
Appl. Phys. B 46, 103-109 (1988) Applied ,,.o,o- physics 
Physics B and Laser Chemistry 

�9 Springer-Verlag 1988 

Subnanosecond Pulse Measurements 
of 10.6 gm Radiation with Tellurium 

E. H. Haselhoff, R. J. M. Bonnie, G. J. Ernst, and W. J. Witteman 

Department of Applied Physics, University of Twente, NL-7500 AE Enschede, 
The Netherlands 

Received 23 December t987/Accepted 11 January 1988 

Abstract. Subnanosecond infrared pulses have been measured by nonc011inear second- 
harmonic generation in tellurium. The method is very practical because due to the high 
refractive index the fine tuning of the phase matching is easily obtained by rotating the 
crystal around the optic axis. 

PACS: 42.60, 42.65 

Second-harmonic generation has proved to be a very 
effective technique to measure mode-locked pulses. In 
principle, a short pulse is split into two pulses which 
pass collinearly or noncollinearly through a nonlinear 
crystal. The second-harmonic signal depends on the 
overlap of the two pulses in the crystal. By varying the 
time delay between these pulses a correlation function 
of the pulse envelope by means of second-harmonic 
generation can be obtained. To obtain background- 
free measurement of the correlation function it is 
essential that phase-matched second-harmonic gener- 
ation is produced only when the fields of both pulses 
are present i.e. when the two pulses overlap in time. 
This technique is well known for the visible region of 
the spectrum [1 ]. However, in the infrared region it has 
not been explored in a comparative way, mainly due to 
the lack of optical material of sufficient quality. 
Collinear measurement of CO2 laser radiation has 
been described in the past using proustite or GaAs as 
the nonlinear material [-2, 3]. The presence of back- 
ground radiation limits in this method the accurate 
measurement of the energy in the wings of the pulses. 

In the present paper we will describe the non- 
collinear method for phase matching in a tellurium 
crystal to measure short pulses in the 10 gm region. 

The second-harmonic radiation intensity, propor- 
tional only to the product of the two fundamental 
beam intensities, is detected in this method at an angle 
bisecting the angle between the two fundamental 
beams. Because of the different direction of the second 

harmonic radiation no filtering of the detected signal is 
required. 

Although the non-collinear method may seem 
experimentally complicated because of the accurate 
adjustments of both the angle between the funda- 
mental beams and their bisector along the y-axis it 
turns out that due to the high refractive index of 
tellurium the rotation of the crystal around the z-axis 
allows an accurate tuning of the phase match 
conditions. 

Phase Matching of Noncollinear Beams 

We consider the fundamental beams as two extraordi- 
nary waves of which the propagation vectors make the 
angles ~p and ~-: ~p with the z (optic) axis of the uniaxial 
Te-crystal. The k vectors of the propagating waves are 
in the z -  r plane where the r-direction makes an angle 
0 with the positive x axis of the crystal, as shown in 
Fig. 1. Thus we have the following two fundamental 
waves 

El(z, r, t) = �89 1 exp [i(o)t-zk e cos~v 

- r k e  sin~p)] + c.c.), (1) 

E2(z, r, t) = �89 2 exp [i(c~t + z k e  cos~v 

- r k e  sin~v)] + c.c.), (2) 

where k~ is the propagation constant of the extraordi- 
nary wave at the angle ~p. The field components in the 
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Fig. 1. Orientation of the propagation vectors of the fundamental 
and second-harmonic beams, the nonlinear polarization and their 
angles with respect to the crystal coordinates 

Cartesian coordinates of the crystal are 

V   o.,cos01 F  cos , os01 
E l =  [Elcos to*s in0]  and E2 = [E2costo*sin0[ 

L - E t  sinto* J L EEsinto* J 

respectively, where to* and to differ slightly because in 
general E is not perpendicular to ke. 

The trigonal Te crystal of point group 32 has the 
following non-zero matrix elements in the nonlinear 
susceptibility tensor: d 11, d 12, d a 4, d25, and d26 with the 
relations dll  = - d 1 2  = - d 2 6  and d i e =  --d25 [4, 5]. 

The elements d14 and d25 are relatively small and 
will be neglected. 

The nonlinear polarization at the frequency 20 has 
the components 

Px = �89 1E1E2 cos2 to* COS2 0 exp [i(2~Ot-- 2rke sin to)], 
(3) 

-- �89 1E tEE cosEto * sin E 0 exp 

x [ i(2ot--  2rke sinto)] + c.c., (4) 

Pr = - d l  xE1E2 c~ * cos0 sin 0 exp 

x [i(Ecot- 2rk e sin to)] + c.c., (5) 

P= = O, (6) 

where the non-phase matched terms have been left out, 

or 

Px = �89 1E1E2 e~ to* COS 20 exp 

X [i(20t-- 2rk e sin to)] + c.c., (7) 
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Fig. 2. Schematical representation of the ordinary and extraordi- 
nary indices of refraction in a uniaxial crystal. The values are 
given by the distance between the origin and the intersection 
between the considered ellipse or circle and the straight line 
defining the angle of propagation with respect to the z axis 

13y = - - l d l lE1E  2 cosEto * sin20 exp 

x [ i ( 2 o t -  2rk2 sin to)] + c.c., (8) 

P==0.  (9) 

It is seen that the polarization P(2m) makes an 
angle - 2 0  with the x-axis. The absolute value of P(2~o) 
is independent on 0. However only that part of P(Eco) 
contributes to second-harmonic power that has the 
ordinary direction and thus lies in the x -  y plane and is 
perpendicular to r. So the production goes with sin30. 
Maximum production will occur for 0=  rc/6 or ~/2. 
Thus for 0 = n/2 the second-harmonic radiation with 
field E 3 propagates along the y-axis, i.e. the direction of 
r is along the y-axis. If we assume no absorption the 
field generated by this polarization field is then, using 
Maxwell's equations, given by [5] 

dE3 = _iOdll COS2to, ( klo )t/2 
dy \e2,o / 

x E1E2 exp [--- i(2ke s in to-  k3)y ] . (10) 

It is seen that phase matching is fulfilled for 
2ke sinto., = k3, where ~0,, is the phase-matching angle. 
Using the refractive indices for the ordinary and 
extraordinary rays in the uniaxial crystal the phase 
matching cbndition can be calculated. This is indicated 
in Fig. 2. For  the extraordinary ray we obtain ne(to) 
from the relation 

1 c~ sin2to (11) 
+ "i  

The numerical values at 2 = 1 0 g i n  are: no,o=4.795, 
no, 20 =4.856, and ne, o~ = 6.24. 

For  phase matching we have the condition 

He, o~(tom) sin to,, = no, 20- (12) 
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Substituting (12) into (11) and using the numerical 
values of n we obtain ~v,.= 58.196 ~ 

Next we integrate (10) over a length L and taking 
the intensity I(2~o) we get 

i(2w)=Z~o2d21COS41p, ( ]~0 ~3/2  I L 2sin2(AkL/2) 

with (13) 

Ak= 2~ 22 [-no, 2~ - ne, ~(~p) sin0p)]. (14) 

dsl =5.7 x 10 - 2 1  in MKS units and 22 is the second- 
harmonic wave length in vacuum. 

If the two pulses of the fundamental beams are 
delayed with respect to each other by a time z the 
second-harmonic power will be proportional to 
Is(t)I2(t-z). 

For light pulses that are much shorter than the time 
constant of the detecting system the response R will be 
proportional to the time integral of the second har- 
monic power, i.e. 

R = C ~ I i ( t ) Iz( t -  z)dt (15) 

which is for Is = I2 the autocorrelation function of the 
original laser pulse. 

Experimental Requirements 

In the above analysis it was found that phase matching 
for the second-harmonic signal is obtained for the 
angle ~ -  2~Vr. between the two fundamental beams and 
for their bisector oriented along the y axis of the 
crystal. To satisfy these two conditions the question 
arises how accurately this has to be fulfilled in the 
experimental situation. The answer has a direct mean- 
ing to the usefulness of the method in practice. For this 
reason we first calculate the required accuracy of the 
angle ~Pm in the case of L =  1.3 ram. 

It is seen from (13) that for a mismatch of AkL= 7c 
the second-harmonic power drops to 40% of its 
maximum. From (14) we get for a small deviation 

2~z 
Ak = ~ [ -  ne, o~(lpm) coSlPmA1 p - -  sin ~p,,An e ~(~p~)]. (16) 

Using (11) we obtain 

2~ 
k = he, &ore) 

+ n~,~o0;,,) ~- n r 
he, to 0,~ 

• sin2 m/A  (17) 
_l 

Substituting the numericals for 22, ~Pm, ne, o, and 
no,o~ the maximum allowable deviation of ~Pm is then 
given by law[--4.8 • 10 -4 rad. For the incident beam 
the corresponding value is obtained by multiplying 
with ne,~0pm)=5.7139. SO we have Av; o=2.7 
x 10 .3 rad or 0.16 ~ which is from the experimental 

point of view a high requirement. 
Next we calculate the accuracy of the orientation of 

the bisector. This can be considered by changing the 
direction of one fundamental beam by A~p in the yz- 
plane and the other one by - A~p. The variation of Ak is 
then given by 

A(Ak) = ~ { - I f(p, ,  + A~p)- f(~Pm)] 

- [ fOP, . -  A~v) - f ( l f l m ) ] } ,  (18) 

where As is the fundamental wave length in vacuum, 
and 

f (~v,~) -- sin ~vmn~, ~OP,~), 

and ne,~o(~v,.) given by (11). 
For small variation of A k we write 

A(Ak) = - ~[~ f"(~pm)(A~v) 2 . (19) 

After some algebra and substituting the numericals 
we obtain A~p=l.9 ~ With respect to the incident 
orientation of the fundamental beams the maximum 
allowable deviation between the bisector and the 
y-axis is 11 ~ which is quite acceptable from a practical 
point of view. 

In conclusion, we mention that so far only the 
adjustment of the angle between the two fundamental 
beams will be a very critical operation. However, it can 
be shown that the experimental solution to this 
problem is found by simply rotating the crystal around 
the z axis. It turns out that in this way an accurate 
tuning of the proper phase matching can be obtained. 

Fine Tuning of the Phase Match Condition 

The effect of rotating the crystal around the z-axis can 
be calculated by means of Fig. 3. It shows how the 
crystal has been cut. The oblique planes are necessary 
because of the high refractive index. The fundamental 
beams enter the crystal more or less perpendicularly so 
that the correct orientation within the crystal can be 
adjusted externally. As clearified in the previous sec- 
tion the field vectors of the fundamental incident 
beams lie in the yz plane of the crystal. The second 
harmonic has its field along the x axis whereas it 
propagates along the y-axis. The dependence of I(2e)) 
on the external angle lpo between the two beams is very 
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Fig. 3. Input parameters of the computer model 

critical as can be seen in Fig. 4 for an interaction length 
L =  1.3 ram. The narrow range of the angle ~Po is in 
agreement with the estimate given in the previous 
section. The squares represent the measured values 
and the curve a computer calculation assuming plane 
waves. The larger width of the experimental data might 
be due to the (small) inherent beam divergence. 
Moreover, it is difficult to obtain an exact value for the 
interaction length. It is seen that the adjustment of ~p,, 
must be within a few tenths of a degree and becomes 
even smaller for larger L values. Therefore an import- 
ant aspect in the design of the autocorrelator is the 
accuracy with which the phase matching in the crystal 
can be obtained. For  this reason we investigated the 
relations between a number of parameters and their 
effect upon the second-harmonic signal. 

Especially we investigated the possibility of correct- 
ing an error in the phase matched direction by 
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Fig. 5. See text 

rotation of the crystal around the z axis. The results are 
compared with a computer model which will be 
described as follows. It is assumed that the crystal is 
first rotated around the x axis for optimum second- 
harmonic generation, so that the y axis coincides with 
the bisector of the incoming fundamental beams. A 
symmetric situation is obtained with respect to the xy  

plane and only one half of the crystal has to be 
considered, let us say the right hand side of Fig. 3. The 
unit vectors in the direction of the incoming beam and 
the normal of the oblique plane may be expressed by 
the vectors i and n, respectively: 

0 ] sinTcosv- 

i =  simpo and n =  cosTcosv , (20) 

LCOS~0oj sinv 

where ~Po is the angle between the z axis and the 
direction of propagation of the incident beam outside 
the crystal, v is the angle between the oblique plane and 
the xz  plane, which ideally should be equal to ~z/2 - ~p,,. 
The angle 7 represents the rotation around the z axis. 
For y = 0 the incident beam lies in the yz plane. 

In order to find t, which represents the unit vector 
of the transmitted beam, we write (Fig. 5): 

i + 2 n  
t =  (1 +22) 1/2" (21) 
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Fig. 4. Second-harmonic intensity 
as a function of the external angle 
~P0 between the fundamental 
beams for an interaction length of 
1.3 mm 
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Fig. 6. The output  signal as a 
function of ? for L =  1.3 mm,  
~Po = 58.200 deg 

Fig. 7. The output signal as a 
function of 7 for L = 1.3 mm, 
~Po = 59.85 deg 

A little algebra and Snell's law then yields 

2 = [n 2, o,(lp)- 1 + (i. n) 2 ] ,/2 _ (i. n), (22) 

where ~ represents the angle between the z-axis 
and t. Cos~p is given by 

coslp o + 2 sinv 
COS~D = (1 + 2 2 )  1/2 (23) 

The last equation can only be solved in an iterative 
way because 2 is a function of ~p. By taking for instance 
n0p) = 5 as a starting value, 2 is obtained by (22) and the 
first approximated value of ~p can then be found with 
(23). The obtained value of p will give a new value of 
n0p) by means of(11)Which can be used to obtain a new 

approximated value of lp through (22) and (23), and 
SO o n .  

To determine the influence of rotation on the 
intensity 1(2o)) of the second-harmonic beam one also 
has to take into account the fact that the direction r of 
the second-harmonic beam is no longer along the 
direction of the y-axis. So (13) has to be multiplied by 
sin230, where 0 is the angle of r with respect to the 
x-axis. This angle 0 can be calculated from the in- 
product  of the x-axis and the unit-vector r, which is 
determined by the projection of t on the xy  plane. 

The results of the calculations are shown by the 
curves of Figs. 6 and 7. In Fig. 6 there is a phase 
mismatch of only 0.004 ~ and fine tuning is obtained by 
rotating 7 over about  8 ~ In Fig. 7 the mismatch is 
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1.654 ~ and the fine tuning is obtained by rotating ? over 
23 ~ . The experimental results are also plotted. Each 
square corresponds to an average of 25 shots of a 
pulsed CO2 laser. Thus we find that a small mismatch 
given by A~p 0 can be corrected with a relatively large 
rotation ? around the z-axis. 

Autocorrelator 

A schematic drawing of the noncollinear optical 
system for measuring the autocorrelation is shown in 
Fig. 8. 

The entrance mirror IV allows adjustment of the 
incoming beam, without moving the table. The mirror 

I ~---~-]~ . . . . . .  t laser 
11 ~ I 

I / 

'-272~---- ' / 1"/ /  -g 

scope 

Fig. 8. I, I l l  adjustable diaphragms, II diaphragm, IV entrance 
mirror (translation/rotation stage), V beam splitter, VI mirror 
holder, VII copper coated glass prisms mounted on translation 
stage, VIII copper coated glass prism mounted on prism table, IX 
adjustable mirror mount, X photoconductive cell 

holder is mounted on a translation stage. The trans- 
lation stage VII provides a maximum displacement of 
15 cm, yielding an effective delay of 30 cm or 1 ns. This 
is sufficient for short pulses (several hundreds of ps), 
but not long enough for pulses of about 1 ns. We 
therefore attached a rail beside the translation stage, 
allowing displacement of the entire device itself. The 
position can easily be measured by any ordinary scale. 

We generated mode-locked pulses with a 3 at- 
mosphere CO2 laser. Since the spacing between the 
pulses in the "pulse train" is much longer (12 ns) than 
the duration of the individual pulses (< 1 ns) we fired 
the entire pulse train, thus measuring the averaged 
pulse length, weighted over the intensities of the pulses. 
Figure 9 represents the result obtained by the autocor- 
relator. The FWHM is about 9.0cm, which corre- 
sponds to 0.090x2/c=0.60ns. The length of the 

original pulse (assumed to be Gaussian) then is �89 ~ 
x 0.60 = 0.42 ns. 

Conclusions 

The Very critical phase match conditions for COz laser 
pulse measurements by means of second-harmonic 
generation in tellurium is feasible. The constructed 
device appeared to be rather easy in use, and is 
estimated to function well down to pulses with a 
FWHM of about 50 ps. The delay allows displace- 
ments of 0.01 ram, which implies a (theoretical) reso- 
lution of about 0.1 ps. This would make the autocorre- 
lator suited for pulses down to about 1 ps, but we 
expect the resolution to be restricted by the limited 
stability of the optical components. The conversion 
efficiency was estimated to be about 1% (which 
appeared to be a very rough estimate) and corre- 
sponded to a maximum signal of about 0.5 V. 
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Fig. 9. Autocorrelation function of 
the laser pulses, as measured by 
the SHG autocorrelator. The 
FWHM of the laser pulse 
assumed to be Gaussian appears 
to amount to 0.42 ns 
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Installation and adjustment of the device appeared 
rather easy. Adjustments in order to obtain a max- 
imum signal have to be performed by means of the 
entrance mirror and rotation of the crystal. If adjust- 
ment should be difficult, it can be made easier by 
decreasing the length of the overlap volume, i.e. by 
decreasing the beam diameter. This however will also 
decrease the output signal. 

During the experiments, the experimental error 
appeared to be mainly caused by fluctuations in laser 
output. We dealt with this problem by dividing the 
second harmonic signal by the square of the laser 
intensity and by averaging over about 20 shots for each 
measurement. When the autocorrelator is to be used 
intensively, we suggest to have it entirely controlled by a 

microcomputer, which triggers the laser, averages the 
measurements and adjusts the delay by means of a 
stepping motor. 
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