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Sampling From a System-Theoretic Viewpoint:
Part I—Concepts and Tools

Gjerrit Meinsma and Leonid Mirkin, Member, IEEE

Abstract—This paper is first in a series of papers studying a
system-theoretic approach to the problem of reconstructing an
analog signal from its samples. The idea, borrowed from earlier
treatments in the control literature, is to address the problem
as a hybrid model-matching problem in which performance is
measured by system norms. In this paper we present the paradigm
and revise underlying technical tools, such as the lifting technique
and some topics of the operator theory. This material facilitates a
systematic and unified treatment of a wide range of sampling and
reconstruction problems, recovering many hitherto considered
different solutions and leading to new results. Some of these
applications are discussed in the second part.

Index Terms—Causality, lifting, sampling and reconstruction,
signal modeling, stability, system norms.

I. INTRODUCTION

T HE problem of reconstructing a continuous-time signal
from its sampled measurements may be, perhaps simplis-

tically, described by the block-diagram in Fig. 1. Here is a
continuous-time signal, which is sampled by an A/D converter
(sampler) , the resulting discrete-time signal is processed by
a digital filter , and the output of the latter, , is converted back
to continuous time by a D/A converter (hold) . Throughout, we
refer to the (continuous-time) system from to as the hybrid
signal processor (HSP) and denote it .

Our goal typically is to generate as close to as possible.
Sampling/reconstruction (SR) problems of this kind are im-
portant in numerous signal and image processing and control
applications and have been extensively studied in both math-
ematical and engineering literature, see [1]–[5] for detailed
overviews of the subject and a comprehensive bibliography.
Classical studies are mainly concerned with the conditions
under which perfect reconstruction of is possible and the
choice of the corresponding hold (interpolator) . This leads
to the celebrated Sampling Theorem and its generalizations
[1], [3], [5]. Such approaches, however, rely upon assumptions
that are seldom realistic (e.g., require to be bandlimited or
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Fig. 1. Hybrid signal processor (HSP) � .

generated by a discrete sequence), and result in interpolators
that might be hard to implement or approximate.

These considerations prompted more recent studies to give up
on the perfect reconstruction requirement. An example of such
a setup is the reconstruction in shift-invariant spaces [2], [4],
where is designed, for fixed sampling and hold circuits, to
satisfy some weaker requirements. Examples of these require-
ments are the consistency [2], which is the perfect reconstruc-
tion of samples , or the (dual, in a sense) minimization of the
error restricted to the image of [6]. An advantage here is the
full control over properties of and , which may be chosen to
simplify their implementation (like splines) and approximation
(like truncating to impose causality constraints). This choice,
however, might not be justifiable performance-wise. Moreover,
the design of accounts only for a part of the reconstruction
error rather than the analog error itself.

Direct optimization of analog error signals is the core
of the sampled-data control theory [7], [8], which studies
digital control of analog systems. Motivated by this, [9]
proposed to cast SR problems as a hybrid —causal
minmax—model-matching setup (the idea can be traced back
to [10] and [11]). This is a special case of the standard sam-
pled-data control problem and can therefore be handled by
available control methods, adopted to the relaxation of the
causality of . Advantages of this approach are that it explic-
itly addresses the analog error and does not restrict the class of
input signals. The method of [9], however, is based on several
intermediate transformations, which blur the structure of the
solution. In fact, no closed-form formulae for this approach
exist. Moreover, the design methodology adopted there is also
limited to the case when both and are fixed.

Excluding the acquisition and reconstruction devices from the
design cycle, which limits the achievable reconstruction per-
formance, is not always justifiable. Technological constraints,
which restrict the complexity of A/D and D/A circuits, become
less severe taking into account the progress in hardware tech-
nology. Other constraints might merely result from limitation of
existing design methods. For example, the decay rate of the in-
terpolating kernel is considered an important factor in the choice
of [2]. Yet this appears to be brought about by the need to trun-
cate it afterwards in order to impose causality constraints on the

1053-587X/$26.00 © 2010 IEEE



MEINSMA AND MIRKIN: SAMPLING FROM A SYSTEM-THEORETIC VIEWPOINT 3579

reconstructor. If these constraints were explicitly accounted for
in the design stage, the kernel decay would not be so important.

This series of papers aims at developing a systematic ap-
proach to the design of SRs, in which sampling and/or hold de-
vices can be incorporated into the design process, that allows
to impose causality constraints as part of the design, and which
is comprehensive, covering many known problems as special
cases. Towards this end, we adopt the system-theoretic view-
point, by which signals are modeled by systems and reconstruc-
tion performance is measured by system norms. The system-the-
oretic approach enables us to treat signals of different physical
nature and properties (e.g., stochastic and deterministic) in a
unified manner.

The goal of this paper is to present underlying concepts and
the technical material required for the system-theoretic analysis
of SR problems. In particular, we place the main emphasis on
the lifting, which is our main analysis tool and may be thought
of as an analog counterpart of the common polyphase decom-
position [12]. Although many of the results presented here are
not new, we believe that their compact and unified exposition is
of its own tutorial value. Moreover, this material can be found
mainly in the control literature, where systems are assumed to
be causal and hence are considered on the semi axes and
only. In signal processing applications noncausal and relaxedly
causal systems are important, so we have to deal with systems
on the whole time axes and , which calls for certain, some-
times nontrivial, modifications to be made. Also, the lifting is
predominantly studied in the state-space setting in the control
literature, while we emphasize here realization-free input/output
relations, such as convolutions and infinite-dimensional transfer
functions. This is pivotal in Part II, where optimal solutions do
not have realizations. Last but not least, we do present new re-
sults, like the Key Lifting Formula (Theorem 4.1) and the fre-
quency-domain characterization of the relaxed causality (The-
orem 6.2).

The paper is organized as follows. In Section II we introduce
a general optimization setup, the study of which is the leitmotif
of this series of papers. Section III presents the lifting tech-
nique and collects some time-domain facts and definitions. In
Section IV some frequency-domain lifting definitions and re-
sults are presented. Spaces of signals and systems in the lifted
domain and corresponding metrics are considered in Section V.
Finally, Section VI presents the notions of stability and causality
and their frequency-domain characterizations.

Notation

Throughout, denotes the sampling period and is
the associated Nyquist frequency. The sinc function with knots
at multiples of is . Signals are
represented by lowercase symbols such as and
overbars indicate discrete time signals, . For any
set the indicator function is 1 if and is zero
elsewhere. The unit step (which is actually ) is denoted

(in continuous time) and in discrete time. Similarly
is the Dirac delta function (understood implicitly as the

causal ) and is the discrete unit pulse. The number
of elements of a vector-valued signal is denoted by .

Fig. 2. Sampling/reconstruction (SR) setup.

Uppercase calligraphic symbols, like , denote continuous-
time systems in time domains, the impulse response/kernel of
which is denoted with lowercase symbols, such as , and the cor-
responding transfer function/frequency response is presented by
uppercase symbols, like and . Discrete-time sys-
tems, kernels, etcetera are denoted by overbars, like , , etc.
Other more specific notation for lifted signals and systems is
defined later (in particular, see Remark 3.1).

By we denote the set of all integers larger or equal
to (smaller than) . The symbols , , and stand for the unit
circle , the open unit disk , and the closed
unit disk in the complex plane, respectively.

is the set of functions that have fi-

nite norm , where denotes
some given norm on (in case we assume the stan-
dard Euclidean norm ). Sometimes we use the notation

. The space is the set of with finite

norm . Some (or all) space argu-

ments in the notation for and will be dropped when they
are irrelevant or clear from the context.

II. SETUP

In this series of papers, we study the SR setup shown in Fig. 2.
Here is an (unknown) analog signal, which is to be recon-
structed from sampled measurements of a related analog signal

. Both and are modeled as outputs of a continuous-time
system (signal generator) driven by a common input with
known characteristics. The signal is the reconstruction of
on the basis of . This signal is the output of the HSP, which
is highlighted by the dark shadowed box in Fig. 2. It includes
a sampler , a digital filter , and a reconstructor, or hold,
(for more details see Section II-B below). Our goal then is to
design an HSP (or only some of its components) to minimize
a “size” (norm) of the error system (the light shadowed box
in Fig. 2) which is the mapping from to the reconstruction
error . Minimization of the mapping enforces that
the output of the HSP is in a sense optimally close to the
signal that we intend to reconstruct. This renders the optimal
SR problem a systems optimization problem.

A. Paradigms

Two central aspects of the system-theoretic formulation of SR
problems are the use of the signal generator to model signals
and the use of system norms to measure the SR performance.
These aspects, which have have proved useful in control appli-
cations, are possibly somewhat latent in the SR literature, so we
start with a brief exposition of the underlying ideas.
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1) Signal Generator: Clearly, the reconstruction of a signal
on the basis of makes sense only if the two signals share cer-
tain qualities. To model cross-correlations, dynamic relations,
etcetera between and , one may choose to consider both
and as the outcome of a (possibly fictitious) signal generator

driven by a common signal having known and normalized
features (such as being white or belonging to some bounded set).
Below we indicate how these goals can be attained. To this end,
partition the signal generator compatible with the signal par-
tition in Fig. 2 as

The simplest choice of its components would be ,
which reflects the assumptions that and that is the
only exogenous input. If the measured signal passes through
an antialiasing filter , we should pick instead. If
the measurement of is corrupted by a measurement noise, ,
the latter has to be included into the exogenous signal, so that

and we end up with and

(or , if an antialiasing filter is present). If the
velocity of should be reconstructed, we choose ,
where is the differentiator, having the frequency response

. Thus, the problem of reconstructing the velocity
from filtered noisy position measurements is formalized via as-

signing , , and , where

is the position.
In these examples, the exogenous input still consists of a

combination of “real” signals such as position and noise, each
with its own dynamical properties and physical domain/unit. To
simplify their joint treatment, they can be modeled in terms of
some normalized signal having favorable mathematical proper-
ties, passing through known systems. For example, if the signal
to be reconstructed, , is slow, it can be modeled as ,
where is a low-pass filter and is some fictitious normal-
ized signal. Examples of such signals are white noise in the
stochastic case1 and the -impulse in the deterministic case,
both of which have normalized flat spectra. A fast measure-
ment noise, , can then be modeled via another normalized
signal, , as for some high-pass filter . In
this case, the problem of reconstructing a signal from filtered
noisy measurements can be formalized via and

. The exogenous signal, , is then

a fictitious normalized signal all components of which are on an
equal footing and have similar properties; all structural proper-
ties are represented by .

Remark 2.1: The use of modeling filters, like and
above, does not necessarily intend to constrain signals (e.g.,
and ) to belong to a (finite-dimensional) subspace of the space
of continuous-time signals, like those discussed in [3]. In many
cases these filters may be thought of as functions, reshaping the
metric used to measure the SR performance. Through the choice
of these filters we thus just emphasize certain aspects of signal
properties, like their dominant frequency bands.

1In this case � ������ ����� is actually the spectral density of �.

2) Performance Measures: The normalization of the exoge-
nous input makes it possible to express the size of the recon-
struction error signal in terms of the size of the error system

mapping to . We use two measures of the size of : its
and norms. Below we briefly discuss these formalisms.

To avoid the introduction of involved technicalities at this stage,
we assume for the moment that is time invariant. Although
this is practically never the case for the hybrid system in Fig. 2,
extensions are conceptually straightforward (they are discussed
in Section V).

The Hilbert space , or simply when the
dimensions are irrelevant or clear from the context, is the set of
functions for which

(1)

where is the Frobenius matrix norm. The quantity is
called the -norm of . If is the transfer function of an
LTI system , we also refer to this quantity as the -norm of
and denote it as . This norm has clear interpretations, both
deterministic and stochastic, in terms of the input and output
signals of . In the deterministic setting, it is readily seen from
the Parseval’s equality that is the sum of the energies of
the responses of to -impulses applied at each of its input
components. In the stochastic setting, is the power, that
is, the sum of the variances of the output components of in
the case when the input is a zero-mean unit intensity white noise
process [13, Sec. 3.8].

The space , or simply , is the set of func-
tions , the -norm of which

(2)

Similarly to the case, if is the transfer function of an
LTI system , the quantity defined by (2) is referred to as the

-norm of and denoted by . This norm can also be
interpreted in terms of signals: is the maximal energy of
the output over all inputs of unit energy [14, Thm. A.6.26], i.e.,
the maximal energy gain of .

Returning to the setup in Fig. 2, the minimization of
in the stochastic case corresponds to (average) power or
mean square minimization of the continuous-time recon-
struction error (energy minimization in the deterministic
case). Thus, this is merely a hybrid version of the classical
Wiener (or Kalman) filtering problem [15]. The minimization
of corresponds to the minmax formulation, in which
the mean-square error is minimized for a worst-case input of
unit energy. In fact, the and approaches represent two
extremes in our assumptions about the exogeneous signals.
The former assumes that these signals are completely known,
whereas the latter—that they are completely unknown, other
than having finite power or energy. The “gray areas” in between
may then be (implicitly) covered by the use of weighting filters.

Remark 2.2: It is not hard to imagine situations where some
of the exogenous inputs are known and some are not. This might
call for the use of mixed strategies, such as minimizing
the -norm of a subsystem of while keeping the -norm
of the other subsystem below some prescribed level [16]. Such
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problems, however, result in complicated solutions that lack
the structure and transparency of their pure and coun-
terparts. We, therefore, do not pursue this line here. After all,
it is rarely possible to squeeze all requirements into a single
optimization problem, so that the optimization in engineering
should be considered as merely a tool to achieve meaningful
and transparent solutions rather than a goal per se.

The expression of the performance requirements via system
norms simplifies the treatment of deterministic and stochastic
signals via a unified formalism and brings some other (con-
ceptual) advantages. For example, the formulation is well
suited for the sake of shaping the spectrum of the reconstruction
error. To see this, consider the noise-free scalar setting and let
be modeled as . Then

Thus, a desired shape of the error spectrum can be pursued via
an appropriate choice of . The existence of a reconstructor
guaranteeing , which is the question that can be con-
clusively answered, is then the success indicator. Another ad-
vantage of the system-based treatment is a (relative) simplicity
with which causality constraints can be imposed upon the re-
constructor (see Section VI).

B. Components

We now detail some of the components of the configuration
in Fig. 2. In particular, below we address the HSP, containing a
sampler, a discrete filter and a hold.

1) Sampler: By a sampling device we understand any
linear device transforming a function into
a function . Assuming that

which can be thought of as A/D shift invariance, a general model
for such a device is

(3)

for some , called the sampling function. The ideal sam-
pler , generating and well defined for con-
tinuous inputs, has . The continuity of can be en-
sured by an antialiasing filter having the impulse response

. Such a filter can always be incorporated into , resulting
in a sampler with . In fact, a general sampler of
the form (3) can always be presented as the cascade of an LTI
system with the impulse response and the ideal sampler.
An important example, especially for the developments in Part
II, [17], is the -sampler, , having the sampling function

. It can be viewed as the ideal low-
pass filter with the cutoff frequency followed by the ideal
sampler. Another example is the causal averaging sampler ,
which corresponds to .

2) Hold: By a hold device we understand a linear device
transforming a function into a function

. Assuming D/A shift invariance, understood as

a general model of this device is

(4)

for some hold function2 . The hold function is the response
of to the discrete unit pulse . The hold can also be thought
of as a modulator of the input sequence . The standard
zero-order hold , which keeps constant over the in-
tersample period, corresponds in this setting to .
The predictive first-order hold , which is a linear interpo-
lator of two successive input values, has the “tent” hold function

. It is readily seen that both these
hold devices can be presented as the cascade of the impulse-
train modulator , having the hold function ,
and continuous-time LTI systems with the transfer functions

(for ) and (for ).
Another example of a hold device is the -hold, , having
the hold function . This is actually the in-
terpolator from the Sampling Theorem.

Remark 2.3: We do not restrict the input and output dimen-
sion of and . For example, the sampler may produce a
vector-valued discrete signal from a scalar analog
signal . This renders the setup general enough to de-
scribe multirate or nonuniform sampling problems (using the
polyphase decomposition).

3) Discrete Part: A general form of the LTI discrete-time
system is the convolution model

(5)

where the sequence is known as the impulse response of .
This system can always be absorbed into or via redefining
the functions and , respectively. When analyzing HSPs we
thus may assume without loss of generality that or, equiv-
alently, . This assumption can also be made during
the design if either sampler or hold (or both) is a design param-
eter. For implementation of HSPs it might however be advanta-
geous to use a separate discrete filter.

III. LIFTING IN TIME DOMAIN

Let us return now to the HSP in Fig. 1 and consider it as a
continuous-time system from to . Assuming, without loss of
generality, that and combining (3) and (4), we get

Thus, is an integral operator of the form

(6)

with kernel

(7)

2Thus, psi stands for sampler and phi for hold.
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Fig. 3. Lifting analog signals (with ���� � ���� ���).

System (6) is time invariant iff for all
. This, in general, is not the case for the kernel

above. Thus, operations of continuous time signals that include
A/D and D/A converters are not a time-invariant operation in
general. Many of the techniques that are available for LTI sys-
tems can therefore not be readily applied to . The time
invariance can, however, be regained on noticing that

(8)

This property, known as -shift invariance, enables one to con-
vert into an equivalent shift-invariant system using the
linear transformation called lifting, see books [7], [8] for more
details and bibliography.

The lifting transformation—or simply lifting—can be seen
as a way of separating the behavior into a fully time invariant
discrete-time behavior and a finite-horizon continuous-time (in-
tersample) behavior. Fig. 3 explains the idea and the formal def-
inition is given here.

Definition 3.1: For any signal , the lifting
is the sequence of functions

defined as

In other words, with lifting we consider a function on as
a sequence of functions on . Clearly, this incurs no loss
of information, it is merely another representation of the signal.
The rationale behind this representation is to “forbid” any time
shift but multiples of . This implies that if a continuous-time
system is -shift invariant, then in lifted representation,

, it is shift invariant.
More explicitly, let be an -shift-invariant system defined

by (6). In the lifted domain this mapping reads

(9)

which can be written as

(10)

Fig. 4. Sample-and-hold circuit in the time domain.

where , , is the (lifted) impulse response system that
maps functions on to functions on as

(11)

Mapping (10) is a standard discrete-time convolution, de-
scribing a shift-invariant system . We call this the lifting of

.
Example 3.1: Consider the sample-and-hold circuit (Fig. 4),

which is the cascade of the ideal sampler and the zero-order
hold. This system determines the relation ,
which is clearly not time invariant. Lifting and transforms
the sample-and-hold circuit into a discrete system,

, that is, the th element of the lifted output is a func-
tion of the th lifted input element only: the impulse response
system at acts as and the others are
zero, . In the lifted domain it is, therefore, a static LTI
system.

Although it appears natural to begin with integral represen-
tations (6) (because it allows to make the lifting operators con-
crete), the precise integral form (11) only blurs the reasoning
once the advantages of lifting sinks in. One would, therefore,
prefer to think of lifted systems purely in discrete time (10) and
suppress the finite-horizon time dependence.

Example 3.2: In the same vein, the sample-and-hold circuit
from Example 3.1 in the lifted domain may be depicted as in
Fig. 5. Here is the lifted ideal sampler transforming a se-
quence of functions into a sequence of numbers
as and is the lifted zero-order hold trans-
forming a sequence of numbers into a sequence of func-
tions as for all . Both these
blocks are static discrete-time LTI systems.

The reasonings of Example 3.2 apply in the general case
where each time we leave the discrete signals to what they are
and we lift the continuous-time signals to discrete ones. Lifting
the input of the A/D converter in (3) results in the
lifted sampler

(12)

This describes a pure discrete-time shift-invariant system and
we think of the operator as
its impulse response. Similarly, the action of the hold device

in (4) after lifting its output becomes

(13)



MEINSMA AND MIRKIN: SAMPLING FROM A SYSTEM-THEORETIC VIEWPOINT 3583

Fig. 5. Sample-and-hold circuit in the lifted domain.

where the operator for each
is a multiplication by the lifted hold function , i.e.,

for every . This is also a pure
discrete shift-invariant system.

Example 3.3: Consider the predictive first-order hold dis-
cussed in Section II-B-II. It has the hold function

Then the lifted hold is a discrete FIR system with
support in . It maps numbers to functions on
as follows:

so is the straight line interpolating and at
and , respectively.

Remark 3.1: The various lifted systems (operators) that we
have seen so far come with different accents to emphasize the
dimensionality of their domain and range. The breve accent,
such as in , indicates that input and output space at each dis-
crete time is infinite dimensional, . Samplers
map infinite-dimensional space to finite-dimen-
sional space , which is what the acute accent indicates, and
holds map finite-dimensional space to infinite-dimensional
space, indicated by the grave accent. The lifted hybrid signal
processor then is a mapping that goes from an
infinite-dimensional space to a finite-dimensional one and back
to another infinite-dimensional space again. The accents help in
keeping track of the signal space dimensions. When an expres-
sion equally applies to either of these types of operators (e.g., in
some definitions), we use the tilde, .

Thus, by lifting all analog signals in the SR setup in Fig. 2
we end up with an equivalent discrete-time setup depicted in
Fig. 6. It has two key advantages over the original representa-
tion. First, lifting puts continuous- and discrete-time signals on
an equal footing. The only difference between “bar” and “breve”
discrete signals is that the former are vector (or scalar) valued,
whereas the latter are function valued. Conceptually, however,
this difference is not more intricate than the difference between
scalar and vector signals. Consequently, all systems in Fig. 2,
irrespective of whether they are continuous time, discrete time,
or hybrid, become pure discrete-time systems. Second, all these

Fig. 6. SR setup in the lifted domain.

discrete systems are now shift invariant, so that many of the fa-
miliar LTI notions can be reused almost verbatim.

The advantages come at a cost: the infinite dimensionality of
certain input and output signal spaces. Yet this difficulty turns
out not to be crucial and can be alleviated by exploiting the
structure of the resulting operator-valued mappings.

IV. LIFTING IN FREQUENCY DOMAIN

With the regained time invariance, we can apply frequency
domain methods to lifted -shift-invariant systems and signals.

A. - and Fourier Transforms

Naturally, the - and Fourier transforms of a lifted signal
are defined with respect to the discrete time index.

Definition 4.1: The (lifted) -transform of a lifted
signal is defined as

(14)

for all for which the series converges.
Definition 4.2: The (lifted) Fourier transform of a lifted
is defined as

where is the frequency.
Note that for each and the - and Fourier

transforms (if they exist) are still functions of intersample
time . This is reflected by the notation and

, which shall be used when these dependences are im-
portant. The lifted -transform equals the modified or advanced

-transform as introduced by [18], but the intent is entirely
different. Also, the lifted Fourier transform is effectively the
Zak transform [19] of modulo scaling.

The following result, which to the best of our knowledge has
not explicitly appeared in the literature yet, plays a key role in
the subsequent analysis. It is a version of the Poisson Summa-
tion Formula, but then one that looses no information about the
analog signal. Indeed the point of lifting is to maintain inter-
sample behavior, also in frequency domain.

Theorem 4.1 (Key Lifting Formula): Let be an analog signal
such that for some . Then

(15)

for all , where and .
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Proof: Suppose first that . The (regular
bilateral) Laplace transform of is

(16)

Equality (15) now follows by noting that

is the th Fourier series coefficient of (mind
that ).

By Plancherel’s theorem [20, Thm.9.13], the assumption that
assures that (15) holds in -sense and,

therefore, holds pointwise almost everywhere.
Remark 4.1: Equality (16) might bear a resemblance to [12,

Eq. (11.5.1)], with (14) playing the role of [12, Eq. (11.5.2)].
This suggests that the lifting can be thought of as an analog
counterpart of the polyphase representation (known actually as
the discrete lifting in the control literature [7]). Thus,
can be viewed as the th polyphase component of . This
analogy is useful in comprehending properties of systems in the
lifted domain discussed below.

A particular case of the key lifting formula for imaginary
says that there is a bijection from the lifted Fourier

transform and the classical Fourier transform :

(17a)

(17b)

for any square integrable , where

(18)

are aliased frequencies.
Remark 4.2: A special case of (17b) corresponding to

yields the classical formula connecting Fourier transforms of
an analog signal (provided it is continuous and satisfies some
other mild conditions [21]) and its sampled version:

. We believe that the derivation via the use
of lifting and (17b) is somewhat cleaner and more intuitive than
the conventional impulse-train modulation [22] or “reverse en-
gineering” [23] arguments.

Equations (17) are very useful when lifted Fourier transforms
need to be determined or its inverse, and as we shall see in [17,
Sec. V] it is a key technical tool in the design of optimal sam-
plers and holds.

Example 4.1: To illustrate a use of (17b), let
. Since , equality (17b)

yields the lifted Fourier transform for
and .

Fig. 7. Amplitude � ���� � ��� versus � and � . (a) ���� � ��	
 ���. (b) ���� �
��	
 ���.

Example 4.2: The Fourier transform of
is the “tent”

Then

for and .
Fig. 7 depicts the amplitude as a function of

and for the functions considered in the above
two examples. Such amplitude plots demonstrate how the am-
plitude spectrum of the sampled signal changes with
time offset (for the it does not change).

B. Transfer Function and Frequency Response

It is well known that convolution (dynamic) systems become
algebraic (static) if considered in the transform domain. This is
also true for lifted systems as we shall see with the introduction
of the lifted transfer function formalism.

The transfer function of the lifted system (10) is for-
mally defined as the -transform of its impulse response

(19)

A standard index change in (10) then shows [24] that the lifted
-transforms of input and output satisfy the familiar

(20)

It is worth recalling that the lifted impulse response for
each is an integral operator of the form (11). Hence,
so is the lifted transfer function . It can be shown that the
“multiplication” in (20) should be understood as

(21)

where is the lifted -transform of the impulse re-
sponse kernel of with respect to its first variable3,

(22)

Again we want to make the point here that (20) is more in the
spirit of lifting than the gritty details of (21) and (22).

3Alternatively, the “���-transform” with respect to its second variable.
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Example 4.3: In Example 3.2 we showed that the impulse
response of the cascade of the ideal sampler and the zero-
order hold is such that and with all other

zero. Therefore, the transfer function of this cascade in the
lifted domain acts as .

“Semilifted” elements, such as lifted sampler and hold, can be
described in terms of their lifted transfer functions in the same
way. The only difference from the case considered above is that
either output or input space is now finite dimensional. Thus, the
transfer function of the lifted sampler in (12) is a linear
functional from to of the form4

(23)

for each where it is defined. Here is the lifted
-transform of the sampling function . Similarly, the

transfer function of the lifted hold in (13) is an oper-
ator from to of the form

(24)

for each where it is defined. Here, is the lifted
-transform of the hold function .
Example 4.4: Consider again the predictive first-order hold

studied in Example 3.3. Inspecting the formulas in this
example, it is readily seen that

The “static gain” of this transfer function is ,
which agrees with our understanding of this hold.

Obviously, will be referred to as the (lifted) frequency
response and the transfer kernel as its frequency response
kernel. It maintains the familiar interpretation in the sense that
for any fixed the response to a (lifted)
harmonic function (with ) if it
exists, is again harmonic [25], . The abso-
lute value of a harmonic input does not depend on
and neither does the output. As shown in [25], if the magnitude
of harmonic (for whatever ) is measured in -sense
then the maximal possible magnitude gain (power gain) at fre-
quency equals the largest singular value of as defined
later on in this paper, (30). This is very similar to the interpre-
tation of the conventional frequency response of discrete-time
systems.

Example 4.5: Consider the -sampler (see
Section II-B-I) having the sampling function

. Example 4.1 then yields that the frequency re-
sponse kernel of is .

Example 4.6: The hold function of the -hold (see
Section II-B-II) is . Therefore, the frequency
response kernel of is .

4Strictly speaking, it should be � ���������, rather than �������� (these
two are equivalent), because the intersample time variable lies in ��� ��. We,
however, prefer to trade notational rigor for simplicity in this case.

V. SPACES AND NORMS

This section reviews the notions of signal and system norms
in the lifted domain. Most results presented below are either
known or quite straightforward extensions of known results that
can be found in, e.g., [7], [8, Ch. 2], [14, Appendix A].

A. Signal Spaces and Norms

As the lifting transformation is merely a different viewpoint
of analog signals, we can take it to be norm preserving. Con-
cretely, the signal norm translates to the lifted domain as
follows:

(25)

where . By analogy with the standard
space, we call the quantity defined by (25) the -norm of
(this is a norm, just because so is the -norm in continuous
time) and denote the set of all lifted signals having a bounded

-norm as , which is a Hilbert space with the obvious
inner product. Thus lifting by construction is an isometric iso-
morphism between and .

Remark 5.1: All signals in the lifted SR scheme in Fig. 6
are now measured by various -norms. The only difference be-
tween these norms is in their “subscript spaces”: or . This
difference, however, is peripheral, so we hereafter drop the sub-
script from the notation for and related spaces.

With a slight abuse of notation we use and to
denote the subspaces of consisting of signals that are zero
in and , respectively. Clearly,
for every integer . We shall need these subspaces later on to
discuss causality.

We also need corresponding frequency-domain spaces. Let
stand for either or , depending on whether our signal

is a plain discrete-time signal or a lifted one. The Hilbert space
is the set of functions , for which5

The Hardy space is the set of functions
which are analytic and satisfy

The domain of functions in can be extended to and the
result is a closed subspace of with . The

orthogonal complement of in is denoted by and
is comprised of analytic and bounded functions

such that . Finally, by we denote the space of

functions such that .

5We use the same norm symbol for several time- and frequency-domain
norms. Context determines which is intended.
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The Parseval’s identity, which is instrumental in converting
energy-based optimization problems to the frequency domain,
also extends to general spaces. Namely, for any
we have that and

The Fourier transform is thus an isometric isomorphism be-
tween and . Similarly the -transform is an iso-
metric isomorphism between and for any .

Example 5.1: Consider . By Example
4.1, can also be computed via the -norm of its lifted
Fourier transform:

which agrees with the direct computation of .

B. Adjoint Systems and Conjugate Transfer Functions

Since both lifting and Fourier transformation preserve inner
products, the adjoint of an operator is equivalent in all domains,
i.e., the lifting of the adjoint operator is the adjoint of the lifted
operator, and likewise for the Fourier transformed operator. It is
well known that the kernel of the adjoint of , given in (6), is

(26)

with here denoting complex conjugate transpose. The con-
jugate operator defined by (26) not only takes the complex
conjugate transpose of the matrix but also interchanges the two
time parameters. It is more generally defined for frequency de-
pending functions as

for then the -transform of the conjugate is the conjugate of the
-transform (with respect to the first variable)

According to (21), (22), and the above, , hence, is
the kernel of the transfer function of the adjoint system . We
denote this transfer function as

It is readily seen that for the conjugate is the
adjoint of with respect to

That is, the lifted transfer function of the adjoint equals the ad-
joint of the lifted transfer function.

Now, the adjoint of the sampler in (3) can be derived via

Thus, the adjoint of with a sampling function is a with
the hold function [the latter is just
an LTI version of (26)]. This prompts a duality between the A/D
and D/A conversions and also implies that the adjoint of with

is with . The conjugate transfer function
of , , is the following lifted hold:

with . The conjugate transfer func-
tion of is

which is a lifted sampler.
The following result will be used in the next part.
Proposition 5.1: Let be a sampler, the sampling function

of which is such that for some .
Then whenever

(27a)

(27b)

where is the bilateral Laplace transform of and are
as defined in Theorem 4.1.

Proof: Equality (27a) follows by routine substitution. To
derive (27b), denote the integral in (27a) by and use (17b)

The result now follows by .
An immediate corollary of this result is that if is scalar,

then ,
where are defined by (18). Also, by duality we have:

Proposition 5.2: Let be a hold, the hold function of
which is such that for some . Then
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whenever

(28a)

(28b)

where is the bilateral Laplace transform of .

C. System Norm

The norm [cf. (2)] of a lifted transfer function
is defined as

(29)

where the (operator) maximal singular value equals

(30)

i.e., (30) is the induced norm of . If is the transfer
function of an LTI system , we also refer to (29) as the

-norm of the system and denote it as . For given

and the vector space of all transfer functions with finite
-norm is represented with the same symbol , so

By the arguments of [24], it can be shown that

equals the -induced norm of its original, , i.e.,

. Its square, , is therefore
the maximal energy gain of the system and also equals the
maximal power gain. Likewise, and equal

and induced norms of and
, respectively.
Example 5.2: Consider the HSP , where is the

“almost ideal” sampler with for
(the smaller is, the more this sampler behaves like the ideal

sampler). Because is scalar, by Proposition 5.1 (this can
also be seen via the Riesz-Fréchet theorem) we have that

In fact, the maximizing input having the unity norm for this
system is and is unique (modulo
sign and -shifts). Regarding , it is readily seen that

for every . Thus,

and any input is maximizing. Hence, actually maxi-
mizes the energy gain of the overall HSP and we have

It becomes unbounded as , like in the case.

Another space we need is the Hardy space . It is defined
as the set of transfer functions , which are analytic for

and satisfy

Like in the case with the signal space, operators can be
extended to , resulting in a closed subspace of with

. By we then denote the subspace of

consisting of operators such that .
Loosely speaking, is the space of transfer functions, which
are analytic and bounded in , whereas is the space
of analytic transfer functions with relaxed (if ) or tightened
(if ) boundedness in .

D. System Norm

The norm [cf. (1)] of lifted (or semi-lifted) transfer func-
tions is defined as

(31)

(the scaling factor will become clear soon, it is not present in
the standard discrete case). Here is the Hilbert-Schmidt
operator norm, which can in general be calculated as

with the th singular value. For integral operators
as in (21) we have that

For semi-lifted operators, like and , the calculations
of the Hilbert-Schmidt norm reduce to the computation of the
matrix trace (cf. Propositions 5.1 and 5.2). If is the transfer
function a (semi-) lifted system we also refer to (31) as the

-norm of the system and denote it as . The vector space

of systems with finite system norm (31) is represented simply
as

In contrast with the ordinary norm for LTI-systems, the
system norm is not equivalent to a signal norm, even though we
use the same notation, and . Neither of the two system
spaces and is a subset of the other. However, if the rank
of the transfer function is uniformly bounded then being in
implies being in .

Proposition 5.3: Let be such that
for almost all and some . Then .

Proof: Then (31) and (29) imply .
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Fig. 8. A periodic stationary output ��.

In particular every hold and sampler that is in is neces-
sarily in .

The system norm defined by (31) retains familiar deter-
ministic and stochastic interpretations. For SISO -shift-in-
variant analog systems, for instance, the norm satisfies [26]

That is, is the average energy of the output where the av-

erage is taken over all delta functions applied at . For
this reduces to the classic LTI result. Also, stochastic inter-

pretations are maintained: equals the over time averaged
sum of variances (power) of the output elements if the system is
driven by standard white noise [26].

Example 5.3: Consider again the HSP studied in
Example 5.2. As the input to this system ranges over the delta
functions applied at the output of the sampler ranges
over for and for

. Hence for the output energy of
the hold is zero while for the output energy is

. The average energy therefore equals

The cascade of the ideal sampler and the zero-order hold con-
sequently has infinite system norm.

When driven by zero mean unit intensity white noise , the
samples for this sampler are independent and are
stationary with variance . The “Manhattan skyline” output

shown in of Fig. 8 clearly is not stationary as an
analog signal because it is piecewise constant, but it is stationary
as a lifted signal. Its over time averaged power is well defined

and equals .

Signal connotations are not that consistent in semilifted
cases, where deterministic and stochastic interpretations might
require different scaling. To be specific, to maintain the deter-
ministic interpretation for A/D systems (averaging the output
energy over all -functions applied in ), we still need to
scale the Hilbert-Schmidt norm by a factor of . At the same
time, this factor is not required to maintain the stochastic inter-
pretation (the response to the analog white noise is a stationary
discrete process then). D/A systems, on the contrary, do not
need the scaling in the deterministic case, whereas do need it to
maintain the stochastic meaning. We nevertheless proceed with
the scaling in all cases of interest, just to keep the exposition
simple.

The system norm (31) corresponds to the system inner
product

(32)

with the Hilbert-Schmidt inner product defined as

where is any complete orthonormal sequence of . By
Parseval’s theorem the inner product (32) equals

where is the impulse response kernel [cf. (10), (12), (13)].
It implies that two systems are orthogonal if their impulse
response kernels have disjoint supports and that

(33)

This expression is quite useful in various applications.
Finally a note on adjoints. We take adjoints of systems (op-

erators) always with respect to the standard and signal
inner product (25). The reason is that these are also adjoints for
the other inner products such as (32). A further useful fact is that
the system inner product (32) inherits from the Hilbert-Schmidt
inner product the trace-like property that

(34)

if and .

VI. STABILITY AND CAUSALITY

This section reviews the notions of stability and causality and
their expression in the lifted frequency domain.

A. System Stability

As HSPs, like that in Fig. 1, typically operate in open loop
and their components are implemented separately, we require
that each component, i.e., , , and , is stable. We say that
is stable if it is a bounded operator , is stable
if it is a bounded operator , and is stable if it
is a bounded operator . Obviously, in the lifted
domain, for the lifted HSP in Fig. 6, all these definitions read as
the boundedness as an operator .

The fact that all components of the lifted HSP are LTI makes it
possible to verify their stability to the (lifted) frequency domain.
Indeed, because the Fourier transform is an isomorphism from

to , each of the systems , , and is stable iff its
lifted transfer function is a bounded operator .
The following result, which is essentially the first part of [14,
Thm. A.6.26], plays then a key role.

Theorem 6.1: The set of all bounded multiplication operators
from to is . Moreover, the induced norm of an

operator is .
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It follows from Theorem 6.1 that a sampler is stable iff its
lifted transfer function and a hold is stable iff its
lifted transfer function . Propositions 5.1 and 5.2
reduce the verification of these conditions to matrix (or even
scalar) operations. For example, is stable iff each row of the
lifted Fourier transform of its sampling function belongs
to for (almost) all or, alternatively, iff the magnitude of the
Fourier transform of each entry of is square summable over
all aliased frequencies for (almost) all baseband frequencies.
The latter condition is guaranteed if the Fourier transform of
the sampling function decays faster than as ,
which agrees with known results about stability of the sampling
operation [27].

B. Systems Causality

The notion of causality is well understood for both analog and
discrete systems. Intuitively, a system is causal if its output at
any time instance depends only upon its past and present inputs
and does not depend on the future inputs. For a continuous-time
system this can be formally expressed as

(35)

where the truncation operator is defined via the relation

The discrete-time case is the same modulo the use of the discrete
truncation operator , defined similarly. If the system is time
invariant, the condition need only be checked for one fixed ,
e.g., for .

The extension of these notions to hybrid systems depends
on the way in which continuous and discrete times are syn-
chronized. Henceforth, motivated mainly by the time associa-
tion in the lifting transformation, we presume that the th dis-
crete instance corresponds to the whole continuous-time interval

. In this case, we say that a (shift-invariant) sam-
pler is causal if

(36)

and a (shift-invariant) hold is causal if

(37)

It can be verified that, according to these definitions, sampler
(3) is causal iff for all and hold (4) is causal
iff for all . While the latter is in agreement with
the criterion for continuous-time systems, the former might ap-
pear peculiar. For example, a sampler with the sampling func-
tion , which acts as , is causal
by this definition. This, however, is a matter of convention. If
the implementation permits to depend only upon for

, we may require from to be strictly causal, i.e., that
.

Definitions (36) and (37) can be lifted straightforwardly. To
this end, note that corresponds to

in the lifted domain. Thus, both (36) and (37) became partic-
ular cases of the general definition: an LTI (discrete/semi-lifted/
lifted) system is causal if

(38)

Remark 6.1: When applied to the lifting of a continuous-
time system , definition (38) reads . This
is not equivalent to (35), unless is time invariant. Much care
must therefore be taken in analyzing causality in the lifted do-
main with this definition. Throughout, we use the lifted version
of (38) only in relation to lifted HSP blocks, in which case it
does reflect causality (with the convention about the sampler
discussed above).

We also need a more general definition. We say that an LTI
system is -causal if

for some (39)

This definition allows the output of at the moment to depend
on its input at all moments . If , this effectively says
that may have steps preview. If , (39) defines a system
with the delay of . The case of corresponds to strictly
causal systems.

C. Stability With Causality Constraints

Our message in this subsection is that causality can be
neatly incorporated into the stability analysis, in both time and
frequency domains.

Let be a stable, i.e., bounded mapping ,
(discrete/semi-lifted/lifted) system and consider (39) for .
It is readily seen that and are the orthogonal pro-
jections from to and , respectively. Thus,
(39) reads or, equivalently

Thus, we just showed that an LTI system is stable and -causal
iff it is a bounded operator .

Because the -transform is an isometric isomorphism be-
tween and , the stability condition above can be
reformulated as follows: is stable and causal iff its transfer
function is a bounded operator . This, in turn,
translates to (relatively) easily verifiable properties of
with the help of the following result.

Theorem 6.2: The set of all bounded multiplication operators
from to is . Moreover, the induced norm of an
operator is .

Proof: The result for (i.e., for the causal case) is
known, see [14, Thm.A.6.26]. To extend it to general , note
that according to the definition of

According to the result for , the latter reads ,
leading to the first part. The second part follows by the fact that
the multiplication by does not alter the -norm.

It follows from Theorem 6.2 that and are stable and
-causal iff their lifted transfer functions, and , re-
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spectively, belong to . Thus, if causality constraints are
incorporated into an optimization procedure, it is no longer suf-
ficient to look at frequency responses (transfer functions at

). The behavior of transfer functions at the whole region of
should be accounted for. This complicates the analysis

and design considerably. As is known from the causal Wiener
filtering, the design then involves some form of spectral factor-
ization and while, admittedly, this complicates matters, it is the
point of [28, Part III] that the machinery of this paper can indeed
be put to use in solving the optimal design problem with respect
to holds of given degree of causality.

VII. CONCLUDING REMARKS

In this paper we have collected the basic concepts of the
system-theoretic approach to sampled signal reconstruction and
technical material of lifting and lifted signals and systems, in
both time and frequency domains. The key point is that lifting
may losslessly recover time-invariance (in discrete time) of sys-
tems that are not time-invariant in continuous time. From that
point on most of the results are intuitively clear, albeit possibly
technically advanced, and follow corresponding results of stan-
dard discrete systems. It is this material that forms the basis
for the solutions to the optimal noncausal signal reconstruction
problems considered in Part II, [17], and for the optimal re-
laxedly causal reconstruction problems considered in [28, Part
III].
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