# EXISTENCE OF $D_{\lambda}$-CYCLES AND $D_{\lambda}-$ PATHS 

H.J. VELDMAN<br>Department of Applied Mathematics, Twente University of Technology, Enschede, the Netherlands

Received 4 March 1982
Revised 28 May 1982
A cycle $C$ of a graph $G$ is called a $D_{\lambda}$-cycle if every component of $G-V(C)$ has order less than $\lambda$. A $D_{\lambda}$-path is defined analogously. In particular, a $D_{1}$-cycle is a hamiltonian cycle and a $D_{1}$-path is a hamiltonian path. Necessary conditions and sufficient conditions are derived for graphs to have a $D_{\lambda}$-cycle or $D_{\lambda}$-path. The results are generalizations of theorems in hamiltonian graph theory. Extensions of notions such as vertey degree and adjacency of vertices to subgraphs of order greater than 1 arise in a natural way

## 1. Introduction

We employ the terminology of Bondy and Murty [3] and consider only simple graphs.

In [2], Bondy stated a sufficient condition for a graph $G$ to have a cycle $C$ such that $G-V(C)$ contains no $K_{k}$. For $k=1$, it coincides with Ore's condition for the existence of a hamiltonian cycle. Here we introduce another kind of generalized hamiltonian cycle. A cycle $C$ of a graph $G$ is a $D_{\lambda}$-cycle if all components of $G-V(C)$ have order less than $\lambda$. Alternatively, $C$ is a $D_{\lambda}$-cycle of $G$ if and only if every connected subgraph of order $\lambda$ of $G$ has at least one vertex with $C$ in common. Thus a $D_{\lambda}$-cycle dominates all connected subgraphs of order $\boldsymbol{\lambda}$. Analogously, a path $P$ of $G$ is a $D_{\lambda}-$ path if every component of $G-V(P)$ has order less than $\lambda$. Graphs containing a $D_{\lambda}$-cycle ( $D_{\lambda}$-path) will be called $D_{\lambda}$-cyclic ( $D_{\lambda}$ traceable). A $D_{1}$-cycle ( $D_{1}$-path) is the same as a hamiltonian cycle (hamiltonian path). $D_{2}$-cycles were studied in [6].

In subsequent sections, existence theorems for $D_{\lambda}$-cycles are proved. In [6], most of them were already proved for $\lambda=2$. We will henceforth refrain from referring to these special cases, unless this is essential. Parallel results on $D_{\lambda}$-paths can be obtained, using the following obvious lemma.

Lemma 1. A graph $G$ is $D_{\lambda}$-traceable if and only if $G \vee K_{1}$ is $D_{\lambda}$-cyclic.
The theorems derived are generalizations of known results in hamiltonian graph theory. A corresponding remark can be made about the proof techniques used. Some of the results in Section 3 are closely related to Bondy's work [2].

Extensions to subgraphs of order greater than 1 of concepts such as adjacency of vertices, independence number and vertex degree arise in correspondence with the generalization of hamitonian cycles to $D_{\mathrm{a}}$-cycles.

## 2. A necessary condition in terms of cut sets

To start with. we gencralize a necessary condition for the existence of a hamilomian syele.
 nomempty proper subset $S$ of $V(G)$.

$$
\omega(C \quad S) \leq|S|
$$

Demote by $\boldsymbol{o}_{\mathrm{A}}(\mathrm{d})$ the number of somponents of G of order at least $\lambda$. Theorem $A$ is then a special case $(\lambda$ - 11 of

Theorem 1. If agraph (i is D. acyelic, then, for coere nomemply proarr subset $S$ of l(i).

$$
0_{1}(C \quad s) \cdots|S|
$$

The probl, being an easy extension of the proof of $\mid 0$, Theorem if is omitted.
for future reference we denote by wa the chas of graphs bod satisfying the



## 3. Sufficient conditions involving sulbgraph degrees

We now turn our attention to sutlicient conditions for the existence of Da-syeles, One of the earliest resalts in hamiltonian graph theory to be generalized here is due to Disas.

Theorem B [3. Theorm 4.3|. If G is a graph with $v>3$ and $8 \cdot \frac{1}{2} t$, then $G$ is hamiltonian.

We also mention a result of Chvátal and Erdös.

Theorem C [4. Theores: 1]. If G is a $k$-comected graph with $v \geqslant 3$ and $\alpha \leqslant k$. then $G$ is hamiltonian.

Bondy proved a common generalization of Theorems B and $C$.

Theorem D [2, Theorem 2]. Let $G$ be $a k$-connected graph with $v \geqslant 3$ such that. for every $k+1$ mutually nonadjocent vertices $u_{0}, u_{1}, \ldots, u_{k}$ of $\mathbf{G}$,

$$
\sum_{i=0}^{k} d\left(u_{i}\right)>\frac{1}{2}(k+1)(v-1) .
$$

Then $G$ is hamiltonian.
In order to extend Theorems $B, C$ and $D$ to results on $D_{\lambda}$-cycles for $\lambda>1$ we need some additional definitions. As in [6], two subgraphs $H_{1}$ and $H_{2}$ of a graph $G$ are said to be close in $G$ if they are disjoint and there is an edge of $G$ joining a vertex of $H_{1}$ and one of $H_{2}$; if no such edge exists in $\boldsymbol{G}$, then $H_{1}$ and $H_{2}$, provided they are disjoint, are remote in $\mathbf{G}$. Thus, if $\mathrm{H}_{1}$ and $\mathrm{H}_{2}$ both consist of exactly ore vertex. $H_{1}$ and $H_{2}$ are close (remote) iff the corresponding vertices are adjacent (nonadjacent). By $\alpha_{\lambda}(G)$ (or just $\alpha_{\lambda}$ ) we denote the maximum number of mutually remote connected subgraphs of order $\lambda$ of $G$. Thus $\alpha_{1}$ coincides with the independence number $\alpha$. The degree of a subgraph $H$ of $G$, denoted $d_{i}(H)$ or $d(H)$, is the number of vertices in $V(\boldsymbol{O})-\boldsymbol{V}(\boldsymbol{H})$ adjacent to one or more vertices of $H$. In other words, considering vertices as subgraphs of order $1, d(H)$ is the number of vertices of $G$ close to $H$. If $H$ consists of a single vertex, then $d(H)$ is just the degree of this vertex. The minimum degree of comnected subgraphs of order $\lambda$ will be denoted $\delta_{\lambda}$, so that $\delta_{1}$, $\delta$. If $O$ is an oriented cycle or path in a graph and $u$ and $v$ are vertices on $O$. then $\bar{O}[u, v]$ and $\bar{O} v, u]$ denote, respectively, the segment of $Q$ from $\|$ to $v$ and the reverse segment from $v$ (1) u. Furthermore, $\vec{Q}(u, v]:=\vec{O}[u, v]-\{u\}, \vec{Q}[u, v):=\vec{O}[u, v]-\{v\}$ and $\ddot{O}(u, v):=\ddot{O}[u, v]-\{u, v\}$. Three more defining relations are ohtained by reversing the arrows in the previous sentence.

We are now ready to prove a generalization of Theorem C.
Theorem 2. Let $k$ and $\lambda$ be positive integers such that either $k=2$ or $k=1$ and $\lambda \leqslant 2$. If $G$ is $a k$-connected graph, other than a tree (in case $k=1$ ), with $\alpha_{2} \leqslant k$. then $G$ is $D_{\lambda}$-cyclic.

Proof. By contraposition. Let $G$ be a $k$-connected non- $D_{\lambda}$-cyclic graph other than a tree. We will show that $\alpha_{\lambda}>k$. Put $t+1=\min \left\{i \mid G\right.$ is $D_{1}$-cyclic $\}$, so that $t>\lambda$. Let $C$ be a longest $D_{1+1}$-cycle among all $D_{1+1}$-cycles $C^{\prime}$ of $G$ for which $\omega_{1}\left(G-V\left(C^{\prime}\right)\right)$ is minimum. As in the proof of [6, Theorem 3] one stiows that $C$ has length at least $k+1$. Fix an orientation on $C$. By assumption, $C$ is a $D_{1+1}$-cycle, but not a $D_{1}$-cyele of $G$. Hence $G-V(C)$ has a component $H_{0}$ of order $t$. All vertices of $G$ close to $H_{0}$ are on $C$ and, since $G$ is $k$-connected and $|V(C)| \geqslant k$, we have that $d\left(H_{0}\right) \geqslant k$. Let $v_{1}, \ldots, v_{k}$ be $k$ vertices of $C$ close to $H_{0}$. For $i=1, \ldots, k$, let $u_{0 i}$ be a vertex of $H_{0}$ adjacent to $v_{i}$ (for $i \neq j, u_{0 i}$ and $u_{0)}$ may coincide). Assume that $v_{1}, \ldots, v_{k}$ occur on $C$ in the order of their indices and let $u_{i 1}$ be the immediate successor of $v_{1}$ on $C(i=1, \ldots, k)$. It will prove possible to
choose, for $i=1, \ldots, k$, a subgraph $H_{i}$ of $G$ satisfying the following requirements:
(i) $H_{i}$ is connected and has order $t$,
(ii) $H_{i} \cap C=\vec{C}\left[u_{i 1}, u_{i 2}\right]$, where $u_{i 2}$ is a vertex of $\vec{C}\left[u_{i 1}, v_{i}\right)$ chosen in such a way that
(iii) The length of $\vec{C}\left[u_{i 1}, u_{i 2}\right]$ is minimum, i.e. if $H$ is a connected subgraph of order $t$ of $G$ with $H \cap C=\vec{C}\left[u_{i 1}, w\right]$, then $\vec{C}\left[u_{i 1}, u_{i 2}\right]$ is a subpath of $\vec{C}\left[u_{i 1}, w\right]$. Note that $u_{i 1}$ and $u_{i 2}$ may coincide, in other words $\vec{C}\left[u_{i 1}, u_{i 2}\right]$ may have length 0 .

If $k=1$, then $C$ may have length 3 and the existence of a subgraph $H_{1}$ with the above properties is guaranteed only if $t \leqslant 2$.

If $k \geqslant 2$, then, for $1 \leqslant i \leqslant k$,
(a) a subgraph $H_{i}$ with the mentioned properties exists, and
(b) $v_{i+1}$ does not belong to $\vec{C}\left[u_{i 1}, u_{i 2}\right]$ (indices mod $k$ ).

Assuming the contrary to (a) or (b), consider the cycle

$$
C^{\prime}=v_{i} u_{0 i} \ddot{P}\left[u_{0 i}, u_{0, i+1}\right] u_{0, i+1} v_{i+1} \vec{C}\left[v_{i+1}, v_{i}\right]
$$

where $P$ is a $u_{0 i} u_{0, i}$, path within $H_{0}$ (degenerate if $u_{0 i}=u_{0, i+1}$ ). Ey assumption, $\vec{C}\left(v_{i}, v_{i+1}\right)$ is not contained in a component of order at least $t$ of $G-V\left(C^{\prime}\right)$. Since, moreover, $\left|H_{0}-V\left(C^{\prime}\right)\right|<t$, it follows that $C^{\prime}$ is a $D_{1+1}$-cycle of $G$ with $\omega_{1}(G-$ $\left.V\left(C^{\prime}\right)\right)<\omega_{1}(G-V(C))$, contradicting the choice of $C$.

Thus we have shown that, for $1 \leqslant i \leqslant k$, a subgraph $H_{i}$ satisfying the requirements (i), (ii) and (iii) indeed exists, provided $t \leqslant ?$ in case $k=1$. Following an analogous reasoning one proves that $H_{0}$ and $H_{i}$ are disjoint and, a fortiori, remote.

Next we prove by contradiction that, for $1 \leqslant i<i \leqslant k$, the subgraphs $H_{i}$ and $H_{i}$ are remote. Assume that $H_{i}$ and $H_{i}$ are close or non-disjoint. Then a $u_{i 2} u_{i 2}$-path $P^{\prime}$ can be found such that
(1) $P^{\prime} \cap C=\bar{C}\left[u_{i 2}, w_{i}\right] \cup \vec{C}\left[w_{i}, u_{i 2}\right]$, where $w_{i}$ and $w_{i}$ are vertices of $\bar{C}\left[u_{i 2}, u_{i 1}\right]$ and $\vec{C}\left[u_{i 1}, u_{i 2}\right]$, respectively,
(2) no vertex of $V\left(P^{\prime}\right)-V(C)$ is in $H_{0}$,
(3) the sum of the lengths of $\bar{C}\left[u_{i 2}, w_{i}\right]$ and $\vec{C}\left[w_{i}, u_{i 2}\right]$ is maximum, i.e. no $u_{i 2} u_{i 2}$-path satisfying (1) and (2) has more vertices with $C$ in common than $P^{\prime}$.

Now consider the cycle

$$
C^{\prime \prime}=v_{i} u_{0 i} \vec{P}^{\prime \prime}\left[u_{0 i}, u_{0 i}\right] u_{0 i} v_{i} \stackrel{C}{C}\left[v_{j}, u_{i 2}\right] \vec{P}^{\prime}\left[u_{i 2}, u_{i 2}\right] \vec{C}\left[u_{i 2}, v_{i}\right]
$$

where $P^{\prime \prime}$ is a $u_{0 i} u_{0 i}$-path in $H_{0}$. In Fig. 1 the cycle $C^{\prime \prime}$ is indicated by arrows.
Denote by $L_{i}$ and $L_{i}$ the components of $G-V\left(C^{\prime \prime}\right)$ containing the vertices (if any) of $\vec{C}\left(u_{i 1}, w_{i}\right)$ and $\vec{C}\left[u_{i}, w_{i}\right)$, respectively. If $L_{i}$ and $L_{i}$ would coincide, then a $u_{i 2} u_{i 2}$-path satisfying ( 1 ) and (2) could be indicated having more vertices with $C$ in common than $P^{\prime}$, a contradiction with the choice of $P^{\prime}$. Thus $L_{i}$ and $L_{i}$ are distinct. Moreover, by the way $H_{i}$ and $H_{i}$ were chosen, both $L_{i}$ and $L_{i}$ have order less than $I$ (otherwise (iii) would be violated). But then $C^{\prime \prime}$ is a $D_{t+1}$-cycle with $\omega_{1}\left(G-V\left(C^{\prime \prime}\right)\right)<\omega_{1}(G-V(C))$, contradicting the choice of $C$.


Fig. 1.

Thus we have shown that the connected subgraphs $H_{0}, H_{1}, \ldots, H_{k}$ of $G$ of order $t$ are mutually remote, so that $\alpha_{t}>k$. Since $\alpha_{x}$ is easily seen to be a nonincreasing function of $x$, it follows that $\alpha_{\lambda} \geqslant \alpha_{t}>k$.

For $s \geqslant \lambda$, the graph $K_{k} \vee(k+1) K_{s}$ is non- $D_{\lambda}$-cyclic and satisfies $\alpha_{\lambda}=k+1$, showing that Theorem 2 is, in a sense, best possible.

Theorem 2 can be improved to a generalization of Theorem D. Referring to the proof of Theorem 2, it can be shown that

$$
d\left(H_{i}\right)+d\left(H_{i}\right) \leqslant \nu+k-\lambda-k \lambda \quad(0 \leqslant i<j \leqslant k) .
$$

Bondy [2] showed these inequalities to hold in case $\lambda=1$. The proof of the general case is completely analogous and hence omitted. Summing the above inequalities eventually yields

Theorem 3. Let $k$ and $\lambda$ be positive integers such that eiher $k \geqslant 2$ or $k=1$ and $\lambda \leqslant 2$. If $G$ is a $k$-connected graph, other than a tree, such that, for every $k+1$ mutually remote connected subgraphs $H_{0}, H_{1}, \ldots, H_{k}$ of order $\lambda$ of $G$,

$$
\sum_{i=0}^{k} d\left(H_{i}\right)>\frac{1}{2}(k+1)(\nu+k-\lambda-k \lambda),
$$

then $G$ is $D_{\lambda}$-cyclic.

From Theorem 3 one easily deduces a generalization of Theorem B: a $k$ connected graph with $\delta_{\lambda}>\frac{1}{2}(\nu+k-\lambda-k \lambda)$ is $D_{\lambda}$-cyclic ( $k \geqslant 2$ or $k=1$ and $\lambda \leqslant 2$ ). However, we can do better.

Theorem 4. Let $k$ and $\lambda$ be positive integers such that either $k \geqslant 2$ or $k=1$ and $\lambda \leqslant 2$. If $G$ is a $k$-connected graph, other than a tree, with

$$
\delta_{\lambda}> \begin{cases}\left(\nu-(k+1) \lambda+k^{2}\right) /(k+1) & \text { if } \lambda \geqslant k \\ (\nu-\lambda) /(\lambda+1) & \text { if } \lambda \leqslant k\end{cases}
$$

then $G$ is $D_{\lambda}$-cyclic.

Proof. By contraposition. Assume that $G$ is $k$-connected and non- $D_{\lambda}$-cyclic. Set $t+1=\min \left\{i \mid G\right.$ is $D_{i}$-cyclic $\}$, so that $t \geqslant \lambda$. Let $C$ be a $D_{1+1}$-cycle of $G$ for which $\omega_{1}(G-V(C))$ is minimum. We may assume $C$ to have length at least $k$. Let $H_{0}$ be a component of $G-V(C)$ of order $t$ and let $v_{1}, \ldots, v_{m}$ be the vertices of $C$ close to $H_{0}$, where $m=d\left(H_{0}\right)$. Choose to each $v_{i}$ a subgraph $H_{i}$ of $G$ of urder $t$ as in the proof of Theorem $2(i=1, \ldots, m)$. The choice of $C$ then imples, among other things, that the vertex sets $V\left(H_{0}\right), V\left(H_{1}\right), \ldots, V\left(H_{m}\right)$ and $\left\{v_{1}, \ldots, v_{m}\right\}$ are mutually disjoint. Thus

$$
\begin{equation*}
\nu \geqslant\left(d\left(H_{0}\right)+1\right) t+d\left(H_{0}\right) \tag{1}
\end{equation*}
$$

or, equivalently,

$$
d\left(H_{0}\right) \leqslant(v-t) /(t+1)
$$

and consequently

$$
\begin{equation*}
\delta_{\lambda} \leqslant(\nu-t) /(t+1)+t-\lambda \tag{2}
\end{equation*}
$$

Since $G$ is $k$-connected, $H_{0}$ has degree at least $k$, so (1) implies that

$$
\begin{equation*}
\nu \geqslant(k+1) t+k \tag{3}
\end{equation*}
$$

If $\lambda \geqslant k$, then also $t \geqslant k$. The inequality (3) is then equivalent to

$$
\begin{equation*}
\frac{v-t}{t+1}+t-\lambda \leqslant \frac{\nu-(k+1) \lambda+k^{2}}{k+1} . \tag{4}
\end{equation*}
$$

Combination of (2) and (4) proves the first part of the theorem.
If $\lambda \leqslant k$, then from (3) it follows that

$$
\begin{equation*}
\nu \geqslant(\lambda+1) t+\lambda . \tag{5}
\end{equation*}
$$

Since $t \geqslant \lambda$, the ineqtality (5) is satisfied if and only if

$$
\begin{equation*}
\frac{\nu-t}{t+1}+t-\lambda \leqslant \frac{\nu-\lambda}{\lambda+1} . \tag{6}
\end{equation*}
$$

The proof is now completed by combining (2) and (6).

For $\lambda \geqslant k$, the collection $\left\{K_{k} \vee(k+1) K_{t} \mid t \geqslant \lambda\right\}$ consists of infinitely many $k$-connected non- $D_{\lambda}$-cyclic graphs with $\delta_{\lambda}=\left(\nu-(k+1) \lambda+k^{2}\right) /(k+1)$. If $\lambda \leqslant k$, then $\left\{K_{t} \vee(t+1) K_{\lambda} \mid t \geqslant k\right\}$ is an infinite collection of $k$-connected non- $D_{\lambda}$-cyelic graphs with $\delta_{\lambda}=(\nu-\lambda) /(\lambda+1)$. Thus Theorem 4 is, in a sense, best possible.

In view of Theorem 4, Theorem 3 might be improved to

Conjecture 1. Let $k$ and $\lambda$ be positive integers satisfying either $k \geqslant 2$ or $k=1$ and $\lambda \leqslant 2$. If $G$ is a $k$-connected graph, other than a tree, such that, for every $k+1$ mutually remote connected subgraphs $H_{0}, H_{1}, \ldots H_{k}$ of order $\lambda$ of $G$,

$$
\sum_{i=0}^{k} d\left(H_{i}\right)> \begin{cases}\nu-(k+1) \lambda+k^{2} & \text { if } \lambda \geqslant k \\ (k+1)(\nu-\lambda) /(\lambda+1) & \text { if } \lambda \leqslant k\end{cases}
$$

then $G$ is $D_{\lambda}$-cyclic.
If $H$ is a subgraph of order $k$ of a graph $G$ and $v$ is a vertex of $H$, then $d(H) \geqslant d(v)-k+1$. From this observation one easily deduces that the truth of Conjecture 1 (for $\lambda=k$ ) would imply the truth of the following, which is a weaker version of a conjecture due to Bondy.

Conjecture A (cf. [2, Conjecture 1]). Let $G$ be a $k$-connected graph such that the degree-sum of every $k+1$ independent vertices is at least $\nu+k(k-1)$, where $\nu \geqslant 3$. Then there exists a cycle $C$ of $G$ such that $G-V(C)$ contains no path of length $k-1$.

In fact, Bondy conjectured that, under the condition of Conjecture $A$, every longest cycle $C$ of $G$ has the property that $G-V(C)$ contains no path of length $k-1$.

So far, the truth of Conjecture 1 has been established in the following cases:
(a) $\lambda=1$ and $k \geqslant 1$ (Theorem D),
(b) $\lambda=2$ and $k=1 \quad$ [6, Theorem 2],
(c) $\lambda=2$ and $k=2 \quad[6$, Corollary 3.2].

Without giving it we mention that the proof of [6, Corollary 3.2] is easily extended to a proof of Conjecture 1 for $k=2$ and $\lambda>2$.

Theorem 5. Let $G$ be a 2-connected graph such that the degree-sum of every three mutually remote connected subgraphs of order $\lambda \geqslant 2$ is at least $v-3 \lambda+5$. Then $G$ is $D_{\lambda}$-cyclic.

By Theorem 4, a 2 -connected graph $G$ has a $D_{\lambda}$-cycle $(\lambda \geqslant 2)$ if $\delta_{\lambda} \geqslant$ $\frac{1}{3}(\nu-3 \lambda+5)$. Under the assumption that $G \notin \mathscr{K}_{\lambda}$ the existence of a $D_{\lambda}$-cycle can be proved if the weaker inequality $\delta_{\lambda} \geqslant \frac{1}{3}(\nu-3 \lambda+3)$ is satisfied (the proof is a
slight extension of the proof of Theorem 4; instead of inequality (1) one demonstrates the inequality $\nu \geqslant(m+1) t+m+2$, where $m=d\left(H_{0}\right)$, using the fact that deletion of the $m$ vertices of $C$ close to $H_{0}$ does not create a graph with more than $m$ components of order at least $t$ ). Thus, in particular, every 2 -connected graph $G$ satisfying $G \notin \mathscr{K}_{2}$ and $\delta_{2} \geq \frac{1}{3} \nu-1$ is $D_{2}$-cyclic, providing an extension of the following consequence of a result of Bigalke and Jung [1, Sat: 1]: a graph $G$ with $G \notin \mathscr{K}_{1}$ and $\delta \geqslant \frac{1}{3} \nu$ has a $D_{2}$-cycle. The latter result, in turn, easily implies the following, due to Nash-Williams [5, Lemma 4]: if $G$ is a 2 -connected graph and $\delta \geqslant \max \left(\alpha, \frac{1}{3}(\nu+2)\right)$, then $G$ is hamiltonian.

## References

[1] A. Bigalke and H.A. Jung, Ütber Hamiltonsche Kreise und unabhängige Ecken in Graphen, Monatsh. Math. 88 (1979) 195-210.
[2] J.A. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR 80-16, Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, W/aterloo, Ontario, Canada (1980).
[3] J.A. Bondy and U.S.R. Murty. Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976).
[4] V. Chvatai and P. Erdös, A note on hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
[5] C. St. J.A. Nash-Williams, Edge-disjoint hamiltonian circuits in graphs with vertices of large valency, in: L. Mirsky, ed., Studies in Pure Mathematics (Academic Press, London, 1971) 157-183.
[6] H.J. Veldman, Existence of dominating cycles and paths, Discrete Math. 43 (1083) 281-296.

