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Abstract

Positive and negative time-lags are general timing restrictions between the starting times of
jobs which have been introduced by Roy (C.R. Acad. Sci., 1959, T.248) in connection with
the Metra Potential Method. Although very powerful, these relations have been considered only
seldom in the literature since already for a single-machine problem with positive and negative
time-lags the problem of 3nding a feasible solution is NP-complete. In this paper a local search
approach for a single-machine scheduling problem with positive and negative time-lags and the
objective to minimize the makespan is presented. Since the existence of a feasible initial solution
for starting the search can not be guaranteed, infeasible solutions are incorporated into the search
process. Computational results based on instances resulting from shop problems are reported. ?
2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Almost 40 years ago, Roy [21] introduced a simple but powerful tool to model
project networks. For his metra potential method (MPM) he used two types of relations
between activities. The 3rst type expresses that between the starting points of two
activities there must be a minimal (positive) time-lag. The second stipulates that there
must be a maximal (negative) time-lag. Although these time-lags were extremely useful
for modeling projects, they were hardly used over the ensuing three decades. Results of
Bartusch et al. [3] and Brucker et al. [5] may explain this at 3rst sight surprising fact.
Whereas Bartusch et al. [3] show that arbitrary time-lags may be used to model release
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times and deadlines of activities and time-dependent resource availability, Brucker et al.
[5] show that many complex scheduling problems like general shop problems, problems
with multi-processor tasks, problems with multi-purpose machines, and problems with
changeover times can be reduced to a single-machine problem with arbitrary time-lags.
As a consequence, already for very simple resource-constrained scheduling problems
with arbitrary time-lags between the activities, the question whether or not a feasible
schedule exists is NP-complete.
In recent years, arbitrary time-lags were reanimated again. Several papers developing

heuristics or branch-and-bound methods occurred mainly in the area of project schedul-
ing [3,8,10,12,18,24]. Besides this, some research was carried out for single-machine
problems. Balas et al. [4] propose an eGcient adaption of Carliers algorithm for
the single-machine problem with heads and tails 1|ri; qi|Cmax [9] to the case with
positive time-lags. Wikum et al. [23] investigated the complexity of single-machine
problems with minimal and=or maximal distances between jobs. Their main results
show that scheduling problems of this type with a very simple structure are already
NP-hard. Furthermore, Brucker et al. [5] provide a branch-and-bound approach for
solving a single-machine problem with arbitrary time-lags.
In this paper we will consider the application of local search to the single-machine

problem with positive and negative time-lags and the objective to minimize the
makespan. Based on the reductions presented by Brucker et al. [5] such heuristics
may be seen as a type of general purpose heuristics since in principle they can also be
used to solve various other types of scheduling problems. A main obstacle for develop-
ing local search heuristics for the considered problem is the fact that the determination
of a starting solution is already a hard problem. We will overcome this by incorpo-
rating infeasible solutions in the search process. More precisely, we will consider all
sequences of jobs which are admissible for the positive time-lags only as solutions
regardless of whether a feasible schedule respecting this sequence exists or not.
The paper is organized as follows. In Section 2 we will give a formal de3nition of the

considered problem and present a network representation for the instances. Afterwards,
in Section 3 we will formulate the problem of 3nding the best schedule for a given
sequence of the jobs (if such a schedule exists) as a longest path problem and develop
an eGcient method to determine such a schedule. Section 4 will be devoted to the
description of local search methods. A basic method will be a tabu search approach
which starts with an ‘infeasible’ sequence of the jobs and which tries to guide the
search to a feasible sequence. This basic routine will be packed in an outer method
which has two features. Whenever a feasible solution has been detected through the
basic routine, the given instance will be changed in such a way that the current solution
becomes infeasible and only improving solutions of the current solution correspond to
feasible solutions of the changed instance. After the change of the instance the basic
routine starts again with the current solution, which is now infeasible and tries to 3nd a
feasible and thus improving solution. If after a certain amount of time the basic routine
is not able to 3nd a feasible schedule, the outer method has a second task. It applies
diversi3cation operators to the current solution in order to reach another area of the
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search space which perhaps contains a feasible solution. In Section 5 computational
results using instances which are generated by reductions of benchmark instances for
job-shop and open-shop problems are presented. The paper ends with some concluding
remarks.

2. The problem

In this section we will give a formal de3nition of the considered problem and in-
troduce some useful notations.
Let J={1; : : : ; n} be a set of n jobs with processing times p1; : : : ; pn to be scheduled

without preemption on a single machine. Furthermore, we have a set of relations called
time-lags of the form

Si + dij6Sj for all (i; j) ∈ R; (1)

where R⊆ J × J and Si denotes the starting time of job i, i = 1; : : : ; n (all data are
assumed to be integral). If dij¿0, then (1) means that job j cannot be started earlier
than dij time units after the starting time of job i (minimal time-lag). On the other
hand, if dij ¡ 0, then job j cannot be started earlier than |dij| time units before the
starting time of job i (maximal time-lag).
Since we consider non-preemptive solutions, a schedule of the jobs is uniquely de-

3ned by a vector of starting times S1; : : : ; Sn for the jobs. Such a schedule S=(S1; : : : ; Sn)
is called a feasible schedule if
• for all i �= j the intervals [Si; Si + pi[ and [Sj; Sj + pj[ are disjoint and
• the time-lags (1) are satis3ed.
The goal is to 3nd a feasible schedule which minimizes the makespan Cmax=maxi=1; :::; n
{Si +pi} if such a schedule exists. As mentioned in the introduction, for this problem
the question of whether or not a feasible solution exists, is already NP-complete (see
Bartusch et al. [3] and Brucker et al. [5]).
For convenience of notation, we will add two dummy jobs 0 and n+1 with processing

times zero to the job set J . Job 0 is a starting job which must be “processed” before all
other jobs i (i.e. d0i =0) and job n+1 is a 3nal job which must be “processed” after
all other jobs i (i.e. di;n+1 = pi). Furthermore, we may assume that for each job-pair
(i; j) ∈ (J ∪ {0; n + 1})2; i �= j, a relation Si + dij6Sj is de3ned (if this is not the
case, we introduce a redundant relation with dij =−∞).
To represent the time-lags R, we will make use of a network N (R) which is de3ned

as follows:
• the vertex set V ={0; 1; : : : ; n; n+1} consists of all jobs 1; : : : ; n and the two dummy
jobs 0 and n+ 1;

• for each pair (i; j) of jobs i; j=0; : : : ; n+1 with i �= j there is an arc (i; j) of length
dij.

If we calculate in this network N (R) the longest path lengths l(i) from the starting job
0 to all jobs i, i = 1; : : : ; n + 1 (if this is not possible since N (R) contains a positive
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cycle, the given instance has no feasible schedule), the schedule where job i starts at
time l(i), i = 1; : : : ; n, respects the time-lags, but is not necessarily feasible since jobs
may overlap.
Before discussing methods of how to solve these conNicts of overlapping jobs, we

would like to mention two techniques to sharpen the given time-lags (for details and
further methods, see [3,5]). Firstly, we may replace the length dij of a given time-lag
by the length of a longest path from i to j in N (R). Furthermore, if dij ∈ ]–pj; pi[,
we may replace dij by pi since job j cannot be scheduled before job i and dij ¿ 0
implies dij¿pi. In the following we will assume that the given data of the problem
has been modi3ed according to these two rules.

3. Fixed job sequences

In the previous section we have noticed that a main scheduling decision for the
considered problem is to determine an order in which the jobs will be scheduled.
However, in contrast to most other non-preemptive one-machine scheduling problems,
a 3xed decision for all pairs of jobs (i.e. a 3xed sequence for the jobs) does not
directly lead to a corresponding schedule, since due to negative time-lags (maximal
distances) we cannot apply simple list scheduling heuristics. In the remaining part of
this section we will present an eGcient method to determine a best schedule of the
jobs which respects the given time-lags and a 3xed sequence of the jobs if such a
schedule exists.
Let � be an arbitrary sequence of the jobs. In each schedule (Si)ni=1 respecting the

sequence � we must have

S�(i) + p�(i)6S�(i+1) for all i ∈ {1; : : : ; n− 1}; (2)

i.e. between the jobs �(i) and �(i+ 1) we have a time-lag of length p�(i). Thus, each
feasible schedule respecting � has to respect the time-lags d�

ij de3ned by

d�
ij =

{
max{pi; dij} if i = �(k); j = �(k + 1);
dij otherwise:

By N (R�) we will denote the network N (R), where the arc lengths are given by the
values d�

ij.
To calculate the best schedule respecting � we may calculate in the network N (R�)

the lengths l�(i) of the longest paths from the starting job 0 to all jobs i; i=1; : : : ; n+1.
If the network contains a positive cycle, clearly no feasible schedule respecting � exists.
Otherwise, the schedule where each job i starts at time l�(i) is feasible (due to (2) no
jobs overlap) and has a makespan of length C�

max = l�(n + 1) which is minimal over
all schedules respecting �.
In principle, the values l�(1); : : : ; l�(n+1) can be calculated using the Floyd–Warshall

algorithm (see, e.g., [2]). The complexity of this algorithm is O(n3) and in the case
where no positive cycle exists, this algorithm really executes n3 steps. Since our goal
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is to carry out local search on the set of all possible job sequences, the calculation of
the values l�(1); : : : ; l�(n+1) will be executed very often which will mainly determine
the computational time for the local search approaches. Therefore, in the following we
will present an alternative longest path method which takes advantage of the structure
of the time-lags d�

ij. The resulting method will also have a worst time complexity of
O(n3). However, in the worst case approximately at the most 1

4n
3 steps are executed

and on average the method will stop much earlier. Furthermore, the new method is
more suitable than the Floyd–Warshall algorithm to identify a positive cycle in the
case where one exists.
Before describing the longest path method, we will 3rst introduce an additional

notation. A schedule S = (S1; : : : ; Sn) is called partially feasible w.r.t. � if it respects
all minimal time-lags de3ned by d�

ij. Our method will iteratively transform partially
feasible schedules into partially feasible schedules. During this process the starting
times of the jobs will not decrease.

Algorithm CalculateSchedule (�)
calculate an initial partially feasible schedule S w.r.t. �;
WHILE S is not feasible DO

S:=improve(S; �);

An initial partially feasible schedule is obtained by calculating the longest paths from
the starting job 0 to all other jobs considering only the non-negative time-lags de3ned
by the values d�

ij of the given sequence �. The procedure improve(S; �) considers the
jobs in order �(1); : : : ; �(n). If the job �(i) violates a time-lag in the current schedule
S, we increase S�(i) to the 3rst point where job �(i) respects all time-lags.

Procedure improve(S; �)
FORi = 1 TO n DO

S�(i):=max{Sj + d�
j;�(i) | j = 1; : : : ; n; j �= �(i)}.

Obviously, no starting time Si is decreased in improve(S; �) and at the end of the
procedure we again have a partially feasible schedule w.r.t. �.
It remains to show that the algorithm CalculateSchedule(�) terminates and to esti-

mate its running time.

Lemma 1. If the network N (R�) does not contain a cycle of positive length; the
algorithm CalculateSchedule(�) terminates after at the most (n − 1)=2 iterations of
the WHILE-loop.

Proof. The values Sk during the algorithm CalculateSchedule(�) are always equal to
the length of a path Pk from job 0 to job k in N (R�); k=1; : : : ; n. Initially these paths
consist of only arcs of positive length.

Claim 1. If in the lth iteration of the WHILE-loop the value Sk increases; each path
Pk corresponding to the new value contains exactly l arcs of negative length.
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Proof of Claim 1. We will prove the claim by induction on the order in which the
values Sk are increased. Assume that the value Si has been increased in the lth iteration
and that j is a job with Si = Sj + d�

ji. Since the rede3nition of Si in iteration l − 1
assured that job i ful3lled all time-lags at that moment, Sj must have been increased
since that time. If j comes after i in �, the time-lag d�

ji is negative and Sj has been
increased in iteration l−1. Thus, by induction the path corresponding to Sj has exactly
l − 1 arcs of negative length and therefore the path corresponding to Si has exactly l
arcs of negative length. If j comes before i in �, the time-lag d�

ji is positive and Sj

has been increased in iteration l. Thus, by induction the path corresponding to Sj has
exactly l arcs of negative length and therefore the path corresponding to Si also has
exactly l arcs of negative length.

Next we will bound the number of arcs of negative length which may occur in a
path Pk corresponding to a value Sk .

Claim 2. In each path Pk corresponding to a value Sk no two consecutive arcs may
have negative lengths.

Proof of Claim 2. If two consecutive arcs (i; j) and (j; k) on a longest path Pk have
negative lengths, we have d�

ij + d�
jk = dij + djk6dik6d�

ik (the 3rst inequality follows
from the assumption that the original values dij are transitive closed). Thus, in the
iteration where the arc (i; j) led to an increase of the value Sj, the arc (i; k) ensured
that Sk¿Si + d�

ik¿Si + d�
ij + d�

jk = Sj + d�
jk . Therefore the arc (j; k) cannot be used to

increase Sk before Sj has been changed again, which is a contradiction.

Since we assume that the network N (R�) has no cycles of positive length, a path
Pk in N (R�) from 0 to a vertex k contains at the most n arcs. Furthermore, on such
a path Pk , before the 3rst arc with negative length, at least one arc which represents
a real minimal time-lag (i.e. d�

ij ¿pi) and at least one arc with length d�
ij = pi must

occur. The second part of the statement follows from the fact that the time-lags given
by the instance are assumed to be transitive closed. Thus, by Claim 2 the path Pk has
at the most �(n − 2)=2
6(n − 1)=2 arcs of negative length. Claim 1 now proves the
lemma.

To estimate the running time of the algorithm CalculateSchedule(�) it remains to
estimate the complexity of the procedure improve(S; �).

Lemma 2. If the network N (R�) does not contain a cycle of positive length; in the
lth iteration of the WHILE-loop of the algorithm CalculateSchedule(�) at the most
n− 2l values Si can be changed by the procedure improve(S; �).

Proof. If in the lth iteration one value Si is changed, the network N (R�) contains at
least one longest path Pk from 0 to a vertex k with at least l arcs of negative length.
As mentioned in the proof of Lemma 1, each path Pk starts with at least two arcs of
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non-negative length and contains no two consecutive arcs with negative lengths. Thus,
before the lth arc of negative length on Pk at least 2l vertices (excluding 0) occur.
The longest paths to these vertices contain less than l arcs of negative length and,
thus, the corresponding Si-values are already 3xed before iteration l (see Claim 1 in
the proof of Lemma 1).

Using these two lemmata we get

Theorem 3. Algorithm CalculateSchedule (�) can be implemented to run in O(n3).

Proof. Lemma 1 states that we can terminate the algorithm if after the iteration
(n − 1)=2 the current schedule is not feasible. In this case the network N (R�) con-
tains a positive cycle and the sequence � does not represent a feasible solution.
The calculation of the initial solution needs O(n2) steps. By combining Lemmata 1

and 2 we can bound the number of changes of Si-values by

(n−1)=2∑
l=1

n− 2l=
(

n− 1
2

)2
:

If directly after each change of an Si-value, we calculate the inNuence of the new
Si-values together with the time-lags d�

ij on the Sj-values (n − 1 steps), we get the
stated upper bound on the number of steps.

If the algorithm terminates with a feasible schedule S, it will be of importance for
the de3nition of suitable neighborhoods (see Section 4) to identify the longest paths
corresponding to the starting times of the jobs. To be able to reconstruct these paths,
a vector pre will be introduced, where pre(i) will denote the predecessor of i on the
longest path Pi determining the current value of Si. After an initialization depending
on the initial partially feasible schedule, these values always have to be updated if in
the procedure improve (S; �) a value Si is increased.
It remains to consider the case in further detail, where no feasible schedule w.r.t. �

exists. The algorithm CalculateSchedule(�) is able to detect infeasibility at two places:
If after �(n − 2)=2
 iterations the current partially feasible schedule is not feasible
(Lemma 1) or if in iteration l more than n− 2l values Si are updated (Lemma 2), no
feasible schedule w.r.t. � can exist.
In the 3rst case, each violated maximal time-lag dij in the current schedule S leads

in connection with the path Pi determining Si (since Si must have been changed in the
last iteration, Pi contains at least n arcs) to a positive cycle which can be determined
by the use of the vector pre. In the second case, it is easy to show that a positive
cycle can be determined using the vector pre starting with an arbitrary job i for which
the Si-value has been changed in the lth iteration (for details, see [16]).
Besides these two direct ways of determining positive cycles, it is possible to incor-

porate some additional tests into the algorithm CalculateSchedule(�) without increas-
ing the worst-case bound in Theorem 3. These tests are based on the stored values
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of the lengths of longest paths between arbitrary vertices. Initially these values lij,
(i; j = 0; : : : ; n) are de3ned by the values d�

ij. Whenever a value Sj is increased during
the algorithm, it is checked whether or not the time-lag d�

ij, which was responsible for
this increase, may be used to increase the values of other longest paths: If lki+d�

ij ¿ lkj,
we increase lkj to lki+d�

ij (these updates correspond to a subset of steps which are also
executed during the Floyd–Warshall algorithm). To detect positive cycles, we always
check if lkj + ljk ¿ 0 when a value lkj is increased. If this is the case, the network
N (R�) contains a positive cycle and we may stop. To reconstruct this cycle, we also
have to store the predecessors on longest paths. Computational tests have shown that
on average the incorporation of these additional tests pays oQ. This indicates that the
additional tests help to detect positive cycles much earlier. On the other hand, the
Floyd–Warshall algorithm has been shown to be much slower than our method.

4. A local search approach

In this section we will present a local search method for a single-machine problem
with positive and negative time-lags. Firstly, we will discuss how we choose the search
space and how we de3ne the objective values of the solutions. Subsequently, we will
introduce the neighborhoods which form the basis of the local search approach (for an
introduction to the basic ideas of local search and neighborhoods, see e.g. Papadimitriou
and Steiglitz [20] or Aarts and Lenstra [1]). Finally, we will describe the main structure
of the developed local search heuristic.
Since for the single-machine problem with positive and negative time-lags the search

for a feasible solution is already NP-hard, we somehow have to deal with infeasible
solutions. In our approach we will consider the set of all sequences of the jobs which
are compatible with the non-negative time-lags as search space S, i.e.

S= {�= (�1; : : : ; �n) | if d�i�j¿0 then i¡ j}:
In general, this set S will also contain sequences for which no corresponding
feasible schedule exists. This causes problems for de3ning suitable objective values
for the sequences. Whereby for ‘feasible’ sequences we may de3ne the objective
value as the makespan of the best schedule w.r.t. � (calculated by the algorithm
CalculateSchedule(�)), ‘infeasible’ sequences are harder to tackle. For such sequences
� we somehow have to measure the degree of infeasibility. To de3ne such a measure,
we will make use of the starting times of a partial feasible schedule S w.r.t. �. More
precisely, we will apply the algorithm CalculateSchedule(�) and use the partial feasible
schedule S with which we started the iteration in which the infeasibility was detected.
The objective value of � will now be de3ned by a measure on the infeasibility of this
partial feasible schedule S. Possible measures are:
• Z1: number of violated time-lags in S.
• Z2: value of the maximal violation of a time-lag in S.
• Z3: sum of the violations of time-lags in S.
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At this point, it is important to note that these measures are not ‘sharp’, since they
crucially depend on the time at which we stop the algorithm CalculateSchedule(�).
It may occur that the partial feasible schedule, which we would achieve after one
additional iteration, has a totally diQerent measure of infeasibility.
Although we have the possibility of calculating the objective values for feasible

and infeasible sequences with the same routine, it is rather inconvenient to have two
diQerent types of measures. To avoid this, we will arti3cially make all considered
sequences infeasible. Whenever a feasible solution is detected, we will modify the
given instance by increasing the time-lag dn+1;0 to the value −(K − 1), where K is
the makespan of the feasible solution. By bounding the distance between the starting
job 0 and the 3nal job n+ 1 by K − 1, only schedules with a makespan smaller than
K remain feasible. Thus, the current schedule becomes infeasible and the search for
a feasible solution corresponds to the search for a solution which improves the best
solution found so far.
Based on the above-mentioned technique to always modify the given instance when

a feasible schedule has been detected, we may de3ne the neighborhoods for the local
search method on the base of infeasible sequences. Since the neighborhoods mainly
determine navigation through the search space, their de3nition should be based on the
goal to 3nd feasible sequences. In the following theorem we will prove that this goal
can only be achieved by speci3c changes to the given infeasible solution.
To state the theorem we 3rst have to introduce a special decomposition of cycles.

Let C = (i1; : : : ; ik ; ik+1 = i1) be a cycle in a network N (R�) (w.l.o.g. we will assume
d�

ik i1 = dik i1 ). A subsequence B= (ij; : : : ; il) of C is called a block if the lengths of the
arcs within B are determined by the sequence �, and if the lengths of the two arcs
which combine B with the rest of the cycle are determined by original time-lags, i.e.
d�

ir ir+1=pir ¿dirir+1 ; r=j; : : : ; l−1; d�
ij−1ij=dij−1ij ; and d�

ilil+1=dilil+1 . It is straightforward
to see that each cycle C decomposes uniquely into a sequence of blocks. Based on
this decomposition of cycles into blocks we can prove:

Theorem 4. Let � be a given infeasible sequence of the jobs; let C=(i1; : : : ; ik ; ik+1=i1)
be a cycle in N (R�) with positive length; and let B1; : : : ; Br be the blocks of C.
If; for some sequence �′; a corresponding feasible schedule exists; one of the fol-

lowing two properties holds:
• in �′ at least one job of a block Bi diAerent to the .rst job in Bi is sequenced
before all other jobs in Bi or

• in �′ at least one job of a block Bi diAerent to the last job in Bi is sequenced after
all other jobs in Bi.

Proof. Let f(Bi) (l(Bi)) be the 3rst (last) job of block Bi; i = 1; : : : ; r. Assume that
for a feasible sequence �′ none of the stated properties holds. Thus, all jobs of Bi are
sequenced between f(Bi) and l(Bi) in the sequence �′. This implies that the length
of a longest path from f(Bi) to l(Bi) in N (R�′

) is at least
∑

i∈Bi\{l(Bi)} pi. Since,

furthermore, we have d�′
l(Bi)f(Bi+1)¿d�

l(Bi)f(Bi+1); i=1; : : : ; r (f(Br+1)=f(B1)), the length
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of C in N (R�′
) is greater than or equal to the length of C in N (R�) and, thus, positive.

This implies that no feasible schedule w.r.t. �′ exists, which is a contradiction.

Properties similar to those stated in the above theorem have been developed for shop
problems and are used as a basis for branch-and-bound methods (see, e.g. Brucker
et al. [7,6]) as well as for local search heuristics (see, e.g. Dell’Amico and Trubian
[11], Hurink et al. [15], Nowicki and Smutnicki [19]). The basis of these results is
given in a work by Grabowski et al. [14], in which the notation of a block is introduced
in connection with a one-machine scheduling problem.
In principle, the above theorem describes possible ways in which a cycle of positive

length can be destroyed. Since the destruction of such cycles is necessary to obtain
feasible solutions, we may use Theorem 4 to de3ne neighborhoods. Let � be a given
infeasible sequence and let C be a cycle of positive length in N (R�). Furthermore, let
B1; : : : ; Br be the blocks of C. The neighborhood N(�) of the sequence � is de3ned
as the set of all sequences which are obtained by one of the following operators:
• A job k ∈ Bi \ {l(Bi)} is moved directly after job l(Bi).
• A job k ∈ Bi \ {f(Bi)} is moved directly in front of job f(Bi).
Obviously, the number of sequences in a neighborhood N(�) depends on the number
of jobs in the cycle C and the partition of this cycle into blocks. For the de3ned
neighborhood we can prove that it is possible to reach a globally optimal solution
independently of the initial solution.

Theorem 5. The given neighborhood N is weakly connected; i.e. for each solution �
a sequence of solutions �1; : : : ; �k exists such that �1 = �; �i+1 ∈ N(�i); and �k is a
globally optimal solution.

Proof. w.l.o.g. we may assume that initially the length of the arc (n + 1; 0) is given
by −K , where K is the makespan of an optimal solution. Thus, we only have to prove
that it is possible to reach a feasible solution starting from an arbitrary solution �.
Let �′ be a feasible solution. Due to Theorem 4 there exists a job j in some block

Bi of a positive cycle in N (R�) which is sequenced in �′ before or after all other jobs
of block Bi. If we move to the corresponding neighbor (move j before or after Bi) we
get a solution where j is sequenced relative to all other jobs of Bi in the same way as
in �.
If we iteratively repeat this process, we never will destroy the relative order between

j and the other jobs of Bi since we always choose the moving job according to Theorem
4. Thus, after a 3nite number of steps we will get to a feasible solution.

The de3nition of the neighborhood of a sequence � depends not only on � but also
on the chosen positive cycle C in N (R�). The connectivity of the de3ned neighbor-
hood is independent of this choice. However, for a practical application we have to
make a deterministic choice: If within the procedure CalculateSchedule(�) infeasi-
bility is detected, we reconstruct the positive cycle which corresponds to the last
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considered time-lag. Otherwise, if CalculateSchedule(�) produces a feasible sched-
ule with makespan K , a critical path corresponding to this schedule together with the
arc (n+ 1; 0) with new length −(K − 1) results in a cycle with length 1.
After de3ning the search space, the objective values, and the neighborhood, we can

now describe the main structure of the developed local search approach. The basis of
this approach is a tabu search method, which will be embedded in an outer method
where some diversi3cation of the search will be realized. The reason for applying di-
versi3cation is that we do not want to give up the search at the 3rst point at which the
tabu search method gets stuck. Technically, this will be realized as follows: Whenever
the tabu search method stops, we apply some diversi3cation operator to the current best
solution and again start tabu search with the changed solution. If this new run leads
to an improvement, we repeat this process. Otherwise, if the last run of tabu search
did not lead to an improvement, we apply some other diversi3cation operator to the
current best solution. We stop when all possible diversi3cation operators have been
applied without success. The structure of the outer method can be summarized as
follows:

Algorithm Local Search
calculate an initial sequence �;
�′:=�;
�:=TabuSearch(�);
WHILE diversi.cation is possible DO

BEGIN
�′:= diversi.cation(�);
�′:= TabuSearch(�′);
IF �′ is better than � THEN

�:=�′;
END;

In the above description the statement diversi.cation is possible means that not all
possible diversi3cation operators have already been applied to the current best solution
�. In our application of this algorithm we have considered two possible diversi3cation
operators. They are dependent on the blocks B1; : : : ; Br of the chosen positive cycle C
in the network N (R�). More precisely, the 3rst diversi3cation operator div1 changes all
blocks and the second diversi3cation operator div2 only changes every second block
of C in the following way:

if |Bi|¿4: exchange f(Bi) with its successor and
l(Bi) with its predecessor;

if |Bi|63: exchange f(Bi) and l(Bi) if this is allowed:

The initial sequence � for the local search approach has been calculated by a priority
rule-based heuristic. In the ith step of this heuristic a job will be sequenced at position
i, i.e. job �i will be determined, and a starting time S�i for this job will be 3xed. Job
�i is chosen by a priority rule from the set of jobs which have predecessors w.r.t.



190 J. Hurink, J. Keuchel / Discrete Applied Mathematics 112 (2001) 179–197

the minimal time-lags only in the set {�1; : : : ; �i−1} of already sequenced jobs. The
starting time of job �i will be determined such that job �i is scheduled after job
�i−1 and respects all minimal time-lags from jobs in {�1; : : : ; �i−1}. Thus, the resulting
schedule S is partially feasible w.r.t. �. As priority rules we have used
P1: Choose the job with minimal earliest possible starting time.
P2: Choose the job with minimal latest possible starting time.
P3: Choose the job with maximal number of successors with

respect to the minimal time-lags only.
It remains to describe the elements of the tabu search method we used in more

detail.
• Tabu list management: We have chosen a tabu list of 3xed length. This length
will be de3ned depending on the size of the instance (e.g. const · √n or const · n).
The entries of the tabu list are tuples (i; j), where i and j are jobs. If we apply
an operator which moves a job i directly before (after) a job j we insert the tuple
(i; j) ((j; i)) into the tabu list. The application of an operator is declared tabu if this
operator exchanges two jobs which form a tuple of the tabu list.
Besides this direct use of the tabu list, we have also used it to realize a diversi3cation
strategy. The idea behind this strategy is to help the tabu search method to occupy
diQerent regions of the search space. Our attempt to promote this goal is to forbid
operators, if they make changes which already have been used often in the search
process. More precisely, we store the number of times the tuple (i; j) has been
inserted into the tabu list in a variable nij; i; j ∈ {1; : : : ; n}. If we now try to apply
an operator which exchanges two jobs i and j, for which nij + nji¿FREQ (FREQ
is a given constant) holds, we declare this operator tabu, insert (i; j) into the tabu
list, and reset the values of nij and nji to 0.

• Reduction of the size of the neighborhoods: For the presented approach, the eval-
uation of one neighbored sequence is time-consuming since we have to execute a
longest path calculation. Furthermore, the computational time for one iteration of
tabu search depends directly on the size of the neighborhood. Thus, it is of impor-
tance to have small neighborhoods to get reasonable computational times for the tabu
search approach. Theorem 4 gave us a 3rst approach to get small neighborhoods. To
get a further reduction of the number of neighbored sequences to be evaluated we
make use of some easily calculable estimates of the change of the objective value.
More precisely, for each possible operator op we calculate an estimate E(op) of the
change of the objective value if we apply operator op to the current solution. The
correct objective values only will be calculated for a subset of neighbored sequences
with good estimates.
This approach is only useful if we have estimates which can be calculated much
faster than the complete objective values. We have calculated the estimates as fol-
lows: If job i is moved to the beginning (end) of a block B, we consider the potential
new starting time S ′

i = Sf(B) (S ′
i = Sl(B) + pl(B) − pi) for job i and measure the in-

feasibility of the time-lags to job i (from job i) by one of the measures Z1; Z2; Z3
de3ned at the beginning of this section.
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• Calculation of the best non-tabu neighbor: In a standard tabu search approach the
best non-tabu neighbor is chosen as the next solution. However, as already men-
tioned, the objective measures for the infeasible sequences are not ‘sharp’. To in-
corporate this into our search process, we have not determined the next sequence as
the best non-tabu neighbor w.r.t. one of the objective measures but as follows: By a
primary measure Z we calculate a subset S1 of good neighbors. More precisely, S1
is the subset of all neighbored sequences for which the objective measure is within
a distance % (% is a given constant) of the objective measure of the best neighbor.
From this subset S1 we choose as the next solution the best w.r.t. a second objective
measure Z ′.
To reduce the computational times for one iteration of tabu search, we have also
tested a ‘3rst-improvement’ strategy to determine the next solution. If, during the
evaluation of the neighborhood of the current solution, a solution is detected which
improves the current solution, we stop the evaluation of the neighborhood and di-
rectly move to the improving solution. Again, we will consider the unsharpness
of the objective measures by only declaring a solution as an improving solution
if its measure is at least % units better than that of the current solution. If the
neighborhood contains no improving solution (in the sense just de3ned), we use the
selection mechanism described above. This strategy may reduce the computational
times for one iteration at the price of a potential decrease in the quality of the next
solution.

• Stopping condition: We will stop the tabu search method if in the last maxiter
iterations the current best solution has not been improved, where maxiter is a given
constant.

5. Computational results

In the previous section we have described a local search approach for the single-
machine problem with positive and negative time-lags. We implemented this method
using the programming language C and we tested the algorithms on a SUN ULTRA,
167 MHz.
First, we will describe how several of the parameters of the local search approach

were 3xed. These decisions are the outcome of preliminary tests (a more detailed report
on these tests is given in Keuchel [16]).
• Initial solution: The tests have shown that there is no signi3cant diQerence between
the three priority rules P1, P2, and P3. We have used P1.

• Objective measure: As a primary measure Z the sum-objective Z3 gave the best
results. The unsharpness %, by which the set of good neighbors S1 w.r.t. the primary
measure is determined, has been 3xed to n=8 + 34. To select one solution from S1
we choose the solution with maximal value Z3=Z1.

• Tabu list management: The length of the tabu list is √
2n − 2 and the frequency

counter FREQ for the diversi3cation of the search was 3xed at 7.



192 J. Hurink, J. Keuchel / Discrete Applied Mathematics 112 (2001) 179–197

Table 1
Dimensions of the test instances

Open-shop m × n n Job-shop m × n n
(orig.) (red.) (orig.) (red.)

tai01–tai10 4× 4 34 FT1 6× 6 74
tai11–tai20 5× 5 52 FT2 10× 10 202
tai21–tai30 7× 7 100 LA01–LA05 5× 10 102
tai81–tai90 8× 8 130 LA06–LA10 5× 15 152
tai91–tai100 9× 9 164 LA11–LA15 5× 20 202
tai31–tai40 10× 10 202 LA16–LA20 10× 10 202

• Reduction of the size of the neighborhood: To reduce the neighborhoods, we will
use as a measure for the estimates the sum-measure Z3. Based on the estimates, the
neighborhood of a sequence is reduced as follows: For each block B the interchanges
of the 3rst two and the last two jobs are considered independently of their estimate.
For blocks B with |B|¿4 one right-shift and one left-shift is chosen additionally and
for blocks B with |B|¿7 two right-shifts and two left-shifts are chosen additionally.
To test the local search approach, no benchmark instances from the literature are

available. However, Brucker et al. [5] have described rather direct reductions of shop
problems to a single-machine problem with positive and negative time-lags which were
used to generate test instances for a branch-and-bound method. Their computational
results show that the reduced instances are very diGcult. Thus, we will use these
instances to test the local search approach, too. In detail, we considered the following
problems:
• Job-shop instances: These instances result from a reduction of job-shop benchmark
instances from Fisher and Thompson [13] (FT1, FT2) and from Lawrence [17]. The
dimensions of the original job-shop instances (n denotes the number of jobs and m
the number of machines) and of the reduced instances are given in Table 1.

• Open-shop instances: These instances result from a reduction of open-shop bench-
mark problems from Taillard [22] (tai01–tai40) and Brucker et al. [6] (tai81–tai100).
Problems tai91–tai100 (tai81–tai90) are obtained from the instances tai31–tai40 from
Taillard by removing the last (and the second-last) job and machine, i.e. by remov-
ing the last (and the second-last) row and column. The dimensions of the original
open-shop instances (again n denotes the number of jobs and m the number of
machines) and of the reduced instances are given in Table 1.
In a series of tests we tried to 3nd out the inNuence of the selection strategies

(Best-Improvement or First-Improvement), the size of the neighborhood (complete or
reduced neighborhood), and the number of iterations which may pass without any
global improvement within the tabu search approach (maxiter) on the eGciency of
the developed local search approach. Tables 2–4 contain the results of six diQerent
versions of the local search approach. The tables contain the following informations:
• instance: denotes the group of considered instances in the corresponding row (tai-all
represents the complete set of open-shop instances),

• num: number of instances in the instance group,
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Table 2
Best-Improvement strategy and complete neighborhood

Instance No. Best-improvement complete

maxiter = 250 maxiter = 500

diQ opt time diQ opt time

FT1 1 0.0 1 26.43 0.0 1 49.75
FT2 1 73.0 0 1093.92 22.0 0 2883.65
LA01–LA05 5 3.8 3 104.25 3.8 3 173.37
LA06–LA10 5 0.0 5 16.22 0.0 5 16.31
LA11–LA15 5 0.0 5 185.97 0.0 5 182.35
LA16–LA20 5 22.8 1 684.04 14.8 1 1298.51
tai01–tai10 10 3.5 1 7.16 1.5 4 14.99
tai11–tai20 10 13.1 0 36.76 11.7 0 67.30
tai21–tai30 10 18.6 0 292.42 16.6 0 606.74
tai81–tai90 10 8.7 0 684.48 7.1 1 1142.43
tai91–tai100 10 18.7 1 2045.15 17.4 1 3127.04
tai31–tai40 10 38.6 0 4545.58 32.1 0 7730.94
tai-all 60 16.9 2 — 14.4 6 —

Table 3
Best-Improvement strategy and reduced neighborhood

Instance No. Best-improvement reduced

maxiter = 500 maxiter = 1000

diQ opt time diQ opt time

FT1 1 0.0 1 33.30 0.0 1 67.87
FT2 1 20.0 0 2437.14 13.0 0 3472.09
LA01–LA05 5 3.4 2 81.12 3.4 2 135.48
LA06–LA10 5 0.0 5 12.30 0.0 5 12.25
LA11–LA15 5 0.0 5 53.24 0.0 5 52.81
LA16–LA20 5 16.4 0 627.22 15.0 0 1275.92
tai01–tai10 10 2.1 4 11.02 0.9 7 21.89
tai11–tai20 10 10.3 1 48.42 8.9 0 87.93
tai21–tai30 10 23.9 0 316.84 21.1 0 614.59
tai81–tai90 10 5.3 3 832.16 5.5 3 1038.12
tai91–tai100 10 18.5 0 1960.92 17.1 0 3288.73
tai31–tai40 10 29.7 0 4186.37 26.7 0 7444.30
tai-all 60 15.0 8 — 13.4 10 —

• diA: average absolute diQerence between the achieved objective values and the opti-
mal values (the presentation of relative diQerence is not useful, since by the reduction
the optimal values of the single-machine instances are approximately n + m times
larger than the optimal values of the original shop instances),

• opt: number of instances for which the optimal values were found,
• time: average computational time (in s).
The results in Tables 2 and 3 show that an increase of the maxiter value leads —

as expected — to an improvement of the results. However these improvements are
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Table 4
First-improvement strategy

Instance No. First-improvement maxiter = 500

Complete Reduced

diQ opt time diQ opt time

FT1 1 0.0 1 36.67 0.0 1 26.68
FT2 1 25.0 0 1222.04 45.0 0 1006.81
LA01–LA05 5 6.0 2 131.83 7.8 2 67.01
LA06–LA10 5 0.0 5 12.29 0.0 5 8.58
LA11–LA15 5 0.0 5 82.73 0.0 5 34.90
LA16–LA20 5 15.0 0 844.81 24.4 0 524.55
tai01–tai10 10 1.5 4 9.80 2.5 2 8.21
tai11–tai20 10 11.5 0 39.80 8.9 0 31.62
tai21–tai30 10 19.8 0 437.52 19.2 0 282.12
tai81–tai90 10 6.5 4 821.94 5.8 2 677.00
tai91–tai100 10 19.0 1 2649.45 16.6 1 1568.79
tai31–tai40 10 38.0 0 5808.12 33.4 0 4343.44
tai-all 60 16.1 9 — 14.4 5 —

mostly not very large and they cost a lot of additional computational time. On the
other hand the results of these two tables (columns with maxiter = 500) indicate that
a reduction of the neighborhood does not change the quality of the solutions a lot,
but reduces the computational times signi3cantly. If we spend this additional time for
further iterations (enlarging maxiter) the results of the reduced neighborhood are better
than that of the complete neighborhood (column reduced, maxiter = 500 vs. column
complete, maxiter = 250 and column reduced, maxiter = 1000 vs. column complete,
maxiter = 500).
Another element to reduce computational times is given by the 3rst-improvement

strategy. Results for this strategy are given in Table 4. If we compare these results
with the corresponding results for the best-improvement strategy (see Tables 2 and 3),
we observe that the computational times in several cases do not decrease very much.
This may result from an increase of the number of executed iterations. On the other
hand, the replacement of best-improvement by 3rst-improvement also does not lead to
a big decrease in quality. Sometimes the results are even better.
For determining a ‘best’ version, we have to divide the six considered versions into

two group of each three versions which roughly use the same computational times. If
we want to spend much computational time, the best-improvement strategy with the
reduced neighborhood and maxiter=1000 leads to the best results. On the other hand,
if we want to use less computational time, the job-shop instances should be solved
using the best-improvement strategy with the reduced neighborhood and maxiter=500
and the open-shop instances should be solved using the 3rst-improvement strategy with
the reduced neighborhood and maxiter = 500.
To get an impression of the eGciency of these two versions, we may compare them

with results achieved by the branch and bound method for single-machine scheduling
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Table 5
Comparison of favorite local search versions with results from literature

Instance No. Long runs Short runs UB B and B

diQ time diQ time diQ time

FT1 1 0.0 67.87 0.0 33.30 1 7
FT2 1 13.0 3472.09 20.0 2437.14 161 853 792
LA01–LA05 5 3.4 135.48 3.4 81.12 79 103
LA06–LA10 5 0.0 12.25 0.0 12.30 21 284
LA11–LA15 5 0.0 52.81 0.0 53.24 4 of 5
LA16–LA20 5 15.0 1275.92 16.4 627.22 0 of 5
tai01–tai10 10 0.9 21.89 2.5 8.21 59 4.4
tai11–tai20 10 8.9 87.93 8.9 31.62 81 250
tai21–tai30 10 21.1 614.59 19.2 282.12 121 7700
tai81–tai90 10 5.5 1038.12 5.8 677.00 8 of 10
tai91–tai100 10 17.1 3288.73 16.6 1568.79 4 of 10
tai31–tai40 10 26.7 7444.30 33.4 4343.44 0 of 10

problems with positive and negative time-lags of Brucker et al. [5]. Table 5 contains
besides the results of the two favorite local search versions the computational times
of the branch and bound method (Column B and B: an expression x of y means that
the branch and bound method was only able to solve x of the y instances within two
days) and the diQerence between a simple initial upper bound (column UB) used by
Brucker et al. [5] and the optimal value. Although the computational times of the local
search heuristics are quite large, they are much shorted than that of the branch and
bound method and for larger instances the branch and bound method often is even not
able to 3nd the optimum. Furthermore, since the branch and bound method of Brucker
et al. is a destructive method which tries to reach the optimum from below, this method
does not provide upper bounds as intermediate results. The only other known (simple)
upper bound (see column UB in Table 5) is far away from the quality of the local
search results.
The overall quality of the results achieved with the the local search methods is good.

E.g., for the famous (10×10) instance of Fisher and Thompson we get as best result a
value of 943 which is only 13 units away from the optimal value. Although the current
best heuristics developed especially for the job-shop problem 3nd the optimal value of
this instance and also need less time than our method, our result is encouraging since
for the job-shop problem it took several years of research to get to this state of the art.
Since we do not use any special properties of the shop problems but use the general
approach for single-machine scheduling problems with positive and negative time-lags,
the results of our approach are satisfactory.
Summarizing we can state that the developed local search approach is able to tackle

the considered single-machine scheduling problem with positive and negative time-lags.
For the test instances – which result from reductions from shop problems and which
have shown to be hard to solve (see Brucker et al. [5]) – our approach always 3nds
feasible solutions and the overall quality of the results is good.
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6. Conclusion

In this paper we presented a local search approach for a single-machine schedul-
ing problem with positive and negative time-lags. A crucial diGculty for developing
such a method results from the NP-completeness of the problem deciding whether
or not a feasible schedule exists for a given instance. We have dealt with this prob-
lem by incorporating also infeasible sequences into the search process. The resulting
local search method can be considered as a very general heuristic since due to reduc-
tions presented in Brucker et al. [5] many scheduling problems can be reduced rather
straightforward to the considered single-machine scheduling problem with positive and
negative time-lags. Computational results on instances achieved from shop problems
indicate that the presented method succeeds in 3nding feasible and also good solutions.
Since the computational times are still rather high, it is an interesting topic for further
research to look for possibilities to speed up the developed method.
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