
Int J Softw Tools Technol Transfer (2003) 4: 153–172 / Digital Object Identifier (DOI) 10.1007/s100090100072

Atool formodel-checkingMarkov chains

Holger Hermanns1, Joost-Pieter Katoen1, Joachim Meyer-Kayser2, Markus Siegle2

1Formal Methods and Tools Group, Faculty of Computer Science, University of Twente, P.O. Box 217
7500 AE Enschede, The Netherlands; E-mail: {hermanns,katoen}@cs.utwente.nl
2Lehrstuhl für Informatik 7, University of Erlangen-Nürnberg, Martensstrasse 3, 91058 Erlangen, Germany
E-mail: {jmmeyerk,siegle}@informatik.uni-erlangen.de
Published online: 19 November 2002 –  Springer-Verlag 2002

Abstract. Markov chains are widely used in the context
of the performance and reliability modeling of various
systems. Model checking of such chains with respect to
a given (branching) temporal logic formula has been pro-
posed for both discrete [10, 34] and continuous time set-
tings [7, 12]. In this paper, we describe a prototype model
checker for discrete and continuous-time Markov chains,
the Erlangen–Twente Markov Chain Checker (E �MC2),
where properties are expressed in appropriate extensions
of CTL. We illustrate the general benefits of this ap-
proach and discuss the structure of the tool. Furthermore,
we report on successful applications of the tool to some
examples, highlighting lessons learned during the devel-
opment and application of E �MC2.

Keywords: Markov chain – Model checking – Numeri-
cal mathematics – Performance evaluation – Probabilistic
systems – Temporal logic

1 Introduction

Traditional formal verification techniques try to answer
questions related to the functional correctness of systems.
Stated otherwise, formal verification aims at predicting
system behavior in a qualitative way. Typical problems
that are addressed by formal verification are:

(i) Safety: e.g., does a given mutual exclusion algorithm
guarantee mutual exclusion?

(ii) Liveness: e.g., will a packet transferred via a routing
protocol eventually arrive at the correct destination?

(iii) Fairness: e.g., will a repeated attempt to carry out
a transaction be eventually granted?

Correspondence to: Holger Hermanns

Prominent formal verification techniques are theorem
proving, model checking, and simulation/testing.

Model checking. Model checking [22] is a system valida-
tion technique that has received increased attention dur-
ing the last decade. Given a model of the system (the
“possible behavior”) and a specification of the property
to be considered (the “desirable behavior”), model check-
ing is a technique that systematically checks the validity
of the property in the model. Models are typically non-
deterministic finite-state automata, consisting of a finite
set of states and a set of transitions that describe how the
system evolves from one state into another. These auto-
mata are usually composed of concurrent entities and are
often generated from a high-level description language
such as Petri nets, process algebra,Promela [47] or Stat-
echarts [38]. Properties are typically specified in tempo-
ral logic, an extension of propositional logic that allows
one to express properties that refer to the relative order
of events. Statements can either be made about states
or about paths, i.e., sequences of states that model an
evolution of the system. The basis of model checking is
a systematic, usually exhaustive, state-space exploration
to check whether the property is satisfied in each state of
the model, thereby using effective methods (such as sym-
bolic data structures [54], partial-order reduction [56] or
clever hashing techniques [46]) to combat the state-space
explosion problem.

On the role of probabilities. Whereas formal verification
techniques focus on the absolute guarantee of correctness
– “it is impossible that the system fails” – in practice
such rigid notions are hard, or even impossible, to guar-
antee. Instead, systems are subject to various phenomena
of stochastic nature, such as message loss or garbling and
the like, and correctness – “with 99% change the system
will not fail” – is becoming less absolute. In this paper,

154 H. Hermanns et al.: A tool for model-checking Markov chains

we consider the automated verification of probabilistic
systems, i.e., systems that exhibit probabilistic aspects1.
Probabilistic aspects are essential for:

– Tackling problems for which non-probabilistic solu-
tions have been proven to be impossible [29]. Typi-
cal examples are distributed algorithms such as leader
election or consensus algorithms where probabilities
are used to break the “symmetry” between the pro-
cesses such that, for example, consensus will eventu-
ally be reached with probability one.

– Modeling unreliable and unpredictable system behav-
ior. Phenomena such as message loss, processor failure
and the like can be modeled as non-deterministic sce-
narios. This is often appropriate in early system de-
sign phases where systems are considered at a high
level of abstraction and where information about the
likelihood is (sometimes deliberately) left unspecified.
In later design stages, though, where the internal sys-
tem characteristics become more dominant, probabili-
ties are a useful vehicle to quantify and thus refine this
information.

– Model-based performance evaluation. As performance
evaluation is aimed at forecasting system performance
and dependability, probabilistic information – “What
is the distribution of the message transmission delay
or what is the failure rate of a processor?” – needs to
be present in order to evaluate quantitative properties
like waiting time, queue length, time between failure,
and so on.

Probabilistic models. There are different ways in which
finite-state automata can be adapted to probabilistic
phenomena. If all non-determinism is resolved by prob-
abilities, discrete-time Markov chains (DTMCs) result;
if non-determinism and probabilistic branching may
co-exist, Markov decision processes (MDPs) result. In
a DTMC each transition is thus equipped with a (pos-
sibly trivial) probability; in an MDP both probabilis-
tic and non-deterministic transitions may appear. Per-
formance and dependability analysis is mostly based on
purely probabilistic models, while randomized algorithms
are appropriately modeled by MDPs, as probabilities
typically affect just a small part of the algorithm and
non-determinism is used to model concurrency between
processes (“interleaving”). As we are mainly interested
in performance and dependability issues, we focus on
purely probabilistic systems. In particular, we consider
DTMCs and their real-time variant, continuous-time
Markov chains (CTMCs).

Modeling a telescope. As an example Markov chain we
model the failure behavior of the Hubble space telescope,
a well-known orbiting astronomical observatory. In par-
ticular, we focus on the steering unit which contains six

1 Note: verifying probabilistic systems should not be confused
with probabilistic verification, a model-checking technique (such
as [46]) based on a partial state-space search.

Fig. 1. DTMC of the Hubble space telescope

gyroscopes. These gyroscopes are essential to determine
where the telescope is pointing. Decisions to move or sta-
bilize the telescope are based on their collected informa-
tion. Due to their failure possibilities, the gyroscopes are
arranged in such a way that any group of three gyroscopes
can keep the telescope operating with full accuracy. With
less than three gyroscopes the telescope turns into sleep
mode and a space shuttle mission must be undertaken for
repair. Without any operational gyroscope the telescope
will crash. In practice, three servicing missions (1993,
1997, 1999) have been carried out so far.

The DTMC modeling the failure and repair of the
HST gyroscopes is depicted in Fig. 1. This model is
adopted from [44]. For convenience, each state is labelled
with the number of operational gyroscopes, apart from
the states in which the HST is sleeping or crashed. If
there are more than two gyroscopes operational, no re-
pairs can take place (as no mission is being sent) and
a next gyroscope will fail with probability one. In case two
gyroscopes are operational, the system can either move
to the sleep mode with probability 0.998 or one of the re-
maining gyroscopes can fail with probability 0.002. Note
that these probabilities do not depend on the outcome of
decisions taken earlier. Instead, only the current state is
decisive to completely determine the probability of evolv-
ing to a next state. This is also known as the memoryless
property of Markov chains. Unless stated otherwise, we
consider state 6, the state in which all gyroscopes are op-
erational, as the initial state.

Model checking discrete-time Markov chains. With tradi-
tional model checking approaches, properties like:

“the telescope will eventually crash”

can be formally specified and automatically checked. In
a branching-time temporal logic like CTL [21] these prop-
erties can be required to hold for all or for some paths. For
instance, the CTL-formula

∀� crash (1)

is valid in a state if all paths starting in that state will
eventually lead to a crash of the telescope. Clearly, this

H. Hermanns et al.: A tool for model-checking Markov chains 155

property is invalid for the initial state as there exists an
infinite path such as

6→ 5→ 4→ 3→ 2→ 1→ sleep1 → 6→ . . . (2)

where the telescope is never in the crash state. Under
a fair interpretation though, the possibility to jump to
the crash mode (that is present each time while visiting
state 1 or sleep1) has to be taken at least once. Thus,
under a rather weak fair interpretation – a transition that
is enabled infinitely often should be taken eventually –
property (1) is valid.

The above property does not refer to the probabilistic
aspects of the model and its validity can thus be assessed
while ignoring the transition labels. As a first step to-
wards checking properties that involve some information
about the likelihood of certain scenarios to happen, one
may check whether a certain property holds with either
probability 0 or 1. For instance, a property such as

“the telescope will eventually crash with probabil-
ity 1”

is evidently valid for the initial state of the telescope as
the probability of an infinite path that does not visit
crash, such as (2), is 0. An interesting observation is that
the fairness assumptions needed for the verification in the
non-probabilistic case are superfluous in the probabilis-
tic setting as unfair computations are typically scenarios
that happen with zero probability [13]. Although these
properties refer to the extreme probabilities 0 or 1, their
verification thus boils down to checking whether the cor-
responding non-probabilistic formula holds under a fair
interpretation. Thus, standard model checking proced-
ures can be followed. This form is known as qualitative
model checking of probabilistic systems.

As a DTMC contains quantitative information that
enables us to determine the actual probability of a certain
path being taken, one can gain more insight by check-
ing whether the probability for a certain property meets
a given lower- or upper-bound, such as

“the probability that the telescope crashes eventu-
ally without ever being in state 1 is at most 10−5”

The temporal logic PCTL (Probabilistic CTL) supports
the formal specification of such properties [34]. Clearly,
in order to assess the validity of such statements, calcula-
tions involving probabilities have to be carried out. Hans-
son and Jonsson showed that by a combination of graph
algorithms and by solving linear systems of equations,
PCTL properties over DTMCs can be automatically ver-
ified. This form of model checking is known as quantita-
tive model checking of probabilistic systems. Prototype
implementations of their algorithms have been reported
earlier in [31, 35, 53].

Continuous-time Markov chains. DTMCs are memo-
ryless since probabilistic decisions only depend on the
current state and not on decisions taken earlier. For

CTMCs, the continuous-time variant of DTMCs, where
time ranges over (positive) reals instead of discrete sub-
sets thereof, the memoryless property further implies that
the probabilities of taking next transitions do not de-
pend on the amount of time spent in the current state.
DTMCs are mostly applied to strictly synchronous sce-
narios, while CTMCs have been shown to fit in well with
(interleaving) asynchronous scenarios.

A CTMC is a finite-state automaton where transitions
are labelled by (the rates of) negative exponential distri-
butions. A formal definition of CTMCs is given in Sect. 2.
Recall that a random variable X is exponentially dis-
tributed with rate λ if the probability of X being at most
t (where t is a real-valued parameter) is given by:

FX(t) = Prob(X � t) = 1− e−λ·t for t� 0

In this case, the expected value of X is 1λ .
To illustrate the concept of a CTMC let us return to

the telescope example. We make the following, not nec-
essarily realistic, assumptions about the timing behavior
of the telescope: each gyroscope has an average lifetime
of 10 years, the average preparation time of a repair mis-
sion is two months, and to turn the telescope into sleep
mode takes 1/100 year (about 3.5 days) on average. As-
suming a base time scale of a single year, the real-time
probabilistic behavior of the failure and repair of the gy-
roscopes is now modeled by the CTMC of Fig. 2. This
model can be understood as follows. The mean residence
time of a state is the reciprocal of the sum of its outgo-
ing transition rates. In state 6, for instance, one out of 6
gyroscopes may fail. As these failures are stochastically
independent and as each gyroscope fails with rate 1

10 ,
this state has outgoing rate 6

10 . If less operational gyro-
scopes are available, these rates decrease proportionally,
and state residence times become larger. Being in state
2 there are two possibilities: either one of the remaining
two gyroscopes fails, or the telescope is turned into sleep
mode. The mean residence time of this state is 10

1002 . The
DTMC of Fig. 1 can be obtained from the CTMC of Fig. 2
by multiplying the transition rates by the mean residence
time of the state from which they emanate.

Fig. 2. CTMC of the Hubble space telescope

156 H. Hermanns et al.: A tool for model-checking Markov chains

On the applicability of CTMCs. Markov chains are widely
used as simple, yet adequate models in diverse areas,
ranging from mathematics and computer science to other
disciplines such as operations research, industrial engin-
eering, biology, and demographics. They can be used
to estimate various performance characteristics; for in-
stance, to quantify throughput of manufacturing systems,
to locate bottlenecks in communication systems, or to es-
timate reliability in aerospace systems.

Due to their modeling convenience and the presence
of efficient analysis methods, the vast majority of ap-
plications of Markov chain modeling involve CTMCs
as opposed to DTMCs. This might surprise the reader,
as exponential distributions seem at first sight not to
be of much practical value, despite their mathematical
tractability. This is misleading. Exponential distributions
are known to be an appropriate means to adequately
model many phenomena with a stochastic nature, such
as system lifetimes (failure rates), job arrival processes
(inter-arrival times), and the like. Besides, if only the
mean value of a random phenomenon is known – a situ-
ation that frequently occurs in practice – then the ex-
ponential distribution is the most indeterminate distri-
bution, i.e., the distribution with the highest degree of
randomness, that describes this phenomenon. Thus, it is
the most appropriate distribution when just mean values
are known. Technically speaking, the exponential distri-
bution maximizes the entropy [60], a well-known notion
from information theory.

Due to the rapidly increasing size and complexity of
systems, specifying and analyzing stochastic models at
the level of states and transitions becomes more and
more cumbersome and error-prone. In order to overcome
this problem, CTMCs can be generated from higher-level
specifications, such as queueing networks [24], stochastic
Petri nets [1], stochastic process algebras [16, 40, 45], or
from semi-formal software development techniques such
as UML (The Unified Modeling Language) [58] or SDL
(Specification and Description Language) [28]. The tool-
development for these techniques and their success in sev-
eral case studies of industrial importance during recent
years has provided strong evidence that these solutions
are indeed very promising.

Model checking continuous-time Markov chains. Perform-
ance and dependability analysis of CTMCs most often
boils down to the calculation of steady-state and tran-
sient state probabilities. Steady-state probabilities refer
to the system behavior in the “long run”, while the tran-
sient probabilities consider the system at a fixed time
instant t. High-level measures-of-interest are determined
on the basis of these state-level probabilities. So far, the
specification of the measure-of-interest for a given CTMC
cannot always be done conveniently, nor can all possible
measures-of-interest be expressed conveniently. In par-
ticular, measures for which a selection of paths matter are
usually either “specified” informally, with all its negative

implications, or require a manual tailoring of the CTMC
so as to address the right subsets of states.

With the use of an appropriate extension of temporal
logic such measures can be specified in an unambiguous
way. Let us illustrate this by means of the Hubble tele-
scope example. In addition to the properties discussed for
the DTMC model of the telescope, the presence of dura-
tions in a CTMC allows us to specify and verify properties
that refer to the time until a certain scenario happens.
Under the assumption that a rare astronomical event,
such as the appearance of an interesting comet in the cov-
erage of the telescope, happens in, say, five years, it would
be interesting to check whether

“the telescope is operational in exactly 5 years
from now with at least probability 99%”

Another quantity of interest is the time span before the
(fully operational) telescope has to be put into sleep mode
for the first time. In reality, this happened within 2.7
years. One could check whether

“with at most 10% chance the operational tele-
scope turns into sleep mode within 2.7 years”

As a last example property, since the Hubble space tele-
scope is planned to stay in orbit through 2010, it is worth-
while studying the likelihood of a crash before that year:

“there is at most a 1% chance that the system will
crash within the next 10 years”

given that the system was reset to state 6 in late 1999.

Contributions of this paper. Model checking of CTMCs
has been discussed in [12], introducing a (branching) tem-
poral logic called continuous-time stochastic logic (CSL)
to express properties over CTMCs. This logic is an exten-
sion of the (equally named) logic by Aziz et al. [7, 8] with
an operator to reason about steady-state probabilities.

In this paper, we describe the Erlangen–Twente
Markov Chain Checker (E �MC2), to our knowledge
the first implementation of a model checker for CTMCs,
see Fig. 3. It uses the methods proposed in [11, 12] to
model check CSL-formulas. Apart from standard graph
algorithms, model checking involves matrix-vector mul-
tiplications (for next-formulas), solutions of linear sys-
tems of equations (for until- and steady-state formulas),
solutions of systems of Volterra integral equations or,
alternatively, uniformization (for time-bounded until).
Linear systems of equations are iteratively solved by stan-
dard numerical methods [61]. Systems of integral equa-
tions are iteratively solved by piecewise integration or by
uniformization.

E �MC2 is also capable of model checking DTMCs
against properties expressed in PCTL [34]. This is not
surprising, taking into account that the algorithms needed
for CSL are a superset of what is needed to check PCTL.
The tool has been implemented in Java (version 1.2), and
uses sparse matrix representations. The paper illustrates
how the tool can be linked (among others) to generalized
stochastic Petri nets (GSPN) and to Markovian queueing

H. Hermanns et al.: A tool for model-checking Markov chains 157

Fig. 3. Model checking CTMCs with E �MC2

networks. It reports on the model checking of a GSPN-
model of a cyclic server system and of a tandem queueing
network.

Organization of the paper. Section 2 introduces CTMCs
and CSL. Section 3 discusses the tool architecture to-
gether with the model checking algorithm and some im-
plementation details. Section 4 reports on practical ex-
periences with two case studies and Sect. 5 puts the tool
in the context of related work. Section 6 concludes the
paper.

2 The model

This section introduces and explains the basic Markov
chain model. We consider a slight extension of the stan-
dard CTMC model, namely CTMCs whose states are la-
belled by atomic propositions. These labels indicate, for
instance:

– The status of buffers or other system resources,
– The value of important system variables, or
– The status of the system itself (waiting for messages,

or similar).

Note however, that the labelling has no influence on the
stochastic behavior of the CTMC; it is used purely for the
purpose of identifying elementary properties of states.

2.1 Continuous-time Markov chains

Let AP be a fixed, finite set of atomic propositions. We
define a labelled continuous-time Markov chain as a tuple
M= (S,R, L) where

– S is a finite set of states,
– R : S×S→ IR�0 is the rate matrix, and
– L : S→ 2AP is the labelling function which assigns to

each state s∈ S the setL(s) of atomic propositions a∈
AP that are valid in s.

The rate matrix R characterizes the transitions be-
tween the states of the CTMC. If R(s, s′) > 0 then it is
possible that a transition from state s to state s′ takes
place. Conversely, if R(s, s′) = 0 then no such transition
is possible. If state s has only a single possible succes-
sor state s′, then the probability of moving from state s
to s′ within t time units (for non-negative t) is given by

1− e−R(s,s
′)·t. This expression is the cumulative proba-

bility distribution function of an exponential distribution
with rateR(s, s′).

In the case where R(s, s′) > 0 for more than one state
s′, a competition between the transitions exists, also
called a race. Let E(s) =

∑
s′∈S R(s, s′), the total rate

at which any transition emanating from state s is taken.
This rate is the reciprocal of the mean sojourn time in
s. More precisely, E(s) specifies that the probability of
leaving s within t time units is 1− e−E(s)·t, due to the
fact that the minimum of exponential distributions (com-
peting in a race) is again exponentially distributed, and
characterized by the sum of their rates.

Consequently, the probability of moving from state
s to s′ in a single step, denoted P(s, s′), is determined
by the probability that the delay of going from s to s′

finishes before the delays of other outgoing edges from
s; formally, P(s, s′) =R(s, s′)/E(s) (except if s is an
absorbing state, i.e., if E(s) = 0; in this case we define
P(s, s′) = 0).

Figure 4 shows an example labelled CTMC overAP =
{a, b, c, d}, its rate matrix R, its probability matrix P ,
and vector E . Each state s is decorated with L(s). This
example will be used throughout the remainder of this pa-
per to illustrate various issues.

Note that in Fig. 4 all states are reachable from states
1 and 2. However, once state 3 is entered, the CTMC
will remain within the subset of states {3, 4, 5} forever.
Such a subset (which cannot be left and whose states are
all mutually reachable) is called a bottom strongly con-
nected component (BSCC). Whenever state 6 is entered,
the next transition will inevitably lead to state 7 which
does not possess any outgoing transition. Such a state
which cannot be left is called absorbing. An absorbing
state can also be viewed as a BSCC containing only a sin-
gle state. States which do not belong to a BSCC are called
transient.

2.2 Evolution in time

One is often interested how the probability mass flows
through the CTMC as time passes. If the system is
started in some state s ∈ S at time 0 (i.e., the prob-
ability of being in state s is 1 at time 0), the vector
πππs(t) = (πss′(t))s′∈S denotes the distribution of probabil-
ity among the states s′ at time t, where t is a non-negative

158 H. Hermanns et al.: A tool for model-checking Markov chains

{a}

3

4

1 2

6

2

2
1

17.3

0.5

0.5

2

2

75

R=




0 2 2 0 0 0 0
1 0 0 0 0 2 0
0 0 0 0.5 0 0 0
0 0 0 0 0.5 0 0
0 0 2 0 0 0 0
0 0 0 0 0 0 17.3
0 0 0 0 0 0 0




P=




0 1
2
1
2 0 0 0 0

1
3 0 0 0 0 2

3 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0




E=




4
3

0.5
0.5
2

17.3
0




Fig. 4. Example labelled CTMC and corresponding transition rate matrix R, probability matrix P , and vector E

real number. Obviously, πss′(0) = 1 if s = s′ and 0 other-
wise. To illustrate how the vectors πππs(t) characterize the
flow of probability mass over time, the vectors

1 .961 .677 .049 .000 .000 0

0 .193 .141 .085 .000 .000 0

0 .195 .161 .398 .266 .267 4
15

πππ1(t) = 0 .000 .004 .136 .266 .267 4
15

0 .000 .000 .018 .066 .067 1
15

0 .000 .009 .011 .000 .000 0

0 .000 .006 .301 .399 .400 2
5

(t=0) (t=.01) (t=.1) (t=1) (t=10) (t=102) (t=∞)

indicate this flow from state 1 in Fig. 4 towards the
BSCCs as time passes. The last column indicates the lim-
iting probability distribution as t→∞. This limit exists
for arbitrary finite CTMCs, and will be denoted πππs. It is
usually called the steady-state distribution, as opposed to
the time-dependent distributions, which are called tran-
sient distributions. In general both, transient and steady-
state distributions are dependent on the initial state s
occupied at time 0: in the above example,πππ5(t) andπππ5 are
clearly different from πππ6(t) and πππ6, respectively.

2.3 Computing probability distributions

To efficiently determine transient and steady-state distri-
butions of a given CTMC requires different recipes. We
sketch the main steps here, and postpone more details
on the numerical algorithms needed for this purpose to
Sect. 3.1.

– In order to explain the computation of the steady-
state probability vector πππs, we consider a special case
first. If the CTMC consists of a single BSCC, the
steady-state distribution is independent of πππs(0) (i.e.,
of s) and can be obtained by solving the linear system
of equations πππs ·Q = 0, which has a unique solution
independent of s. Here, Q denotes the infinitesimal
generator matrix of the CTMC, whose non-diagonal
elements are equal to the non-diagonal elements of R
and whose diagonal elements are given by the negative
row sums ofR, i.e.,Q(s, s′) =R(s, s′) for s �= s′ and

Q(s, s) =−
∑
s′∈S
s�=s′

R(s, s′)

In general, the picture is slightly more complicated:
After an infinite time, the CTMC is certainly no
longer in any transient state, but will be in one of
its BSCCs and remains there forever. The probability
of reaching a particular BSCC can be calculated eas-
ily. For example, in the CTMC depicted in Fig. 4, the
probability of reaching BSCC {3, 4, 5}, provided that
the initial state is state 1, is given by

1

2
+

1

2
·
1

3
·
1

2
+

(
1

2
·
1

3

)2
·
1

2
+ · · ·=

1

2

∞∑
k=0

(
1

6

)k
=

3

5
.

Likewise it can be established that the probability
of reaching BSCC {7} equals 2

5 . Within each given
BSCC one can compute the steady state distribution
by solving a linear system of equations (in the size of
the BSCC) as described above. Altogether, the proba-
bility that the CTMC is in state i after an infinite time
is equal to the probability of reaching the correspond-
ing BSCC, multiplied by the steadystate probability
of state i within that BSCC.

– The calculation of the transient probability vectors
πππs(t) of a CTMC proceeds in a different way. Tran-
sient probability distributions can be determined via
a system of differential equations

dπππs(t)

dt
=πππs(t) ·Q

with the fixed boundary condition πππs(0). The unique
solution of these so-called Kolmogorov differential
equations is

πππs(t) =πππs(0) · eQ·t,

where the matrix exponential is defined by eQ·t =∑∞
k=0(Q · t)

k/k!. In Sect. 3.1 we shall explain how
this infinite sum can be truncated and computed in
a numerically stable way, using a technique called
uniformization.

2.4 The continuous stochastic logic CSL

The continuous stochastic logic CSL is a CTL-like tem-
poral logic which is interpreted over a (labelled) CTMC.
CSL allows one to specify (state) formulas, denoted by Φ,
which may or may not be satisfied by a particular state of
a CTMC.

H. Hermanns et al.: A tool for model-checking Markov chains 159

Definition 1. For a ∈AP, p ∈ [0, 1], t ∈ IR�0, and �� ∈
{�, <,�, > }, the state-formulas of CSL are defined by
the grammar

Φ::=a
∣∣∣ Φ∧Φ

∣∣∣ ¬Φ ∣∣∣ S	
p(Φ)
∣∣∣

P	
p(XΦ)
∣∣∣ P	
p(Φ U Φ)

∣∣∣ P	
p(Φ U�tΦ)

Boolean connectives other than conjunction (∧) and
negation (¬) can be derived in the usual way. For in-
stance, Φ∨Ψ can be obtained by ¬(¬Φ∧¬Ψ). The prob-
abilistic operator P	
p(.) replaces the usual CTL path
quantifiers ∃ and ∀ which can be re-invented – up to
fairness [13] – as the extremal probabilities P>0(.) and
P�1(.). Formula P	
p(ϕ), where ϕ = XΦ or ϕ = Φ U Ψ ,
asserts that the probability measure of the paths sat-
isfying ϕ is within the interval specified by �� p. The
meaning of X (“next step”) and U (“until”) is standard:
the temporal operator U �t is the real-time extension
of U ; path formula ϕ = Φ U�tΨ asserts that Φ U Ψ
will be satisfied in the time interval [0, t]; i.e., there is
some x ∈ [0, t] such that Φ continuously holds during
the interval [0, x[and Ψ becomes true at time instant x.
The state formula S	
p(Φ) asserts that the steady-state
probability for a Φ-state is within the interval specified
by �� p. Temporal operators such as � (“eventually”),
� (“always”) and their real-time variants ��t or ��t

can be derived, e.g., P	
p(��tΦ) = P	
p(true U�tΦ) and
P�p(�Φ) = P�1−p(�¬Φ).

2.5 Semantics of CSL

This section gives an informal explanation of the seman-
tics of CSL. For the full formal semantics of the logic the
reader is referred to [12].

For a CTMCM= (S,R, L) with proposition labels in
AP, we define

Sat(Φ) = { s ∈ S | s |= Φ }.

The semantics for atomic propositions, negation, and
conjunction is standard [21]. For the remaining opera-
tors, the basic object of the semantics are time-stamped
paths throughM. These are (usually infinite) sequences
of states of the model, connected by time-stamped ar-
rows, as in

s0
t0→ s1

t1→ s2
t2→ s3

t3→ · · · .

Each time-stamp ti indicates the time spent in state si
before moving to the next state si+1. Path(s) is used to
denote the set of paths starting in a state s ∈ S. In gen-
eral, this set is infinite, not only because there might be
infinitely many different sequences of states starting in s,
but also because of the continuous nature of exponential

distributions. For instance, Path(6) = {6
t
→ 7 | t ∈ IR�0}

for the example in Fig. 4. Each individual path σ in such

a set has probability zero, but with the aid of some argu-
ments from measure theory one can define a probability
measure, called Pr, on all relevant sets of paths starting
in a state of a CTMC [12]. This enables us to define the
semantics of the steady-state operator by:

s |= S	
p(Φ) iff πsSat(Φ) �� p

where πsB (for some B ⊆ S) denotes the steady-state
probability of B when starting in s:

πsB = lim
t→∞

Pr{ σ ∈ Path(s) | σ@t ∈B }.

In this definition, σ@t denotes the state occupied in path
σ at time t, and is defined relative to the cumulated
time-stamps along σ, see [12] for details. For instance if

σ = s0
1.7
→ s1

2.4
→ s2, then σ@1 = s0, σ@2 = s1 = σ@3.9, and

σ@t = s2 for t > 4.1.
To introduce the semantics of the remaining three

probabilistic operators of the form P	
p(ϕ), we define
Prob(s, ϕ) as the probability measure of all paths σ ∈
Path(s) satisfying ϕ, formally:

Prob(s, ϕ) = Pr{ σ ∈ Path(s) | σ |= ϕ }

and say that

s |= P	
p(ϕ) iff Prob(s, ϕ) �� p

This definition relies on a satisfaction relation for
paths as follows:

– σ |= XΦ iff the next state in σ satisfies Φ,
– σ |= Φ U Ψ iff there is a state in σ satisfying Ψ and all

earlier states satisfy Φ, and
– σ |= Φ U�tΨ iff there is a time point x – at most t –

such that Ψ is satisfied in the state occupied at time x,
and all states occupied before time x satisfy Φ.

The above semantics of next and until-formulas is stan-
dard [21], while the interpretation of the time-bounded
until operator is borrowed from timed CTL [5].

2.6 Some illustrative examples

In order to illustrate the logic CSL we give some examples
based on the labelled CTMC from Fig. 4.

– Φ1 = P>0(Xa) holds for all states except states 6
and 7.

– Φ2 = P>0.7(Xa) holds for states 2, 3, 4, and 5, but
not for state 1, since the probability of moving from
state 1 to its only a-labelled successor state (state 3) is
only 0.5.

– Φ3 = P>0(aU b) holds for all states except state 2.
– Φ4 = P<0.65(aU b) holds for state 2, as no path start-

ing from this state satisfies aU b, and holds for state
1, as the probability of going from state 1 to state
5 without visiting state 2 equals 12 . The property is

160 H. Hermanns et al.: A tool for model-checking Markov chains

refuted by all other states as they satisfy aU b with
probability 1.

– The checking of Φ5 = P�0.5(aU�4.0 b) is more in-
volved. Consider, for example, state 4. The probability
that it reaches state 5 within 4.0 time units is given
by 1− e−0.5·4.0 ≈ 0.865, so state 4 does indeed satisfy
property Φ5. For state 3 one has to check whether the
probability that the sum of two independent exponen-
tial distributions with the same rate parameter (i.e.,
an Erlang-2 distribution) takes a value of less than 4.0
time units is at least 0.5. This probability is given by
1− e−0.5·4.0(1 + 0.5 ·4.0)≈ 0.594, so it turns out that
state 3 also satisfies property Φ5.

– Let Φ6 = S<0.7(b). The steady-state probability vector
in BSCC {3, 4, 5} is (49 ,

4
9 ,
1
9), so the probability that

b holds in steady state when starting from one of the
states in this BSCC is equal to 1

9 ≈ 0.111. Therefore,
states 3, 4, and 5 do satisfy Φ6. The probability that b
holds in the other BSCC, consisting of only state 7, is
equal to 1.0. Thus, starting from states 6 or 7 the prob-
ability that b holds in steady state is 1.0, i.e., states
6 and 7 do not satisfy property Φ6. The remaining
states, 1 and 2, require taking into account the prob-
abilities of ending up in each of the two BSCCs in the
long run. For state 1 these probabilities are 35 and 2

5 ,
and therefore the steady-state probability that b holds
is 35 ·

1
9 + 2

5 ·1.0 = 7
15 ≈ 0.467, i.e., state 1 does satisfy

property Φ6. Starting from state 2, the steady-state
probability that b holds is 15 ·

1
9 + 4

5 ·1.0 = 37
45 ≈ 0.822,

i.e., state 2 does not satisfy property Φ6.
– As a final example, consider Φ7 = S<0.7(S<0.7(b)), i.e.,

Φ7 = S<0.7(Φ6). We know that Φ6 is valid in states 1,
3, 4, and 5. As a consequence, the steady-state prob-
ability of Φ6 is 1.0 inside the BSCC {3, 4, 5}, and 0 in
the other BSCC. As a result, Φ7 holds in state 1, 2, 6,
and 7. Note that state 1 satisfies Φ6 with probability 35
in the long run, which is below the threshold 0.7.

3 The model checker E �MC2

E �MC2 is a prototype tool supporting the verification of
CSL-properties over CTMCs. It is a global model checker,
i.e., it checks the validity of a formula for all states in the
model. E �MC2 has been developed as a model checker
that can easily be linked to a wide range of existing high-
level modeling tools based on, for instance, stochastic
process algebras, stochastic Petri nets, or queueing net-
works. A whole variety of such tools exists [37], most of
them using dedicated formats to store the rate matrix R
which is obtained from the high-level specification. The
matrix R, together with the proposition-labelling func-
tion L, constitutes the interface between the high-level
formalism at hand and the model checker E �MC2. Cur-
rently, E �MC2 accepts CTMCs represented in the tra-
format as generated by the stochastic process algebra tool
TIPPtool [41], but the tool is designed in such a way

that it enables a filter plug-in functionality to bridge to
various other input formats. The stochastic Petri net tool
DaNAMiCS [18] has recently been extended to generate
input for E �MC2.

3.1 The model-checking algorithm

Once the matrix R and the labelling L of a CTMC M
have been initialized, the model checking algorithm im-
plemented in E �MC2 essentially proceeds in the same
way as for model checking CTL [21]. For a given formula
Φ it recursively computes the sets of states Sat(.) satisfy-
ing the sub-formulas of Φ, and constructs the set Sat(Φ)
from them. The verification of probabilistic and steady-
state properties relies on the constructive characteriza-
tions as established in [12].

Steady-state properties. For calculating S	
p(Φ) the tool
follows a two-phase approach, already indicated in
Sect. 2.3. First, the bottom strongly connected compo-
nents of M are determined by a standard graph algo-
rithm [62], and the steady-state probability distributions
inside each individual BSCC are calculated. Each of these
tasks requires the solution of a linear system of equa-
tions in the size of the respective BSCC. As a second
step the probabilities of reaching the individual BSCCs
from a given state s is calculated. More precisely, assume
B is a BSCC of M reachable from s. We use an aux-
iliary atomic proposition to label the states in B, i.e.,
aB ∈ L(s′) iff s′ ∈B. Then �aB is a path-formula in CSL
and Prob(s,�aB) is the probability of reaching B from s
at some time t. For s′ ∈B, πss′ is given by

πss′ = Prob(s,�aB) ·πBs′

where πBs′ =1 if B = {s′}, and otherwise πππB is a vector of
size |B| satisfying the linear system of equations2∑
s∈B
s�=s′

πBs ·R(s, s′) = πBs′ ·
∑
s∈B
s�=s′

R(s′, s) (3)

such that
∑
s∈B

πBs = 1.

All states not contained in any BSCC have steady-state
probability 0, independent of the starting state.

Returning to the example in Fig. 4, we get the follow-
ing linear system of equations for the BSCC B = {3, 4, 5}:

(πB3 , π
B
4 , π

B
5) ·


−0.5 0.5 0

0 −0.5 0.5
2 0 −2


=


0

0
0


 ,

2 In [12] the above linear system of equations is defined in
a slightly different way, by characterizing the steady-state proba-
bilities in terms of the embedded DTMC.

H. Hermanns et al.: A tool for model-checking Markov chains 161

which has the solution (49 ,
4
9 ,
1
9) as mentioned earlier.

Linear systems of equations can be solved either di-
rectly (e.g., Gaussian elimination or LU-decomposition)
or by iterative methods such as the power method, Ja-
cobi iteration, and Gauss-Seidel iteration [61]. Iterative
methods compute approximations to the exact result up
to a prespecified accuracy ε. Although (except for the
power method) convergence of the iterative methods is
not guaranteed, this problem only appears for patho-
logical cases in practice. The major advantage of these
methods is that the involved matrices do not change dur-
ing the computation (i.e., fill-in is avoided), and hence
the buildup of rounding errors is nonexistent [36, 61]. In
addition, direct methods are known to be only practical
for state spaces of up to a few hundred states, while it-
erative methods have successfully been applied for much
larger systems (up to 107 states) [27]. For these reasons,
E �MC2 supports all of the above mentioned iterative
methods to solve (3), the linear system of equations aris-
ing from the steady-state operator. (The default option is
the Gauss-Seidel iteration.)

Probabilistic next. Recall that s |= P	
p(XΦ) if and
only if Prob(s,XΦ) �� p. Calculating the probabilities
Prob(s,XΦ) boils down to a single matrix-vector prod-
uct, multiplying the transition probability matrix P
with the (Boolean) vector iΦ = (iΦ(s))s∈S characterizing
Sat(Φ), i.e., iΦ(s) = 1 if s |= Φ, and 0 otherwise. For the
example in Fig. 4, for instance ib = (0, 0, 0, 0, 0, 1, 0, 1),
and P · (ib)T = (0, 0, 0, 0, 1, 0, 1, 0) gives the probabilities
of Xb.

Probabilistic until. Computing Prob(s,Φ U Ψ) proceeds
as in the discrete-time case, [25, 34], by solving a linear
system of equations of the form

x=P ·x + iΨ (4)

where P(s, s′) =P(s, s′) if s |= Φ∧¬Ψ and 0 otherwise.
Prob(s,Φ U Ψ) is the least solution of this set of equa-
tions [9]. Again returning to the example in Fig. 4, we
calculate in this way the probabilities for aU b to be
(0.5, 0, 1, 1, 1, 1, 1), via a matrixP that agrees with P ex-
cept that P(2, 1) =P(2, 6) =P(5, 3) = 0 and vector ib as
above. E �MC2 computes the least solution of equation
(4) by one of the standard iterative methods mentioned
above for the steady-state operator.

Time-bounded until. The time-bounded until operator
is the most expensive operator from the point of view
of analysis effort. Two alternative ways to compute
Prob(s,Φ U�tΨ) have been proposed so far, and both
are implemented in E �MC2. The first approach, sug-
gested in [12] uses numerical integration to approximate
the values of Prob(s,Φ U�tΨ). The second approach [11]
reduces the model checking problem to a transient analy-
sis of a transformed Markov chain, i.e., to a computation

of πππs(t). Whichever alternative is selected, it is easy to see
that

Prob(s,Φ U�tΨ)= 1 if s |= Ψ , and

Prob(s,Φ U�tΨ)= 0 if s �|= Φ ∨ Ψ .

Thus, the differences concern the cases where s |=Φ ∧ ¬Ψ .
In this case, Prob(s,Φ U�tΨ) satisfies the recursive
Volterra integral equation

Prob(s,Φ U�tΨ) = (5)∫ t
0

∑
s′∈S

R(s, s′) · e−E(s)·x ·Prob(s′,Φ U�t−x Ψ) dx

(or, more precisely, it is the least solution thereof [12]).
Expressed in words, the equation describes that the prob-
ability of reaching a Ψ -state from s within t time units
equals the probability of reaching some direct successor
state s′ of s within x time units (x� t), multiplied by the
probability to reach a Ψ -state from s′ in the remaining
time-span t−x along Φ-states – for all possible values of x.

We now review the two alternative techniques for solv-
ing the Volterra integral equation system (5).

Numerical integration. The above equational characteri-
zation can be turned into an iterative method to approxi-
mate the solution of (5): setting F0(s, t) = 0 for all s (with
s |= Φ∧¬Ψ), and t and iterating

Fk+1(s, t) =
∑
s′∈S

R(s, s′) ·

t∫
0

e−E(s)·x ·Fk(s
′, t−x) dx

approaches the values of Prob(s,Φ U�tΨ) as k tends to
∞. In [12], we proposed solving these integrals numer-
ically based on quadrature formulas with, say, N + 1
equally spaced interpolation points xm = m · t

N
(0�m�

N) such as trapezoidal, Simpson, or Romberg integration
schemes [59]. For the trapezoidal method, for instance,
this amounts to approximate Fk+1(s, xm) by

∑
s′∈S

R(s, s′) ·
m∑
j=0

αj · e
−E(s)·xj ·Fk(s

′, xm−xj)

where for fixed m, α0 = αm = t
2N and αj = t

N
for 0 <

j <m. However, practical experiments during the devel-
opment of our tool revealed that these schemes may re-
sult in inaccurate results by overestimating the impact
of the ‘leftmost’ intervals. We therefore take a different
route by using piecewise integration, and approximating
Fk+1(s, xm) by

∑
s′∈S

R(s, s′) ·
m∑
j=0

xj+βj+1∫
xj−βj

e−E(s)·x dx ·Fk(s
′, xm−xj)

where β0 = βm+1 = 0 and βj = t
2N for 0 < j �m. Note

that the resulting integrals are easily solved exactly be-
cause they only involve exponential distributions. Thus,

162 H. Hermanns et al.: A tool for model-checking Markov chains

discretization is used merely to restrict the impact of pos-
sible state changes to the interpolation points x0, . . . , xN .
N is a parameter of the algorithm, prespecified by the
user. The influence of the number of interpolation points
on the accuracy and the run-time of the algorithm is one
of the interesting aspects discussed in Sect. 4.

Solution via transient analysis. An alternative method
implemented in the tool is based on a reduction of the prob-
lem of calculating the probabilities of Φ U�tΨ to a tran-
sient analysis problem. The idea is to transform the CTMC
M under consideration into another CTMCM such that
checking Prob(s,Φ U�tΨ) onM amounts to accumulat-
ing the probabilities of Ψ -states inM at time t [11]. For
the latter it suffices to calculateπππs(t) inM, for which well-
known and efficient computation techniques exist.

For a transformation fromM toMwe defineR(s, s′) =
R(s, s′) if s |= Φ∧¬Ψ and 0 otherwise, and considerM=
(S,R, L). It then suffices to carry out a transient analysis
on the resultingM for time t and collect the probability
mass to be in a Ψ -state:

Prob(s,Φ U�tΨ) =
∑

s′∈Sat(Ψ)

πss′(t) . (6)

To compute the transient probabilities πππs(t) (on M)
at time t, E �MC2 uses an efficient and numerically
stable technique, known as uniformization or Jensen’s
method [49]. As mentioned in Sect. 2.3, πππs(t) = πππs(0) ·
eQ·t, where eQ·t =

∑∞
k=0(Q · t)

k/k!. For the practical
computation of πππs(t) one constructs the matrix U =
Q/q+ I , where q is at least the maximum exit rate and
I is an identity matrix of the appropriate dimension. This
construction is called uniformization. It then holds that

πππs(t) = πππs(0) ·
∞∑
k=0

U k ·
(q · t)k

k!
· e−q·t, (7)

where the weight factors (q·t)
k

k! · e
−q·t are known as the

Poisson probabilities. The matrix exponentiation needed
for U k is numerically well-behaved, because U is a sto-
chastic matrix. Furthermore, it suffices to evaluate a finite
number of terms of this infinite sum, and the number of
terms needed can be calculated a priori, relative to a pre-
specified accuracy ε. For the efficient evaluation of the
Poisson probabilities we have implemented the approxi-
mation of Fox/Glynn [30].

The runtime of the uniformization algorithm is lin-
ear in q and also in the time point t under considera-
tion (for large q · t). For large t the CTMC may already
have reached an equilibrium before t. Therefore, we have
integrated an on-the-fly steady-state detection into the
algorithm for transient analysis [55]. The effect of this de-
tection on the verification run-time is further discussed in
Sect. 4. A further optimization that we have implemented
in E �MC2 has recently been proposed in [50]. This op-
timization amountsto combining and re-organizing the

computations in (6) and (7). This avoids the need for
a computation for each state, and yields an efficiency im-
provement that is proportional to the number of states in
the CTMC under consideration.

3.2 Preprocessing until-formulas

As in [34] for until and time-bounded until some pre-
processing is done by the tool before the actual model
checking is carried out. First, we determine the set of
states for which the (fair) CTL-formula ∃(Φ U Ψ) is valid,
i.e., we compute Sat(∃(Φ U Ψ)). This is done in the usual
iterative way [34]. For states not in this set the respec-
tive probabilistic until-formula will have probability 0. In
a similar way, we compute the set of states for which the
probability of these properties will be 1. This is done by
computing the set of states Sat(∀(Φ U Ψ)) (up to fair-
ness, see [13]) in the usual iterative way [34]. As a result,
the actual computation – it being the solution of the lin-
ear system of equations in case of an unbounded until or
the solution of the system of Volterra integral equations
in case of the time-bounded until – can be restricted to
the remaining states. This not only reduces the number of
states, but also speeds up the convergence of the iterative
algorithms.

3.3 Tool architecture

E �MC2 has been written entirely in Java (version 1.2),
an object-oriented language known to provide platform
independence and to enable fast and efficient program de-
velopment. Furthermore, support for the development of
graphical user interfaces as well as grammar parsers are
at hand. For the sake of simplicity, flexibility, and exten-
sibility we abstained from low-level optimizations, such
as minimization of object invocations. The design and
implementation of E �MC2 took approximately 12 man-
months, with about 9000 lines of code for the kernel and
1500 lines of code for the GUI implementation, using the
Swing library. The tool architecture consists of five com-
ponents, see Fig. 5.

Graphical User Interface (see Fig. 6) enables the user
to create, load, and save verification projects, consist-
ing of a model M (which contains a rate matrix R
and a labelling L), and the properties to be checked.
The GUI prints results on screen or writes them into
a file and allows the user to construct CSL-formulas by
the ‘CSL Property Manager’. Several verification pa-
rameters for the numerical analysis, such as solution
method, accuracy ε and, (in case numerical integra-
tion is selected), number of interpolation points N ,
can be set by the user.

Tool Driver controls the model checking procedure. It
parses a CSL-formula and generates the correspond-
ing parse tree. Subsequent evaluation of the parse
tree results in calls to the respective verification ob-

H. Hermanns et al.: A tool for model-checking Markov chains 163

Property
Manager

Verification
Parameters

TransitionsStates RatesSat

State Space Manager

P	
p(ϕ) S	
p(Φ)∨

Result

GUI
∧¬

Boolean Engine

Verification objects

Filter

Numerical Engine

power, Jacobi,
Gauss-Seidel iteration

iterative numerical integration

uniformization

Model
Input

Output

∃(Φ1 U Φ2)

BSCC

∀(Φ1 U Φ2)

Tool Driver CSL Parser

Fig. 5. The tool architecture

Fig. 6. User interface of E �MC2

164 H. Hermanns et al.: A tool for model-checking Markov chains

jects that encapsulate the verification sub-algorithms.
These objects, in turn, use the Boolean and/or nu-
merical engine. For instance, checking P�p(Φ U Ψ) in-
volves a pre-processing step (as mentioned above) that
isolates states satisfying the Boolean ∃(Φ U Ψ) and
∀(Φ U Ψ). The results of this step are passed to the
numerical engine that computes the remaining non-
trivial probabilities.

Numerical Engine is the numerical analysis compon-
ent of E �MC2. It computes the solution of linear
systems of equations, offering a selection of well-
established numerical algorithms. For the solution
of Volterra integral equation systems, the user can
choose either uniformization, or iterative numerical
integration, as explained above. A variety of param-
eters of the algorithms can be influenced by the user
via the GUI, such as the accuracy ε, the ‘maximum
loop count’ (the maximal number of iterations before
termination), or the number N of interpolation points
used for the piecewise integration.

Boolean Engine is the component that supports graph
algorithms, for instance, to compute the BSCCs in
case of steady-state properties, and standard model
checking algorithms for CTL-like until-formulas. The
latter algorithms are not only used as a pre-processing
phase of checking until-formulas (as explained above),
but they also take care of instances of the special cases
P�1(ϕ) and P>0(ϕ) where the numerical analysis
tends to produce ‘wrong’ results (such as 0.99999 . . .
rather than 1.0) due to machine imprecision. As men-
tioned in the introduction, such qualitative properties
can be verified without the need for numerical recipes.

State Space Manager represents DTMCs and CTMCs
in a uniform way. In fact, it provides an interface
between the various checking and analysis compo-
nents of E �MC2 and the way in which DTMCs and
CTMCs are actually represented. This eases the use of
different, possibly even symbolic state space represen-
tations. It is designed to support input formats of var-
ious kinds, by means of a simple plug-in-functionality
(realized via Java’s dynamic class loading capability).
It maintains information about the validity of atomic
propositions and of sub-formulas for each state, en-
capsulated in a ‘Sat’ sub-component. After checking
a sub-formula, this sub-component stores the results,
to be used later. In the current version of the tool, the
state space is represented as a sparse matrix [61]. The
rate matrixR (and its transposeRT) are stored, while
the entries of E and P are computed on demand. All
real values are stored in the IEEE 754 floating point
format with double precision (64 bit).

3.4 E �MC2 as a model checker for discrete time

So far we have described E �MC2 as a model checker for
CTMCs. However, it is equally well suited as a model

checker for DTMCs with respect to the logic PCTL [34].
This logic arises from CSL by omitting the time-bounded
until operator and the steady-state operator. The crucial
property that makes E �MC2 a DTMC model checker
is that it is possible to consider a DTMC as a CTMC
without change. To make this more precise, we introduce
(labelled) DTMCs formally.

Let AP be a fixed, finite set of atomic propositions.
We define a labelled discrete-time Markov chain as a tuple
M= (S,P , L) where:

– S is a finite set of states,
– P : S×S→ [0, 1] is the transition probability matrix,

such that for all s ∈ S,
∑
s′∈S P(s, s′) ∈ { 0, 1 }, and

– L : S→ 2AP is the labelling function which assigns to
each state s ∈ S the set L(s) of atomic propositions
a ∈AP that are valid in s.

Two important observations can now be made:

– If M = (S,R, L) is a CTMC, and P is the probabil-
ity matrix associated with R then P defines a DTMC
(S,P , L), usually called the embedded DTMC.

– If, in addition s ∈ S, and Φ is a PCTL formula, then

s |= Φ if and only if s |=PCTL Φ

where |=PCTL is the original satisfaction relation
of [34] on the embedded DTMC (S,P , L).

As a consequence, in order to model check a given
DTMC (S,P , L) with transition probability matrix P ,
we have to feed a CTMC (S,R, L) into the model
checker, that is defined in such a way that P is the
matrix associated with the rate matrix R. There is
some freedom in fixing this matrix R (in particular
in the vector E), but the easiest is to choose R =
P . The reader is invited to check that for a CTMC
(S,P , L), the embedded DTMC is (S,P , L). Thus, in
summary, DTMCs can be fed into the model checker
E �MC2 as if they were CTMCs. An optional check is
provided by the tool to ensure that a loaded project
describes a DTMC and that all formulas are within
PCTL.

4 Application case studies

In this section, we report on experiences with E �MC2

in the context of model-checking two Markov chain
models that have been generated from different high-level
formalisms, namely queueing networks and generalized
stochastic Petri nets. Based on these experiments we as-
sess the sensitivity of the model checker with respect
to various parameters. We ran the experiments on a
300 MHz SUN Ultra 5/10 workstation with 256 MB mem-
ory under the Solaris 2.6 operating system. In the case
studies we solve linear systems of equations by means of
the Gauss–Seidel method. All recorded execution times
are wall clock times.

H. Hermanns et al.: A tool for model-checking Markov chains 165

4.1 A tandem queue system

As a first, simple example we consider a queueing net-
work (with blocking) taken from [43]. It consists of
a M/Cox2/1-queue sequentially composed with a M/M/1-
queue, see Fig. 7. For a thorough introduction to networks
of queues we refer to [24]. Both queueing stations have
a capacity of c jobs, c > 0. Jobs arrive at the first queueing
station with rate λ. The server of the first station exe-
cutes jobs in one or two phases; that is, with probability
b1 = 1−a1 a job is served with rate µ1 only, and with prob-
ability a1, the job has to pass an additional phase with
rate µ2. Once served, jobs leave the first station, and are
queued in the second station where service takes place
with rate κ. In case the second queueing station is fully
occupied, i.e., its server is busy and its queue is full, the
first station is said to be blocked. Note that in this situ-
ation, the second phase of the first server is blocked and
the first server can only pass a job that just finished the
first phase to the second phase (which happens with prob-
ability a1), but the “bypass” of the second phase is also
blocked.

The CTMC of the tandem network for c = 1 is de-
picted in Fig. 8. State labels are of the form (n1, p, n2)
where n1 (n1 � c) indicates the number of jobs in the first
station, p ∈ { 0, 1, 2 } the status of servicing in the first
station (0 means that no service is going on, 1 means that
a job is in the first phase, and 2 means that a job is in
the second phase) and n2 (n1 � c) indicates the number of
jobs in the second station.

Parameters for the experiments. For the experiments we
take the following values for the parameters of the queue:
λ = 4 · c, µ1 = 2, µ2 = 2, κ = 4, and a1 = 0.1. Note that
the arrival rate equals the maximal service delay in the
first station for c = 1. We consider the following con-
figurations: c = 2, which amounts to 15 states and 33
transitions, c = 5, i.e., 66 states and 189 transitions and

µ1
λ

κµ2
a1
b1

Fig. 7. A simple tandem network with blocking [43]

Fig. 8. CTMC of the tandem network for c= 1

c = 20, i.e., 861 states and 2851 transitions. The following
atomic propositions are considered:

– block is valid iff each queueing system contains c jobs
and the first station is serving in the second phase,

– fst is valid iff no new arriving job (with rate λ) can be
accepted anymore, because the first queue is entirely
populated.

– snd is valid iff the first queueing station is blocked, be-
cause the second queue is entirely populated.

It should be noticed that block characterizes a single
state, and hence, for large c identifies a rare event, a situ-
ation that appears with very low probability. For ex-
ample, in Fig. 8 state 121 satisfies block , states 110, 120,
111, and 121 satisfy fst , and states 111 and 121 satisfy
snd .

Steady-state properties. The following steady-state
properties are checked: S	
p(block), S	
p(fst), and
S	
p(P	
q(Xsnd)), for arbitrary p and q. The latter prop-
erty is valid if the steady-state probability to be in a state
that can reach a state in which the first queueing station
is blocked in a single step with probability �� q satisfies
�� p. We do not instantiate p and q, as the execution times
and computed probabilities will be the same for all p
and q (except for the extremal cases 0 and 1); only the
comparison with the bounds might lead to a different out-
come. Thus, p, q ∈]0, 1[. For the steady-state properties
we vary the accuracy ε of the computed probability, which
is a parameter to the model checker. The results are listed
in Table 1. The third column indicates the number of
iterations needed to reach the result with the desired ac-
curacy. Recall that the model checker checks the validity
of CSL-formulas for all states in the CTMC.

Real-time probabilistic path properties. The verification
times for probabilistic path-formulas can be quite differ-
ent, as we will see. Using this small example we analyze
the dependency of the verification time on:

– Solution method (numerical integration versus tran-
sient analysis),

– Precision (the number of interpolation points in case
of integration), and

– The structure of the formula under consideration.

The following probabilistic path properties are used for
these purposes:

– P	
p(��tblock), referring to the probability of having
a fully occupied tandem network within t time units,

– P	
p(��tfst), referring to the probability of an en-
tirely populated first queueing station within t time
units, and

– P	
p(snd U�t ¬snd), which refers to the probability of
leaving a situation in which the second queue is en-
tirely populated.

All path-properties are checked with accuracy ε = 10−6.
We vary the time-span t over 2, 10, 100, and 1000 (for
transient analysis).

166 H. Hermanns et al.: A tool for model-checking Markov chains

Table 1. Statistics for checking steady-state properties on the tandem queue

S	
p(block) S	
p(fst) S	
p(P	
q(Xsnd))
states ε # iterations time (in sec) time (in sec) time (in sec)

15 10−4 62 0.012 0.012 0.013

10−6 107 0.016 0.017 0.016

(c= 2) 10−8 146 0.017 0.018 0.019

66 10−4 77 0.028 0.028 0.065

10−6 121 0.041 0.042 0.076

(c= 5) 10−8 159 0.048 0.085 0.181

861 10−4 74 0.569 0.498 1.567

10−6 118 0.644 0.643 1.935

(c= 20) 10−8 158 0.811 0.778 2.369

Numerical integration. Thenumberof interpolationpoints
for the piecewise integration is varied from 64 up to
1000. The results for numerical integration with c = 2 are
listed in the upper part of Table 2. Note the difference in
computation time for the different properties. Whereas
P	
p(snd U�t ¬snd) can be checked rather quickly, cal-
culating the probability for reaching a fst-state within
a certain time bound, and – in particular – until reach-
ing a block -state takes significantly more time. Since the
CTMC is strongly connected, a block - or fst-state can
(eventually) be reached from any other state, and hence
for all states the probability for reaching these states
within time t must be calculated. In addition, the prob-
ability of reaching the single block -state is low, especially
for larger c, and quite a number of iterations are needed
in that case to obtain results with the desired precision.
Since there are several fst-states in the CTMC, this effect

Table 2. Statistics for checking probabilistic path-formulas on the tandem queue with numerical integration

# interpolation P	
p(�
�tblock) P	
p(�

�tfst) P	
p(snd U
�t ¬snd)

states t points # iter. time (in sec) # iter. time (in sec) # iter. time (in sec)

15 2 64 18 2.497 11 1.045 4 0.144
128 18 9.762 11 4.082 4 0.566
256 18 22.19 11 16.30 4 2.248
512 18 156.2 11 69.04 4 9.067

(c= 2) 1000 18 602.3 11 248.6 4 34.27

15 10 64 45 6.506 12 1.140 4 0.145
128 43 24.00 12 4.575 4 0.568
256 43 52.85 12 17.94 4 2.309
512 43 383.1 12 75.13 4 8.994

(c= 2) 1000 43 1433 12 274.9 4 34.38
15 100 64 472 104.6 12 2.133 4 0.229

128 344 284.9 12 7.682 4 0.817
256 285 958.1 12 31.07 4 3.361
512 260 3582 12 123.8 4 13.51

(c= 2) 1000 252 13201 12 493.8 4 51.49

861 2 64 36 448.3 29 347.3 21 9.608
128 36 1773 29 1336 21 38.90
256 36 7028 29 5293 21 150.5

(c= 20) 512 36 28189 29 21914 21 600.1

is less apparent for P	
p(��tfst). For the last property
(last two columns), probabilities need only be computed
for snd -states rather than for all states, and convergence
is reached rather quickly as the real probabilities are close
to 1. These effects become more apparent when increasing
the state space. This is reflected by the results in the lower
part of Table 2 where we considered a CTMC of almost
1000 states.

Uniformization. The verification times for checking the
probabilistic path-formulas while exploiting the reduc-
tion to transient analysis (i.e., uniformization rather than
numerical integration) are listed in Table 3. The first ob-
servation is that run-times tend to be less dependent
on t, especially for larger t. This is well reflected by
the run-times for the CTMC of 861 states, where run-
times become constant from a certain t onwards. This

H. Hermanns et al.: A tool for model-checking Markov chains 167

Table 3. Statistics for checking probabilistic path-formulas on the tandem queue with transient analysis

P	
p(�
�tblock) P	
p(�

�tfst) P	
p(snd U
�t ¬snd)

states t time (in sec) time (in sec) time (in sec)

15 (c= 2) 2 0.013 0.008 0.005
10 0.039 0.006 0.005
100 0.052 0.006 0.006
1000 0.055 0.007 0.008

861 (c= 20) 2 0.453 0.049 0.122
10 0.559 0.098 0.114
100 0.577 0.129 0.294
1000 0.644 0.186 0.784

phenomenon is caused by the on-the-fly steady-state de-
tection while carrying out the uniformization. Thus, if
the CTMC reaches a steady state before the bound t is
reached, no further computations are needed, as the state
probability mass will not be affected anymore. A second
observation is that, as for the numerical integration tech-
nique, the run-times are quite dependent on the formula
at hand. This effect is caused by the fact that the trans-
formation (fromM toM) of the CTMC prior to the uni-
formization depends on the path-formula. Thus, the size
of the resulting CTMC used for the uniformization dif-
fers per formula. Checking P	
p(��tblock) does not give
rise to any reduction of the CTMC (only the single block
state becomes absorbing), while the transformation for
the other two path-formulas leads to a significant reduc-
tion in size. A final observation is that uniformization is
much faster than numerical integration, for the tandem
queue even up to a factor 500–1000.

4.2 A cyclic server polling system

In this section, we consider a cyclic server polling system
consisting of d stations and a server, modeled as a GSPN.3

The example is taken from [48], where a detailed expla-
nation can be found. For d = 2, i.e., a two-station polling
system, the GSPN model is depicted in Fig. 9. For a d-
station polling system, the Petri net is extended in the
obvious way. Place idlei represents the condition that sta-
tion i is idle, and place busyi represents the condition that
station i has generated a job. The server visits the stations
in a cyclic fashion. After polling station i (place polli), the
server serves station i (place servei) and then proceeds
to poll the next station. The times for generating a mes-
sage, for polling a station, and for serving a job are all dis-
tributed exponentially with parameters λi, γi, and µi, re-
spectively. In case the server finds station i idle, the service

3 We refer to [1] for details on the semantics of GSPNs. In particu-
lar, the existence of immediate transitions (the black transitions)
leads to so-called vanishing markings in the reachability graph
which, however, can be eliminated easily. Our model checker works
on the resulting tangible reachability graph which is isomorphic to
a CTMC.

time is zero which is modeled by the immediate transition
skipi and the inhibitor arc from place busyi to transition
skipi. In this study we consider polling systems with d =
3, 5, 7, and 10 stations (as in [48]), and the case d = 13.
The corresponding CTMCs have 36, 240, 1344, 15 360,
and 163 840 states (84, 800, 5824, 89 600, and 1 286 144
transitions). The polling system is assumed to be symmet-
ric, i.e., all λi have the same numerical value, and the same
applies to γi = 200 and µi = 1. We set λi = µi/d.
In the context of GSPNs, it is rather natural to identify
the set of places that possess a token in a given marking
– a state of our CTMC – with the set of atomic proposi-
tions valid in this state. Based on these atomic proposi-
tions, we check the following properties on the polling sys-
tem: ¬(poll1 ∧poll2), stating that the server never polls
both stations at the same time; P	
p(¬serve2 U serve1),
i.e., with probability �� p station 1 will be served be-
fore station 2; busy1⇒P�1(�poll1), so once station 1
has become busy, it will eventually be polled; busy1⇒
P	
p(��tpoll1), once station 1 has become busy, with
probability �� p it will be polled within t time units (we
let t = 1.5). The following steady-state formulas are con-
sidered: S	
p(busy1∧¬serve1), which says that the prob-
ability of station 1 being waiting for the server is �� p; and
S	
p(idle1), stating that the probability of station 1 being
idle is �� p. As before, p ∈]0, 1[. All path-properties were

poll1

poll2

serve1

serve2

idle2 busy2

busy1idle1

λ2

λ1

µ1

γ1

µ2

γ2

skip1

skip2

Fig. 9. The cyclic server polling system with 2 stations [48]

168 H. Hermanns et al.: A tool for model-checking Markov chains

Table 4. Statistics for the verification of the polling system

¬(poll1∧poll2) P	
p(¬serve2 U serve1) busy1⇒P�1(�poll1)
d # states time (in sec) time (in sec) time (in sec)

3 36 0.002 0.031 0.005
5 240 0.002 0.171 0.009
7 1344 0.005 2.460 0.011
10 15360 0.020 43.820 0.080
13 163840 0.040 650.570 1.140

busy1⇒P	
p(�
�1.5poll1)

numerical integration transient analysis
d # states # iter. time (in sec) time (in sec)

3 36 8 2.308 0.068
5 240 12 30.92 0.233
7 1344 14 308.5 0.840
10 15360 18 7090 11.730
13 163840 — — 172.170

S	
p(busy1∧¬serve1) S	
p(idle1)
d # states # iter. time (in sec) # iter. time (in sec)

3 36 39 0.044 39 0.038
5 240 61 0.103 61 0.102
7 1344 80 0.677 80 0.658
10 15360 107 11.010 107 9.770
13 163840 130 196.980 130 199.430

checked with accuracy ε = 10−6, and the number of inter-
polation points for numerical integration was set to 64.
The steady-state properties were checked for ε = 10−8.
The execution times for checking these properties are
given in Table 4.

4.3 Assessment of the tool

General. From the results of our case studies we observe
that checking CSL-formulas consisting of just atomic
propositions and logical connectives is very fast. The
verification time to check steady-state properties, and
unbounded and time-bounded until-formulas is propor-
tional in the state-space of the CTMC. For the polling
system with about 1.6 million states, checking such for-
mulas takes a few minutes. Measurements have shown
that the performance of our tool’s steady-state solu-
tion algorithm is comparable to the one of TIPPtool [41]
which is based on a sophisticated sparse matrix library
implemented in C. The same applies to our transient an-
alysis algorithm. Furthermore, the tool is quite memory
efficient, e.g., the 15 360-state and 163 840-state cyclic
polling system models only take 1.48 and 20.8 Mb, re-
spectively. These numbers include storage of bit-vectors
needed for state-labellings for sub-formulas. Thus, mem-
ory consumption and run-times of E �MC2 allow us to
verify CTMCs of up to a few million states.

Time-bounded until. E �MC2 incorporates two algo-
rithms for checking time-bounded until-formulas: numer-
ical integration and transient analysis. Our empirical
results show that transient analysis clearly outperforms
the use of numerical integration – see Table 4 (middle) –
both in verification times and in accuracy of numerical
results (see next paragraph).

For numerical integration, each iteration in the piece-
wise integration takes O(N2·K) time in the worst case,
whereK is the number of transitions andN is the number
of interpolation points. The number of iterations strongly
depends on the required accuracy, the number of states,
and the structure of the CTMC. The verification time
also depends on the formula under consideration, and
the time-span (i.e., the parameter t). For instance, check-
ing P	
p(��tΨ) involves a computation for each state
that has a non-zero and non-trivial probability of reach-
ing a Ψ -state, while checking P	
p(aU�tΨ) only involves
a computation for the a-labelled states (of this set). This
effect is shown in Table 2.

For determining the states satisfying P	
p(Φ U�tΨ)
using uniformization, O(K·q·t) time is needed in the
worst case, where t is the time-bound of the formula and
q is the uniformization rate of the CTMC under con-
sideration [50]. Due to a built-in steady-state detection,
for large t the run-times will be more or less constant.
An important advantage of transient analysis is that the
number of computation steps can be determined prior

H. Hermanns et al.: A tool for model-checking Markov chains 169

to performing any computations, based on the required
accuracy. This is much harder, if possible at all, to incor-
porate in the numerical integration approach.

Accuracy of numerical results. In order to assess the nu-
merical accuracy and the execution times of the algo-
rithms for time-bounded until, we used E �MC2 to com-
pute the cumulative distribution function of the Erlang
k-distribution, that is, a convolution of k identical expo-
nential distributions. The model is shown in Fig. 10. It
has k+1 states, where states 1 through k are labelled with
a and state k+1 is labelled with b. Transitions lead from
state i to i+1 (i = 1, . . . , k) with rate λ. We checked the
formula P	
p(aU�t b) which for state 1 yields the value of
the Erlang-k cumulative distribution function for t, i.e.,

FEk (t) = Prob(Ek � t) = 1− e−λt

(
k−1∑
i=0

(λt)i

i!

)
.

Table 5 shows the results of this study. For a varying num-
ber of Erlang phases k and different time instants t, the
‘exact’ result (computed according to the above closed
formula) and the results of our two algorithms are shown.
The value of λ was set to 1.0.

For the numerical integration algorithm, it can be ob-
served that for small k the results are quite accurate, even
for a small number of interpolation points N (the accu-
racy for the termination condition was set to 10−6). The

λλλ

{a}{a} {a} {a} {b}

1 2 3 k k+1

Fig. 10. State diagram of the Erlang-k distribution

Table 5. Accuracy of the algorithm for bounded until (Erlang-k example)

k t ‘exact’ transient analysis numerical integration
N=64 N=512

5 1 0.003660 0.003659 0.00 sec 0.003432 0.14 sec 0.003630 7.1 sec
5 0.559507 0.559506 0.00 sec 0.545953 0.14 sec 0.557795 9.7 sec
10 0.970747 0.970747 0.00 sec 0.967667 0.15 sec 0.970375 10.6 sec

10 2 0.000046 0.000046 0.00 sec 0.000041 0.40 sec 0.000046 33.6 sec
10 0.542070 0.542070 0.00 sec 0.523807 0.43 sec 0.539645 34.4 sec
20 0.995005 0.995004 0.00 sec 0.994028 0.43 sec 0.994889 33.9 sec

20 4 0.000000 0.000000 0.01 sec 0.0 1.3 sec 0.0 110 sec
20 0.529742 0.529742 0.00 sec 0.509592 1.6 sec 0.526387 132 sec
40 0.999823 0.999823 0.00 sec 0.999755 1.6 sec 0.999816 136 sec

50 10 0.000000 0.000000 0.01 sec 0.0 5.5 sec —
50 0.518808 0.518808 0.01 sec 0.545528 9.9 sec 0.514448 806 sec
100 0.999999 0.999999 0.01 sec 0.999999 9.9 sec —

100 20 0.000000 0.000000 0.03 sec 0.0 17.7 sec —
100 0.513298 0.513298 0.02 sec 0.764289 38.1 sec 0.511909 3200 sec
200 0.999999 0.999999 0.02 sec 0.999999 40.0 sec —

200 40 0.000000 0.000000 0.20 sec — —
200 0.509403 0.509403 0.10 sec — —
400 1.0 1.0 0.05 sec — —

accuracy further improves as N is increased, as expected.
For k � 100 and small N , however, the accuracy of the
results is unacceptable, while for large N the runtime be-
comes excessive.

The picture is much more favorable for the transient
analysis algorithm, where the accuracy parameter was set
to 10−6. The precision of the results is extremely good in
all cases, and the execution times are almost negligible,
even for the k = 200 case. In summary, transient analysis
yields much better results than numerical integration and
is also dramatically faster.

Although this Erlang example is a bit artificial, some
of its features, especially the sparseness of its transition
rate matrix, are shared by quite a lot of examples from
real applications. If the matrix U is sparse, the iterative
matrix exponentiation U k, which is the most expensive
step within the uniformization procedure, involves only
a few multiplications and is therefore very fast.

Accuracy of verification results. Another issue – which
is inherently present in all model checking approaches
that rely on numerical recipes – is to avoid wrong out-
comes of comparisons with a probability bound p in
a sub-formula, that is then propagated upwards. Be-
cause round-off and truncation errors cannot be avoided
(due to machine imprecision), this effect can happen if
the computed value is very close to the bound p. For
the extremal probability bounds (i.e., bounds > 0 and
� 1), we have circumvented this problem by applying
the standard model checking algorithms for ∀ and ∃ as
in [34]. Furthermore, we intend to use a three-valued
logic such that the tool can avoid potentially wrong re-
sults, and answers ‘don’t know’ in case some calculated
(i.e., approximated) probability is within some tolerance

170 H. Hermanns et al.: A tool for model-checking Markov chains

to a probability bound p occurring in a (sub-)formula to
be checked.

5 Related work

Model checking probabilistic systems. Methods to verify
a DTMC (or the like) against a linear-time temporal logic
(LTL) formula (sometimes specified as a Büchi automa-
ton) have been considered by, for example, [26, 57, 63].
The basis of these works is the (non-trivial) reduction
of the model checking problem to the computation of
the probabilities to reach a certain set of states (mostly,
BSCCs). [25] describes an algorithm for checking whether
a DTMC satisfies a probabilistic LTL-formula.

As stated in the introduction, PCTL model checking
has been developed further by Hansson and Jonsson [34].
In a similar way to CTL∗ containing both LTL and CTL,
the logic PCTL∗ contains both LTL and PCTL. PCTL∗

model checking is studied in [6, 14, 17]. Its basic idea
is the reduction to the verification of quantitative LTL
properties.

For work on the branching-time model checking of
Markov decision processes we refer to [13, 14]. Here,
non-determinism is resolved by adversaries. The model
checking of until-formulas reduces to the computation
of a minimum (or maximum) probability, depending
whether one quantifies over all or some adversaries,
respectively.

Model checking real-time probabilistic systems. A qualita-
tive model checking algorithm for a (continuous) proba-
bilistic variant of timed automata, finite-state automata
equipped with real-time clocks, has been proposed in [4].
This technique is based on the so-called region technique,
a finite partition of the infinite continuous-time domain
tailored to the property and model under consideration.
Recently, this approach has been adopted for quantita-
tive model checking of (discrete) probabilistic timed auto-
mata [51] and a continuous variant thereof [52]. The ver-
ification of real-time properties over MDPs has been con-
sidered in, for example, [2, 15]. Note that our approach for
CTMCs is not based on region-like constructions.

Tools for verifying probabilistic systems. Most work on
the verification of probabilistic systems has been fo-
cused on theory. Tool development has received far less
attention. Notable exceptions are the earlier works by
Martin [53] on the tool Vopp (Verification tOol for
Probabilistic Processes) and by Fredlund [31] on the
tool TPWB (Timed Probabilistic Workbench). Vopp is
a dedicated command-line tool (implemented in C) that
supports the verification of equivalences between DTMCs
and a tableau-based model checking procedure for a prob-
abilistic modal logic by L. Christoff [19, 20]. TPWB
is a command-line tool based on the well-known Con-
currency Workbench [23] for CCS and is implemented
in Standard ML. It is based on the model checking of

Timed PCTL properties [33] over discrete-time proba-
bilistic CCS processes. These tools use sparse-matrix rep-
resentations. The symbolic model checker ProbVerus
for verifying PCTL over DTMCs has recently been re-
ported in [35]. It is built upon the Verus verification
tool and uses multi-terminal BDDs (MTBDDs) as data
structure. The theoretical foundations of ProbVerus
have been laid down in [10]. The symbolic model checker
PRISM (PRobabIlistic Symbolic Model checker) for
MDPs has been recently presented in [3]. It uses MTB-
DDs as data structures and the algorithms of [14]. Note
that all these tools are based on discrete-time proba-
bilistic models. An earlier version of our tool has been
reported in [39].

6 Conclusion

In this paper, we have presented a model checker for
(state labelled) discrete and continuous-time Markov
chains. We reported on the structure of the tool, and on
experiments using the model checker to verify CTMCs
derived from high-level formalisms such as stochastic
Petri nets and queueing networks. As far as we know,
E �MC2 is the first implementation of a bridge between
such high-level specification formalisms for CTMCs and
model checking.

E �MC2 is a prototype. In particular, for the mo-
ment, it does not use symbolic, i.e., (MT)BDD-based,
data structures. Although our own experience (and of
others, see [32]) has shown that very compact encodings
of Markov chains are possible with MTBDDs and similar
data structures [43], and symbolic model checking algo-
rithms for CTMCs do exist [12], we favor a separation of
concerns: to our belief the issues of numerical stability,
convergence, accuracy, and efficiency are worth studying
in isolation, without interference of the (sometimes un-
predictable) effects of BDD-based computations. In add-
ition, none of the high-level modeling tools for generating
CTMCs uses BDD-based data structures, as far as we
know.

Our decision to implement the model checker E �MC2

in Java turned out to be a good choice. In particular it
allowed us to develop an easy-to-use user interface along
with the model checker engine. In addition, the numerical
computations have very good performance in Java; e.g.,
the computation of steady-state properties is comparable
to (optimized) existing C implementations.

E �MC2 currentlyallowstomodel-checkCSL-formulas
over CTMCs of up to a few million states. Due to the
fact that the validity of CSL-formulas is preserved under
lumpability [11] – an equivalence relation on Markov
chains to aggregate state spaces that can be viewed as
a continuous probabilistic variant of strong bisimulation
– it is possible to minimize the CTMC under considera-
tion (with respect to lumpability) prior to carrying out
the model checking. In this way, state spaces of up to hun-

H. Hermanns et al.: A tool for model-checking Markov chains 171

dreds of millions of states can be handled; see the analysis
of the telephone system in [42].

For further information and to download E �MC2,
the reader is invited to consult our web-page at:

www7.informatik.uni-erlangen.de/etmcc

Acknowledgements. The authors thank Lennard Kerber (Erlangen)
for his contribution to assessing the accuracy of the tool output,
and Christel Baier (Bonn) and Boudewijn Haverkort (Aachen)
for their valuable contributions and discussions. Holger Hermanns
is supported by the Netherlands Organization for Scientific Re-
search (NWO). Joachim Meyer-Kayser is supported by the German
Research Council (DFG) under HE 1408/6-1. The co-operation be-
tween the research groups in Twente and Erlangen-Nürnberg takes
place in the context of the project Validation of Stochastic Systems
which is funded by the Dutch NWO and the German DFG.

References

1. Ajmone Marsan, M., Conte, G., Balbo, G.: A class of gener-
alized stochastic Petri nets for the performance evaluation of
multiprocessor systems. ACM Trans Comp Syst 2(2):93–122,
1984

2. de Alfaro, L.: How to specify and verify the long-run average
behavior of probabilistic systems. In: Proc. 13th IEEE Sympo-
sium on Logic in Computational Science, pp. 454–465, IEEE
CS, 1998

3. de Alfaro, L., Kwiatkowska, M.Z., Norman, G., Parker, D.,
Segala, R.: Symbolic model checking for probabilistic pro-
cesses using MTBDDs and the Kronecker representation. In:
Graf, S., Schwartzbach, M. (eds), Tools and Algorithms for
the Analysis and Construction of Systems, Lecture Notes in
Computer Science, vol. 1785. Springer, Berlin Heidelberg New
York, 2000, pp. 395–410

4. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for prob-
abilistic real-time systems. In: Albert, J.L., Monien, B.,
Rodŕıguez-Artalejo, M. (eds), Automata, Languages and Pro-
gramming, Lecture Notes in Computer Science, vol. 510.
Springer, Berlin Heidelberg New York, 1991, pp. 115–126

5. Alur, R., Courcoubetis, C., Dill, D.: Model checking in dense
real-time. Inf Comput 104:2–34, 1993

6. Aziz, A., Singhal, V., Balarin, F., Brayton, R., Sangiovanni-
Vincentelli, A.: It usually works: the temporal logic of stochas-
tic systems. In: Wolper, P. (ed), Computer-Aided Verification,
Lecture Notes in Computer Science, vol. 939. Springer, Berlin
Heidelberg New York, 1995, pp. 155–165

7. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying con-
tinuous time Markov chains. In: Alur, R., Henzinger, T.A.
(eds), Computer-Aided Verification, Lecture Notes in Com-
puter Science, vol. 1102. Springer, Berlin Heidelberg New
York, 1996, pp. 269–276

8. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Model checking
continuous time Markov chains. ACM Trans Comput Logic
1(1):162–170, 2000

9. Baier, C.: On algorithmic verification methods for probabilis-
tic systems. Habilitation thesis, Univ. of Mannheim, 1999

10. Baier, C., Clarke, E., Hartonas-Garmhausen, V., Kwiatkowska,
M., Ryan, M.: Symbolic model checking for probabilistic pro-
cesses. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A.
(eds), Automata, Languages and Programming, Lecture Notes
in Computer Science, vol. 1256. Springer, Berlin Heidelberg
New York, 1997, pp. 430–440

11. Baier, C., Haverkort, B.R., Hermanns, H., Katoen, J.-P.:
Model checking continuous-time Markov chains by transient
analysis. In: Emerson, E.A., Sistla, A.P. (eds), Computer-
Aided Verification, Lecture Notes in Computer Science,
vol. 1855. Springer, Berlin Heidelberg New York, 2000,
pp. 358–372

12. Baier, C., Katoen, J.-P., Hermanns, H.: Approximate sym-
bolic model checking of continuous-time Markov chains. In:
Baeten, J., Mauw, S. (eds), Concurrency Theory, Lecture

Notes in Computer Science, vol. 1664. Springer, Berlin Heidel-
berg New York, 1999, pp. 146–162

13. Baier, C., Kwiatkowska, M.Z.: On the verification of qualita-
tive properties of probabilistic processes under fairness con-
straints. Inf Proc Lett 66(2):71–79, 1998

14. Baier, C., Kwiatkowska, M.Z.: Model checking for a proba-
bilistic branching time logic with fairness. Distrib Comput
11:125–155, 1998

15. Beauquier, D., Slissenko, A.: Polytime model checking for
timed probabilistic computation tree logic. Acta Inf 35:645–
664, 1998

16. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: a theory of
concurrent processes with nondeterminism, priorities, proba-
bilities, and time. Theor Comp Sci 202:1–54, 1998

17. Bianco, A., de Alfaro, L.: Model checking of probabilistic and
nondeterministic systems. In: Thiagarajan, P.S. (ed), Founda-
tions of Software Technology and Theoretical Computer Sci-
ence, Lecture Notes in Computer Science, vol. 1026. Springer,
Berlin Heidelberg New York, 1995, pp. 499–513

18. Changuion, B., Davies, I., Nelte, M.: DaNAMiCS – a Petri Net
Editor. http://www.cs.uct.ac.za/Research/DNA/DaNAMiCS/

19. Christoff, I., Christoff, L.: Reasoning about safety and live-
ness properties for probabilistic systems. In: Shyamasundar,
R.K. (ed), Foundations of Software Technology and Theor-
etical Computer Science, Lecture Notes in Computer Sci-
ence, vol. 652. Springer, Berlin Heidelberg New York, 1992,
pp. 342–355

20. Christoff, L.: Specification and verification methods for prob-
abilistic processes. PhD thesis, Technical Report DoCs 93/37,
Uppsala University, 1993

21. Clarke, E., Emerson, E., Sistla, A.: Automatic verification of
finite-state concurrent systems using temporal logic specifica-
tions. ACM Trans Program Lang Syst 8:244–268, 1998

22. Clarke, E., Grumberg, O., Peled, D.: Model checking. MIT,
Cambridge, Mass., USA, 1999

23. Cleaveland, W.R., Parrow, J., Steffen, B.: The concurrency
workbench: a semantics-based tool for the verification of con-
current systems. ACM Trans Program Lang Syst 15(1):36–72,
1993

24. Conway, A.E., Georganas, N.D.: Queueing networks – exact
computational algorithms. MIT Cambridge, Mass., USA, 1989

25. Courcoubetis, C., Yannakakis, M.: Verifying temporal prop-
erties of finite-state probabilistic programs. In: Proc. IEEE
Symposium on the Foundations of Computational Science, pp.
338–345, IEEE CS, 1988

26. Courcoubetis, C., Yannakakis, M.: The complexity of proba-
bilistic verification. J ACM 42(4):857–907, 1995

27. Deavours, D.D., Sanders, W.H.: An efficient disk-based tool
for solving very large Markov models. Performance Eval
33(1):67–84, 1998

28. Diefenbruch, M., Hintelmann, J., Müller-Clostermann, B.:
The QUEST-approach for the performance evaluation of SDL-
systems. In: Gotzhein, R., Bredereke, J. (eds), Formal Descrip-
tion Techniques IX, pp. 229–244, 1996

29. Fischer, M., Lynch, N.A., Paterson, M.: Impossibility of dis-
tributed consensus with one faulty process. J ACM 32:374–
382, 1985

30. Fox, B.L., Glynn, P.W.: Computing Poisson probabilities.
Commun ACM 31(4):440–445, 1998

31. Fredlund, L.: The timing and probability workbench: a tool for
analysing timed processes. Technical Report No. 49, Uppsala
University, 1994

32. Hachtel, G., Macii, E., Padro, A., Somenzi, F.: Markovian
analysis of large finite-state machines. IEEE Trans CAD Inte-
grated Circuits Sys 15(12):1479–1493, 1996

33. Hansson, H.A.: Time and probability in formal design of dis-
tributed systems. PhD thesis, Technical Report DoCs 91/27,
Uppsala University, 1991

34. Hansson, H.A., Jonsson, B.: A logic for reasoning about time
and reliability. Formal Aspects Comput 6(5):512–535, 1994

35. Hartonas-Garmhausen, V., Campos, S., Clarke, E.M.: Prob-
Verus: probabilistic symbolic model checking. In: Katoen,
J.-P. (ed), Formal Methods for Real-Time and Probabilis-
tic Systems, Lecture Notes in Computer Science, vol. 1601.
Springer, Berlin Heidelberg New York, 1999, pp. 96–111

172 H. Hermanns et al.: A tool for model-checking Markov chains

36. Haverkort, B.R.: Performance of computer communication
systems: a model-based approach. Wiley, New York, 1998

37. Haverkort, B.R., Niemegeers, I.G.: Performability modelling
tools and techniques. Performance Eval 25:17–40, 1996

38. Harel, D.: Statecharts: a visual formalism for complex sys-
tems. Sci Comput Program 8:231–274, 1987

39. Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., Siegle, M.:
AMarkov chainmodel checker. In: Graf, S., Schwartzbach, M.I.
(eds), Tools and Algorithms for the Construction and Analy-
sis of Systems, Lecture Notes in Computer Science, vol. 1785.
Springer,BerlinHeidelbergNewYork, 2000, pp. 347–362

40. Hermanns, H., Herzog, U., Katoen, J.-P.: Process algebra for
performance evaluation. Theoret Comput Sci 274(1–2): 43–87,
2002

41. Hermanns, H., Herzog, U., Klehmet, U., Mertsiotakis, V.,
Siegle, M.: Compositional performance modelling with the
TIPPtool. Performance Eval 39(1–4):5–35, 2000

42. Hermanns, H., Katoen, J.-P.: Automated compositional
Markov chain generation for a plain-old telephone system. Sci
Comput Program 36(1):97–127, 2000

43. Hermanns, H., Meyer-Kayser, J., Siegle, M.: Multi-terminal
binary decision diagrams to represent and analyse continuous-
time Markov chains. In: Proc. 3rd Int. Workshop on the Nu-
merical Solution of Markov Chains, pp. 188–207, 1999

44. Hermanns, H.: Construction and verification of performance
and reliability models. Bull ETACS 74:135–153, 2001

45. Hillston, J.: A compositional approach to performance mod-
elling. Cambridge University, 1996

46. Holzmann, G.J.: An improved protocol reachability analysis
technique. Software Pract Exper 18(2):137–161, 1988

47. Holzmann, G.J.: Design and validation of computer protocols.
Prentice-Hall, Englewood Cliffs, N.J., USA, 1991

48. Ibe, O.C., Trivedi, K.S.: Stochastic Petri net models of polling
systems. IEEE J Selected Areas Commun 8(9):1649–1657, 1990

49. Jensen, A.: Markov chains as an aid in the study of Markov
processes. Skand Aktuarietidskrift 3:87–91, 1953

50. Katoen, J.-P., Kwiatkowska, M.Z., Norman, G., Parker, D.:
Faster and symbolic CTMC model checking. In: de Alfaro, L.,
Gilmore, S. (eds), Process Algebra and Probabilistic Method,
Lecture Notes in Computer Science, vol. 2165. Springer, Berlin
Heidelberg New York, 2001, pp. 23–38

51. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Au-
tomatic verification of real-time systems with discrete prob-
ability distributions. In: Katoen, J.-P. (ed), Formal Methods
for Real-Time and Probabilistic Systems, Lecture Notes in
Computer Science, vol. 1601. Springer, Berlin Heidelberg New
York, 1999, pp. 75–95

52. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.:
Verifying quantitative properties of continuous probabilistic
timed automata. In: Palamidessi, C. (ed), Concurrency The-
ory, Lecture Notes in Computer Science, vol. 1877. Springer,
Berlin Heidelberg New York, 2000, pp. 123–137

53. Martin, P.-E.: Vopp: a verification tool for probabilistic pro-
cesses. MSc thesis, Uppsala University, 1993

54. McMillan, K.L.: Symbolic model checking. Kluwer Academic,
Boston, Mass., USA, 1993

55. Muppala, J.K., Trivedi, K.S.: Numerical transient solution of
finite Markovian queueing systems. In: Bhat, U. (ed), Queue-
ing and Related Models, Oxford University, 1992

56. Peled, D.: Combining partial order reductions with on-the-fly
model checking. Formal Methods Syst Des 8:39–64, 1996

57. Pnueli, A., Zuck, L.: Probabilistic verification. Inf Comput
103:1–29, 1993

58. Pooley, R., King, P.: Derivation of Petri net performance
models from UML specifications of communications software.
In: Haverkort, B.R., Bohnenkamp, H.C., Smith, C.U. (eds),
Computer Performance Evaluation, Lecture Notes in Com-
puter Science, vol. 1786. Springer, Berlin Heidelberg New
York, 2000, pp. 262–276

59. Press, W., Flannery, B., Teukolsky, S., Vetterling, W.: Numer-
ical recipes in C: the art of scientific computing. Cambridge
University, 1989

60. Shiryaev, A.N.: Probability. Graduate Texts in Mathematics,
Springer, Berlin Heidelberg New York, 1989

61. Stewart, W.: Introduction to the numerical solution of Markov
chains. Princeton University, 1994

62. Tarjan, R.E.: Depth-first search and linear graph algorithms.
SIAM J Comput 1:146–160, 1972

63. Vardi, M.Y.: Automatic verification of probabilistic concur-
rent finite state programs. In: Proc. IEEE Symposium on
the Foundations of Computational Science, pp. 327–338,
1985

