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Resource Dimensioning Through Buffer Sampling
Michel Mandjes and Remco van de Meent

Abstract—Link dimensioning, i.e., selecting a (minimal) link ca-
pacity such that the users’ performance requirements are met, is
a crucial component of network design. It requires insight into the
interrelationship among the traffic offered (in terms of the mean of-
fered load , but also its fluctuation around the mean, i.e., ‘bursti-
ness’), the envisioned performance level, and the capacity needed.
We first derive, for different performance criteria, theoretical di-
mensioning formulas that estimate the required capacity � as a
function of the input traffic and the performance target. For the
special case of Gaussian input traffic, these formulas reduce to
� � � , where directly relates to the performance re-
quirement (as agreed upon in a service level agreement) and
reflects the burstiness (at the timescale of interest). We also ob-
serve that Gaussianity applies for virtually all realistic scenarios;
notably, already for a relatively low aggregation level, the Gaus-
sianity assumption is justified.

As estimating is relatively straightforward, the remaining
open issue concerns the estimation of . We argue that particularly
if corresponds to small time-scales, it may be inaccurate to esti-
mate it directly from the traffic traces. Therefore, we propose an in-
direct method that samples the buffer content, estimates the buffer
content distribution, and ‘inverts’ this to the variance. We vali-
date the inversion through extensive numerical experiments (using
a sizeable collection of traffic traces from various representative lo-
cations); the resulting estimate of is then inserted in the dimen-
sioning formula. These experiments show that both the inversion
and the dimensioning formula are remarkably accurate.

Index Terms—Buffer sampling, Gaussian traffic, inversion, large
deviations, network dimensioning, quality-of-service.

I. INTRODUCTION

A DEQUATE resource dimensioning requires a thorough
insight into the interrelationship among: 1) the traffic of-

fered (in terms of the average load, but also its fluctuations),
2) the desired level of performance, and 3) the required ca-
pacity. It is clear that more capacity is needed when the of-
fered load becomes higher, the fluctuations become fiercer, or
the performance criterion becomes more stringent. However,
to make precise predictions about the amount of capacity that
should be added, advanced modeling and performance tech-
niques are required. These predictions are of crucial importance,
as scarce dimensioning inevitably leads to performance degra-
dation, whereas “generous” dimensioning policies essentially
result in a waste of resources.
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In the context of dimensioning IP nodes, several additional
considerations play a role. IP networks usually carry a broad
variety of traffic types, of which some can tolerate relatively
substantial latency (e-mail, particular Web applications),
whereas others have strict delay requirements (interactive
services). As argued by Fraleigh et al. [14], two approaches can
be followed: 1) actively discriminating by traffic differentiation
mechanisms (i.e., preferential treatment for the more de-
manding traffic types), or 2) sufficiently provisioning resources
so that all traffic types meet their performance requirements
(i.e., without any traffic differentiation). In the former option,
the cost associated to the management and operation of the net-
work is relatively high, while the efficiency gain (compared to
the latter option) is usually modest (particularly when the level
of aggregation is high). Therefore, following [14], the focus in
this paper is on dimensioning as the approach for delivering
performance requirements. (As an aside, we mention that even
if one opts for applying traffic differentiation, there is often still
a need for dimensioning as well. For instance, as argued in [5],
if diffserv is applied, then bandwidth dimensioning for traffic
aggregates still needs to be done. Put differently, the distinction
between traffic differentiation and resource dimensioning is not
sharp).

We identified three crucial prerequisites for link dimen-
sioning: 1) a reliable traffic model, 2) a performance target
to be met, and 3) formulas computing the performance for a
given traffic model and given network resources. Having these
at our disposal, we can find expressions for the minimum link
capacity required in order to offer a traffic stream with given
characteristics a given performance target; we refer to these as
dimensioning formulas. In Section II, we present a number of
generic dimensioning formulas—generic in the sense that they
are valid for any (stationary) traffic stream. These formulas,
however, are still quite implicit; they require knowledge of the
full moment generating function (mgf) of the traffic offered at
any time-scale, something that is typically hard to measure and
estimate. To overcome this problem it would be helpful if we
could restrict ourselves to specific classes of, still sufficiently
general and versatile, random processes.

Two such classes of traffic models have been discussed
extensively in the literature. The first is what could be called
“flow-oriented,” where flows could be TCP connections, UDP
streams, etc. In this approach, flows are modeled (arrival rate,
duration, traffic rate while being active, etc.); it is noted that
tools like NetFlow (in Cisco routers) already allow for mea-
surement of some flow characteristics (e.g., size and duration).
Several papers have found, in different situations, accurate
flow-oriented traffic models; see, for instance, [2] and [3]. An
alternative is to model the aggregate stream rather than indi-
vidual flows. Gaussian models (of which fractional Brownian
motion is a special case) form a class of models that is specif-
ically suitable for describing highly aggregated streams. The
Gaussian model consists of 1) a mean rate (to which we
also refer as “load”) and 2) a variance curve (so that

1063-6692/$26.00 © 2009 IEEE

Authorized licensed use limited to: UNIVERSITEIT TWENTE. Downloaded on March 29,2010 at 03:51:33 EDT from IEEE Xplore.  Restrictions apply. 



1632 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 5, OCTOBER 2009

corresponds to the variance of the amount of traffic offered in
an arbitrary time window of length ). Having observed
that the dimensioning formulas of Section II greatly simplify
for Gaussian traffic, in Section III we further assess in detail
to what extent one can assume Gaussianity. We discuss which
factors affect the Gaussianity (the length of the measurement
interval, the level of aggregation) and conclude that in virtually
any representative situation (where we considered various
locations and points in time) the Gaussian model fits well. We
emphasize that, particularly under high load, flow-oriented
models and aggregate-stream models do not exclude one an-
other; we come back to this issue later.

Assuming Gaussianity, the dimensioning formulas of
Section II require estimates of the mean traffic rate and the
variance curve to find the required bandwidth for a given
performance target. Estimating is relatively straightforward
and can be done through rough traffic measurements (for
instance, over 5-min intervals). Estimating the variance curve,
however, could be substantially harder. Particularly on smaller
time-scales, it is hard to do accurate measurements through
simple network management protocol (SNMP). Section IV
presents a novel, efficient technique for estimating by
coarse-grained sampling the buffer content, estimating the
buffer content distribution, and “inverting” this into the vari-
ance curve. Importantly, this procedure eliminates the need
for traffic measurements on small time-scales; instead, we
measure (for instance at a constant frequency, but this is by no
means necessary) the buffer content. In this sense, we remark
that the procedure we propose is rather counterintuitive. One
would expect that one needs measurements of the traffic of-
fered in intervals of length to accurately estimate , but
apparently one can alternatively sample the buffer content. In
fact, one of the attractive features of our ‘inversion approach’
is that it yields the entire variance curve (evidently up
to some finite-time horizon), rather than just for some
prespecified .

Section V assesses the accuracy of the inversion approach
through simulation experiments with both synthetic traffic and
real network traces. These validations show excellent perfor-
mance in the sense that the -curve is indeed estimated well,
even if the traffic stream deviates considerably from Gaussian.
We also investigate the required measurement effort (in terms of
number of samples and the time between two subsequent sam-
ples) in order to obtain a reliable estimate of the buffer content
distribution.

The next step is to insert the estimated variance into the di-
mensioning formulas of Section II. In Section VI, we do so
for our reference set of real traces. We compare the resulting
capacity by its “empirical counterpart,” i.e., the minimum link
rate such that, for the given trace, the performance requirement
is met. We also systematically study the impact of the perfor-
mance criterion on the required link rate and provide implemen-
tation guidelines. This section also indicates how our method-
ology carries over to a multilink setting.

Section VII concludes the paper. We discuss the results and
the applicability of our approach. We also reflect on a number
of related methods.

II. GENERIC DIMENSIONING FORMULAS

As explained in the introduction, an important prerequisite
for dimensioning are formulas that determine the minimum

required link rate for given characteristics of the offered traffic
and performance target. Preferably, these dimensioning for-
mulas have minimal requirements on the “nature” of the traffic
offered; for instance, we do not want to impose any conditions
on its correlation structure.

In this section, we present formulas that we derive under ex-
tremely weak conditions on the traffic process. The only sub-
stantial assumption is that we require that the traffic stream be
stationary. With denoting the amount of traffic arrived in

, it is assumed that the distribution of does
not depend on (but just on the interval length ). In the
sequel, we use the abbreviation . In this paper,
we study dimensioning with respect to two performance criteria:
“link transparency” and buffer overflow.

A. Link Transparency

In “link transparency,” cf. [5], the main objective of band-
width dimensioning is to ensure that the links are more or less
“transparent” to the users in that the users should not (or al-
most never) perceive any performance degradation due to a lack
of bandwidth. Clearly, this objective will be achieved when the
link rate is chosen such that, only during a small fraction of time
, the aggregate rate of the offered traffic (measured on a suffi-

ciently small time scale ) exceeds the link rate:
. The values to be chosen for the parameters and

typically depend on the specific needs of the application(s) in-
volved. Clearly, the more interactive the application, the smaller

and should be chosen; network operators should choose
them in line with the service level agreements they agreed on
with their clients.

Given the criterion , we now derive a
formula for the minimal link rate needed. Relying on the cele-
brated Chernoff bound, we have

for any

As this inequality holds for any , we see that in order to
be sure that , it suffices to take the link rate

larger than

(1)

B. Buffer Overflow

The link-transparency criterion did not explicitly take into
account the option of buffering packets. The distribution of the
steady-state buffer content can be expressed in terms of the
arrival process : Reich’s formula says that is distributed
as the maximum of the process :

where ‘ ’ denotes equality in distribution. A second perfor-
mance criterion could be to choose such that ,
where is the router’s buffer size (alternatively, can be in-
terpreted as an upper bound on the delay); observe that de-
pends on .

In order to find the minimum required capacity, we need to
characterize as a function of . This is done as fol-
lows. In the first place, observe that ‘Reich’ entails that

is the probability that exceeds for some .
This is a union of events (namely, the union over of the
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events ); it often is accurate to approxi-
mate the probability of a union of events by the largest of the
individual probabilities. We thus obtain

See, for instance, [14]; a further large-deviations justification for
the “principle of the largest term” is given in [1] and [7]. It can
be argued [15, Sec. 10.3] that the Chernoff bound is in fact a
reasonable approximation, so we obtain

(2)

Note that this approximation contains a conservative element
(Chernoff bound) as well as an “aggressive” element (principle
of the largest term), and it is not clear upfront which effect dom-
inates. After some rearranging, we conclude that should be at
least (cf. [18] and [31, Eq. (5)])

(3)

Clearly, application of (1) and (3) requires the estimation of
the mgf with ; in (1), just for and ,
but in (3), we even need for all . Such an es-
timation is extremely demanding and far from straightforward
(for specific situations, the results in [12] are helpful here; we
comment on these in detail in Section VI). However, imposing
some additional structure on may greatly simplify the di-
mensioning formulas; this structure should of course be flexible
enough to still cover all relevant traffic patterns. The following
example provides such a framework: the class of Gaussian pro-
cesses.

Example: Suppose that is a Gaussian process with sta-
tionary increments; i.e., is normally distributed, with
mean and variance , for some mean rate

and variance curve . The covariance
structure is fully defined by the variance function, as it holds that

. An important
special case is fractional Brownian motion, in which is
proportional to , where is the so-called Hurst pa-
rameter; when choosing , we obtain ‘ordinary’ Brownian
motion.

When assuming that traffic is Gaussian, with ,
the dimensioning formulas (1) and (3) respectively reduce to

(4)

(5)

Here, is distributed as (as any Gaussian process
is time-reversible), and (the
latter identity follows, after some calculus, from

, and completing the square). The important consequence
of this is that for the application of the dimensioning formulas
(1) and (3), it is not required anymore to estimate mgfs. Instead,
they can be computed when we have estimates for the mean rate

and the variance curve at our disposal. In (1), we even
need just rather than the whole curve.

III. MODELING TRAFFIC AGGREGATES

BY GAUSSIAN PROCESSES

The example in the previous section showed that the dimen-
sioning formulas become substantially more manageable for
Gaussian inputs. In this section, we discuss traffic models in
a general context, motivate why we concentrate on Gaussian
models, and assess when Gaussian models are applicable.

A. Traffic Models

As argued earlier, a crucial prerequisite for using the dimen-
sioning formulas (1) and (3) is the availability of simple yet ac-
curate traffic models. Clearly, the simplest model with Poisson
arrivals of packets has the undesirable feature that it fails to in-
corporate the (positive) correlations between packet arrivals as
observed in real traces. For this reason, the model with (a super-
position of) ON/OFF sources is an attractive alternative: a broad
variety of correlation structures can be modeled by choosing
appropriate distributions for the ON- and OFF-times. A variant
of the latter model is the so-called input model, in
which flows (groups of packets with some general distribution)
arrive according to a Poisson process, remain in the system
for some random time, and generate traffic during this sojourn
time according to some (random or deterministic) pattern. By
choosing a heavy-tailed flow-size distribution, strong positive
correlations can be obtained. Two recent papers that fit these
flow-level models are [2] and [3].

Rather than attempting to describe traffic at the flow level, one
could also opt for trying to find models for the aggregate traffic
stream. The development of this type of model was triggered by
a number of measurement studies performed in the early 1990s,
such as the famous Bellcore measurements [21], [30]. It was
shown that, in many situations, the aggregate stream has self-
similar properties and is long-range dependent (i.e., has a slowly
decaying autocorrelation function).

A stochastic model, advocated by Norros in [28], [29], that
has many desirable properties (e.g., long-range dependency) is
fBm. fBm is a self-similar process (i.e., has the same
distribution as , for , and a function that
does not depend on ) and, as mentioned in the previous section,
falls in the class of Gaussian models. In recent years, it found
widespread use as a reference model for IP traffic; importantly,

corresponds to long-range dependent, positively
correlated traffic. By taking , the dimensioning for-
mulas (4) and (5) further simplify to

Besides the above motivations for Gaussian traffic models, their
applicability can also be explained from the Central Limit The-
orem (CLT). The CLT entails that the sum of a large number of
“small” independent (or weakly dependent), statistically more
or less identical, random variables (users) has an approximately
normal (i.e., Gaussian) distribution. Thus, one can expect that
an aggregated traffic stream consisting of many individual com-
munications may be modeled by a Gaussian stochastic process.
However, it is clear that the CLT argumentation does not apply
to any time-scale. On the time-scale of transmission of (min-
imum-size) packets, the traffic stream is always ON/OFF (either
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there is transmission at link speed, or silence)—which is obvi-
ously not Gaussian. Thus, besides requiring that the number of
users (referred to as “vertical aggregation”) is sufficiently high,
there should also be sufficient aggregation in time (‘horizontal
aggregation’). Kilpi and Norros [20] and Fraleigh et al. [14]
pointed out the necessity of enough aggregation in both direc-
tions for traffic to be Gaussian; see also [13] for an early refer-
ence on horizontal and vertical aggregation.

We emphasize that input models and Gaussian
models do not exclude one another. As long as the aggregation
level is sufficiently high, both models could fit very well. The
intuitive reason for this is that, under those circumstances, a
Poisson random variable can be approximated accurately by a
normal random variable. In light of this, it is not surprising one
can formally prove that in a particular limiting regime (more
precisely, by speeding up the arrivals), the input model
converges to a Gaussian process; this can be proven as in [10].

We remark, however, that for the input model, it may
take a substantial effort to fit all the parameters corresponding
to the flow duration, traffic transmission rate, etc.; see [3].

B. Gaussianity for Different Levels of Horizontal and Vertical
Aggregation

We now report on our findings regarding Gaussianity. These
are largely in line with the conclusions in [14] and [20]; more
experiments can be found in [25] and [26]. We have tried to
make the data sets as representative as possible. The locations
cover all sorts of users. As we largely follow the methodology of
[14] and [20], we have attempted to keep this subsection brief.

The goal of this subsection is to provide empirical support for
the claim that the Gaussianity assumption is justified at many
locations, with very distinct types of user. The five locations
we have considered are: (U) a university residential network
(15 traces, 1800 hosts); (R) a research institute (185 traces,
250 hosts); (C) a college network (302 traces, 1500 hosts);
(A) an ADSL access network (50 traces, 2000 hosts); and
(S) a server hosting provider (201 traces, 100 hosts). Each
trace relates to 15 min (real time). At these locations, traffic is
generated at average (aggregate) rates of 170, 6, 35, 120, and
12 Mb/s, respectively.

Both [14] and [20] observe that there should be a sufficient
level of aggregation to make traffic Gaussian; [14] further quan-
tifies this claim by reporting that at least a traffic rate of 50 Mb/s
is needed (when considering backbone links). We now verify
whether this applies for our data set {U, R, C, A, S}. QQ-plots
display the (empirical) quantiles of the distribution under con-
sideration against the quantiles of some test distribution (i.e., a
Gaussian distribution, in our case). A good fit to the Gaussian
distribution means that all points are close to a straight line.
Therefore, as a measure of Gaussianity, the linear correlation
coefficient can be used as the goodness-of-fit measure, as in [17]
and [20]; in [24], it is shown that the use of this statistic leads to
similar conclusions as the Kolmogorov–Smirnov test that was
used in [14]. Fig. 1, which focuses on the time-scale of 1 s, con-
firms the findings of [14]: roughly spoken, for this time-scale,
an average traffic rate of some tens of Mb/s seems enough to
safely assume Gaussianity.

Suppose we observe that a specific traffic stream is fairly
Gaussian at a certain time-scale. One may then wonder what
this says about Gaussianity at other time-scales. If Gaussianity
would be (more or less) preserved across time-scales, then one

Fig. 1. Distribution of the linear correlation coefficient over all measurements.

Fig. 2. Linear correlation coefficient over five measurements from location R.

needs to verify Gaussianity on just one time-scale. It is clear that
this reasoning has its limitations; recall that traffic is certainly
not Gaussian at very small time-scales, and also Gaussianity will
be lost for very large time-scales.

First, we look at an example with only a few traces. We de-
termine the linear relation coefficient at nine time-scales ,
ranging from 5 ms to 5 s. The results, based on five traces from
measurement location R, are plotted in Fig. 2. As reflected by the
more or less horizontal lines, the graph suggests that the Gaus-
sianity is rather constant across time-scales.

Next, we investigate this for all traces. We introduce as
measure of the ‘variation of the linear correlation coefficient,’
defined as the square root of the sample variance of the

The interpretation is that when is low, the traffic is (more or
less) equally Gaussian (or non-Gaussian) across multiple time-
scales.

We have computed using all traces from each measure-
ment location. After ordering them from low to high values
of , they are plotted in Fig. 3. Clearly, is small in most
cases; in over 95% of the traces, is below 0.05. Thus, we
may conclude that is quite constant over different time-scales.
In other words, traffic that exhibits Gaussian characteristics at
one time-scale, is likely to be Gaussian at other time-scales
as well (for the time-scales that we investigated, and bearing
in mind the limitations mentioned above). In addition, in line
with the conclusions of [14], we see from our experiments that
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Fig. 3. Variance of linear correlation coefficient over time, over all measure-
ments at various time-scales, at locations {U, R, C, A, S}.

Gaussianity usually applies from the ms-level on (In [14], even
smaller timescales were considered, but these appear to be irrel-
evant for dimensioning purposes.).

It is important to notice that in some cases, our experiments
show that the Gaussian model is not accurate—for instance, a
substantial part of the traces from location R, where there is a
relatively low aggregation level. As our dimensioning approach
relies on the Gaussianity assumption, it is important to verify
whether it still gives reasonable outcomes for situations in which
the traffic is not Gaussian. We come back to this issue in detail
in Section V.

IV. ESTIMATION OF THE MEAN TRAFFIC RATE

AND VARIANCE CURVE

In Section II we derived the dimensioning formulas (1) and
(3), which require knowledge of the mean traffic rate and the
variance curve . As argued earlier, can be determined
by standard coarse-grained traffic measurements (e.g., polling
Interfaces Group MIB counters via SNMP every 5 min). It is
clear that determining the variance curve is more involved.
The standard way to estimate (for some given interval
length ) is what we refer to as the “direct approach”: per-
form traffic measurements for disjoint intervals of length and
just compute their sample variance. It is noted that the conver-
gence of this estimator could be prohibitively slow when traffic
is long-range dependent [4, Ch. I], but the approach has two
other significant drawbacks.

• When measuring traffic using time windows of duration
, it is clearly possible to estimate , , ,

etc. However, these measurements obviously do not give
any information on on time-scales smaller than .
Hence, to estimate , measurements should be done at
granularity or less. This evidently leads to a substantial
measurement effort.

• The dimensioning formula (3) requires knowledge of the
entire variance function , whereas the direct approach
described above just yields an estimate of on a pre-
specified timescale . Therefore, a method that estimates
the entire curve is preferred.

This section presents a powerful alternative to the direct ap-
proach; we refer to it as the inversion approach, as it “inverts”
the buffer content distribution to the variance curve. This inver-
sion approach overcomes the problems identified above. We rely

on the large-deviations framework of Section II for Gaussian in-
puts, as justified in Section III.

A. Inversion Formula

In this subsection, we first show how, for given variance curve
(and mean rate ), the probability can be ap-

proximated. Then, this explicit formula is used to “invert” this
relation. We establish a formula for , given the (comple-
mentary) buffer content distribution .

• In Section II, we found the approximation (2). For the
special case of Gaussian traffic, using

, the minimization over can be explic-
itly evaluated. We find that (2) reduces to

with

(6)

• Supposing that approximation (6) is exact, it implies that

or, equivalently

Clearly, the latter inequality implies that for all

In fact, this upper bound on the variance is under mild
conditions tight in a large-deviations sense (i.e., in the
many-sources framework); for details, we refer to [22,
Theorem 4]. Remarkably, this says that, loosely speaking,
for Gaussian traffic the buffer content distribution uniquely
determines the variance function, and it does so through
the explicit formula

(7)

Hence, if we can estimate , then the “inversion
formula” (7) can be used to retrieve the variance. Notice
that the infimum can be computed for any , and conse-
quently we get an approximation for the entire variance
curve (of course up to some finite horizon).

Remark: Observe that in fact is also a function of
the service speed (as the random variable depends on ).
Interestingly, as the variance of the offered traffic in a window
of length , , does not depend on , (7) entails that, if the
approximation is correct, the minimum in the right-hand side
should also not depend on .

The unique correspondence between input and buffer con-
tent does not only apply for Gaussian processes, but can be
found in many other situations as well. A well-known example
is the queue. Assume Poisson arrivals stream (rate ) of
jobs, with service requirement distributed as random variable
(where its Laplace transform is denoted by ) and
service speed . Let the load be defined as . Denote by

the Laplace transform of the buffer content:
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. The subscript “ ” is added to emphasize the depen-
dence on . The Pollaczek–Khintchine formula says

This can be inverted to

We see similar phenomena as above: 1)The buffer-content dis-
tribution uniquely defines the distribution of the input process
(the distribution of ). 2) The left-hand side of the previous
display clearly does not depend on , so apparently the in the
right-hand side also cancels.

Example: Brownian Bridge: In a Brownian bridge, time is
restricted to the interval , and . It is easily
verified that

We can now derive the upper bound on from . To this
end, we first compute

then a lengthy calculation indeed gives , as
desired.

B. Algorithm for Estimating Variance Through Inversion

In this section, we show how the inversion formula (7) can
be used to estimate . This inversion procedure consists of
two steps. First, we estimate the (complementary) buffer content
distribution , which is in the sequel abbreviated to
BCD. Then, we “invert” the BCD to the variance curve by
applying (7). We propose the following algorithm:

Algorithm: Inversion

1. Collect ‘snapshots’ of the buffer contents: ;
here, denotes the buffer content as measured at time

, for some . Estimate the BCD by the empir-
ical distribution function of the , i.e., estimate
by .

2. Estimate by

for any .
Clearly, to obtain an accurate estimate of the BCD, both

and should be chosen sufficiently large. We come back to
this issue in Section V.

C. Demonstration of Inversion Procedure

In the remainder of this section, we demonstrate the inversion
approach through a simulation with synthetic (fBm) input; we
emphasize, however, that the procedure could be performed for
any other traffic process. We compare the estimated variance

Fig. 4. Sample BCD.

curve with the (known) actual variance curve. In this way, we
get a first impression of the accuracy of our approach; a more
detailed numerical evaluation follows in Section V.

Consider a queue in discrete time with link rate fed by
fBm. Its buffer dynamics are simulated as follows. A simulator
[11] is used to generate fBm with a specific Hurst parameter

, yielding a list of numbers that represent the “of-
fered traffic per time slot.” These numbers serve as input to the
queue. For every slot, the amount of offered traffic is added to
the buffer content, while an amount equal to is subtracted from
the buffer content (where, when this number becomes negative,
it is put to zero). Then, every slots, the queue’s content
is observed, yielding snapshots that are used to
estimate (as in the above algorithm).

In this demonstration of the inversion procedure, we generate
a fBm traffic trace with Hurst parameter ; we take
standard fBm, i.e., and . The link capacity is
set to 0.8. The trace consists of slots, and we take snapshots
of the buffer content every slots.

We now discuss the output of the inversion procedure for our
simulated example with fBm traffic. First, we estimate the BCD;
a plot is given in Fig. 4. For presentation purposes, we plot the
logarithm of the BCD, i.e., . The BCD in Fig. 4 is
“less smooth” for larger values of , which is due to the fact that
large buffer levels are rarely exceeded, leading to less accurate
estimates.

Second, we estimate the variance for equal to the
powers of 2 ranging from to using the BCD, i.e., by using
the algorithm. The resulting variance curve is shown in Fig. 5
(“inversion approach”). The minimization (over ) was done by
straightforward numerical techniques. To get an impression of
the accuracy of the inversion approach, we have also plotted the
variance curve as can be estimated directly from the synthetic
traffic trace (i.e., by using the ‘direct approach’ introduced ear-
lier), as well as the real variance function for fBm traffic, i.e.,

. The figure shows that the three variance curves are
remarkably close to each other. This confirms that the inversion
approach is an accurate way to estimate the burstiness. We note
that the graph shows that the inversion approach slightly overes-
timates the variance. A more detailed validation of the inversion
approach follows in the next section.
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Fig. 5. Sample variance curves.

V. ERROR ANALYSIS OF THE INVERSION PROCEDURE

In the previous section, the inversion approach was demon-
strated, and it was shown to perform well for fBm with
under a specific choice of and . Evidently, the key question
is under what circumstances the procedure works. To this end,
we first identify the three possible sources of errors:

• The inversion approach is based on the approximation (7).
• The is estimated; there could still be an

estimation error involved. In particular, one may wonder
what the impact of the choice of and is.

• The procedure assumes “perfectly Gaussian” traffic,
although real network traffic may not be (accurately de-
scribed by) Gaussian; see Section III.

We will now quantitatively investigate the impact of each of
these errors on our ‘inversion approach.’

A. Approximation of the Buffer Content Distribution

In (6), an approximation of the BCD is given. As the inver-
sion formula (7) is based on this approximation, evidently errors
in (6) might induce errors in the estimate of . Therefore, we
now assess the accuracy of (6). We focus on the practically rel-
evant case of fBm; in line with the previous section, we choose

and . Straightforward calculations now re-
veal that (6) implies

We verify how accurate the approximation is, for two values
of : the Brownian case and a case with long-range
dependence (which is a rather typical value, as found
in many measurement studies). Several runs of fBm traffic are
generated (with different random seeds), with slots of traffic
per run, which are used to simulate the buffer dynamics. For

, we choose link rate ; for we choose
. These choices of are such that the queue is nonempty

sufficiently often (to make sure that a reliable estimate of the
BCD is obtained). Figs. 6 and 7 show for the various runs the
approximation of the BCD, as well as their theoretical counter-
part. Particularly for small , the empirically determined BCD
matches very well with the values predicted by (6).

Fig. 6. �� � � and theoretical approximation �� � ����.

Fig. 7. �� � � and theoretical approximation �� � ����.

B. Estimation of the Buffer Content Distribution

The inversion formula requires the BCD , which we
approximate by , i.e., its empirical counterpart. This may
lead to errors; the impact of this error on the estimation of the
variance curve is the subject of this subsection. It could be ex-
pected that the larger (more observations) and (less corre-
lation between the observations), the better the estimate.

We first investigate the impact of . The simulator is run as in
previous cases (with ) with the difference that we only
use the first of the snapshots samples to estimate the BCD.
Fig. 8 shows the estimation of the buffer content distribution for
various ranging from 0.1% to 100%. The figure shows that,
particularly for relatively small , a relatively small number of
observations suffices to obtain an accurate estimate.

Notice that we chose in our inversion procedure a fixed sam-
pling frequency (i.e., ). It can be seen that this “periodic
sampling” is by no means necessary; the BCD-estimation pro-
cedure obviously still works when the sampling epochs are not
equally spaced. In fact, one should realize that, if the sampling is
performed in a purely periodic fashion, and if in addition (a sub-
stantial part of) the traffic is also periodic, then one may obtain
even unreliable estimates. Therefore, it may have advantages to
sample at, for instance, Poisson epochs.

Second, we investigate the impact of the interval length be-
tween two consecutive snapshots . Fig. 9 shows the determined
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Fig. 8. Comparing �� � � for various trace lengths.

Fig. 9. Comparing �� � � for various sampling intervals.

Fig. 10. Variance curves for Gaussian/non-Gaussian traffic mixtures,� � ���
and � � ���.

BCD for ranging from observing every 32 to every 8192 slots.
It can be seen that, particularly for small , the fit is quite good,
even when the buffer content is polled only relatively rarely.

C. The Impact of the Gaussianity Assumption

Approximation (6) explicitly assumes that the traffic process
involved is Gaussian. We have seen in Section III that this claim

is not always justified. Therefore, we now investigate how sen-
sitive our inversion approach is with respect to the Gaussianity
of the input traffic.

We study the impact of non-Gaussianity by mixing, for every
slot, a fraction of the generated fBm traffic with a fraction

traffic from an alternative (non-Gaussian) stream before
the mixture is fed into the queue. Note that the variance of the
mixture is, in self-evident notation

We vary from 1 to 0 to assess the impact of the non-Gaus-
sianity.

The alternative input model that we choose here is the
input model (see Section III), inspired by [1]–[3]. We

denote the flow arrival rate by . While in the system, traffic
is generated at a constant rate . In line with measurements
studies (a classical reference is [9]), we choose Pareto jobs,
obeying the distribution function

As the objective is to assess the impact of varying the parameter
, we have chosen to select the parameters of the input

model such that it is “compatible” with fBm in that their means
are equal and their variances are “similar” (in a sense that
is defined below). This is achieved as follows.

• The means of both traffic stream are made compatible by
adding a drift to the fBm inputs equal to the mean of the

traffic stream, i.e., . The Gaussianity
of the fBm input is not affected by the addition of such a
drift.

• To make the variances of both traffic streams “compatible,”
we make use of a derivation in earlier work of the exact
variance function . See [23]; there it was shown
that for the relevant case [9] of , for large

It is noted that long-range dependence is a property of long
time-scales. We therefore chose to select the parameters of
the input model such that the ratio of the variances
converges to a 1 as goes , thus guaranteeing that they
possess the same “degree of long-range dependence.”

Clearly, we can now estimate the remaining parameters and
compute the variance of the traffic mixture.

The next step is to run the simulation for different values of .
We then determine the (theoretical) variance curve of the traffic
mixture and compare it to the variance curve found through
the inversion approach. In Fig. 10, we focus on the “nearly
Gaussian” cases and , which are plotted to-
gether with their theoretical counterparts. The figure shows that
the presence of non-Gaussian traffic has some, but no crucial,
impact on our inversion procedure. Note that the non-Gaussian
traffic may “have some Gaussian characteristics,” as argued in
Section III.

In the (extreme) case of , i.e., no Gaussian traffic at all,
Fig. 11 shows that the fit is substantially degraded. The graph
shows the theoretical variance curve, the curve based on the “di-
rect approach,” as well as the curve based on the inversion ap-
proach.
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Fig. 11. Variance curves for Gaussian/non-Gaussian traffic mixture, � � �.

We conclude that our simulation experiments show the “ro-
bustness” of the inversion procedure. Despite the approxima-
tions involved, with a relatively low measurement effort, the
variance curve is estimated accurately—even for traffic that is
not “perfectly Gaussian.” Given the evident advantages of the
inversion approach over the ‘direct approach’ (minimal mea-
surement effort required, retrieval of the entire variance curve

, etc.; see the discussion in Section III), the former method
is to be preferred. In the next section, we verify whether this
conclusion also holds for real (i.e., not artificially generated)
network traffic. This is done by inserting the estimated mean
and variance into the dimensioning formulas so that we can val-
idate whether the resulting bandwidth values are such that the
performance requirement is met.

VI. BANDWIDTH DIMENSIONING PROCEDURE

AND VALIDATION

As we have seen in Section V, the inversion approach shows
rather good performance: Even if the underlying traffic devi-
ates from Gaussian, one still obtains a relatively good estimate
of the variance function. It remains unclear, however, whether
plugging in this variance function into the dimensioning for-
mula, i.e., (4) or (5), also leads to good estimates of the required
bandwidth. Another question is whether such conclusions re-
main valid for the traces from our data set (rather than artificially
generated data). The purpose of this section is to study these is-
sues. We begin by detailing our dimensioning approach.

A. Dimensioning Procedure

We now describe our procedure to estimate the bandwidth
needed in order to meet a predefined performance criterion.
Suppose we have a trace of data, consisting of timestamps of
packets, as well as the corresponding packet sizes; recall that
each trace in our data set corresponds to 15 min (real time). We
wonder what the minimum service rate is such that the perfor-
mance requirement is satisfied.

Algorithm: Dimensioning

1. Estimate the variance function by estimating the BCD
and performing algorithm INVERSION.

2. Insert this estimated variance into the dimensioning for-
mula, i.e., (4) or (5).

Notice that in the above procedure there was one choice left
open. In the first step, the BCD is determined by feeding the

trace into the queue, and we did not specify the service speed,
say , of this queue. Clearly, should not be chosen too high
because then the queue would be nearly always empty, leading
to poor estimates of the BCD; we return to this issue later.

B. Validation

The idea behind this validation section is to systematically
assess the accuracy of our dimensioning approach. We do so by
decoupling two effects.

— Validation of the required bandwidth formula. Suppose we
are given perfect information about the variance function,
and we plug this into our dimensioning formula. Here, the
question is: How good is the resulting estimate for the re-
quired bandwidth?

— Impact of estimation errors in on required bandwidth.
Here, we test how the errors in the estimate of , caused
by the inversion procedure, have impact on the estimate of
the required bandwidth.

The “decoupling” allows us to gain precise insight into—and
thus a proper validation of—both steps of the above link-di-
mensioning procedure. We focus on the criterion of link trans-
parency and the corresponding dimensioning formula (4); with
the same methodology, one can perform the validation with re-
spect to the buffer overflow criterion.

1) Validation of the Required Bandwidth Formula: We now
check the accuracy of the dimensioning formula (4). It requires
knowledge of and . As we do not have their “real
values,” we estimate them using the ‘direct approach.’ We em-
phasize that this direct approach has significant disadvantages
in practice (see the discussion in Section IV), but in order to as-
sess the accuracy of (4), we do not have any alternative.

In more detail, from each trace we estimate the average traffic
rate and the variance of the offered traffic at time-scale

. With denoting the amount of traffic offered over the th
interval of length

and

Then, the resulting estimates, as well as the specified values of
and , are inserted into (4) to obtain the (estimated) required

bandwidth.
We choose to determine the average traffic rate per 15 min

(recall that each trace contains 15 min of traffic) and set to 1 s,
500 ms, and 100 ms (and thus determine the variance at those
timescales), which are, for various applications, time-scales that
are important to the perception of quality by (human) users. We
set to 1%. Importantly, note that these settings for and
are just examples; network providers can choose the setting that
suits their (business) needs best.

In order to validate if the estimated bandwidth capacity in-
deed corresponds to the required bandwidth, we introduce the
notion of “realized exceedance,” denoted with . We define the
“realized exceedance” as the fraction of intervals of length , in
which the amount of offered traffic exceeds the estimated re-
quired capacity —we stress the fact that ‘exceedance’ in this
context does not correspond to “packet loss.” In other words

If is properly dimensioned, then “exceedance” (as in
) may be expected in a fraction of all intervals.
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TABLE I
REQUIRED BANDWIDTH: ESTIMATION ERRORS

AND DIMENSIONING FACTOR �� � �����

There are, however, (at least) two reasons why and may not
be equal in practice: 1) First, (4) assumes “perfectly Gaussian”
traffic, which is, as we have seen, not always the case. Evi-
dently, deviations from ‘perfectly Gaussian’ traffic may have an
impact on the estimated . 2) Second, to obtain (1), an upper
bound (viz. the Chernoff bound) on the target probability has
been used, and it is not clear upfront how far off this bound is.
To assess to what extent the dimensioning formula for Gaussian
traffic is accurate for real traffic, we compare and . We do
this comparison for the hundreds of traces that we collected at
measurement locations {U, R, C, A, S}.

Table I presents the average differences between the targeted
and the “realized exceedance” at each location, as well as the

standard deviations, for three different time-scales . The table
shows that per trace the differences are modest: at most in the
order of the target probability (see column avg ).
Dimensioning decisions, however, are likely to be based on sev-
eral traces at the same location (rather than just one trace), and
we therefore also included the column with the per-location av-
erage of the . These turn out to be close to the target probability
and, in some cases, even substantially less.

When dimensioning a network link, network providers often
use “rules of thumb,” such as , for a given number
(for instance, take the mean rate, increased by 50%). To verify
whether such a (simplistic) approach could work, it is interesting
to get an idea of the required “dimensioning factor,” that is, the
(estimated) required bandwidth capacity compared to the av-
erage load (i.e., ). These dimensioning factors and their
standard deviations, averaged over all traces at each location, are
given in the two rightmost columns of Table I, for s, 500
ms, and 100 ms. It shows, for instance, that at location U, some
33% extra bandwidth capacity would be needed on top of the
average traffic load to cater for 99% of all traffic
peaks at a time-scale of s. At location R, relatively more
extra bandwidth is required to meet the same performance cri-
terion—about 191%. Such differences between those locations
can be explained by looking at the network environment. At lo-
cation R, a single user can significantly influence the aggregated
traffic because of the relative low aggregation level (tens of con-
current users) and the high access link speeds (100 Mb/s with a
1 Gb/s backbone). At location U, the user aggregation level is
much higher, and hence, the traffic aggregate is “more smooth.”
Our conclusion is that simplistic dimensioning rules of the type

Fig. 12. Required bandwidth as a function of the buffer size for a trace at
location R. The ‘�’ are the empirical values, and the line is the curve using the
estimate of � ��� obtained by inversion; � � ����.

are inaccurate, as the is all but a universal constant
(it depends on the nature of the traffic, on the level of aggrega-
tion, the network infrastructure, and on the performance target
imposed).

The dimensioning factors (cf. Table I) for the present case
studies can be obtained as the ratio of and at certain and
. As indicated, the dimensioning factor increases when the per-

formance criterion (through and ) becomes more stringent.
To give a few examples of the impact of the performance pa-
rameters and on the required bandwidth capacity, we plot
curves for the required bandwidth capacity at
and 500 ms and ranging from 0.00001 to 0.1 in Fig. 13. In
these curves, and are (directly) estimated from an ex-
ample traffic trace collected at each of the locations {U, R, C,
A, S}.

Fig. 13 shows that the required bandwidth decreases in both
and , which is intuitively clear. The figures show that is

more sensitive to than to . Take, for instance, the top-left
plot in Fig. 13, i.e., location U, example trace #1. At ,
the difference in required bandwidth between ms and

ms is some 20%. At ms, the difference in
required bandwidth between and is just 3%
approximately.

We have verified whether the required bandwidth is accu-
rately estimated for these case-studies with different settings of

and . The estimation errors in these new situations are sim-
ilar to the earlier obtained results (cf. Table I). It should be noted
however, that we have not been able to verify this for all possible
combinations of and . For and ms, for
instance, there are only 1800 samples in our traffic trace (which
has a length of 15 min), and hence, we cannot compute the ac-
curacy of our estimation. Another remark that should be made
here, is that for locations with only limited aggregation in terms
of users (say some tens of concurrent users) combined with a
small time-scale of ms, the traffic is no longer Gaussian
(i.e., ). Consequently, the accuracy of our required band-
width estimation decreases.

2) Impact of Estimation Errors in the Variance on the Re-
quired Bandwidth: In Section V, we have seen for artificially
generated traffic that the inversion worked well, and the first part
of the present section assessed the quality of the bandwidth di-
mensioning formula (4). We now combine these two elements:
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Fig. 13. Required bandwidth for other settings of � and � for locations {U, R, C, A, S}.

We perform the inversion, and we insert the resulting variance
into (4) and see how well this predicts the required bandwidth.

First, we estimate the average traffic rate and variance
directly from the offered traffic stream. Also, we ‘re-

played’ our traces by inserting them into a virtual queue with
capacity (emulated in a Perl script) so that we can use the in-
version algorithm to estimate . We denote this directly esti-
mated variance by and the estimate resulting from in-
version by . Again, we emphasize that the direct esti-
mator may be infeasible in operational environments,
as is likely chosen to be rather small. In our case studies, we
have chosen to set the buffer occupancy sampling interval to 1 s,
which ensures that we have a sufficient number of snapshots to
reliably estimate the BCD (see Section V). Furthermore, we set

, the time-scale for which we aim to determine the variance,
to 100 ms.

The remaining parameter to be set is , the queue’s service
rate. Clearly, when is chosen too small, say , the
system is not stable in that it cannot serve all the traffic offered.
Hence, we should have . On the other hand, if is
much larger than , then the queue’s occupancy will, obvi-
ously, be zero at most observation times. This would lead to an
unreliable estimation of the BCD, so should not be too large.

We have performed hundreds of experiments using all our
traces to see if there is a general guideline for choosing (for
instance, , where is some constant) which ulti-
mately leads to an accurate approximation of ; see
[26, Appendix B]. It turns out that per location is fairly con-
stant. Hence, for any location, it suffices to determine on the
basis of a few traces; then, this value can be used when ap-
proximating for the other traces at that location. We
also remark that it turns out that choosing anywhere between
1 and 2 always gives reasonable results; i.e., and

are in most cases within 5%–20% of each other.
Furthermore, we stress that the impact of an estimation error

in on our ultimate goal of bandwidth dimensioning

is somewhat mitigated. In (4), first the square-root of the vari-
ance is taken, and then it is added to some average rate . To
study the accuracy of the estimation, we introduce

As we are interested in using the variance estimates for
dimensioning purposes, we compare the required bandwidth

(i.e., bandwidth estimated using the directly estimated
variance) and (i.e., bandwidth estimated using the
inversion approach). Recall that is an accurate estimation
of the required bandwidth, as we saw earlier in the present
subsection. We also compare and the ‘empirical’
minimally required bandwidth

to be interpreted as the minimum bandwidth that provides the
trace with the desired performance. Also, we introduce as an
indicator of the quality of the estimation of the required band-
width through the inversion approach, with respect to both
and

and

Table II lists the validation results of a number of ‘test
traces.’ it shows that the variances are rather accurately es-
timated. Table IV compares the estimated required capacity
(with , ms) computed via both the direct and
inversion approaches. Also, the empirically found minimum
required bandwidth is tabulated.

As can immediately be seen from the values of , the re-
quired bandwidth capacity as estimated through the inversion
approach to estimate the variance is remarkably close to that ob-
tained through the direct approach. On average, the differences
are less than 1%. Also, comparison with the empirical minimum
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TABLE II
VALIDATION RESULTS FOR THE BURSTINESS ESTIMATION METHODOLOGY

(� IS IN Mb/s, � IS IN Mb ; � � ��� ms)

TABLE III
VALIDATION RESULTS FOR THE BURSTINESS ESTIMATION METHODOLOGY

(OVERALL RESULTS)—UPPER TRACES; LOWER WITH � � ����

� � ��� ms AND � � ����

required bandwidth, through , shows that the use of the in-
version procedure leads to estimates for the required bandwidth
that are, remarkably, on average less than 4% off. Comparing
the respective values for and in Tables II and IV, one ob-
serves that an estimation error in indeed has only limited
impact on the error in .

Now, we have seen the impact of using indirectly estimated
variances for a number of test traces (i.e., through the inversion
approach). It remains to assess the overall accuracy of our di-
mensioning approach. We have computed the values as de-
scribed above for all our traces at every location; see the upper
part of Table III. We have tabulated the average values of
and as well as their standard error terms. The required
bandwidth estimations are remarkably accurate. In the lower
part of Table III, we have tabulated the same metrics but only
used the traces that are “fairly Gaussian,” in that their linear cor-
relation coefficient is above 0.9. This improves the results even
further—leading to the conclusion that errors in the required
bandwidth estimation using the inversion approach to estimate
the variance are primarily caused by non-Gaussianity of the of-
fered traffic.

Remark: So far, we concentrated on dimensioning under the
link transparency criterion. However, as indicated above, one of
the major advantages is that our inversion procedure yields the
entire variance curve (up to some threshold). Therefore, it also
enables us to estimate in (5), i.e., to find the link rate such
that the probability of exceeding is below . As an example,
Fig. 12 compares for a trace at location R, as a function of the
buffer size , the empirically determined with the one ob-
tained by estimating by means of our inversion procedure;

TABLE IV
VALIDATION RESULTS FOR THE BURSTINESS ESTIMATION METHODOLOGY

(CONTINUED) ( IS IN Mb/s; � � ��� ms. AND � � ����)

we take . The performance of our dimensioning proce-
dure under (5) is very similar to that under (4), as reported.

C. Multilink Scenarios; Practical Guidelines

We now describe how our dimensioning procedure extends
to a network setting. Let there be routes, and let be the set
of links on route , for . Allow any route to have
specific end-to-end performance requirements. On route , the
performance criterion is that, in self-evident notation

Observe that the and can be chosen route-specific. (No-
tice that this is the “network variant” of the transparency cri-
terion ; in the same way, one can define
the network variant of the criterion .) Similar
to Fraleigh et al. [14, Sec. III], the above probability can be ap-
proximated by

relying on well-studied decomposition properties [19], [32] and
the standard approximation . We
thus find that solving the capacity allocation problem requires
knowledge of the (i.e., the per-link mean) and the
(i.e., the per-link variance; required for the time-scale
if link is used by route , for any ). Impor-
tantly, these can be estimated by performing measurements on
a per-link basis; the accuracy of the resulting estimates was al-
ready described in detail in Section VI-B. The capacity alloca-
tion problem then reduces to solving a fairly standard optimiza-
tion problem; we could, for instance, minimize the total band-
width required under , for (where it
is recalled that the depends on the link rates).

The procedure described above requires estimates of the
mean and variance on every link. Alternatively, in the situation
that routing information is available, one could infer these
from the mean and variance at the ingress. Such an approach
could reduce substantially the measurement effort needed. An
alternative dimensioning approach for the multilink setting
(with emphasis on meeting resilience requirements) can be
found in [27].

We advise to use our link dimensioning methodology on a
periodic basis (and to adapt the link capacity when needed) so as
to prevent links becoming (systematically) congested. If, despite
these periodic checks, the link becomes congested, it is clear
that traffic measurements do not reflect well the users’ demand.
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In the first place, this is due to the fact that on a congested link,
TCP’s closed loop-control will strongly affect the traffic pattern.
In addition to this, in case of congestion also, the users will adapt
their behavior: Long response times could frustrate them, and as
a result, their demand is typically lower than in a congestion-free
network.

As a consequence, on (systematically) congested links, re-
source dimensioning should not be (solely) based on traffic mea-
surements, and an alternative approach needs to be followed.
Such an approach should be, in the terminology of [24], “user-
oriented.” This means that one does not model traffic aggregates
(as we did in the present paper) but rather the random dynamics
of the individual flows. This flow-level traffic characterization
could then be done as follows, cf. [3]: Identify a number of user
classes, estimate (per user class) the traffic characteristics, and
characterize the dynamics of the number of simultaneous flows
(of each user class) at the link under consideration. To this end,
one could use by measurements at the access of the network (and
routing information). Having estimated such a flow-level traffic
model, one could then rely on flow-level queueing models [6]
to determine the capacity needed. As an aside, we remark that
this flow-level traffic estimation is usually substantially more in-
volved than estimating the parameters of a Gaussian model (see
[3] and [24]) and, therefore, we would propose to follow this
approach only for congested links.

Our approach relies on the assumption that traffic characteris-
tics are hardly affected by TCP’s feedback loop, and therefore,
a next question is up to what loads this property is valid. To
assess this issue, we set up NS-2 simulations in which traffic
streams, roughly modeled in accordance with our measurement
locations (in terms of flow sizes, access rates, etc.), feed into a
link of capacity , and estimated . Then, we repeated the
experiment for different values of . In all scenarios, we find
that up to an average link load of approximately 70%–75% of

, the standard deviation remains more or less constant
(that is, less than 4% off; in most cases, substantially less). For
higher values of the average link load, TCP does have significant
impact in that it has a noticeable effect on the flows’ transmis-
sion rates (in fact, due to this “throttling,” the variance tends to
decrease).

Our method was developed for a network that is already in
operation, but it can also be used when an increase of the traffic
volume is anticipated, as follows. Consider, for instance, the
situation that at some location the number of users increases
from to . The properties of the normal distribution entail
that both the mean and the variance of the traffic stream increase
by a factor ; the new mean and variance
become and , for . (Interestingly, this does
not imply that the required bandwidth is also multiplied by .
Applying dimensioning formula (4), we see that the new link
rate becomes

Due to statistical multiplexing, the required bandwidth grows
less than proportional.)

This approach relies on the assumption that the user group
added is, approximately, “statistically identical” to the user
group that was already present. We verified this “homogeneity
property” at various locations at various time-scales; it was also
extensively validated in our previous work [5, Sec. IV].

VII. DISCUSSION AND CONCLUDING REMARKS

This paper provides a framework for link dimensioning. We
first derived generic dimensioning formulas, which require
knowledge of the variance of the input traffic. Then, we pro-
posed an efficient variance estimation technique. This so-called
inversion method was extensively tested in experiments with
real network traffic from various representative networking
environments. These tests showed that the resulting estimated
link rates are remarkably accurate.

In the remainder of this section, we discuss a number of direc-
tions for further research and reflect on alternative approaches.

1) Extensions, Further Research: A prerequisite for our
method is the performance criterion; when adopting the link
transparency criterion, one needs to specify appropriate values
for the parameters and . These values are dictated by the
so-called perceived quality-of-service, i.e., the performance as
perceived by users. Clearly, any application has other require-
ments, but these are also not necessarily uniform among users
of the same application—performance is a subjective issue.
For traditional services (such as voice), the mapping from
(subjective) perceived performance to (objective) performance
parameters (such as and ) has been intensively studied;
for more advanced applications (for instance interactive web
applications), this is still an open issue.

Often, dimensioning issues cannot be addressed without
taking into account pricing aspects. Put differently, the utility
a network user assigns to the service he is offered depends not
only on the performance level but also on the price he has to
pay for it; in fact, the combination of performance and price
will determine whether a potential user is willing to subscribe.
From this perspective, it is not the providers’ task to choose
the minimum bandwidth such that a prespecified performance
target is met, but rather to choose bandwidth and prices such
that some objective function (for instance revenues, or profits)
is optimized.

2) Other Approaches: The purpose of our inversion method
is to retrieve the essential traffic characteristics at low measure-
ment costs. We remark that several other “cheap” (i.e., with low
measurement effort) methods have been proposed in the litera-
ture. We now discuss some of these.

If one cannot assume Gaussianity, one could still use ap-
proximation (2) and estimate the mgf (as a function
of both and ) from traffic measurements. There are several
papers on its statistical aspects; see, for instance, [16]. As we
have seen, the formula simplifies considerably when assuming
Gaussian traffic, as then estimating the mgf reduces to esti-
mating and .

The paper by Duffield et al. [12] presents a procedure to ac-
curately estimate the asymptotic cumulant function

from traffic measurements. Knowl-
edge of this function is useful because, under some assump-
tions on the traffic arrival process, it holds that

, for large, where solves the equation
. The crucial assumption, however, is that the arrival process

be short-range dependent; otherwise, one cannot be sure that the
cumulant exists. Think of fBm, for which is of the
form , so that, for
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The fact that this method cannot be used for long-range depen-
dent traffic makes its use for dimensioning purposes limited. We
remark that a crucial difference with our approach is that [12]
and [16] measure traffic, whereas we propose to measure (or
better, to sample) the buffer content.

Another related study is by Kesidis et al. [8]. As in our
method, their approach relies on the estimation of the buffer
content distribution . Under the assumption of
short-range dependent input, is linear for large

(with slope ). Having estimated , the probability of
overflow over higher buffer levels can be estimated by extrapo-
lating linearly. For long-range dependent traffic,

is not linear (see Fig. 7), and hence, this method
cannot be used.

Another approach to minimize the measurement effort was
presented in [5]. There, traffic is assumed to be Gaussian, but
with the correlation structure of the input model. In-
terestingly, under the link transparency criterion, the required
bandwidth simplifies to , where depends on
the performance criterion (i.e., and ) and on the character-
istics of a single flow (i.e., the distribution of the flow duration

and the traffic rate ) but not on the traffic arrival rate . This
property enables a simple estimate of the additionally required
bandwidth if, in a future scenario, traffic growth is mainly due to
a change in (e.g., due to growth of the number of subscribers)
and not due to changes in user behavior.
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