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A cycle C of a graph G is called a D, -cycle if every componesnt of G — V{(C) has order less
than A. A D, -path is defined analogously. In particular, a D,-cycie is a hamiltonian cycle and a
D;-path is a hamiltonian path. Necessary conditions and sufficient conditions are derived for
graphs to have a D,-cycle or D,-path. The results are generalizations of theorems in
hamiltonian graph theory. Extensions of notions such as verter degree and adjacency of vertices
to subgraphs of order greater than 1 arise in a natural way

1. Introduction

We employ the terminology of Bondy and Murty [3] and consider only simple
graphs.

In [2], Bondy stated a sufficient condition for a graph G to have a cycle C such
that G — V(C) contains no K,. For k =1, it coincides with Ore’s condition for the
existence of a hamiltonian cycle. Here we introduce another kind of generalized
hamiltonian cycle. A cycle C of a graph G is a D,-cycle if all components of
G — V(C) have order less than A. Alternatively, C is a D, -cycle of G if and only if
every connected subgraph of order A of G has at least one vertex with C in
common. Thus a D, ~cycle dominates all coninected sebgraphs of order A. Analog-
ously, a path P of G is a D, -path if every component of G~ V(P) has order less
than A. Graphs containing a D, -cycle (D,-path) will be called D,-cyclic (D,-
traceable). A D;-cycle (D,-path) is the same as a hamiltonian cycle (hamiltonian
path). D,-cycles were studied in [6].

In subsequent sections, existence theorems for D, -cycles are proved. In [6],
most of them were already proved for A =2. We will henceforth refrain from
referring to these special cases, unless this is essential. Parallel results on D, -paths
can be obtained, using the following obvious lemma.

Lemma 1. A graph G is D,-traceable if and only if Gv K, is D,-cyclic.

The theorems derived are generalizations of known results in hamiltonian graph
theory. A corresponding remark can be made about the proof techniques used.
Some of the results in Section 3 are closely related to Bondy’s work [2].
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Extensions to subgraphs of order greater than 1 of concepts such as adjacency
of vertives, independence number and vertex degree arise in correspondence with
the generalization of hamiltonian cycles to Dy -cycles.

2. A necessary condition in fterms of cut sets

To start with, we gencralize a necessary condition for the existence of a
hamiltonian cvele,

Theorem A |3, Theorem 4210 If a graph G is fwansidlionian, then, for every
nonempty proper subset 8§ of V(G
@l -8 =|8].

Fonote by wy (G the number of components of Gof order at least AL Theorem
Ais then aspecial case (A D of

Theorem L. If a graph G iy Dy -cvelic, then, for cvery nonempey prener subset § of
Vin,
oG S %SL
The proof, being an casy extension of the proof of [6, ‘Theorem 1], is omitted,
For future reference we denote by K, the olass of graphs eae sutisfving the

neeessary condition of Theoremy L Thus G s in K itE, for some nonempty proper
subset § of VG, an (G ) 1S

A, Sutficient conditions involving subgraph degrees

We now tum our attention to - suflicient conditions for thie existence  of
Dy -eyeles, One of the carliest resalts in hamiltonian graph theory 10 he
generalized here is due 1o Dirae,

Theorem B 3. Theorem 4.3 If G s @ graph with v>3 and &7 iv. then G is
hamiltonian.

We also mention a result of Chvital and Erdos.,

Theorem C [4, Theorem V| If G is a k-connected graph with # =3 and « sk,
then G is hamiltonian.

Homdy proved a common generalization of Theorems B and C.
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Existence of D, ~cycles and D, -paihs

Theorem D [2, Theorem 2], Let G be a k-connected graph with v= 3 such that.
for every k+ 1 mutually nonadjecent vertices ug, u, . .., u, of G,
k

Y du)>Hk+ D=1

i)

Then G is hamiltonian.

In order to extend Theorems B, C and D to results on D, -cycles for A >1 we
need some additional definitions. As in [6], two subgraphs H, and H, of a graph
G are said to be close in G if they are disjoint and there is an edge of G joining a
vertex of H, and one of Hy: if no such edge exists in G, then H, and H,, provided
they are disjoint, are remote in G. Thus, it H, and H, both consist of exactly ore
vertex, H, and H, are close (remote) ifl the corresponding vertices are adjucent
(nonadjacent). By o, (G) (or just ;) we denote the maximum number of mutually
remote connected subgraphs of order A of G. Thus « coincides with the
independence number o, The degree of a subgraph H of G, denoted dg(H) or
d(H), is the number of vertices in V(G) = V(H) adjacent to one or more vertices
of H. In other words, considering vertices as subgraphs of order 1, d(H) is the
number of vertices of G close to H. If H consists of a single vertex, then d(H) is
just the degree of this vertex. The minimum degree of connected subgraphs of
order A will be denoted §,, so that &, =8, If O is an oriented cycle or path in a
graph and u and v are vertices on Q. then Ofu, v] and Ofv, u] denote.
respectively, the segment of Q from u to v and the reverse segment from
v o w Furthermore, Ou, v]:=Gu, v]~{u}, Ou, v):= Olw, v]-{v} and
O, v):= Olu, v]-{u. v}. Three more defining relations are obtained by revers-
ing the arrows in the previous sentence.

We are now ready to prove a generalization of Theorem C.

Theorem 2. Let k and A be positive integers such that either k=2 or k=1 and
A=<s2, If G is a k-connected graph, other than a tree (in case k = 1), with o, <k,
then G is Dy-cyclic.

Proof. By contraposition. Let G be a k-connected non-D,-cyclic graph other
than a tree. We will show that @, > %. Put t+1=min{i | G is D,-cyclic}, so that
t= A Let C be a longest Dy -cycle among all D,.-cycles C' of G for which
w, (G — V(C") is minimum. As in the proof of [6, Theorem ] one skows that C
has length at least k+1. Fix an orientation on C. By assumption, C is a
D, . -cycle, but not a D,-cycle of G. Hence G~ V(C) has a component H, of
order t. All vertices of G close to H,, are on C and, since G is k-connected and
|V(C)|® k, we have that d(H) = %. Let v,,..., v be k vertices of C close to H,.
Fori=1,...,k, let uy be a vertex of H, adjacent to v, (for i # j, uy and u, may
coincide). Assume that v, ..., v occur on C in the order of their indices and let
u;, be the immediate successor of v, on C (i=1,..., k). It will prove possible to
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choose, for i=1,...,k, a subgraph H; of G satisfying the following require-
ments:
(i) H; is connected and has order t,

(i) H,NC=Cw,, u-), where u;, is a vertex of C[u;,, v;) chosen in such a way
that

(iii) The length of Clu:, u;>] is minimum, i.e. if H is a connected subgraph of
order t of G with HNC = Clu,;, w], then Clu,,, u,] is a subpath of Clu,,, w].
Note that 1, and &, may coincide, in other words Clu;,, 4;,] may have length 0.

If k =1, then C may have length 3 and the existence of a subgraph H, with the
above properties is guaranteed only if =<2,

If k=2, then, for 1=isk,

(a) a subgraph H, with the mentioned properties exists, and

(b) v;., does not belong to Clu,, %] (indices mod k).
Assuming the contrary to (a) or (b), consider the cycle

C' = vug Plug, uu,i»rl]u().i+lvi+lc[vi+1~ vl

where P is a uyu; -path within H, (degenerate if uy; = ug,;,,). Ey assumption,
C(u, v;.) is not contained in a component of order at least t of G— V(). Since,
moreover, {Hy,— V(C)|<t, it follows that C' is a D,.,-cycle of G with &, (G-
V(C) < w,(G — V(C)), contradicting the choice of C.

Thus we have shown that, for 1<=i=<k, a subgraph H; satisfying the require-
ments (i), (i) and (iii) indeed exists, provided ¢<2 in case k =1. Following an
analogous reasoning one proves that H, and H; are disjoint and. a fortiori,
remote.

Next we prove by contradiction that, for 1=i</=<k, the subgraphs H; and H,
arc remote. Assume that H; and H; are close or non-disjoint. Then a u;,u;,-path
P’ can be found such that

(D) P'NC=Cluy,, wiu (j‘[w,-, u;;], where w; and w; are vertices of Clus, uy]
and Clu;,, u;5), respectively,

(2) no vertex of V(P')~V(C) is in H,,

(3) the sum of the lengths of Clu, w;] and é[w;, u;>} is maxium, ie. no
u; ,u;o-path satisfying (1) and (2) has more veitices with C in common than P'.

Now consider the cycle

C’'= Ui“()iﬁ"[“u.w “();]“(l,svfc[f)p '4.'2]13'[“@ uj2]é[uj2- vl

where P” is a u,uy;-path in Hy. In Fig. 1 the cycle C” is indicated by arrows.

Denote by L; and L; the components of G — V(C") containing the vertices (if
any) of Clu;,. w,) and Clu;,. w)), respectively. If L; and L; would coincide, then a
U u;o-path satisfying (1) and (2) could be indicated having more vertices with C in
common than P, a contradiction with the choice of P'. Thus L; and L; are
distinct. Moreover, by the way H; and H; were chosen, both L; and L; have order
less than r (otherwise (iii) would be violated). But then C" is a D, -cycle with
w0, (G ~ V(C"N <o (G - V(O)), contradicting the choice of C.
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Fig. 1.

Thus we have shown that the connected subgraphs Hy, Hy, ..., H, of G of
order ¢t are mutually remote, so that @ >k. Since a, is easily seen to be a
nonincreasing function of x, it follows that a, =a,>k. []

For s=A, the graph K, v(k+ 1)K is non-D,-cyclic and satisfies o, =k-+1,
showing that Theorem 2 is, in a sense, best possible.

Theorem 2 can be improved to a generalization of Theorem D. Referring to the
proof of Theorem 2, it can be shown that

d(H)+d(H)=<v+k—A—kA O=si<j=<k).

Bondy [2] showed these inequalities to hold in case A =1. The proof of the
general case is completely analogous and hence omitted. Summing the above
inequalities eventually yields

Theorem 3. Let k and A be positive integers such that either k22 or k=1 and
A<2. If G is a k-connected graph, other than a tree, such that, for every k +1
mutually remote connected subgraphs Hy, H,, . . ., H, of order A of G,

k

Y d(H) >k +D(v+k—A—k)),

i=0

then G is D, -cyclic.
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From Theorem 3 one easily deduces a generalization of Theorem B: a k-
connected graph with 8, >3(v+k—~X —kA) 1s Dy -cyclic (k=2 or k=1 and A <2).
However, we can do better.

Theorem 4. Let k and A be positive integers such that either k=2 or k=1 and
A=<2. If G is a k-connected graph. other than a tree, with

>{(v—(k+1)A+k2)/(k+l) if A=k,
T le-DA D if A<k,

then G is D, -cyclic.

Proof. By contraposition. Assume that G is k-connected and non-D, -cyclic. Set
t+1=min{i | G is D;-cyclic}, so that t=A. Let C be a D, ,-cycle of G for which
w, (G~ V(C)) is minimum. We may assume C to have length at least k. Let H, be
a component of G~ V(C) of order ¢ and let vy, ..., v, be the vertices of C close
to H,, where m = d(H,). Choose to each v; a subgraph H; of G of urder t as in
the proof of Theorem 2 (i=1,...,m). The choice of C then implies, among
other things, that the vertex sets V(H,), V(H)), ..., V(H,) and {v,, ..., v,,} are
mutually disjoint. Thus

v=(d(Hy) + Dt +d(Hy). (D
or, equivalently,

d(Hp)s(v—-0/(t+1)
and consequently

S, =(v—=0/(t+1)+t—A, 2)
Since G is k-connected, Hj, has degree at least k, so (1) implies that

v=(k+Dt+k. (3)
If A=k, then also t = k. The inequality (3) is then equivalent to

Pt v—{k+DA+k?
(1 ITAS k+1 ' )

Combination of (2) and (4) proves the first part of the theorem.
If A <k, then from (3) it follows that

v2(A+ 1A, : (5;
Since 1= A, the inequality (5) is satisfied if and only if

._.t —
LAl SNl ©)

The proof is now completed by combining (2) and (6). O
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For A=k, the collection {K.v(k+1)K,|t=A} consists of infinitely many
k-connected non-D,-cyclic graphs with 8§, =(v—(k+DA+&)/(k+1). If A<k,
then {K,v{t+ 1)K, | t=k} is an infinite collection of k-connected non-D, -cyclic
graphs with 8, =(r—A)/(A +1). Thus Theorem 4 is, in a sense, best possible.

In view of Theorem 4, Theorem 3 might be improved to

Conjecture 1. et k and A be positive integers satisfying either k=2 or k = 1 and
A<2. If G is a k-connected graph, other than a tree, such that, for every k+1
mutuaily remote connected subgraphs Hg, H,, ... H, of order A of G,

k v—(k+DAr+k? if A=k
i;d(ﬂ)>{(k+1)(v—)t)/()\+l) if A<k,

then G is D, -cyclic.

If H is a subgraph of order k of a graph G and v is a vertex of H, then
d(H)=d(v)—k+1. From this observation one easily deduces that the truth of
Conjecture 1 (for A = k) would imply the truth of the following, which is a weaker
version of a conjecture due to Bondy.

Conjecture A, (cf. [2, Conjecture 1]}, Let G be a k-connected graph such that the
degree-sum of every k+1 independent vertices is at least v+k(k—1), where
v=3. Then there exists a cycle C of G such that G~ V(C) contains no path of
length k—1.

In fact, Bondy conjectured that, under the condition of Conjecture A, every
longest cycle C of G has the property that G - V(C) contains no path of length
k-1.

So far, the truth of Conjecture 1 has been established in the following cases:

(@ A=1 and k=1 (Theorem D),
(b) A=2 and k=1 [6, Theorem 2],
(¢c) A=2 and k=2 [6, Corollary 3.2].

Without giving it we mention that the proof of [6, Corollary 3.2] is easily
extended to a proof of Conjecture 1 for k=2 and A >2.

Theorem 5. Let G be a 2-connected graph such that the degree-sum of every three
mutually remote connected subgraphs of order A =2 is at least v—3A +5. Then G is

D, -cyclic.

By Theorem 4, a 2-connected graph G has a D,-cycle (A=2) if §, =
(v —3A +5). Under the assumption that G¢ X, the existence of a D, -cycle cun
be proved if the weaker inequality 8, =4(v—3A+3) is satisfied (the proof is a
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slight extension of the proof of Theorem 4; instead of inequality (1) one
demonstrates the inequality v = (m + 1)t +m+2, where m = d(H,), using the fact
that deletion of the m vertices of C close to Hy does not create a graph with more
than m components of order at least t). Thus, in particular, every 2-connected
graph G satisfying G¢ ¥, and 8,:=3v —1 is D,-cyclic, providing an extension of
the following consequence of a result of Bigalke and Jung [1, Satz 1]: a graph G
with G¢ X, and 8 =}v has a D,-cycle. The latter result, in turn, easily implies the
following, due to Nash-Williams [5, Lemma 4}: if G is a 2-connected graph and
5= max(a, (v +2)), then G is hamiltonian.
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