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ABSTRACT 

The top-down and bottom-up tree transducer are incomparable with respect to their 
transformation power. The difference between them is mainly caused by the different 
order in which they use the facilities of copying and nondeterminism. One can however 
define certain simple tree transformations, independent of the top-down/bottom-up 
distinction, such that each tree transformation, top-down or bottom-up, can be decom- 
posed into a number of these simple transformations. This decomposition result is 
used to give simple proofs of composition results concerning bottom-up tree 
transformations. 

A new tree transformation model is introduced which generalizes both the top- 
down and the bottom-up tree transducer. 

Introduction. Finite state transformations (fst) of trees into trees were 
introduced and studied by Rounds [6] and Thatcher [8]. Finite state transforma- 
tions are meant to be a model of  the kind of tree transformations which are 
investigated, for instance, in the study of transformational grammars in linguis- 
tics and in the study of syntax-directed translations of  context-free languages in 
compiler theory. 

The fst, as they are discussed in [6, 7, 8, 9], process the input tree in a top- 
down mode, which is the way syntax-directed translation works. As a con- 
sequence, thesefst fail to have some important properties. They are, for instance, 
unable to inspect a subtree in order to decide whether to delete it or not. Finite 
state transformations that process the input tree in a bottom-up mode (introduced 
in [10]) obviously have this ability, but on the other hand fail to have specific 
top-down properties. 

In this paper we compare these two kinds offst, and we define a generalized 
model which has all properties of both bottom-up and top-down fst. We show 
that each fst can be decomposed into "very simple" fst and we apply this 
decomposition to prove certain composition results concerning bottom-up fst. 

In section 1 most of  the necessary definitions are given. 
In section 2 the incomparability of  bot tom-up and top-downfst is discussed. 
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In section 3 we define three classes of  "simple" fst and show that each fst 
is a composition of at most four of such simple fst. 

In section 4 we discuss composition of  bottom-upfst. 
In section 5 the "generalized fst'" are introduced and investigated. We also 

introduce a new top-down model, "dual" with respect to the bottom-up model. 
In section 6 we give a survey of decomposition results. 
Section 7 contains a conclusion, acknowledgments and references. 

1. Preliminaries. In this section we introduce some terms, definitions and 
facts which will be used in the rest of this paper. First we recall some terminology 
concerning sets, relations and strings. Then we discuss various notions concern- 
ing trees and tree transducers. 

Sets, relations and strings. Inclusion of sets is denoted by c and proper 
inclusion by c .  The empty set is denoted by ;~. An ordered pair of objects 
a and b is denoted by (a, b). The cartesian product of sets A and B, denoted 
by AxB ,  is the set {(a, b)la~A and b~B). 

A relation R from A into B is any subset of A x B. The inverse of R, denoted 
by R-1,  is { (b, a )  E B x A] (a, b) ~ R }. The domain of R, denoted by dora(R), 
is the set {a ~ A](a, b) ~ R for some b in B}. The range o f  R is the set {b ~ B[ 
(a, b)  ~ R for some a in A }. For a in A, the image of a under R, denoted by 
R(a), is the set {b ~ Bl(a, b) ~ R}, and, for U __q A, the image of U under R, 
denoted by R(U), is the set {b ~ Bl(a, b) ~ R for some a in U}. 

If R 1 is a relation from A into B and R z a relation from B into C, then the 
composition of R1 and Rz, denoted by R1 o R2, is the relation from A into C 
defined by 

R 1 o R  2 = {(a, c)](a,b) ER1 and (b, c) ER2forsomebinB}. 

If F and G are classes of relations, then F o G denotes the class of relations 
{R o SIR e F a n d  S e  G}. 

An alphabet Y, is any set (of "symbols"). Usually, an alphabet is assumed to 
be finite. The set of strings of symbols from Z is denoted by Y~*. A language 
over E is any subset of Z*. If  A and B are languages over Z, then their conca- 
tenation is denoted by AB. A language {w} consisting of one word w only is 
often denoted by w. For instance, AwB denotes the concatenation of A, {w) 
and B. 

We shall often use the parentheses ")" and " ("  as symbols in an alphabet, 
and simultaneously for their usual notational purposes. It is hoped that this will 
not lead to confusion. As an example, A(B) might denote the image of the set B 
under the relation A, but it might also denote the concatenation of the languages 
A, {(}, B and {)}. 

Trees and tree transducers. An alphabet Y, is ranked if for each nonnegative 
integer k a subset Y~k of Z is specified, such that Zk is nonempty for a finite 
number of k's only. The elements of Y~k are said to be of rank k. Note that the 
sets Y~k need not be disjoint. 

Given a ranked alphabet Z, the set of all trees over Y~, denoted by T~, is the 
language over the alphabet Y~ w { (,)} defined inductively as follows. 
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(1) I f  ~r E Xo, then ~r is in T~. 
(2) I f k  > 1, ~ E X k and q , .  •., t k ~ Tx, then a ( t t ' "  "tk) is in T~. 

By this definition, trees over ~ are special kinds of  strings over the alphabet 
E u { (,)}, but it is well known that the set of  all such strings is in an effective 
one-to-one correspondence with the set of  all finite rooted ordered directed trees, 
whose nodes are labeled with the elements of  Z, in such way that a node with 
k descendants is labeled by a symbol from X k. For instance, if Z 0 = {a, c}, 
X 2 = {a, b} and ~3 = {a}, then a(b(ac)c) and a(aa(aaa)) are in T~ and represent 
the trees 

a a 

b ~  ~ c  8 a respectively. 

I f  tl and t 2 are trees over Z such that t2 = ~tl/3 for certain ~,/3 E (X w {(,) })*, 
then that occurrence of t I is called a subtree of t 2. 

A subset U of  Tz is called a tree language over Z, and a relation M from 
T~ into Ta (where E and A are ranked alphabets) is called a tree transformation 
from Tz into TA. 

Given some set S of  symbols or strings, the set of all trees over Z indexed by S, 
denoted by T~[S], is defined inductively as follows. 

(1) X o u S c_ T~[S]. 
(2) I f  k > 1, cr ~ Z k and t l , ' "  ", tk ~ Tz[S], then ~r(tl. . .  tk) E Tz[S]. 

Thus Tz[S] is a language over the alphabet which is the union of  E u {(,) } and 
the alphabet of S. Note that if S is a set of  symbols, then Tz[S] = Tt,, where A 
is the ranked alphabet such that A o = X o u S and, for k >__ 1, A k = E k. Note 
also that T~[~] = T~, and that for instance T~[Tz] = T~. 

The definition of a tree transducer will involve rules which employ variables 
ranging over trees. We now introduce the notion of a "semi-thue system with 
variables" of  which the tree transducer will be a special case. Let us first recall 
the notion of semi-thue system. 

A semi-thue system G is a pair (A, R )  consisting of an alphabet A and a 
(not necessarily finite) subset R of A* x A*, the elements of which are called 
rules. 

A rule (~,/3) will be denoted by ~ --->/3. The binary relation =~ in A* x A*, G 
is defined as follows: if ~ -~/3 is in R and 9, ~b are in A*, then ~o~$ ~. ~0/3~b. 

of  ~ is denoted as usual by * .  I f  G is under- The transitive-reflexive closure G G 
stood, then we write =~ and * rather than =~ and =~ respectively. 

A semi-thue system with variables is a system G = (A, X, D, R)  consisting 
of an alphabet A, a set X (of variables) disjoint with A, a mapping D from X 
into the power set of  A* and a finite set R (of  rules or rule schemes) included in 
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(A U X)* x (A U X)*. A rule (% ~)  will usually be denoted by ~0 ~ ft. Intuitively 
each variable x is meant to range over the language D(x), and therefore each 
rule in R gives rise to a whole set of  rules in A* x A* by replacing each variable 
x by a string from D(x) throughout the rule. Formally, given a rule ~o --~ ~b in R, 
we define s(~o -+ ~b) to be the set of  all rules a ~ fl in A* x A*, such that there 
exists a homomorphism h from (A u X)* into A* with h(x) ~ D(x) for all x in X, 
h(a) = a for all a in A, h(~0) = ~ and h(~b) = ft. For the set R of rules, let s(R) 

denote Urea s(r). We now define the relations =~ and * of  the semi-thue system 
G with variables to be those of the semi-thue system H = (A,  s(R)).  Thus, 

~, = ~ . a n d * ~  = ~ .  

Example. Consider the following semi-thue system with variables: G = 
(A, X, D, R) ,  where A = {1, (,), .}, X = {x, y}, D(x) = D(y) = {1}* and R 
consists of the rules 

(x .y l )  ---> (x .y )x  and (x*l) -+ x. 

Then s(R) contains the following rules (among many others): 

(I1.111) -+ (11.11)11 
(11,11) -> (11,1)11 
(11,1) ---> 11 

(h(x) = h(y) = 11 in the first rule), 
(h(x) = 11 and h(y) = 1 in the first rule), 
(h(x) = 11 in the second rule). 

Hence (11.111) =~ (11.11)11 :b:" (11.1)1111 =~G 111111, and in general, for u, v 

and w in { 1 }*, (u,v) * w if and only if w is the product of  u and v in tally G 
notation. 

Let from now on X be a f ixed denumerable set of  variables xl ,  x2, x 3 , "  " : 

x =  

Moreover, let, for k > 1, Xk = {Xl, X2, ' ' ' ,  Xk}, and let Xo = z .  We shall use 
x, y and z to denote arbitrary elements of  X. Also, in examples, we use x, y and z 
to denote xl ,  x2 and x3 respectively. 

We now define the notion of tree transducer. A (finite state) tree transducer 
is a 5-tuple M = (Y,, A, Q, Qd, R>, where 

Z is a ranked alphabet (of input symbols), 
A is a ranked alphabet (of output symbols), 
Q is a ranked alphabet (of states), each element of  which has rank 1 

(thus Q1 = Q a n d  Q k =  ~ for a l l k #  1) ,and  Q c ~ ( Z U A ) =  z ,  
Qd is a subset of  Q ( o f  designated states), and 
R is a finite set (of rules) such that either R c_ Q(Tz[X]) x Ta[Q(X)] or 

R c_ Ts[Q(X)] × Q(Ta[X]). 1 
In the former case M is called a top-down tree transducer and in the 
latter case a bottom-up tree transducer. 

1 Q(T~[X]) isthe set of trees {q(t)[q ~ Q, t ~ T~[X]}. Q(X) is the set of trees {q(x)]q ~ Q, 
x E X}. Thus both Q(T~[X]) and Tr.[Q(X)] are subsets of T~uQ[X]. 
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A tree transducer M = (Z, A, Q, Qd, R)  will be viewed as representing the 
semi-thue system with variables (A, X, D, R)  with A = Z w h u Q ~ {(,)} 
and with all variables ranging over T~ in the top-down case and over T A in the 
bottom-up case (that is, D(x) = T~ for all x in X, and D(x) = T~x for all x in X, 

respectively). The relations ~, and * (or simply =:- and * )  in A * ×  A* are 

defined to be those of that semi-thue system with variables. 
Let M = (Z, A, Q, Qd, R)  be a tree transducer. The tree transformation 

defined by M, also denoted by M, is the following relation from T~ into T~: 

in the top-down case, M = {(t,  s) E Tr.× TA[q(t) * s f o r  some q in  Qa}, and in 

the bottom-up case, M = {(t ,  s) ~ T~× TAIt *~ q(s) for some q in  Qd}. 
Note that we give the same name to both the transducer and the transformation 
defined by it. Note also that, in the derivations mentioned in the above definition 
of tree transformation defined by M, the intermediate results are in TA[Q(Tz) ] 
in the top-down case and Tz[Q(TA) ] in the bottom-up case. 

The finite state tree transducer can be considered as the appropriate general- 
ization to trees of  the sequential transducer, defined in [3]. In this paper we shall 
restrict ourselves to tree transducers which correspond to the generalized 
sequential machine (see [9]). The definitions come about by restricting the left 
hand sides of  rules to what amounts to the simplest possible form, and by 
restricting the right hand side of  a rule to trees which contain only variables 
which are also contained in the left hand side of  that rule. 

A finite state transformation (abbreviated by fst) is either a top-down or a 
bot tom-up finite state transformation. 

A top-down finite state transformation (abbreviated by t-fst) is a top-down 
tree transducer (Z, A, Q, Qd, R~ such that all rules in R have either the form 
q(a(xl"" "Xk)) ~ t with q in Q, k _> I, a in Z k and t ~ Ta[Q(Xk)], or the form 
q(a) ~ t with q in Q, ~ in Zo and t in TA. 

A bottom-upfinite state transformation (abbreviated by b-fst) is a bottom-up 
tree transducer (Z, A, Q, Qd, R)  such that all rules in R have either the form 
cr(ql(xl)'" "qk(Xk)) ----> q(t) with k > 1, cr in Zk, q l , ' " ,  qk, q in Q and t in Ta[Xk], 
or the form o ~ q(t) with ~ in Eo, q in Q and t in T A. 

Note that, for a t-fst, Qd is the set of initial states, whereas the final states are 
those occurring in rules of the form q(g) -~ t. For a b-fst, the initial states are 
those occurring in rules of  the form cr --~ q(t), whereas Qa is the set of  final 
states. 

Terminology. The tree transformation defined by a top-down finite state 
transformation will also be called a top-down finite state transformation (and 
similarly for bottom-up finite state transformations). In fact, throughout this 
paper, we shall often make no distinction between an fs t  and the tree trans- 
formation defined by it. Hopefully this will not lead to confusion. 

The class of  all top-down f s t  will be denoted by T-FST, and the class of  all 
bottom-up f s t  will be denoted by B-FST. [] 

Example. Consider the t-fst M = (Z, A, Q, Qa, R),  where 2; 0 = Y'I = {a}, 
Z 2 = {e}, A o = A1 = (b, e}, 2x 3 = {r}, Q = {qo, qb, qc}, Qn = {qo} and R 
consists of  the following rules (numbered from 1 to 5): 
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1. qo(cr(xlx2)) -~ b(~'(qb(x2)q,(.'q)qb(xl))), 
2. qb(a(xO) ~ b(qb(Xl)), 
3. qb(a) -+ b, 
4. q~(a(xO) -+ e(q~(xi)), and 
5. qc(a) ~ c. 

M translates the tree cr(a(a)a) into the tree b('r(bc(c)b(b))) as follows (where the 
numbers at each step indicate the rule applied): 

qo(~r(a(a)a)) =~ b(','(qb(a)qc(a(a))qb(a(a)))) 

=*'3 b('r(bqc(a(a))qb(a(a)))) ~ b('r(bc(qc(a))qb(a(a)))) 

b('r(bc(qc(a))b(qb(a)))) =~ b('r(bc(c)b(qb(a)))) 

b('r(bc(c)b(b))) 

or in pictures, see diagram on page 204. [] 
Next we define a number of natural restrictions on fst. 
A t-fst (Y., A, Q, Qa, R)  is (total) deterministic (abbreviated by dt-fst) if, 

for all k _> 0, g e E k and q E Q, there is exactly one rule with left hand side 
q(cr(xl"" "xk)) (or q(~) if k = 0), and Qd is a singleton. The class of all dt-fst will 
be denoted by DT-FST. 

A b-fst (Z, A, Q, Qa, R)  is (total) deterministic (abbreviated by db-fst) if, 
for all k >_ 0, g e Y~k and qx," " ", qk ~ Q, there is exactly one rule with left hand 
side ~(ql(xO'" "qk(Xk)) (or cr if k = 0). The class of all db-fst will be denoted by 
DB-FST. 

Note that all deterministic top-down fst are total functions, whereas all 
deterministic bottom-up fst  are partial (not necessarily total) functions. 

A tree in which variables from X occur is said to be linear if no variable 
occurs more than once in the tree. For k _> 0, a tree in which variables from 
X k occur is said to be nondeleting with respect to X k if each variable from X k 
occurs at least once in the tree. 

Anf s t  is linear if all right hand sides of rules of theJ~t are linear (note that 
the left hand sides of rules of anfst are linear by definition). The phrases "linear 
top-down fst" and "linear bottom-up fst" will be abbreviated by "lt-fst" and 
"lb-fst" respectively. The classes of linear top-down and linear bottom-up f i t  
will be denoted by LT-FST and LB-FST respectively. 

Anfs t  is nondeleting if for each rule of thefst, in the left hand side of which a 
symbol from E k occurs (k _> 0), the right hand side is nondeleting with respect 
to Xk. 

A (nondeterministic)finite tree automaton (abbreviated by fta) is an fs t  
(Z, A, Q, Qd, R)  such that A = Z (as ranked alphabets) and either (1) or (2) 
holds: 

(1) all rules have either the form q(~(xl"" "Xk))---> ~(ql(xl)' ' 'qk(Xk)) with 
k >_ 1, ~ Z  k and q l , ' " ,  qk, q ~ Q, or the form q(~)-+ o with qE Q 
and cr ~ Z o; 

(2) all rules have either the form cr(ql(xl)'''qk(Xk) ) ~ q(~(Xl"''Xk) ) with 
k > 1, ~ ~Zk and q~, . . . ,  qk, qE Q, or the form cr-+q(~) with q~ Q 
and g E Z o.  
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In case (1) the fia is called top-down and in case (2) bottom-up. The tree 
transformation defined by an fia is also called a finite tree automaton.  The 
domain of  a finite tree automaton is called a recognizable tree language. The class 
o f  all recognizable tree languages will be denoted by RECOG. As can easily be 
seen, a finite tree automaton defines a transformation which is the identity on 
a recognizable tree language (its domain) and is undefined elsewhere. 

If U is a recognizable tree language and T is a tree transformation, then 
T(U) is called a surface set. In particular, if T belongs to a class F o f  tree trans- 
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formations, then T ( U )  is called an F surface set (thus we have T - F S T  surface 
sets, D B - F S T  surface sets, etc.). 

Let us recall some well known facts concerning finite tree automata (see 
[2, 5, 11]). The class of tree languages recognizable by a bottom-up finite tree 
automaton is equal to the class of tree languages recognizable by a top-down 
finite tree automaton (both are equal to RECOG).  Every recognizable tree 
language is the domain of a deterministic bottom-up f la .  R E C O G  is closed 
under intersection and complementation. 

We shall also need the notion of substitution. Let E be a ranked alphabet. 
For k _> I, t in T~[Xk] and t l , .  • . ,  t k trees over some ranked alphabet, we define 
the result of substituting tl for xi in t, denoted by t [ t t , ' " ,  tk], inductively as 
follows. 

(1) F o r ,  in Y'o, a[tl," " ,  tk] = a. 
(2) For i in { 1, 2,." ", k}, x i [ t l , . . . ,  tk] = ti. 
(3) For n > 1, a in Y~, and s t , . . . ,  s, in Tx[Xk] , - ( s t . .  "Sn) [ t l , ' ' "  , tk] = 

-(st[tt,"" ", tk]'" "s,[ti,"" ", tk]). 

Throughout this paper we shall only occasionally give formal proofs of 
theorems. Mostly the reader has to be content with an intuitive description, or 
a construction without proof of correctness. The reason behind this is essentially 
that most proofs are straightforward and very dull induction arguments (the 
induction being on the structure of the trees involved). Moreover, we have 
chosen a formalism which we hope to be intuitively clear, but which does not 
lend itself very well to detailed proofs (for an excellent formalism to give proofs 
in, see [9]). Nevertheless, we shall give (without proof!) in the following lemmas 

the main properties of the relation =~ m bottom-up and top-down fs t ,  needed 
in induction arguments. 

Let us first indicate the role of substitution in the application of top-down 
and bottom-up f s t  rules. The application of a top-down rule of the form 
q( t r (X l ' ' 'Xk )  ) --~t consists of the replacement of a subtree of the form 
q (~ ( t x " "  tk)) by the tree t [ t l , . . . ,  tk]. Similarly, the application of a bottom-up 
rule of the form a ( q t ( x l ) . . ,  qk(Xk)) --~ q(t) consists of the replacement of a sub- 
tree of the form o(ql ( tx ) . .  "qk(tk)) by the tree q( t [ t t , "  ", tk]). 

We now state our lemmas. 

LEMMA 1.1. Let  B = (Y,, A, Q, Qd, R )  be a bottom-up f s t .  

(1) For a ~ Y'o, q ~ Q and s ~ TA, i f  ~ ~ q(s), then the rule a ~ q(s) is in R. 

(2) F o r k  >_ 1,~EY, g, t t , .  . . . .  ., t k ~ Tx, q ~ Q and s e T~, i f  a(tt tk) ~* q(s), 
then there exist states q l , ' ' ' , q k  and trees S l , " - , s  k in T A such that 

~(tl"" "tk) * o(q t (s t ) ' "  "qk(Sk)) =~ q(s) and fo r  all i (1 < i <_ k) t i * 
qi(si). 

(3) For k > 1, tl," " ", tk ~ T~, ql," " ", qk ~ Q, s l , "  ", Sk ~ TA and a ~ Zk, i f  for  

all i (1 < i < k) t i ~ qi(si), then a(tt" " t k )  ~ a(ql(sl)" " "qk(Sk)). 

LEMMA 1.2. Let  T = (~ ,  A, Q, Q~, R )  be a top-down fs t .  

(1) For q ~ Q, a ~ ~o and t ~ T~, i f  q(a) ~ s, then the rule q(a) ---> s is in R.  
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(2) Let k >_ 1 and let t ~ TA[Xk] be linear and nondeleting with respect to X k. 
Let  q l , ' " ,  qk be in Q, t l , " ' ,  tk in Tx and s in T~. Then the following 

holds. I f  t[ ql(tl)," " ,  qk(tk)] ~ S, then there exist trees sl, .o ., Sk in Ta such 

that s = t [ s l , " ' ,  Sk] and for  all i (1 <_ i < k) qi(ti) * si. Furthermore, i f  
T is deterministic, then the same is true without the requirement oflinearity 
o f t .  

(3) For k >_ 1, ql," " ,  qk E Q, tl," " ,  tg ~ T~, s , .  . ., Sk ~ TA and t ~ TA[Xk] , 

i f  for  all i (1 <_ i <_ k) qi(ti) * st, then t[qi(q), .  . ., qk(tk)] * t[s l , ' '  ", Sk]. 

With regard to Lemma 1.2(2) we note the following. If  t is a tree in Ta[Q(Xk) ] 
for some k _> 1 (in other words, t is a possible right hand side of a t op -downfs t  
rule), then there exist an n > 0 (namely, n is the number of occurrences of 
elements from Q(Xk) in t) and a tree t' in TA[X,], which is linear and non- 
deleting with respect to X,, such that t = t '[ql(xil), '" ", q,(xi.)] for certain 
states ql," • ", q, and certain indices i l , '"  ", i, in { 1, 2,. •., k}. In fact, ql(x~,)," • ", 
q,(xi.) are all occurrences of elements of Q(Xk) in t, and t' can be obtained 
from t by replacing these occurrences by x , "  ", x, respectively. 

2. Comparison of bottom-up and top-down fst. In this section we will be 
concerned with convincing the reader of the incomparability of the classes of 
bottom-up and top-down f s t  (Theorem 2.3). Roughly speaking, this incom- 
parability is caused by the different order in which b-fst and t-fst construct 
and process copies of subtrees. 

A bottom-up 3"st has the ability of making a copy of an output tree after 
nondeterministic processing of the input tree. Such behavior cannot be displayed 
by any top-down )est. It can however be simulated by a composition of two 
top-down/'st, one for processing the input tree nondeterministically and the 
other for copying the resulting output tree. This implies the well known result 

tha t  the class of t o p - d o w n f s t  is not closed under composition (Theorem 2.4). 
On the other hand a top-down f s t  has the ability of copying an input tree 

and treating the resulting copies differently. No single bottom-up f s t  has this 
ability. It can however be simulated by a composition of two bottom-up fst ,  
one for copying the input tree and the other for processing the copies. This 
implies that the class of bo t tom-up f s t  is not closed under composition (Theorem 
2.5). 

Obviously, in the case of l inearfst  the above differences between bottom-up 
and top-down disappear. Nevertheless it will be shown that the class of linear 
top-down f s t  is properly included in the class of linear bottom-up f s t  (Theorem 
2.8). Intuitively this is caused by the fact that a (linear) bottom-up f s t  has the 
ability to process an input tree and decide, by the state it is in, whether to delete 
that tree or not, whereas a (linear) top-down f s t  can only delete an input tree 
without inspecting it at all. Since a composition of two (linear) top-down f s t  
can first process the input tree and then decide whether to detete it or not, we 
obtain the well known result that the class of linear top-down f s t  is not closed 
under composition (Theorem 2.7). It will be shown in Section 4 that the class of 
linear bottom-up f s t  is closed under composition. 
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Finally we show that in the case of linear nondeleting f s t  all differences 
between bot tom-up and top-down disappear (Theorem 2.9). 

To shorten later considerations we now give names to the above mentioned 
typical bot tom-up and top-down capabilities. 

(B1) Copying of an output tree after nondeterministic processing of the 
input tree. 

(B2) Deciding whether to delete a tree or not after processing it. 
(T) Copying of an input tree and processing the copies differently. 

We first provide an example of  a bot tom-upfs t ,  which is not a t o p - d o w n f s t  
because it has property (B1). (This example is a simplified version of the one in 
Lemma 8.7 of  [9]). 

Example 2.1. Consider the b-fst B = (~ ,  A, Q, Qd, R), where Y~o = {a}, 
Y l = {a, or}, A o = A 1 = {a, b}, A 2 = {~}, Q = Qa = {*} and R consists of  
the rules 

a ~ .(a), a ~ .(b), 

a(*(x)) ~ *(a(x)), a(*(x)) -+ *(b(x)), and 

~(*(x) )  -- ,  * (~(xx) ) .  

Then, for instance, B may transform a(a(a(a))) into a(a(b(b))a(b(b))) as follows 

a(a(a(a))) =~ cr(a(a(,(b)))) ~ a(a(,(b(b)))) 

=~ a(*(a(b(b)))) =~ ,(o(a(b(b))a(b(b)))). 

Intuitively it is clear that no t op -down f s t  Tcan  define the same tree transforma- 
tion as B. To see this, consider in T z a tree with top symbol o and a tail of n 
symbols a, where n > 1, that is, a tree of  the form o(a (a ( . . . a (a ) . . . ) ) ) .  Such a 
tree is translated by B into all trees in Ta of the form ~(tt), where t is any tail of  
length n, labeled by a 's  and b's, that is, t is of  the form u l ( u 2 ( ' " ( u , ) ' " ) ) ,  
where ui • {a, b}. I f  T would define the same transformation, then it would 
have to start with copying the tail of  a 's and continue with relabeling the resulting 
tails in an arbitrary but identical way. But, since the translation of one tail is 
independent  of  that of  the other, the top-down f s t  T cannot accomplish both 
tails to be labeled in the same way (for n sufficiently large). For a formal proof  of  
such a statement, see I_emma 8.7 of  [9]. 

However, the transformation B can be simulated by the composition of 
two t o p - d o w n f s t  7"1 and T2, where 7'1 relabels the tail of  a 's and T 2 does the 
copying. In fact, let T x = (Y,, f~, {*}, {*}, R1), where f2 o = {a, b}, f~l -- 
{a, b, a} and R1 consists of  the rules 

• ( , ,(x)) - +  , , ( , (x ) ) ,  

• (a(x)) -+ a(*(x)), *(a(x)) ~ b(*(x)), 
• (a) -+ a and ,(a) -+ b, 

and let T 2 = (~ ,  A, {,}, {,}, R2), where R z consists of  the rules 

• (~(x))  - +  ~ ( , ( x ) , ( x ) ) ,  

• (a(x)) -+ a(*(x)), , (b(x))  ~ b(*(x)), 

• (a) ~ a and ,(b) -+ b. 
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To prove that B = T 1 o T2 it obviously suffices to show that for all t in Tz 
and s in Ta, 

($) t ~* ,(s) if and only if *(t) *rl u and ,(u) *r2 s for some u in Tn. 

Using Lemmas 1.1 and 1.2, an easy and straightforward proof of ($) can be 
given by induction on t (in both the if and the only-if direction). The proof is 
left to the reader. [] 

Next we provide an example of a top-down fst ,  which is not a bottom-up f s t  
because it has property (T). 

Example 2.2. Consider the t-fst T = (Y, A, {,}, {,}, R),  where E and A are 
the same as in Example 2.1 and R consists of the rules 

• (~(x) )  - ~  ~ ( , ( x ) , ( x ) ) ,  

• (a(x)) ~ a(*(x)), ,(a(x)) -+ b(*(x)), 

• (a) -+ a and ,(a) -+ b. 

Then, for instance, T can transform o(a(a)) into cr(a(b)b(a)) as follows 

• (cr(a(a))) ~ o(*(a(a)),(a(a))) =~ 

~(a(*(a)),(a(a))) ~ ~(a(b),(a(a))) 

o(a(b)b( ,(a))) =~ ~(a(b)b(a)). 

Intuitively it is clear that no bottom-up f s t  B can define the same tree trans- 
formation as T. To see this, consider, as in Example 2.1, a tree with top symbol cr 
and a tail of  n symbols a, where n > 1. This tree is translated by T into all 
trees of the form cr(t~t2), where tl and t 2 are tails of length n, arbitrary labeled 
by a's and b's (and not necessarily equal). Obviously, with the same tree as 
input, B cannot produce all the output trees, since (for sufficiently large n) B 
can only double the tail if it has arrived at the top, and then the resulting tails 
have to be (partly) the same. A formal proof  that T is not a b-fst is left to the 
reader. 

However, the transformation T can easily be defined by the composition of  
two bot tom-upfs t  B1 and B 2, where B~ does the copying and B2 the relabeling. 
In fact, let B1 = (Y., f2, {,}, {,}, R1) , where f~o = f21 = {a}, £22 = {or} and 
R 1 consists of the rules 

a ~ *(a), a(*(x)) -+ *(a(x)) and ~r(,(x)) -+ *(~(xx)), 

and let B2 = (f~, A, { ,  }, { ,  }, R2) where R2 consists of the rules 

a -+ *(a), a ~ *(b), 

a(*(x)) ~ *(a(x)), a(*(x)) -+ *(b(x)) and 

~ ( , ( x ) , ( y ) )  ~ ,(~(xy)). 

It is left to the reader to show that T = B1 o B2. [] 
The following three theorems are immediate consequences of Examples 2.1 

and 2.2. 
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T H E O R E M  2.3. The classes of  tree transformations B-FST and T-FST are 
incomparable. 

Proof The bottom-up fst  B of  Example 2.1 does not belong to T-FST, and 
the top-down fs t  T of Example 2.2 does not belong to B-FST. [] 

T H E O R E M  2.4. ([8, 7]). T-FST is not closed under composition. 
Proof In Example 2.1, T 1 o T 2 is not in T-FST. [] 

T H E O R E M  2.5. B-FST is not closed under composition. 
Proof In Example 2.2, B 1 o B 2 is not in B-FST. [] 
Note the strong "duality" between top-down and bottom-up in the above 

examples and theorems. 
So far we have seen that the difference between top-down and bottom-up 

fs t  came about by their different ways of copying. We now consider the case 
that copying is not allowed, that is, the case of linear fst. 

First we give an example of a linear bottom-up fst  which is not a top-down 
fst  (linear or nonlinear), because it has property (B2). The example is adapted 
from one of W. Ogden in §4 of [7]. 

Example 2.6. Consider the linear bottom fst  B = (E, A, Q, Qa, R),  where 
Eo = ~1 = {a, b}, Z2 = {o}, A 0 = {a, b}, A 1 = {a,b, ~), Q = Qa = {*} and 
R consists of the rules 

b ~ .(b), a(*(x)) -+ *(a(x)), and ~(*(x)*(y)) -+ .(o(x)). 

Intuitively it is clear that no top-down fst T, whether it is linear or not, can 
define the same tree transformation as B. To see this, consider an arbitrary 
tree of the form o(tlt2), where tl and t2 do not contain o. Obviously, this tree is 
in the domain of B if and only if tl and t 2 both are tails of symbols a with a 
symbol b at the end, and if that is the case, B translates cr(tl t2) into o(t~). Clearly, 
T cannot both check that t 2 has the required property and delete it. A formal 
proof is left to the reader. 

Notice that, in B, the property (B2) is present as a rather pathological case 
of the general property (B2) described before: B decides whether to delete tz 
or be undefined for g(htz) by respectively being defined or undefined for t~ and 
t2. It is easy to give less pathological examples of bottom-up fst  which are not 
top-down fs t  because of property (B2), however we wished to show by the 
present example that even one-state b-fst may have this property. 

Similar to the situation in the previous example, the translation of B can be 
simulated by two linear top-downfst T~ and T z, where 7'1 checks that b's only 
occur at the bottom of the tree and 7'2 does the deletion. In fact, let T~ = 
(E, Z, {,}, {,}, RI )  , where R l consists of the rules 

*(cr(xy)) ~ ~(*(x)*(y)), *(a(x)) -+ a(*(x)), and *(b) -+ b, 

and let 7"2 = (Y~, A, {,}, ( , } ,  R2), where R 2 consists of the rules 

, (~ (xy ) )  -+ ~(,(x)), 
*(a(x)) ~ a(.(x)), *(b(x)) ~ b(*(x)), 

*(a) -+ a and *(b) -+ b. 
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(Obviously two of the rules of T2 are superfluous. They were added so as to 
make T 2 a dt-fst.) Again, it is left to the reader to show that B = 7'1 o T2. 

Since, in the above example, T 1 o T 2 is not a t-fst, we obtain the following 
well known theorem. 

T H E O R E M  2.7 ([7, 9]). L T - F S T  is not closed under composition. 
In the next theorem we prove that the class of  linear top-downJst  is included 

in the class of  linear b o t t o m - u p f s t .  

T H E O R E M  2.8. L T - F S T  c L B - F S T .  

P r o o f  I f  containment is proved, then proper containment follows from 
Example 2.6. The proof  of  containment now follows. 

Let T = (Z, A, Q, Qd, R )  be an arbitrary linear t-fst. We have to show the 
existence of a linear b-fst  B defining the same transformation as T. Let B = 
(Z, A, Q w {e}, Q,,, R n ) ,  where e is a new symbol (standing for "erase"), and 
RB is constructed according to the following three requirements. (1) Let 3o be 
an arbitrary fixed element ofA o. For each k > 1 and o in E k the rule cr(e(xl)e(x2) 
" '"  e(Xk)) -+ e(8o) is in RB, and for each ~ in Y~o the rule ~r ~ e(8o) is in Ra. 
(2) For each q in Q, a in E o and r in TA, if q(o) -+ r is in R, then ~ -+ q(r) is in RB. 
(3) Let q ( o ( x l "  "Xk)) -+ r be in R, where k > I, q e Q, cr ~ Z k and r is a linear 
tree in Ta[Q(Xk)]. Let, for each i in { 1 , . . . ,  k }, the state q; in Q w { e } be defined 
by 

qi = P ifp(xi) occurs in r 

e otherwise (that is, xi does not occur in r). 

(Note that this is a proper definition: since r is linear, no x, occurs more than 
once in r). Then the rule a ( q 1 ( x O ' ' ' q k ( X k )  ) -+ q(r ')  is in RB, where r '  is the 
result of replacing any string of the form p(xi) by x i  in r (thus r '  is linear and 
r = r ' [ q l ( x O , . . . ,  qk(Xk)]). 

This ends the construction of B. Intuitively, B treats the input in the same 
way as T but in the reverse order. Moreover, whenever T deletes a subtree, B 
should make a translation of that subtree before deletion. (It does not matter 
which translation is made of the subtree. We have defined B in such a way that 
it can translate it into 30). To show formally that B = T it obviously suffices to 
prove that for every q in Q, t in T~ and s in T~, 

($) q(t) * s if and only if t * q(s). 

We shall prove this by induction on t. Firstly, let us assume that t = ~, where 
cr e Eo. Then the truth of  ($) is clear from Lemmas 1.1(1) and 1.2(1) and point 
(2) in the construction of R s. Secondly, let us assume that t = a(t 1 • • • tk) , where 
k _> 1, o e Zk and t l , ' "  ", tk are elements of  T~ for which ($) is true. 

The only-if part of ($) is proved as follows. Assume that q ( o ( t l " ' "  tk)) ~ S. 

Suppose that the first step of this derivation results from the application of the 

rule q(cr(xl" • "Xk) ) -+ r, that is, we have q ( o ( t l . . ,  tk) ) ~ r[t l , .  . ., tk] *r S. Using 
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the definition of r '  and qi from (3) above, r [ t l , ' " ,  td = r ' [q l ( t l ) , ' " ,  qk(tk)] 

and so r'[ql(tl),. •. ,  qk(tk)] * S. It now follows from an appropriate application 
r 

of  Lemma 1.2(2) that there are sl, .  •. ,  s~ in T a such that s = r ' [ s l , . . . ,  s j  and~ 

for all i in ( 1 , . . .  k) ,  qi(tl) * si if x~ occurs in r '  (or equivalently, in r), and 
' T 

s i = 8 o otherwise. Now, if xi occurs in r, then, by induction, ti * q~(si). Other- 
B 

wise qi = e and so, by (1) above, ti * e(8o). Hence t~ * qi(si) for all i, 1 < i < k. 
B 

Consequently, since the rule o(q l (x l ) . .  "qk(Xk))~ q(r') is in RB, or(t1"" "tk) * 
B 

o ( q l ( s l ) ' "  q~(Sk)) =ff q(r ' [s l , ' ' ' ,  SR]) = q(s), where we have used Lemma 1.1(3). 

The if part of ($) is proved as follows. Assume that ~ ( t l . . . t k ) *  q(s). 
B 

Suppose that the last step of the derivation results from application of the rule 

~(ql(xl) '"  "qk(Xk))---~q(r'), obtained as described in (3) above (recall that 

q ~ e). By Lemma 1.1(2), there exist s l , . . . ,  s k in T A such that cr(tx'' 'tk) =ff 

~( ql(s~)" " "qk(Sk)) =~ q(s) S = r'[sl," • • Sk] and, for a l l / in  ( 1 , . . .  k ), tl * qi(sl). 

Now, if xi occurs in r," then ql ~ e and so, by induction, q~(t i)* sl. Con- 
T 

sequently q(~(t l" ' ' tk)  ) 7" r [ t l , ' ' ' ,  tk] = r ' [q l ( t l ) , ' ' ' ,  qk(tk)] and, using Lemma 

1.2(3), r ' [q l ( t l ) , ' " ,  qk(tk)] * r '[sl , ' '"  Sk] = S, since in the latter derivation 
T 

only states different from e are involved. This proves the if part of ($) and the 

theorem. [] 

In the linear case, properties (B1) and (T) are not present and only property 
(B2) remains, making linear bottom-up stronger than linear top-down. If 
neither copying nor deleting is allowed, then property (B2) also disappears and 
top-down and bottom-up are equally strong. 

THEOREM 2.9. The class o f  nondeleting linear bottom-up fs t  is identical to 
the class o f  nondeleting linear top-down fst .  

Proof. To show that each nondeleting It-fst is a nondeleting Ib-fst, consider 
the proof of Theorem 2.8. Since we now may assume that the lt-fst T of that 
proof is nondeleting, it obviously suttices to erase all rules involving e and 8 o 
from R8 to obtain a nondeleting Ib-fst defining the same transformation as T. 

Now suppose that B = (~,  A, Q, Qd, R )  is an arbitrary nondeleting lb-fst. 
Let T be the t-fi't (Z,  A, Q, Qd, R r )  where Rr is defined by the following two 
requirements. 

(1) For  each ~ in ~0, q in Q and t in TA, if cr ---> q(t) is in R, then q(cr) ~ t 
is in Rr. 

(2) If  ~ ( q l ( x l ) "  "qk(Xk))---~q(t) is in R, where k > 1, c ruz  k, ql, '" ", qk, 
q ~ Q and t e Ta, then q(cr(xl.. "Xk)) ~ t [q l (Xl ) , ' ' ' ,  qk(Xk)] is in Rr. 

Obviously T is nondeleting and linear. Now observe that the nondeleting 
Ib-fst corresponding to T according to the proof of Theorem 2.8, modified as 
indicated above, is precisely B. Hence, by that proof, T = B. [] 

3. Decomposition of bottom-up and top-down fst. In this section we show 
that each f s t  (bottom-up or top-down) can be decomposed into a number of 
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very simplefst. The simplefst occurring in these decompositions are independent 
of the bottom-up/top-down distinction. In fact they are either finite tree auto- 
mata or relabelings or "homomorphisms". Obviously such decompositions are 
very useful when proving properties of fst: if the property is preserved by 
composition, then the proof of it splits up into a number of simple cases. 

Let us first define our "simple" fst and discuss some of  their properties. 

Definition 3.1. (1) We shall denote by FTA the class of all finite tree automata. 
(In other words, FTA consists of all fst that are the identity on a recognizable 
tree language). 

(2) We shall denote by RELAB the class of  all "relabelings". A relabeling 
is anfst (Z, A, Q, Qd, R)  such that Q is a singleton (say {,}), Qd = Q and (in 
the top-down case) all the rules are of the form *(a(xl""" Xk)) --> ~'(*(Xl)""" *(Xk)) 
with k >_ 1, ~ e Y~k and ~" ~ Ak or of the form ,(~) ---> ~- with ~ in Eo and r ~ Ao, 
or (in the bottom-up case) all rules are of the form o(*(x0""" *(Xk)) -+ *O'(Xl"'" 
Xk)) with k > 1, cr ~ Ek and ~" ~ A k or of the form cr -+ ,(~,) with cr E Y'0 and 
T ~ A  O. 

(3) We shall denote by HOM the class of all one-state deterministic fst 
(with Qd = Q). The elements of HOM will be called homomorphisms (see p. 355 
of [9]). Furthermore we shall denote by LHOM the class of all linear homo- 
morphisms. 

Examples of such "simple" fst can be found in the previous examples. In 
Example 2.1, T 1 is in RELAB and T 2 in HOM; in Example 2.2, B 1 is in HOM 
and B2 in RELAB; and in Example 2.6, T~ is in both FTA and RELAB, and 
T 2 is in LHOM. Note also that, for every ranked alphabet Z, the identity 
function on Tz is an element of FTA, RELAB and (L)HOM. 

According to Definition 3.1 the classes FTA, RELAB, HOM and LHOM 
contain both bottom-up and top-downfst. It is, however; easy to see that, with 
regard to the tree transformations defined, we may restrict the definition to 
bottom-up fst only or to top-down fst only. This is expressed in the following 
lemma. 

LEMMA 3.2. The classes of transformations FTA, RELAB, HOM and 
LHOM are independent of whether they are defined by bottom-up fst or by top- 
down fst. 

Proof For FTA and RELAB the lemma follows directly from the proof of 
Theorem 2.9. (Note that, for FTA, the lemma is just a restatement of the well 
known equivalence between top-down and bottom-up finite tree automata). 

For HOM, we first observe that in both the bottom-up and the top-down 
case the requirement of  determinism amounts to the fact that for each e in ~k 
(k > 1) there is exactly one rule in the left hand side of which ~ occurs. The easy 
proof that the bottom-up homomorphisms are equal to the top-down homo- 
morphisms (and similarly for the linear case) is left to the reader (he should 
change a bottom-up rule ~(*(xx) '"*(xk))--~*(t)  into the top-down rule 
*(,r(xx"" "xk)) -+ t[*(x0,"" ", *(xk)] and vice versa). [] 

Thus, by the above lemma, FTA, RELAB and LHOM are contained in 
LB-FST n LT-FST, HOM is contained in DB-FST c~ DT-FST, and RELAB 



Bottom-up and Top-down Tree Transformations--A Comparison 213 

and H O M  consist of one-state f s t  only. Note also that the elements of H O M  
are total functions, and that FTA ~_ DB-FST (see Section 1). 

It is easy to think of representations of relabelings and homomorphisms 
that are more reminiscent of the "string case". This is done in the next lemma 
the proof of which is left to the reader. 

LEMMA 3.3. Let E and A be ranked alphabets. 
(1) Each family of relations Ik C_ Z k x A k (k > O) determines an f s t  L in 

RELAB by the following requirements. 

(i) For each ~ in Y~o, L(~) = {~-e Aol(~, -r)e lo}. 
(ii) For all k > 1, ~ in ~k and t l , ' " ,  tk in T~, L(~(tl" ' ' tk))  = {r(S1"''Sk)] 

(or, ~') ~ I k and sl," " ,  Sk ~ L(h) }. 

Conversely, eachfst  in RELAB is determined by a family of relations as above. 
(2) Each family of total functions hk: Ek -+ Ta[Xk] (k > O) determines an 

f s t  H in H O M  by the following requirements. 

(i) For each ~ in Eo, H(~) = ho(~ ). 
(ii) For all k > 1, ~ in Y~k and t l , ' " ,  tk in T~, 

H(cr(tl"'" tk)) = hk(a ) [ H ( t l ) , ' " ,  H(tk)]. 

Conversely, eachfst  in H O M  is determined by a family of mappings as above. 
Moreover, thefs t  H is linear if and only if, for each ~ in Y~k, hk(Cr) is a linear 

tree. [] 
We state in passing the following useful lemma. 

LEMMA 3.4. Each of  the classes of  tree transformations FTA, RELAB, 
H O M  and L H O M  is closed under composition. 

Proof. For FTA the lemma is just a restatement of the well known fact that 
the recognizable tree languages are closed under intersection. For RELAB, 
H O M  and L H O M  the lemma easily follows from the previous lemma (compose 
the involved families of relations, or functions respectively, in the obvious 
way). [] 

We now proceed to the decomposition of fs t  into finite tree automata, 
relabelings and homomorphisms. First it is shown that each (linear) bottom-up 
fs t  can be decomposed into a relabeling, followed by a finite tree automaton, 
followed by a (linear) homomorphism (Theorem 3.5). Then it is proved that 
each top-downfst  is the composition of a homomorphism and a linear top-down 
fst,  and vice versa (Theorem 3.7). It follows that each top-down fs t  can be 
decomposed into a homomorphism, followed by a relabeling, followed by a 
finite tree automaton, followed by a linear homomorphism (Theorem 3.9). 
Roughly speaking, these results imply that both B-FSTand T-FSTare contained 
in H O M o  RELABo FTA o HOM. Moreover they imply some interesting 
properties of bottom-up fs t  and their relation to top-down J~t (Corollaries 
3.10-3.13). The section will be concluded by an alternative decomposition of 
bot tom-upfs t  in which the relabeling and f ta  of the decomposition of Theorem 
3.5 are taken together into a "finite state relabeling" (Theorem 3.15). 

In the next theorem we decompose bottom-up f i t .  



214 JoOsT ENGELFRIET 

THEOREM 3.5. 
(1) B - F S T  c_ R E L A B  o F T A  o H O M ,  
(2) L B - F S T  ~_ R E L A B  o F T A  o L H O M .  

Proof. Let B = (Z, A, Q, Qn, R)  be an arbitrary b-fst. We shall indicate 
how to decompose B into a relabeling, a finite tree automaton and a homo- 
morphism. First we need an intermediate alphabet. Suppose that R contains m 
rules, numbered from 1 to m in some arbitrary but fixed manner. Let £2 be the 
ranked alphabet { 1, 2, . .  -, m } such that, for all i in f2 and all k >_ 0, i ~ O k 
if the left hand side of the ith rule of R starts with a symbol from Z k. Now let 
cr(ql(xx)" • "qk(Xk)) -+ q(t) and ~- -+p(r) denote arbitrary rules of B, and suppose 
they are the ith and j th  element of R respectively. We define three f s t  B1, B2 
and B 3 such that B = B 1 o B 2 o B3, as follows. 

B1 is the bottom-up f s t  (Z, f~, {.  }, {.  }, R1 ~, where R~ contains the rules 
~(*(x0""" *(Xk)) -+ *(i(x~' '  "Xk)) and -r -+ . ( j )  corresponding to the ith and j th  
element of R respectively. Obviously B~ is an element of R E L A B .  

Bz is the bottom-up f s t  (f2, £2, Q, Qn, R z ) ,  where Rz contains the rules 
i (q l ( xa )"  " qk(Xk)) --~ q(i(xl" " Xk) ) and j -+ p( j )  corresponding to the ith and j th  
element of R respectively. Obviously B E is a finite tree automaton. 

Finally, B a is the homomorphism determined (as explained in Lemma 
3.3(2)) by the family of total functions hk: f2 k -+ Ta[Xk] (k > 0), such that, 
corresponding to the ith and j th  element of R respectively, hg(i) = t and 
ho(j) = r. Obviously, if B is linear, then Ba is in L H O M .  

It can be understood intuitively that B = B~ o B 2  o B a as follows. Given 
some input tree from Tz, the relabeling B 1 replaces each symbol in the tree by 
the number of any rule of B which is applicable to that symbol. The finite tree 
automaton B 2 then checks whether the resulting labeling by rule numbers is 
consistent with respect to the required state-transitions of B. Finally, the homo- 
morphism B3 replaces each rule number by the partial tree specified by the right 
hand side of that rule. 

Formally it can be proved that for all t in Tz, s in T A and q in Q, t ~ q(s) 

if and only if there exists u in Tn such that t =~ (u), u =~ q(u) and B3(u ) = s. B1 B2 
The proof, which is by an easy induction on t (in both directions) and uses 

Lemmas 1.1 and 1.2, is left to the reader. [] 

It will be shown later (see Theorem 4.5) that the inclusions of Theorem 3.5 
are actually equalities. 

We now proceed to the decomposition of top-down fs t .  The next result is 
stated as a lemma, since it will be followed by a stronger theorem. 

LEMMA 3.6. T - F S T  c_ H O M  o LT-FST .  
Proof. Let T = (Z, A, Q, Qd, R )  be an arbitrary t-fst. The idea behind the 

decomposition of T is to use a homomorphism 7"1 to produce in advance as 
many copies of subtrees of the input tree as T may need, and then simulate T 
by a linear t-fst T2. 

To define T1, let, for x in X and r in R, rx be the number of occurrences of 
x in the right hand side of rule r, and let n = max {rxlX E X, r E R}.  Thus n is 
the maximal number of copies of subtrees needed by T in one step. Furthermore, 
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let E'  be the ranked alphabet such that ~ k  = ~k for k > 0, and Z~ = ~ for 
all i which are not a multiple of n. Thus, we have multiplied the rank of each 
symbol of ~ by n. We now define TI to be the homomorphism determined (as 
described in Lemma 3.3(2)) by the total functions hk: Y~k --> T~,[Xk] with 
ho(cr) = cr for ~ in Y'o and h~(a) = o ( ~ x [ . . .  ~ )  for ~r in ~:k, k >_ 1. Thus, for ~ in 
Eo, TI(or) = ~ and, for ~ in ~k, Tl(cr( t l" ' ' tk))  = ~(T(t l )  . . . .  T(tk)n). 

Next we define T2 = (E ' ,  A, Q, Qd, R ' ) ,  where R' is obtained as follows. 
(1) If q(~) ~ t is in R, then it is also in R'. 
(2) If  q(o(Xl" ' 'Xk ) ) - ->t  is in R (with t ~ T A [ X J ) ,  then the rule 

q(cr(xlx2..  " X , k ) ) ~  t' is in R, where t' is the result of substituting xt~_~),÷j 
for the j th  occurrence of x~ in t, if that occurrence exists, counted from left to 
right(1 < i < k ,  1 < j < n ) .  

Clearly T 2 is linear. Obviously T 2 imitates T, except that the necessary 
copies of subtrees are already there as the output of T~, so that 7'2 can work 
linearly. Note that T2 deletes the copies which would not be needed by T. A 
formal proof that T = T~ o T 2 is left to the reader. [] 

We immediately obtain the following theorem. 

T H E O R E M  3.7. T - F S T  = H O M  o LT-FST .  
Proof. Immediate from Lemma 3.6 and the fact, proved by Thatcher [9], 

that D T - F S T  o T - F S T  ~ T-FST.  [] 
It now follows that T - F S T  is properly included in H O M  o LB-FST.  

LEMMA 3.8. T - F S T  c H O M o  LB-FST .  
Proof. Inclusion follows from Theorems 2.8 and 3.7. Proper inclusion 

follows from Example 2.6: the linear bottom-up f s t  B of that example belongs 
to H O M o  L B - F S T  (since the identity transformation is in H O M ) ,  but not to 
T-FST.  [] 

A characterization of the class H O M o  L B - F S T  will be given in Theorem 
5.15. 

In the next theorem we finally show the decomposition of  t o p - d o w n f s t  into 
simple fs t .  

T H E O R E M  3.9. T - F S T  c H O M o  R E L A B  o F T A  o L H O M .  
Proof. Immediate from Lemma 3.8 and Theorem 3.5(2). [] 
Theorems 3.5 and 3.9 together imply that 

B - F S T  u T - F S T  ~ H O M o  R E L A B  o F T A  o H O M .  

A characterization of the class H O M o  R E L A B  o F T A  o H O M  will be given in 
Theorem 5.10. 

We now state a number of consequences of our decomposition results. 

COROLLARY 3.10. Let  ~ be a class o f  tree languages. Then the following 
three statements are equivalent. 

(1) ~a is closed under (linear) b-fst, 
(2) ~ is closed under (linear) t-fst, and 
(3) ~ is closed under f ta ,  relabelings and (linear) homomorphisms. 
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Proof. Immediate from Lemma 3.2 and Theorems 2.8, 3.5 and 3.9. [] 
Note that a class of tree languages is clo~ed under f ia  if and only if it is 

closed under intersection with a recognizable set. 
The above corollary is a generalization of the following "string theorem": 

a class of languages is closed under gsm-mappings if and only if it is closed 
under intersection with a regular set and under finite substitution (see Lemma 
9.3 of [4]). In fact, the effort to obtain a generalization of this string theorem 
led to our investigation into decompositions offst. 

As a particular case of Corollary 3.10 we obtain the next one. 

COROLLARY 3.11. The class of all recognizable tree languages is closed 
under linear bottom-up fst. 

Proof. Follows directly from Corollary 3.10 and the fact that the recognizable 
tree languages are dosed under linear top-down fst (see [8]). [] 

Next we consider domains and surface sets. Just as top-downfst, bottom-up 
J~t have recognizable domains. 

COROLLARY 3.12. The domain of a bottom-up fst is recognizable. 
Proof. Let B be an arbitrary b-fst. By Theorem 3.5, there are BI in RELAB, 

B2 in FTA and B3 in HOM such that B = BI o 92 o B3. Since B3 is a total 
function, dora (B) = B~" 1 (dora (B2)). By definition, dora (92) is a recognizable 
tree language. Also, the inverse of a relabeling is again a relabeling (just invert 
the relations lk which determine the relabeling according tO Lemma 3.3(I)). 

Consequently, since RECOG is closed under relabelings (see Corollary 
3.11), B~ -1 (dora (B2)) is recognizable. [] 

COROLLARY 3.13. The class of B-FST surface sets is equal to the class of 
HOM surface sets, which is a proper subset of the class of DT-FST surface sets. 

Proof. To show that each B-FST surface set is a HOM surface set, let B be 
in 9-FSTand R in RECOG. By Theorem 3.5(1), B has a decomposition B1 o B2 o 
B3, such that B1 6RELAB, B 2 ~FTA and B 3 E HOM. Hence B ( R ) =  
B3(B2(BI(R))), Since Bx and B2 are linearfst, B2(BI(R)) is recognizable (recall 
Corollary 3.11). Consequently 93(B2(Bl(R))) is a HOM surface set. 

Conversely it is clear that each HOM surface set is both a (D)B-FST surface 
set and a DT-FST surface set. 

Let us now exhibit a DT-FST surface set which is not a HOM surface set. 
Consider the ranked alphabet Z such that Zo = {b}, E~ = {a, b, ~} and 
Z2 = { a}, and let U be the tree language in Tz consisting of all trees of the form 
o(td:) such that tl = a(a(a(.. .a(b).. .))), t2 = a(a(a(.. .a(b(b))"-))) and the 
number of a's in t~ is equal to the number of a's in t 2. Obviously U is a DT-FST 
surface set: consider the recognizable set of all trees of the form ~(a(a(a(... 
a(b(b))...)))) and translate such a tree into a tree of  U by copying the tail of  
a's and b's, and deleting one of the b's in the left copy. Now suppose that U is 
a HOM surface set, that is, U = H(R) for some H in HOM and R in RECOG. 
It follows that H has to be linear, because nonlinearity of H would imply the 
existence of two equal subtrees in some tree of U, which is clearly impossible. 
But, by Corollary 3.11, this would mean that U is recognizable, which it is 
obviously not. [] 
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Thus, with regard to surface sets, B-FST is weaker than T-FST, in spite of 
properties (B1) and (B2). 

The rest of this section is concerned with an alternative decomposition of 
bottom-up fst, such that each deterministic bottom up fst  decomposes into 
deterministic components. For this we need a new class of (slightly less) simple 
fst, which generalize the sequential machine mappings between strings. 

Definition 3.14. We shall denote by QRELAB the class of all "finite state 
relabelings". A finite state relabeling is a bottom-up fst  (Z, A, Q, Qa, R~ in 
which each rule is of one of the forms a --> q(-r) with ~ in ]go, q in Q and -r in A o, 
or a(ql(Xl)' ' 'qk(xk))-->q(r(Xl' ' 'Xk)) with k >_ 1, a in Z k, q l , ' ' ' , q k  in Q, 
q in Q and ~- in A k. Furthermore we shall denote by DQRELAB the class of all 
deterministic finite state relabelings. 

Note that one can easily define the top-down version of QRELAB and show 
that both versions give rise to the same class of tree transformations. This is no 
longer true for DQRELAB. 

In the next theorem we decompose each bottom-up fst  into a finite state 
relabeling followed by a homomorphism. 

T H E O R E M  3.15. 
(l) B-FST ~ QRELAB o HOM, 
(2) LB-FST ~ QRELAB o LHOM, 
(3) DB-FST ~_ DQRELAB o HOM. 
Proof. The proof is essentially the same as the one of Theorem 3.5. That 

proof can be copied up till the sentence "We define threefst B1, B z and B 3 . . . .  ". 
From there on the proof should read as follows. 

t s ! O t r We define two fs t  B~ and B 3 such that B = B 1 Ba,  a s  follows. B 1 is the 
bottom-up fst  (Z, f2, Q, Qa, R~), where R~ contains the rules a(ql(xl) .~. 
qk(Xk)) ---> q(i(xl"" "Xk)) and ~---> p(j) corresponding to the ith and j th  element 
of R respectively. Obviously, B'~ is a finite state relabeling, and if B is deter- 
ministic, then so is B'I. B~ is equal to the homomorphism B 3 of the proof of 
Theorem 3.5. It should be intuitively clear that B'~ = B~ o B2, where B~ and B2 
are defined in the proof of Theorem 3.5. [] 

It will be shown later (see Theorems 4.5 and 4.6) that the inclusions of 
Theorem 3.15 are even equalities. 

4. Composition of bottom-up fst. In Section 2 we have argued that the ability 
of an fst  to copy an input tree and treat these copies in a different way is a 
typical top-down property, which we called (T). In Section 3 we have actually 
decomposed each top-down fst  into two bottom-up fst, one for the copying 
and the other for treating the copies differently (Lemma 3.8). This gives us the 
intuitive feeling that the nonclosure of B-FST under composition is caused by 
those compositions B1 o B2 in which B~ is nonlinear and B2 is nondeterministic. 
In this section we strengthen this feeling by proving that, if either B~ is linear 
or B 2 is deterministic, then B 1 o B 2 is in B-FST (Theorems 4.5 and 4.6 respec- 
tively). Moreover we prove that both LB-FST and DB-FST are closed under 
composition (also in Theorems 4.5 and 4.6 respectively). 

To prove the above closure results it obviously suffices to consider a number 
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of simple cases, using the decomposition results of the previous section. In 
Lemmas 4.1, 4.2 and 4.4 some of these cases are considered, involving homo- 
morphisms, finite tree automata and relabelings respectively. 

We first consider compositions involving homomorphisms. 

LEMMA 4.1. 
(1) B-FSTo HOM ~_ B-FST, 
(2) LB-FST o LHOM c LB-FST, 
(3) DB-FST o HOM ~_ DB-FST. 
Proof To prove (1), let B = (E, A, Q, Qd, R)  be an arbitrary b-fst and let 

H be an arbitrary homomorphism determined (as described in Lemma 3.3(2)) 
by functions hk: Ak ---> Tn[Xk], k > O, where f) is a ranked alphabet. We extend 
H by defining H(xl) = xi for all xl in X. Thus H is defined for each tree in 
Ta[X]. (Formally one should add X to A o, extend h o by defining ho(xi) = x~ for 
all xl in X, and prove that the resulting homomorphism is an extension of H).  

We now define a b-fst K such that K = B o H. Let K = (Z, ~, Q, Qd, Rr)  
where R K is obtained by the following requirements. 

(1) For all ~ in Eo, q in Q and t in TA, if ~ -+ q(t) is in R, then ~r ---> q(t') is 
in RK, where t '  = H(t). 

(2) For all k >_ 1, o in ~ak, q~, . . . ,  qk, q in Q and t in TA[Xk], if ~(q , (xO' ' '  
qk(Xk)) -+ q(t) is in R, then ~(ql(xO'" "qk(Xk)) --> q(t') is in Rr, where t '  = H(t). 

Intuitively K simulates the composition of B and H by producing, in each 
step, the H-translation of the right hand side of  the rule applied by B. This 
technique is well known from [7] and [9]. 

Observe that if B and H are linear then so is K, and if B is deterministic then 
so is K. This proves (2) and (3). [] 

Next we consider compositions involving fla. 

LEMMA 4.2. 
(1) B-FST o FTA ~_ B-FST, 
(2) LB-FST o FTA c_ LB-FST. 
Proof Consider an arbitrary bottom-up fst  B = (~,  A, Q, Qd, R )  and an 

arbitrary f ta L = (4,  Ax, P, I'd, S).  We may assume that L is a deterministic 
bottom-upfta (see Section 1). We extend the alphabet of L to A U X (by adding 
X to Ao), so that the variables in the rules of  L are now allowed to range over 
Ta[X]. 

We now define a b-fst K which defines B o L. Let K = (~,  A, Q × p, Qe × Pc, 
RK), where RK is obtained by the following requirements. 

(1) For all cr in Z o, (q, p )  in Q x P and t in T~, if the rule cr --> q(t) is in R 

and t ~ p ( t ) ,  then the rule ~ --> (q, p )  (t) is in RK. 

(2) For all k _> 1, ~ in Ek, q l , ' ' ' ,  qk, q in Q, pl ,  "o ' ,pk,  P in P and t in 

TA[X~], if the rule ~(q~(xl)"" q~(x~)) --> q(t) is in R and t[p~(xO, '" ,  Pk(Xk)] * 
L 

p(t), then the rule o((q, ,  p~) (x0"""  (qk, P~) (xk)) ---> (q, p )  (t) is in RK. 
Note that if B is linear, then K is also linear. 
By straightforward induction on t and by some intuitively obvious properties 

of  =~, it can easily be shown that, for all t in Tz, s in Ta, q in Q and p in P, 
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t ~ (q, p)  (S) if and only if t * q(s) and s * p(s). From this it directly follows 
B L 

that K = B o L. [] 
The following corollary is an immediate consequence of Lemma 4.2(I). 

COROLLARY 4.3. The class o f  B-FSTsurface  sets is closed under intersection 
with a recognizable tree language. 

We now turn to compositions involving relabelings and finite state relabelings. 

LEMMA 4.4. 
(1) L B - F S T  o R E L A B  ~ LB-FST,  
(2) B - F S T  o D Q R E L A B  c_ B-FST,  
(3) D B - F S T  o D Q R E L A B  c_ DB-FST.  

Proo f  The proof of (1) is as follows. Consider an arbitrary Ib-fst B = (Z, A, 
Q, Qd, R )  and an arbitrary relabeling L determined (as described in Lemma 
3.3(1)) by relations lk c_ A k × f~k, k >_ O, where f~ is a ranked alphabet. We 
extend the relabeling L to one from Ta[X ] into Tn[X] by adding X to A o and 
adding all pairs (xi,  x i )  with x i in X to l o. Let K = (Y., f~, Q, Qd, RK) where 
R x is obtained as follows. 

(1) I f~ -+q( t )  is in R and t' is in L(t) ,  then cr-+q(t') is in RK. 
(2) If  ~r(ql(xO' ' 'qk(Xk) ) ---.~q(t) is in R and t' is in L(t), then o ( q l ( x l ) . . .  

qk(Xk)) ~ q(t ')  is in R K. 
It is easy to see that K = B o L. 
The proof of (2) and (3) can be obtained by an obvious generalization of the 

proof of Lemma 4.2. It is left to the reader. [] 
We are now in a position to prove the composition results concerning linear 

and deterministic bottom-up f i t .  

THEOREM 4.5. 
(1) L B - F S T  o B - F S T  c_ B-FST,  
(2) L B - F S T  o L B - F S T  c_ LB-FST.  

Proo f  We prove (1) and (2) simultaneously as follows. 

L B - F S T  o ( L ) B - F S T  ~ L B - F S T  o R E L A B  o F T A  o ( L ) H O M  by Theorem 3.5 

c_ L B - F S T  o F T A  o ( L ) H O M  by Lemma 4.4(1) 

~_ L B - F S T  o ( L ) H O M  by Lemma 4.2(2) 

c_ ( L ) B - F S T  by Lemma 4.1. [] 

THEOREM 4.6. 
(1) B - F S T  o D B - F S T  c_ B-FST,  
(2) D B - F S T  o D B - F S T  c_ DB-FST.  

Proof. We prove (1) and (2) simultaneously as follows. 

(D)B-FSTo  D B - F S T  c_ (D)B-FSTo  D Q R E L A B  o H O M  by Theorem 3.15(3) 

c ( D ) B - F S T  o H O M  by Lemma 4.4 

c_ ( D ) B - F S T  by Lemma 4.1. [] 
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It easily follows from the above two theorems that 

(L)B-FST = R E L A B  o FTA o (L)HOM (cf. Theorem 3.5), 

(L)B-FST = QRELABo (L)HOM and 

DB-FST = DQRELAB o H O M  (cf. Theorem 3.15). 

Let us now compare the above theorems with results concerning top-down 
fst. It is well known that results "dual" to Theorem 4.6 hold for top-downfst ,  
namely DT-FST  o (D)T-FST c (D)T-FST ([7, 9]). Note that one would expect 
such a result from property (B1), which was responsible for nonclosure under 
composition of T-FST. From that same property one would also expect results 
dual to Theorem 4.5, namely (L)T-FSTo L T -FS T  c (L)T-FST. Actually we 
have already seen that these inclusions do not hold (recall Example 2.6). This 
lack of duality is caused by property (B2), and we shall see in the next section 
that by adding capability (B2) to T-FST we obtain a class T ' -FS T  satisfying the 
above inclusions, and such that L T ' - F S T  = LB-FST. The relation between 
linear bottom-up and top-down f s t  can also be expressed as follows. 

COROLLARY 4.7. The following three classes of  fs t  are identical 
(1) LB-FST, 
(2) the closure o f  L T - F S T  under composition, and 
(3) the closure of  FTA w R E L A B  w L H O M  under composition. 
Proof Since FTA u R E L A B  u L H O M  c LT-FST  ~_ LB-FST and LB-FST 

is closed under composition, we have that (3) is contained in (2) and (2) in (1). 
But, by Theorem 3.5(2), (1) is contained in (3), and that proves the corollary. [] 

We conclude this section with the following property of bottom-up fst. 

COROLLARY 4.8. The restriction of  a bottom-up fst  to a recognizable tree 
language is again a bottom-up fst. 

Proof If  B is in B-FST and R in FTA, then the restriction of B to dom(R) is 
obviously equal to R o B. Since R is in LB-FST, Theorem 4.5(1) implies that 
R o B is in B-FST. [] 

It is easy to see from Example 2.6 that top-downfst  do not have this property 
(but the elements of the extended T' -FST do). 

5. Generalized fst. In this section we introduce a generalized tree trans- 
formation model which embodies both bottom-up and top-down features. It can 
be regarded as obtained by adding properties (B1) and (B2) to the top-down 
model. 

It is first shown that the generalized fs t  are a proper generalization of both 
bottom-up and top-downfst  (Theorem 5.7). Then, having proved decomposition 
and composition results for generalized fs t  similar to those of the previous 
sections, we show that the class of generalized fs t  is equal to the class H O M o  
R E L A B  o FTA o H O M  (Theorem 5. I0). Next some simple properties of general- 
ized fs t  are listed in Theorem 5.11. 

Then we investigate a top-down model obtained by adding (B2) to the 
ordinary top-down model. It turns out that this new top-down model behaves in 
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a nice way, dual to the bot tom-up model (Theorems 5.13, 5.14 and 5.15). 
Moreover it defines the same surface sets as the old model (Theorem 5.16). 

The generalized tree transformation model is defined as follows. 

Definition 5.1. A generalized finite state transformation (abbreviated by 
gfst) is a system M = (~., A, Q, Qd, R)  consisting of sets Y~, A, Q and Qd, 
defined as in the definition of a tree transducer, together with a finite set R of  
"gfst-rules", defined as follows. 

A gfst-rule consists of  six objects: 
(1) a state q in Q, 
(2) a nonnegative integer k, 
(3) a nonnegative integer m (such that if k = 0, then m = 0), 
(4) a symbol ~ in Ek, 
(5) a tree t in T~[Xm], and 
(6) a mapping ~: Xm -+ Q('Yk) (such that if k = 0, then ~0 = ~), ~ 

and will be denoted as (q, k, m, ~ ~ t, 9~). 
We now define the tree transformation defined by a generalized finite state 

transformation. 

Definition 5.2. Let M = (Y~, A, Q, Qd, R )  be a gfst. For each q in Q and t 
in T~, the set of  all q-translations o f t ,  denoted by Ms(t ), is defined inductively as 
follows: 

(1) for a in E o, Ms(a ) = {s ~ TA]( q, O, O, , --~ s, ~ ) ~ R}, 
(2) for k _> I, a ~ E k  and t l , . . . , t  k in T~, M q ( , ( t l . . . t k )  ) = {r[s l , ' " ,Sm]  [ 

(q, k, m, a ~ r, ~o) e R and for all i, 1 < i < m, if ~(x~) = p(xj) ,  then 
si ~ Mp(tj)}.  

We define the tree transformation defined by M to be 

g = { (t ,  s> ~ T~ x T•[ s ~ Ms(t  ) for some q in Qdl. 

As usual, the tree transformation defined by a gfst will also be called a gfst. 
The class of  all gfst will be denoted by GFST. 

As an example, let us consider a gfst M = (Y., A, Q, Q~, R )  with a gfst-rule 
(q, k, m, cr --~ t, ~0) in R, such that k = 2, m = 4, t = 7(x lx3xlx2)  with ~" in A4, 
and ~o(xl)= ql(xl) ,  ~ ( x 2 ) =  ql(xl) ,  ~ ( x 3 ) =  q2(xl) and ~ ( x 4 ) =  q3(x2) for 
certain q~, q2 and q3 in Q. Suppose that M has no other rule with the same q, 
k and or. Then, given some input tree or(tit2) in T~, Mq(g(tlt2)) is the set of  all 
trees t[s 1, s2, s3, s4] --- "r(sls3sls2) in TA, such that s 1 and s2 are ql-translations of  
t~, s3 is a q2-translation of t~ and s4 is a q3-translation of t2. Thus this rule 
requires the existence of a q3-translation of t2 although the output of  this 
translation does not occur in the @translation of or(tit2) (note that this is in 
accordance with the usual meaning of the set-theoretical notation used in 
Definition 5.2(2)). 

Notation 5.3. A gfst-rule (q,  k, m, cr --~ t, rp) can be described concisely in 
a format  similar to b-fst and t-fst rules as follows: for k = 0, q(cr) --~ t; for 

2 Recall that Q(Xk) = {q(x)lq ~ Q and x e X}. 
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k > 1, q(o(xl"' "Xk))--> t (ql(xi,), q2(xt2),"" ", q m ( x j ) ,  where f o r ] ~  (1, 2,. •. ,  
m}, ~(xs) = qj(x,j). 

Thus the rule discussed in the example above would be written as q(~,(xlx2)) 
-+ ",(xlx3xlx2) (ql(xl), ql(x,), q2(xl), q3(x2)) and the interpretation of  this 
rule applied to ~r(t,t2) is that (s~, s2, sa, s4) must be found such that si and s2 
are q,-translations of t~, s3 is a q2-translation of t~ and s4 is a q3-translation of  
t2, and, having t'ound these, a q-translation of ,r(t~t2) is obtained by substituting 
(s~, Su, s3, s4) in r(x,xsxlx2).  In other words, one can think of  the translation 
process as first applying rules top-down inside the angular brackets and then 
substituting the results in the trees outside the angular brackets (that is, the 
angular brackets represent the square brackets of substitution). Again, in other 
words, one can think of a gfst as a t-fst together with the possibilities (B1) of 
placing a copy of a processed input subtree in the output tree (by the fact that, 
in the gfst-rule of Notation 5.3, there may be repetitions of variables in t), 
and (B2) of deleting a processed subtree (by the fact that t need not contain all 
variables of Xm). Note that a gfst even has the power of, for instance, inspecting 
a subtree and translating it with another state. For example, a gfst might have 
the rules 

q(o(x)) --> -r(x,) (q~(x), q2(x)) and 

q(¢(x)) -+ "r(x~) (qa(x), q4(x) ), 

which can be interpreted as meaning that the subtree of ~ is q~- or q3-translated 
depending on whether this subtree has "property" q2 or q4 respectively. 
Obviously the properties that can be checked by a gfst in such a way, are 
whether a tree belongs to a recognizable tree language or not. 

Next we define the notion of a linear gfst. Intuitively, a gfst is linear if it 
never constructs or considers a copy of a subtree during the translation process. 
This is formalized as follows. 

Definition 5.4. A gfst (Z, A, Q, Qa, R )  is linear (abbreviated by lgfst) if for 
each gfst-rule (q, k, m, ~ --> t, q~) the following two requirements are satisfied: 

(1) t is linear, and 
(2) if i # j ,  ~0(x~) = ql(x) and ~o(xs. ) = qz(Y), then x ¢ y. 

The second requirement in the above definition expresses that, in the 
notation of Notation 5.3, no variable of X k occurs more than once inside the 
angular brackets. 

Both top-down and bottom-up fs t  can be characterized as special cases of 
gfst. This is done in the next two lemmas. 

LEMMA 5.5. Each top-down fs t  can be defined by a gfst satisfying the require- 
ment that in each of  its rules (q, k, m, a ---> t, q~) the tree t is linear and non- 
deleting with respect to Xm. Conversely, each such gfst defines a top-down fst.  

Proof. Consider an arbitrary t-fst T = (Z, A, Q, Qa, R) .  Let M be the 
gfst (E, A, Q, Qa, Ru) ,  where RM is obtained by the following requirements. 

(1) If q(cr) --> r is in R, then (q, 0, 0, a --> r, ~ ) is in Ru.  
(2) If q(cr(xl'" "Xk))--~r[ql(xl,),' ' ' , qm(Xim)] is in R, where r is linear and 

nondeleting with respect to X,, and, for each j  in { 1,. •., m}, x,~ is in Xk, then 
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the gfst-rule (q, k,  m,  ~ ~ r, ~ )  is in RM, where, for eachj  in { 1 , . . . ,  m }, ~p(xj) = 
qj(x~). (Recall from the end of section 1 that each t-fst rule can be written in the 
above form). 

Clearly M satisfies the requirement stated in the lemma. To show that 
M = T, we shall prove by induction on t, that for each t in T~, q in Q and s in 

TA, q(t) ~ S if and only if s ~ Mg(t). T 
If t is in ~o, then the statement is obvious. Now let t = ~(t 1 • • o tk) for certain 

k > 1, g in Y'k and t t , " ' ,  tk in Tz, and assume that the statement holds for 

tl , • •. ,  t k. 
The only-if part of the statement is proved as follows. Suppose that 

q(o(tx" • • tk)) * S. Suppose that the first step of this derivation results from the 
application of a rule of the form given in (2) above. Thus we have q(o(t 1 • . .  tk) ) 

=~ r[ql(til),. . ., qm(ti,)] ~ s. Then by Lemma 1.2(2), there exist Sx,. . ., Sr, in 

T a such that s = r[sl, '" ", Sm] and qj(tij ) ~ s t fo r  all j ,  1 _< j < m. Hence, by 
induction, sj  ~ Mqj(t~j). Consequently, by (2) above, it follows from Definition 
5.2 that r[sl," " ", s,] ~ Mq(a(tl " " " tk)). 

The proof of the if part of  the statement is left to the reader. This proves the 
first part of the lemma. 

To prove the second part of the lemma, consider an arbitrary gfst  M = 
(y., A, Q, Qd, R )  satisfying the requirement of  the lemma. Let T be the t-fst 
(~ ,  A, Q, Qd, RT) where R r  is obtained as follows. 

(1) If  (q, 0, 0, a --~ t, ~ ) is in R, then q(~) --> t is in R r. 
(2) If (q, k, m, a --~ t, ~)  is in R (with k > 1), then the rule q ( a ( x l . .  "Xk)) --~" 

t[~0(Xl)," • ", ~0(Xm)] is in Rr. 
It is easy to see that the gfst  corresponding to T according to the construction 

at the beginning of this proof is M itself. Hence, by the above proof, T = M. [] 

LEMMA 5.6. Each bottom-up f s t  can be defined by a gfst  satisfying the 
requirement that, f o r  each o f  its rules ~q, k,  m, ~r ~ t, ~o), i f  i ~ j ,  ~(xi) = ql(x)  
and ~o(xj) = q2(Y), then x ~ y. Conversely, each such gfst  defines a bottom-up fs t .  

Proof. Consider an arbitrary b-fst B = (~ ,  A, Q, Qd, R ) .  Let M be the 
gfst  (E, A, Q, Qd, RM) where R M is obtained as follows. 

(I) If  ~ ~ q(t) is in R, then (q, 0, 0, cr ~ t, z ) is in Ru. 
(2) If ~ ( q ~ ( x l ) ' "  qk(Xk)) --~ q(t) is in R, then the gfst-rule (q, k,  k ,  cr --~ t, ~ )  

is in RM, where, for each j  in ( 1 , . . . ,  k}, ~(xj)  = qj(xj) .  
Clearly M satisfies the requirement stated in the lemma. It is left to the 

reader to prove, using Lemma 1.1, that M = B. 
To prove the second part of the lemma, consider an arbitrary gfst  M = 

(E,  A, Q, Qd, R )  satisfying the requirement of the lemma. Obviously, by that 
requirement, m < k in each of its rules (q, k, m, cr --~ t, ~07. Let us first suppose 
that, in each of its rules, m = k. Then it follows from the requirement on M 
that we may assume (by an eventual application of a suitable permutation to 
the variables of t) that for each rule (q, k, k, o ~ t, ~)  there are states q~,. •. ,  q~ 
such that, for all j in ( I , . - . ,  k), ~o(xj) = qy(xj). If we construct the b-fst B = 
(~ ,  A, Q, Qd, R ~ )  which has, corresponding to each such rule, a rule ~(q~(x~). • • 
qk(Xk)) ~ q(t) in Rn, then obviously B = M. 
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Now suppose that there are rules of  M with m < k. Then we can construct 
a gfst M '  = (Y~, A, Q u {e}, Qd, R ' ) ,  defining the same transformation as M 
and still satisfying the requirement, such that all rules satisfy m = k, as follows. 
Just as in the proof  of  Theorem 2.8, M '  has an "erasing state" e. I f  (q, k, m, ~ --> 
t, ~o> is in R (k _> 1), then (q, k, k, o -+ t, ~o') is in R' ,  where ~'(xs) = ~(xi) if 
j < m and cp'(xj) = e(xi) i f j  > m, i being the ( j - m ) t h  number in { 1, 2, o .-,  k} 
such that for no n in { 1 , . . . ,  m } and no p in Q ~(x,) = p(xi). I f  <q, 0, 0, a -+ 
t, z ) is in R, then it is in R' .  Finally, all rules of  the form (e, k, k, cr -+ 80, qo> 
where of(x j) = e(xs) and 8 o is an arbitrary element of  A o, are in R' .  It  is left to 
the reader to show that M '  = M. From this the lemma follows. [] 

Having characterized both t-fst and b-fst as special gfst  in the above lemmas, 
we can clearly see that the difference between b-fst and t-fst is caused by the 
different ways in which the q-translation of a tree o ( t l ' "  tk) depends on the 
translation of  its subtrees. In both cases (in fact in every gfst), substitution is 
involved: M~(a( t l "  • tk) ) consists of  trees r '  such that (q, k, m, a -+ r, q~) is a 
gfst-rule and r '  is the result of substituting certain elements of Mv(ti) for each 
string p(xi) in r[qo(xl),. •., ~o(x,,)]. In the bottom-up case (that is, for gfst satis- 
fying the requirement of  Lemma 5.6) this substitution is "deterministic", in the 
sense that one element of  Mp(ti) should be substituted for all occurrences of  
p(xi) in r[q~(xl)," • ", ~Xs)]  (cf. property (B1)). In the top-down case (see Lemma 
5.5) this substitution is "nondeterministic" in the sense that for each occurrence 
of p(xi) in r[~o(xl),. •. ,  ~o(x,,)] some element of  M~(tl) should be substituted (cf. 
property (T)). In a general gfst  both "deterministic" and "nondeterrninistic" 
substitutions are present, regulated by the mapping % 

The previous lemmas imply that B - F S T  and T - F S T  are contained in 
GFST. The next theorem shows that containment is proper. 

T H E O R E M  5.7. B - F S T  u T - F S T  c GFST. 
Proof. Inclusion follows from Lemmas 5.5 and 5.6. To show proper in- 

clusion, consider theg f s t  M = (Z ,  f2, Q, Qd, R) ,  where Z o = {a}, Z 1 = {a, o}, 
f2o = f~l = {a, b}, ~23 = {a}, Q = Qa = {*} and R contains the following 
rules (in Notation 5.3): 

• ( - ( x ) )  - +  ,,(x~x~x2) (*(x), *(x)), 

• (a(x)) -'. a(xl) (*(x)),  

• (a(x)) ~ b(xl)  (*(x)),  

• (a) -+ a and ,(a) ~ b. 

We first show that no bo t tom-up f s t  can define the transformation M. Consider 
in Tt a tree with top symbol a and a tail of  n symbols a, where n >_ 1. Such a 
tree is translated by M into all trees in T n of  the form a(tltxtz) , where tl and t z 
are tails of  length n, arbitrarily labeled by a 's  and b's. Suppose that a bot tom-up 
f s t  B exists such that B = M, and consider the homomorphism H from Tta into 
T a (where A is the ranked alphabet of  Examples 2.1 and 2.2) determined by 
the functions ho, hi, h3 (see Lemma 3.3(2)), where ho(a) = a, ho(b) = b, hi(a) 
= a(xl),  hi(b) = b(xl)  and h3(cr ) = ~r(xzx3). Obviously, H transforms a tree 
o(tltlt2) as above into the tree cr(tlt2). By Theorem 4.6(1), B o H is in B-FST.  
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But it easily follows that B o H is a counterexample to Example 2.2, and there- 
fore such a B cannot exist. 

It is intuitively clear from a comparison with Example 2.1 that M can neither 
be defined by any t-fst. A formal proof, similar to the above but using a homo- 
morphism with h3(~) = ~(xlx2) instead, can easily be given to show that M 
can even not be defined by any t'-fst (to be defined in Definition 5.12). We leave 
it to the reader. [] 

In Theorem 5.10 we shall prove that GFST is identical to the class H O M o  
RELAB o FTA o IIOM. To do this we need a decomposition and a composition 
result. 

LEMMA 5.8. GFST c_ HOMo B-FST. 
Proof. The proof  of this lemma is similar to that of Lemma 3.6. Intuitively, 

viewing the gfst as consisting of a top-down part and a substitution part (recall 
the discussion following Notation 5.3), we can decompose the top-down part 
into a homomorphism and a linear top-down part, as in Lemma 3.6. But, in 
view of Theorem 2.8, it obviously suffices to have one bottom-upfst to simulate 
both the linearized top-down part and the substitution part of the gfst. 

Let us give some hints to the reader who wishes to formally prove the lemma. 
Let M = (Z, A, Q, Qd, R} be a gfst. Let, for each x in X and each gfst-rule 
r = (q, k, m, ~ ~ t, ~0}, rx denote the cardinality of the set { il 1 < i _< m and 
~o(xi) = q(x) for some q in Q}, and let n = max {rxlx~X and rER} .  Thus, 
intuitively, n is the maximal number of copies of subtrees needed by the top- 
down part of  M in any step. The homomorphism H can now be defined as in 
the proof of Lemma 3.6. A precise formal definition of the bottom-up fs t  B is 
tedious. Let us give an example of  the kind of rules needed in B. Suppose that 
R contains the rule 

q(o(xlx2)) ~ "r(xlx3xlx2) (ql(xl),  ql(xl), q2(xl), q3(x2)}. 

Then n is at least 3. Suppose that n = 3 and denote, for convenience, the 
variables x 1," • ", x6 by x 11, xl 2, x l a, x21, x22 and x2a respectively. Then the rule 

o(ql(xl 1) ql(xl 2) q2(xl 3) q3(x21)e(x22)e(x23)) ~ r(xi lxl  axl lxl  2) 

could be in B, where e is an "erasing state". [] 

LEMMA 5.9. 
(1) GFSTo H O M c  GFST, 
(2) GFST o FTA ~ GFST. 
Proof. (1) Let M be a gfst and H a homomorphism. Extend H to trees with 

variables by defining H(x) = x for all x in X. Let K be the gfst, such that, if 
(q, k, m, cr ~ t, ~o} is a rule of M, then (q, k, m, ~ ~ H(t), ~o} is a rule of K. 
Then K = M o H. 

(2) Similar to Lemma 4.2. [] 
We are now able to prove the following main result about GFST. 

THEOR EM 5.10. The following three classes of tree transformations are equal: 
(1) GFST, 
(2) HOMo RELAB o FTA o HOM, and 
(3) HOMo.B-FST. 
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Proof  Since G F S T  c H O M o  B - F S T b y  Lemma 5.8, and B - F S T  c_ R E L A B  o 
FTA o H O M  by Theorem 3.5, it suffices to prove that H O M  o R E L A B  o FTA o 

H O M  ~_ GFST. First, by the fact that D T - F S T  o T - FST  ~_ T - F S T  (see [9]), 
H O M o  R E L A B  o FTA o H O M c  T - F S T  o FTA o H O M .  Secondly, 

T-FST  o FTA  o H O M  ~_ G F S T  o FTA o H O M  

~_ G F S T  o H O M  

c G F S T  

(by Theorem 5.7) 

(by Lemma 5.9(2)) 

(by Lemma 5.9(1)). [] 

Note that, since G F S T  = H O M  o B - F S T  and B - F S T  = Q R E L A B  o H O M ,  

it follows that G F S T  = H O M o  Q R E L A B  o H O M .  

In the next theorem we list some simple properties of gfst. 

THEOREM 5.11. 
(1) The domain o f  a gist  is recognizable. 

(2) G F S T  surface sets are closed under intersection with a recognizable tree 
language and under homomorphisms. 

(3) G F S T  surface sets are recursive. 

(4) G F S T  is not closed under composition. 

Proof  (1) Let M be an arbitrary gfst. By Theorem 5.10, M = H o B, where 
H is a homomorphism and B a bot tom-upfs t .  Since the domain of a bottom-up 
f s t  is recognizable (Corollary 3.12), there is an f i a  R such that dom(R) = 
dom(B), and so dora(M) = dom(H o R). But, by Lemma 4.2, H o R is a b-fst, 

and so, again by Corollary 3.12, its domain is recognizable. 
(2) Immediate from Lemma 5.9. 
(3) Follows from (1) and (2) as for top-down f s t  (see [71). 
(4) Consider the gfst  in the proof of Theorem 5.7 and let it be followed by 

a relabeling which changes all a's nondeterministically into, say, c's and d's. 
It is intuitively clear that the resulting tree transformation is not a gfst. A formal 
proof is left to the reader. ,q 

We conjecture that the class of T-FST  surface sets is a proper subset of  the 
class of G F S T  surface sets. In fact, consider the gfst M = (E, 4,  Q, Qe, R ) ,  

where 2 0 = {a}, 2] 1 = {a, or}, A o = {a, b}, 2x 2 = {a, b, c~}, Q = Qd = {*} 
and R consists of the rules (in Notation 5.3) 

*(~(x)) -+ ~(XlXl) (*(x)), 

*(a(x)) --~ a(xlx2) (*(x), *(x)), 

,(a(x)) --> b(x~x2) (*(x), , (x)) ,  

*(a) --> a and ,(a) ~ b. 

Let M work on the recognizable tree language of all trees of the form cr(a(a(. • • 

a(a) ' . . ) ) ) .  The resulting G F S T  surface set consists of all trees cr(tt), where t is 
any balanced binary tree labeled by a's and b's. This set does not seem to be a 
T-FST  surface set. 

The failure of property (B2) for t op -down f s t  stood in the way of some nice 
results about T.-FST. 
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We now turn to a generalization of the top-down model which is obtained 
by adding the capability of inspecting subtrees before processing them (cfo 
property (B2)). The resulting class of tree transformations, denoted by T'-FST,  
behaves in a nice, dual way with respect to B-FST. Furthermore, it will turn out 
that the class of T ' - F S T  surface sets is equal to the class of T-FST surface sets. 
Thus, theoretically speaking, T ' -FST i s  to preferred above T-FSTin  many ways. 

Definition 5.12. A t'-fst is a gfst satisfying the requirement that in each of 
its rules (q, k, m, o ---> t, ~o~ the tree t is linear. Furthermore, an lt'-fst (that is, 
a linear t;-fst) is a t'-fst such that, for each of its rules (q, k, m, g ~ t, ~), if' 
i ~ j, ~o(xi) = ql(x) and ~o(xj) = q2(Y), then x ¢ y. 

The classes of t'-fst and lt'-fst will be denoted by T ' - F S T  and L T ' - F S T  
respectively. 

The reader should compare the above definition with the definition of a 
linear gfst (Definition 5.4) and with the gfst characterizations of top-down and 
bottom-up f s t  in Lemmas 5.5 and 5.6. From this comparison the following 
theorem results. 

THEOREM 5.13. L G F S T  = L B - F S T  = LT ' -FST .  
Proof. Consider requirements (1) and (2) in the definition of an lgfst 

(Definition 5.4). Obviously, requirement (1) is exactly the definition of a t'-fst, 
and requirement (2) expresses the linearity of the t'-fst. Hence L G F S T  = 
L T ' - F S T  (even as classes of 5-tuples). On the other hand, requirement (2) is 
exactly the gfst  characterization of a b-fst (given in Lemma 5.6), and it is easy 
to see that requirement (1) expresses the linearity of that b-fst. Consequently 
L G F S T  = LB-FST,  and the theorem is proved. [] 

We now give an alternative, more intuitive and practical, formulation of the 
notion of a t'-fst. 

Suppose we have a t-fst T = (Y., A, Q, Qd, R )  and we associate with each 
of its rules q(e(Xl' • "xk)) ---> t a finite set of pairs (x, F) ,  where x is in X and 
F is a finite tree automaton in T~. Suppose that, during the translation process, 
we only allow application of the rule q(e(Xl"' 'Xk)) ---> t to a tree q(cr(t l '"  tk) ) 
if t i ~ dom(F) for all pairs (xi, F )  associated with the rule. Then the resulting 
transformation will be a t'-fst, and, vice versa, each t'-fst can be obtained in 
such a way. Thus the class of such "t-fst with recognizable conditions" has 
exactly the same translating power as the class of t'-fst. A formal proof is left t o  
the reader. 

Thus we see that a t'-fst has actually more "non t-fst" capabilities than just 
(B2). However, one may give a more careful definition of the (B2) capability 
and show that, by adding it to the top-down model, the same class of trans- 
formations (namely T ' -FST)  results. Note that an lt'-fst is precisely a t-fst 
together with property (B2). It follows from Theorem 5.13 that property (B2) 
was indeed entirely responsible for the difference between L T - F S T  and L B - F S T  
(Theorem 2.8), and that by addition of (B2) the linear top-down f s t  become 
closed under composition (cf. Theorems 2.7 and 4.5(2)). 

In the next theorem we show a composition result for t'-fst dual to that for 
b-fst in Theorem 4.5(1). 
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THEOR EM 5.14. T ' -FST  o L T ' - F S T  c T ' -FST.  
Proof  Since L T ' - F S T  = LB-FST = R E L A B  o FTA o L H O M ,  it suffices to 

prove that T ' - F S T  o R E L A B  c T'-FST,  T ' -FST  o FTA ~_ T ' - F S T  and T ' -FST  
o L H O M  ~ T ' - F S T .  The first two inclusions can be proved using the alternative 
formulation of a t'-fst discussed above. The third inclusion can easily be seen 
from Lemma 5.9(1). [] 

We now show how to decompose t'-fst (cf. Lemma 3.8 and Theorem 3.9). 

THEOR EM 5.15. The following three classes o f  tree transformations are equal: 
(1) T'-FST,  
(2) H O M  o R E L A B  o FTA o L H O M ,  and 
(3) H O M  o LB-FST. 
Proof  By previous results it suffices to show that T ' - F S T  = H O M o  LT ' -  

FST. Generalizing the proof of Lemma 3.6 in an obvious way it follows that 
T ' - F S T  c_ H O M o  LT ' -FST .  Furthermore, by Theorem 5.14, H O M o  L T ' - F S T  
~_ T ' -FST.  [] 

Finally we show that with respect to surface sets T ' - F S T  and T-FST are the 
same. 

THEOREM 5.16. The class of  T ' -FST surface sets is equal to the class o f  
T-FST surface sets. 

Proof  Trivially, every T-FST surface set is a T ' - F S T  surface set (recall 
Lemma 5.5). To show the converse, let M be an arbitrary t'-fst and let U be an 
arbitrary recognizable tree language. We have to prove that M ( U )  is a T-FST 
surface set. By the previous theorem, M can be decomposed into H o R o F o L, 
where H ~ HOM,  R ~ RELAB,  F e  FTA and L ~ LHOM.  Obviously H(U)  is 
a T-FST surface set, and M ( U ) =  L(F(R(H(U)))).  Hence M ( U )  can be 
obtained from H(U)  by applying three linear t-fst (viz. R, F and L) to it. Since 
Rounds has proved in [7] that the class of T-FST surface sets is closed under 
linear t-fst, it follows that M ( U )  is a T-FST surface set. [] 

6. Relationships between classes of fst. Below we give an inclusion diagram 
of the most important classes of f s t  discussed, together with a number of 
decomposition results. 

GFST 

T-FST 

T' FST B--FST 

LT ' -  FST= LB-FST 

L T -  FST 



where 
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An interesting part of this diagram is 

GFST 
T ' - -  FST B - FST 

LGFST 

= LB--FST 

= LT'- FST 

229 

(1) G F S T  = H O M  o B - F S T  

(2) T ' - F S T  = H O M o  L B - F S T  

(3) T - F S T  = H O M  o L T - F S T  

(4) B - F S T  = L B - F S T o  H O M  

(5) G F S T  = T ' - F S T  o H O M  

(6) L B - F S T  = L T - F S T  o L H O M  

(7) T ' - F S T  = T - F S T  o L H O M  

(4, 6) B - F S T  = L T - F S T  o H O M  

(5, 7) G F S T  = T - F S T  o H O M  

with homomorphisms. 

P r o o f s .  (I), (2) and (3) have been proved in Theorems 5.10, 5.15 and 3.'7 
respectively. The other equalities can easily be proved, using known decomposi- 
tions, as follows. 

(4) B - F S T  = R E L A B  o F T A  o H O M  

= R E L A B  o F T A  o L H O M  o H O M  

= L B - F S T °  H O M .  

G F S T  = H O M o  R E L A B  o F T A  o H O M  

T ' - F S T  = H O M  o R E L A B  o F T A  o L H O M  

B - F S T  = R E L A B  o F T A  o H O M  

L G F S T  = R E L A B  o F T A  o L H O M  

(see Theorems 5.10, 5.15, 3.5 and 4.5). 
We now consider some relationships between the classes of the first diagram 

(referring to it by the numbers 1 to 7). It turns out that these classes can be 
obtained from each other by either "pre-composing" or "post-composing" 
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We have used that H O M  = L H O M  o H O M .  That equation is clear from the 
fact that H O M  is closed under composition (Lemma 3.4) and the fact that 
L H O M  contains the identity transformation. 

(5) G F S T  = H O M  o R E L A B  o F T A  o H O M  

= H O M  o R E L A B  o F T A  o L H O M  o H O M  

= T ' - F S T  o H O M .  

(6) L B - F S T  c_ Q R E L A B  o L H O M  

c_ L T - F S T  o L H O M  

(see the end of Section 3), and 

(7) 

(4, 6) 

L T - F S T  o L H O M  c_ L B - F S T  o L B - F S T  

c_ L B - F S T  (Theorem 4.5(2)). 

T ' - F S T  = H O M  o L B - F S T  by (2) 

= H O M o  L T - F S T  o L H O M  by (6) 

= T - F S T o  L H O M  by (3). 

B - F S T  = L B - F S T  o H O M  by (4) 

= L T - F S T  o L H O M  o H O M  by (6) 

= L T - F S T o  H O M .  

(5, 7) G F S T  = T ' . F S T  o H O M  by (5) 

T - F S T  o L H O M  o H O M  by (7) 

T - F S T  o H O M .  

7. Conclusion. We have defined three classes of very simple f s t :  F T A ,  

R E L A B  and H O M ,  which are independent of the bottom-up/top-down distinc- 
tion. We have shown that all bottom-up and top-down f s t  are contained in the 
class H O M o  R E L A B  o F T A  o H O M ,  that is, e v e r y  f s t  can be decomposed into 
(at most) four very s i m p l e f s t .  We have characterized the class H O M o  R E L A B  o 

F T A  o H O M  as the class of all generalized f s t ,  which combine bottom-up and 
top-down capabilities. 

We have characterized the essential difference between top-down and bottom- 
up tree transformations as the difference in using the copying facility, informally 
expressed in properties (B1) and (T), and formally expressed in a number of 
decomposition and composition results. 
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