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Technical applications of multifilamentary wires indicate that filaments are used in complex 
magnetic fields (a combination of non-parallel a.c./d.c, transverse and rotating fields)- 
carrying an a.c./d.c, transport current of various frequency. Furthermore, due to technical 
manufacturing processes the filaments are heavily distorted. Therefore, a numerical model 
is developed to compute the current density of a filament of arbitrary shape in any 
external transverse field carrying an a.c./d.c, transport current. The great flexibility of the 
model is shown in several examples. 
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Losses in superconducting cables can be divided into 
coupling loss, magnetization loss, and loss due to dynamic 
resistivity. For  both the magnetization loss of the wires 
and the loss due to the dynamic resistivity, one has to 
know the exact current distribution inside the filaments. 
For  the Carr 1 continuum model of a multifilamentary 
wire a voltage--current relation is needed. This relation 
is obtained from the current distribution of a filament. 
Therefore, we will consider the problem of determining 
the current distribution of filaments under several cir- 
cumstances. Various numerical models have been de- 
veloped to compute the current distribution of a type II 
superconducting cylindrical filament in a transverse ap- 
plied field 2-6. These methods are based on a parametri- 
zation of the boundary which separates the region of 
opposite saturation and non-saturated parts. A region, 
S, is defined to be saturated if Ij(r)l =j~, rE  S, and 
unsaturated if Ij(r) I -- 0. The problem of determining the 
current distribution in a filament carrying a time de- 
pendent transport current and placed in a time dependent 
transverse applied field is more difficult. The reason for 
this is that a priori the number of moving boundaries is 
not clear, and the number may change. A simple but 
robust numerical approach was first set up by Hartmann 
and Rem 7,s, which was developed to treat the problem 
of the number of moving boundaries. The method can 
compute the current distribution, magnetization, losses, 
etc., of a filament where the applied field can vary 
arbitrarily as a function of time and place. In addition 
to the problem of the number of moving boundaries we 

can also treat any shape of the cross-section of a filament 
and we can include the field dependence of it. The option 
of the shape of the filament is of interest because original 
circular filaments may be heavily distorted due to the 
manufacturing process. The numerical method is based 
on an algorithm predicting the current distribution and 
correcting it via an expression for the vector potential 
and the constitutive equations. An outline of the nu- 
merical approach will be given in the next section for 
uniform values o f  jc. Field dependence of j ,  can be 
included in this numerical set-up but is normally of no 
interest for fine filaments. 

In the results section of this Paper we discuss three 
examples. We consider a circular filament in an a.c. 
transverse field with a d.c. transport current. Due to the 
transport current more moving boundaries will occur. 
We calculate the current density, the cross-sectional 
average value of the electric field along the axis of the 
filament and the magnetization. A circular filament in an 
angulary oscillating field with total angle variation rr/2 is 
considered: the current density and the magnetization 
loss per cycle per unit volume are calculated. Finally, the 
magnetization losses due to a transverse applied field and 
an a.c. transport current of a circular and a square 
filament are compared. 

In this Paper, the voltage--current relation is calculated 
for a square filament carrying an a.c. transport current 
placed in a d.c. transverse field; this is needed for the 
Carr approximation. To examine this result we derive a 
more accurate analytical expression for the voltage- 
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current relation which normally is used for loss calcula- 
tion on multifilamentary wires 8. Both results are com- 
pared. 

a non-constant j= can be taken into account and treated 
in the same way as described in the next section. 

T h e o r y  

Consider an infinitely long superconducting cylinder 
carrying a transport current, IA(t), in a transverse applied 
field, BA(t). We assume that all electromagnetic fields are 
invariant with respect to translation along the z-axis, 
where the z-axis is chosen to be parallel to the axis of 
the superconductor. Therefore, we may describe the 
current density in a cross-section, S, of the cylinder by: 

j = j ~ ,  (1) 

It follows from Maxwell's equation and the Biot-Savart 
law that we may choose the following expression for the 
vector potential 

:4 = (A~, A,, A=) 

A~(P, t) = 0 (2a) 

Ay(P, t) = 0 (2b) 
f .  

/to 
A=(P, t) = 2~r I~ j=(~'' t) In l P -  r l dS(P') 

- [P x BA(t)] "~= + C(t) (2c) 

= (x, y), ~= is the unit vector in the z direction, and where 
C(t) is an  arbitrary function of t. Thus, B = V x A and 
V x A --* B A as I r ] --* oo if S is bounded. • 

From Maxwell's equation V x E = - b and V x/1 = 
B, thus it follows that 

E=~= = ( -  O,A= + V.O)~= (3a) 

where @ is a scalar potential. One can easily see that (I) 
does not depend on P and consequently O,@ depends only 
on t, so we can choose C(t) such that 

E,k= = -- O,A=~= (3b) 

Equation (2c) is one relation between the scalar fields 
j=(P, t) and A=(P, t); the second relation is found in the 
constitutive equations: for all P ~ S 

either 

j= =jo(B) ^ E~ = - OtA= > 0 

o r  

j ,  = 0 ^ E= = - OtA ~ = 0 (4a) 

o r  

j= = --j~(b) ^ E, = -- O,A= < 0 

where j=(b) is the critical current density. 
The integration constant C(t) in Equation (2) is deter- 

mined by 

sj=(L t)dS(P) =/^( t )  (4b) 

In general, Equations (2c) and (4) cannot be solved 
analytically even for constant j¢ and simple choices for 
the geometry. In the next section we will discuss a 
numerical method for constant j¢ but arbitrary shape of 
S and any BA(t), IA(t). In principle the current density for 

Numerical model 

We have considered Equations (2c) and (4), and developed 
a time-stepping iterative algorithm. First of all we dis- 
cretize Equation (2c) by partitioning the cross-section S 
into a number of elements Sk such that S is the union of 
all Sk. These elements should be chosen so that the 
dimensions in both directions are approximately equal 
to obtain a good resolution. In every Sk we take a 
representation point, Pk, as the centre of that element. We 
can discretize the integral (2c) for the vector-potential A= 
at  P = ~k by 

A=(Pk, t )=  /to - 2---~ ~ ak"J"(t) - [rh x BA(t)] -~, + C(t) 

with 

ak,, = I_ ln l ~ - P'[ dS,,(P') 
J ~  m 

j=(t)--area (S---~ A(P', t)dS=(P') (5) 
m 

j= is the total amount of current of element S,.. We define 
an element Sk to be saturated if 

Ijk(t) I =jc  (6) 

and otherwise unsaturated. 
Suppose that at time tt there are Nt(tt) unsaturated 

elements and N2(fi) saturated elements, such that N t (t:) 
+ N2(fi)= N, the total number of elements; then for the 

next time-step we assume that this situation is a good 
prediction. Because of a change of the applied field or 
the transport current, however, there shall be a variation 
of the vector-potential, AA=, and consequently the total 
current Jk of each element can be changed by Ajk, 
say. To solve the N unknown Ajk we need N equations. 
For each element, S~, that is predicted to be unsaturated, 
we know that the vector-potential should be zero. This 
means that for all Nx(q) unsaturated elements Sk, with 
centre rk, we have 

AA=(rk) = A=(rk, fi+ 1) -- A=(rk, fi) 

_ / - t o  

2~ ~ ak=Aj,, + (rk x A/~A) "~, + AC = 0 (7) 

However, we know that for each of the N2(t3 saturated 
elements, if this situation was correct for t t + 1, the total 
current must be equal to j~ 

Ijkl =j° 

Equation (7) together with the equation for the total 
current 

IA(t,+ 1) = ~ Jk(fi+ a)S~ (8) 
k 

form a set of N 1 + 1 equations from which the N1 
unknown Ajk and the unknown AC can be solved. 

Of course we must check the solution to examine if 
the predicted situation was correct. Therefore, each 
unsaturated element at t, + 1 must satisfy IJk] <Jc and 
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for each saturated element we must have sign [AAz(Pk) ] = 
- sign (j~). 

If an unsaturated or a saturated element does not 
satisfy the condition, we will change its type into saturated 
or unsaturated, respectively. In case of a constant j¢ we 
only have to check those elements near to a moving 
boundary or a physical boundary, because in that particu- 
lar situation new moving boundaries will always arise 
from a physical boundary. 

Having determined the current density, one can easily 
calculate the mean value of Ez over the cross-section and 
the magnetization, as follows 

Ez(t) = IkN_~l AAz(t 'k ,  t)Sk]S -1 (9a) 

N 
M=(t) = ~ jk(t)Skyk (9b) 

k=l 
N 

My(t) = - ~" jk(t)Skxk with (Xk, Yk)= rk (9C) 
k=l  

R e s u l t s  

In this section we discuss three examples of filaments 
placed in an arbitrary applied field. The first example is 
of a circular filament in an unidirectional a.c. applied field 
carrying a d.c. transport current. This is an example where 
more than one moving boundary is expected. The new 
boundaries, however, as mentioned before, will always 
arise from a physical boundary. Figures la and b show 
the time dependence of the applied field and the transport 
current. The maximum value of the applied field is equal 
to the penetration field Bp = 2#ojcR/zr. That means that 
for this value of the applied field, without transport 
current, the filament is completely saturated. By adding 
a transport current complete saturation will occur for 
smaller values of the applied field. Figure 2 shows the 
current distribution, where the sign denotes whether the 
current flows in the z or - z direction. The numbers on 
the figures correspond to those of Figure la, the time 
dependence of the applied field. In addition to the current 
distribution we have also calculated the mean value of 
E= over the cross-section and the magnetization parallel 
to the applied field as function of time. A first order 
approximation of the mean value of Ez under the 
condition that the time derivative of the applied field is 
small, can be given by 

E= = --d, BAR IA/(2 It) 

Although we have achieved this expression for a square 
filament, we can use it for a circular filament (discussed 
below). The results are given in Figures lc and d. 

The second example is that of a circular filament in a 
angulary oscillating transverse applied field where [BA[ 
is constant. Figure 3 shows the sign of the current densities 
as a function of time for [BA[ =2Bp and [BA[ = 6Bp, 
respectively, where Bp is the penetration field. The applied 
field is oscillating with total angle variation n/2. The 
arrow in the figures denotes the direction of the applied 
field. Although, for high fields, the original shape of the 
moving interface is very quickly restored, the magnetiza- 
tion loss per cycle per unit volume will be much smaller 
than that of a purely rotating field. In the latter case the 
moving boundary is of constant shape and rotates with 
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Figure I (a) Applied field, B A, as a function of time t. (b) Transport 
current, /A, as a function of time, t. (c) Magnetization, M, as a 
function of t corresponding to Figure la. (d) Cross-sectional 
averaged value of the electric field, E'z, along the axis of the fi lament 
as a function of t corresponding to Figure la 

the angular velocity of the applied field, so the magnetiza- 
tion is constan#'  5. 

The oscillating field, however, causes a smaller mag- 
netization loss per cycle because the original shape 
of the moving boundary is heavily distorted for some 
time. Therefore, we examine whether the rotating or the 
alternating component of the applied field is responsible 
for the magnetization loss. 

In Figure 4 we have computed the loss per cycle per 
unit volume due to the magnetization of a circular 
filament as a function of the applied field for three 
comparable situations. The first situation (see the solid 
line in Figure 4) describes a filament in an oscillating 
transverse applied field with total angle ~r/2. The loss was 
computed with our numerical method using the following 
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4 

Figure  2 Current distribution in a circular fi lament placed in an 
external a.c. magnetic field, B A (t), carrying a d.c. transport current, 
/A(t). Numbers 1-6 refer to the points of time given in Figure la 
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Magnetization loss, QM, per cycle per unit volume of a 
circular fi lament for three different s i t ua t i ons . - - - - ,  Calculated using 
the expression of Pang 4,s for a circular f i lament in a rotatin~ field; 
. . . . . . . . . .  , calculated using the expression of Zenkevitch = for a 
circular fi lament in an a.c. transverse field; - - - ,  calculated using 
the numerical method outlined in this Paper for a circular f i lament 
in an angulary oscillating transverse field rotating wi th total angle 
of n/2. All three curves are given as functions of the applied field 
amplitude 

F igure  3 Current distribution in a circular fi lament in an angulary 
oscillating field wi th a total angle variation of ~/2, without  transDort 
current. The figures at the left-hand side are calculated for [BA[ = 2Bp 
and the right-hand side for [BAI = 6Bp. The arrows denote the 
directions of the applied field 

expression 

2 ~ / 4  
Ml ]BA [de (10) 

QM = J _./, 

with Mi the component of the magnetization perpen- 
dicular to the applied field. 

The upper dashed line in Figure 4 is the loss per half 
cycle per unit volume of a filament in a rotating field for 
the stationary situation. This loss was calculated using 
an expression developed by Pang 4' s 

4re 
QM = 3.0 I BA I Bp[1 -- exp(-- 4fl 2) -- 8/~ 3 exp(-- 4.75/~)] 

(11) 
I&l 

#oJc R 

where Bp is the penetration field, R is the radius, and jo 
is the critical current density. 

The lower dashed line in Figure 4, which-is very close 
to the solid one, is the loss per cycle per unit volume of 
a filament in an a.c. transverse field with amplitude 
BA = (2~ I BA I)/2. An expression for the loss per cycle per 
unit volume was first given by Zenkevitch 9 

8 B3 4 B~ ifBA~<Bp 
QM = 3.0 8. 3.0 8. 

(12) 
8 BABp - 4 2 if BA > Bp 

= 3,o 3,--o Bp 

Figure 4 shows that the loss of a filament in an angulary 
oscillating field with a total angle ~/2, perfectly coincides 
with the loss of a filament in a comparable a.c. transverse 
field of appropriately chosen amplitude. Therefore, we 
may conclude that the loss of a filament in an oscillating 
applied field, or a combination of a rotating and an a.c. 
transverse applied field, is comparable with the loss of a 
filament in a purely a.c. transverse field. 

1 0 4  C r y o g e n i c s  1 9 8 9  V o l  2 9  F e b r u a r y  



Current 

As mentioned earlier, the numerical method described 
can treat any shape of cylindrical filament. In the last 
example, we compare the magnetization loss of a circular 
and square filament. The filaments are placed in a 
transverse magnetic field, carrying an a.c. transport 
current. Figure 5 shows the scaled magnetization loss per 
cycle per unit volume of a circular and square filament, 
where the applied field is perpendicular to one of the sides 
of the square filament. Here the scaled magnetization loss 
was defined by 

Q* = Qm/( [J~/p I Bp) (13a) 

(~ M.dBA (13b) Q~ 

where Mp is the magnetization if I B^ I = Bp, and Bp is 
the penetration field. 

The scaling factors can be found easily: for a circular 
filament IMpl and Bp 

4 . R 3  tM.I =~Jc 

2 
B p - -  #.j~R (14a) 

n 

and for a square filament 

1 3 

(2 In 2 + n) 
Bp = 4~ IJ°j~d (14b) 

We can see that the scaled magnetization loss of a 
circular filament coincides perfectly with that of a square 
filament. From this result we may expect that for filaments 
with arbitrary cross-section, the magnetization loss per 
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0.00 I 
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Figure 5 Scaled magnetization loss, Q~,  per cycle per unit volume 
of a circular and square filament. Both filaments are placed in a 
transverse field carrying an a.c. transport current. ~ ,  Circular 
filament; - - - ,  square filament. For scaling factors see text Equations 
(14a) and (14b) 
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cycle per unit volume will behave identically but for a 
geometrical factor only. This factor can be described by 

f =i~f. p'tlBp'I (15) 
[Mp.21Bp,2 

such that Qm. 1 =fQm.2 

For example, if we have a circular and a square filament 
with cross-sections of equal area, the geometric factor 
can be achieved by 

circle area = nR 2 

square area = d 2 

resulting in d = n~R 

and using Equation (13) 

3n2(2 In 2 + •) 
f = 128 ~. 1.047 (16) 

with Qm (square) = fQ,~(circle). This means that the mag- 
netization loss per cycle per unit volume of a square 
filament is approximately 5*/0 more than the loss of a 
circular filament with equal cross-sectional area. 

D y n a m i c  r e s i s t i v i t y  o f  a f i l a m e n t  

Calculation of the loss due to the dynamic resistivity of 
filaments of multifilamentary wires requires an accurate 
voltage-current relation of the filaments. Loss calcula- 
tions on cables and wires consisting of large filaments 
especially need such an expression. We develop an 
analytical expression for the voltage--current relation of 
a square filament below. As seen in the third example 
given in the previous section, the difference between a 
circular and a square filament is very small. Therefore, 
we may in the future use the expression for calculations 
on circular filaments. We have also verified the expression 
by comparing it with numerical results. The latter are 
obtained using our numerical method for a filament with 
a square cross-section. 

Voltage-current relations of filaments 

We consider a square filament in an applied trans- 
verse field ~A(t)=/~A(t)~x carrying an a.c. transport 
current 7A(t ). Instead of using the physical electro- 
magnetic fields B, ],/S, .~ and 7 A we define dimensionless 
fields by 

b= 
#o}cd 

"g. 

Jc 

E 
- ~,o~od 2 ( 1 7 )  

i~ojod 2 

A I ^  = 
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and space is scaled by d, the side of the filament 

d 

2=~ 

Using these definitions, Maxwell's equations and the 
constitutive equations now read 

V x B = j=~,, (18a) 

V x ~ = - 8^ - B, (18b) 

+1 i f E ~ < 0  

j= = 0 if E= = 0 (18c) 

- 1  if E=>0  

where we have assumed that all electromagnetic fields 
are invariant with respect to translation along the z axis, 
where the z axis is chosen to be parallel to the axis of 
the conductor. 

The first and classical analytical approach is to neglect 
the induced field, B~. Using this assumption we can solve 
Maxwell's equations; easily 

OyE= = - BA >1 E, = - - B A y  .-F E o (19a) 

and Eo is defined by 

y,= e~=o 2= 2O= B~ 
-- E=>0 Y<Yo 

This gives us E o =BAYo where the boundary Y=Yo 
separates the regions of different saturation (see Figure 
6). This means that 

I^ 
2o = ~  

where IA is the transport current. 
It follows immediately from Equation (19a) that we 

can describe /~=, the mean value of E= over the cross- 
section, by 

E= = BA IA/2 (20) 

Y 

m 

J f y  

B A 
I D  

-I- 

Figure 6 Current distribution in a square filament due to a 
transverse applied field neglecting the induced field, the boundary 
is given by Y0. The boundary 8(x) denotes a first-order approxima- 
tion of the current distribution if the induced field is not neglected 

To achieve a more accurate approximation for the 
voltage-current relation we consider a small disturbance 
Aj= of the current density at y = Yo. Instead of calculating 
the induced field B, due to the disturbance, we will 
compute the vector-potential A= as a function of Aj= at 
Y = Yo by the Biot-Savart law. Taking the expression for 
A~into account we can solve Maxwell's equation V x ~ = 
- B ,  deriving a new expression for E~ as a function of i, 
the total current. 

Defining the vector-potential /1 by V x/1 = B and 
V" A = 0, the first Maxwell's equation V x B =/to} now 
reads 

'XLA~ = -L  (21) 
where AL is the Laplace operator. The disturbance Aj= is 
given by 

Aj== {~6(y-- yo)O, yo --½ <<. x ~ ½ 
elsewhere (22) 

so we can describe the variation A(ALA,) as 

A(ALAz) = - 26(y - yo)O,y o - 2 "~ x ~ ½ (23) 

and ,;1~ by the Biot-Savart law as 

1 
;l,(x, 2 ) = - ~  f,~ f ALln[(x'-x) 2 + ( y ' -  y)2]dx'dy' 

+ E~ (24) 

- l O ,  y o [ ( X ' - x ) l n [ ( x ' - x ) 2 + ( y o - y ) 2  ] 

-2x '  + 2(y o - y)arctanky _ Yo/]  I,'= -½ + E~ 

Now we can solve for E=, using the second Maxwell's 
equation 

( V  X ~ )  = - -  8 A - -  8! = V X [-(--BAy q- E o ) ~  z - -  ~4z~z] 

(25) 

Ex = Ey = 0 

This results in 

E~ = - BAy + Eo -- f4, 

from which we obtain 

E= = Eo - .~= (26) 

where ,~= is the average of ~1= over the cross-section of 
the filament 

' L L ' {  .;h = - 2---n- d'y° (x' - x)ln[(x' - x) 2 
-½ = -½ 

+ (2 -- 20) 2-] --  2x' 

+ 2(2o -- y)arctan dydx + E'o 
\Yo - Y / )  I x'= -½ 

' { 
48n 0tyo 1 6 n -  88 -481n(2)  

+ ( - - 4 - - 2 4 i +  12i2)arctan(1-~/) 

+ ( - - 4 +  24i + 12i)arctan(1-~)+2(1--i)31n(1--i) 
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+ 2(1 +/)31n (1 + i) 

+ (11 - 9i + 3i 2 + i3)1n[4 + (1 - 02] 

+(11 +9i - -3 i2+i3 )1n[4+(1  + i)2]t + E ~ (27) 
J 

with i the total current. 
To calculate the constant E~ we have first to compute 

the new interface, y~(x), using the constitutive equations. 
Once the current distribution is determined we will 
require that the total amount of current, i, is equal to the 
applied current, I^(t). This leads to an equation for E~. 

At the new boundary y~(x)= yo(x)+ e(x) we can des- 
cribe E,(x, y) as 

E,Ev;,(x)] = e,Do + ~(x)] 

= -- [Yo + e(X)]BA + Eo -- A,[x, Yo + e(x)] 

= --BAYo + Eo --~4z(x, Yo) -- BAe(x) + O[eZ(x)] 

(28) 

Since the new boundary y'o(X) separates the regions of 
different saturation, we know that at y'o(X), Ely,(x)] is zero 

E=[y~(x)] = -BAYo + Eo -- ~'lz(x, Yo) -- BAe(x) 

= -,~l,(x, Yo) -/3As(x) = 0 (29) 

This gives us an expression for e(x) and hence y'o(X) 

~(x) = - ; , l , (x ,  y o ) / B A  

y'o(X) = Yo + e(x) = Yo - ~ljx,  yo)/]3A (30) 

with 

.~l,(x, Yo) = -- 1 8,yo[(½ - x)in(½ -- x) 

+ (½ + x)ln(½ + x) -- 1] + E~ 

Figure 6 shows e(x) in the case where Aj= is positive (for 
Aj, negative e(x) changes sign). 

Now that the boundary Y0(x) is known, we can calculate 
the total current 

= I A + 2 I ~ i e ( x ) d x  
-½ 

2 . [ f  ~4,(x, yo)dx 
= I A  - - ~ A  . _ _  = -½ 

2 (c3,y o + E'o) (31) 

If we require the total current, i, to be equal to the applied 
current, IA, we find for E~ 

drY0 (32) 
E~ = 2x 

Substituting this expression for E~ in Equation (26), we 
get for E, 

F.= = E o + 8,Yof(O 

with 

f(i) = ~ 16g -- 64 -- 48 In(2) 

+ ( - 4 - 2 4 i +  12i2)arctan(1-~/) 

+ ( - 4 +  24i+ 12i2)arc tan( l~ / )  

+ 2(1 - i)3 In (1 - i) + 2(1 + / ) 3  In (I + i) 

+(11 - 9 i+  3i 2 + i3)1n[4 + (1 -- 02 ] 

+(11 + 9 i -  3i 2 + i3)1n[4 +(1 + 021t 
J 

Eo = Yo BA 
i 

YO = ~  

i = I A 

and 

8 1 ,Yo = ~ 8,i 

1.40 
a 

t . /  

< 

(33) 
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F i g u r e  7 V o l t a g e - c u r r e n t  re la t ion o f  a square  f i l amen t  in a cons tan t  
increas ing ex terna l  t ransverse f ie ld  ca r ry ing  an a.c. t ranspor t  current .  

, Ca lcu la ted  us ing  the  numer ica l  m e t h o d  ou t l i ned  in th is 
Paper;  - - ,  ca lcu la ted  us ing  the  analytical express ion deve-  
loped  fo r  the  v o l t a g e - c u r r e n t  re lat ion.  (a) n = 3;  (b)  n = 12 
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Results 

In the previous section we have derived an expression 
for the voltage-current relation of a square filament. 
The approximation becomes better for a small ratio 
(dlA/cgt)/(dBffat) because the hysteresis loss is small. 
Therefore, we will describe Equation (33) as 

where 

B A = BpB, 

and 

1 (al~/Dt) 
n (dB,/at) 

To compare this expression with our numerical model, 
we have calculated the voltage-current relation for the 
situations n = 3 and n = 12 (see Figure 7a and b). 

For large n the hysteresis loss becomes zero and in 
that case the voltage-current relation can be described by 

~ =  IAB p 

with 

Bp = ( In2  + ; ) / ( 2 r 0  

the penetration field of a square filament. 
Both examples show that the results have a perfect 

agreement for small values of IIAI. The deviations near 
I IAI = 1 are caused by the fact that we assumed s(x) to 
be independent of Yo, which is incorrect if Yo is near one 
of the sides of the filament. Secondly one can see that the 
numerical results show an oscillating behaviour. This is 
caused by the grid which discretizes the continuous 
voltage-current relation. This means that a small change 

in the applied field or in the transport current does not 
change the number of saturated and unsaturated regions, 
and hence/~, will not change. 

Conclusion 

In this Paper we have presented a numerical method for 
calculating the current distribution of filaments. The 
filaments may have an arbitrary shape of cross-section 
and can be placed in any applied magnetic field of any 
behaviour predescribed in place and time. Furthermore, 
the filaments may carry an arbitrary transport current. 

As we have shown in the examples, the described 
method can be used to treat complicated problems of 
calculating current distributions in a general way. The 
method can also handle the problem of a number of 
simultaneously moving boundaries and the field and 
position dependence of the critical current density can 
be incorporated. Therefore, we may conclude that we 
have succeeded in developing a robust algorithm for 
calculating the current density, magnetization and dy- 
namic resistivity of superconducting filaments. 
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