Hiestand, “Experiences
with worm propagation simulations,” in     
   , 2003, pp. 34–41.

[72] M. Lee, T. Shon, K. Cho, M. Chung, J. Seo, and J. Moon, “An approach
for classifying internet worms based on temporal behaviors and packet
ows,” in          ,
2007, pp. 646–655.

[73] C. Zou, W. Gong, and D. Towsley, “Code red worm propagation
modeling and analysis,” in      
  , 2002, pp. 138–147.

[74] F. Dressler, W. Jaegers, and R. German, “Flow-based worm detection
using correlated honeypot logs,” in     
     , Feb. 2007, pp. 181–
186.

[75] M. Collins and M. Reiter, “Hit-list worm detection and bot identication
in large networks using protocol graphs,” in    
       , 2007,
pp. 276–295.

[76] D. H. A. Karasaridis, B. Rexroad, “Wide-scale botnet detection and
characterization,” in        
     , 2007, pp. 1–8.

[77] C. Livadas, R. Walsh, D. Lapsley, and W. Strayer, “Using machine
learning techniques to identify botnet trafc,” in    
     , 2006, pp. 967–974.

[78] G. Gu, R. Perdisci, J. Zhang, and W. Lee, “Botminer: Clustering
analysis of network trafc for protocol- and structure-independent botnet
detection,” in       
 , June 2008, pp. 139–154.

[79] Z. Zhu, G. Lu, Y. Chen, Z. Fu, P. Roberts, and K. Han, “Botnet research
survey,” in       
  , Aug. 2008, pp. 967–972.

[80] Q. Xiaofeng, H. Jihong, and C. Ming, “Flow-based anti-spam,” in 
         ,
Oct. 2004, pp. 99–103.

[81] Symantec.com, “The state of spam, a monthly report - july 2008,”
http://www.symantec.com/, Jul. 2008.

[82] A. Ramachandran and N. Feamster, “Understanding the network-level
behavior of spammers,”    , vol. 36,
no. 4, pp. 291–302, 2006.

Anna Sperotto is a Ph.D. student at the DACS
group of the University of Twente, The Netherlands.
In 2006 she received her MSc in Computer Sci-
ence from the Ca’Foscari University, Venice, Italy.
Her main topic of interest is Intrusion Detection,
Self-Learning and Graph Theory. Currently she is
investigating the use of Self-Learning in Intrusion
Detection in High-Speed Networks.

Gregor Schaffrath received the diploma in computer science in 2004 from
Saarland University in Saarbruecken, Germany. His research interests include
network management and security in distributed systems. He currently works
for the FG INET group of Technical University Berlin, Germany.

Ramin Sadre is a postdoctoral researcher at the
DACS group of the University of Twente, The
Netherlands. In 2006 he received a PhD thesis from
the same university with the title ”Decomposition-
Based Analysis of Queueing Networks”. He is WP7
leader within the EMANICS Network of Excellence.
Ramin Sadre has been technical program co-chair
of the 3rd International Conference on Autonomous
Infrastructure, Management and Security (AIMS
2009).

Cristian Morariu received his Masters Degree from
Technical University of Cluj-Napoca, Romania in
June 2004 after 4.5 years of studies. His major at
the Faculty of Automation and Computer Science,
was performed in Computer Science. While holding
an ERASMUS scholarship he developed his Master
Thesis at the Swiss Federal Institute of Technology
(ETHZ), Laboratory of Software Technology. Since
September 2004 he is a doctoral student at the
University of Zurich, Department of Informatics,
Communication Systems Group. His main interests

are in the area of IP accounting and distributed architectures for IP trafc
analysis.

356 IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 12, NO. 3, THIRD QUARTER 2010

Aiko Pras is Associate Professor at the Design and
Analysis of Communication Systems (DACS) group
at the University of Twente (UT), The Netherlands.
His research interests include network management
technologies, Web services, network measurements
and Internet security. He is chairing the IFIP Work-
ing Group 6.6 on ”Management of Networks and
Distributed Systems”, and is Research Leader in the
European Network of Excellence on ”Management
of the Internet and Complex Services” (EMANICS).
Aiko Pras has been the technical program co-chair

of the Ninth IFIP/IEEE Integrated Management Symposium (IM 2005), is
Steering Committee member of the IFIP/IEEE NOMS and IM Symposia
(NISC), and general co-chair of Manweek 2009.

Burkhard Stiller chairs the Communication Sys-
tems Group CSG, Department of Informatics IFI at
the University of Zurich UZH since 2004. He holds
a Computer Science Diplom and a Ph.D. degree
of the University of Karlsruhe, Germany. During
his research locations of the Computer Laboratory,
University of Cambridge, U.K., the Computer En-
gineering and Networks Laboratory, ETH Zurich,
Switzerland, and the University of Federal Armed
Forces, Munich, Germany his main research inter-
ests cover, including current CSG topics, charging

and accounting of Internet services, economic management, systems with a
fully decentralized control (P2P), telecommunication economics, and biomet-
ric management systems.

