EXISTENCE OF D_{λ} -CYCLES AND D_{λ} -PATHS

H.J. VELDMAN

Department of Applied Mathematics, Twente University of Technology, Enschede, the Netherlands

Received 4 March 1982 Revised 28 May 1982

A cycle C of a graph G is called a D_{λ} -cycle if every component of G - V(C) has order less than λ . A D_{λ} -path is defined analogously. In particular, a D_1 -cycle is a hamiltonian cycle and a D_1 -path is a hamiltonian path. Necessary conditions and sufficient conditions are derived for graphs to have a D_{λ} -cycle or D_{λ} -path. The results are generalizations of theorems in hamiltonian graph theory. Extensions of notions such as vertex degree and adjacency of vertices to subgraphs of order greater than 1 arise in a natural way

1. Introduction

We employ the terminology of Bondy and Murty [3] and consider only simple graphs.

In [2], Bondy stated a sufficient condition for a graph G to have a cycle C such that G - V(C) contains no K_k . For k = 1, it coincides with Ore's condition for the existence of a hamiltonian cycle. Here we introduce another kind of generalized hamiltonian cycle. A cycle C of a graph G is a D_{λ} -cycle if all components of G - V(C) have order less than λ . Alternatively, C is a D_{λ} -cycle of G if and only if every connected subgraph of order λ of G has at least one vertex with C in common. Thus a D_{λ} -cycle **d**ominates all connected subgraphs of order λ . Analogously, a path P of G is a D_{λ} -path if every component of G - V(P) has order less than λ . Graphs containing a D_{λ} -cycle $(D_{\lambda}$ -path) will be called D_{λ} -cyclic $(D_{\lambda}$ -traceable). A D_1 -cycle $(D_1$ -path) is the same as a hamiltonian cycle (hamiltonian path). D_2 -cycles were studied in [6].

In subsequent sections, existence theorems for D_{λ} -cycles are proved. In [6], most of them were already proved for $\lambda = 2$. We will henceforth refrain from referring to these special cases, unless this is essential. Parallel results on D_{λ} -paths can be obtained, using the following obvious lemma.

Lemma 1. A graph G is D_{λ} -traceable if and only if $G \vee K_1$ is D_{λ} -cyclic.

The theorems derived are generalizations of known results in hamiltonian graph theory. A corresponding remark can be made about the proof techniques used. Some of the results in Section 3 are closely related to Bondy's work [2].

0012-365X/83/0000-0000/\$03.00 © 1983 North-Holland

Extensions to subgraphs of order greater than 1 of concepts such as adjacency of vertices, independence number and vertex degree arise in correspondence with the generalization of hamiltonian cycles to D_{λ} -cycles.

2. A necessary condition in terms of cut sets

To start with, we generalize a necessary condition for the existence of a hamiltonian cycle.

Theorem A [3, Theorem 4.2]. If a graph G is handbonian, then, for every nonempty proper subset S of V(G),

 $\omega(G-S) \leq |S|$.

Denote by $\omega_{\lambda}(G)$ the number of components of *G* of order at least λ . Theorem A is then a special case ($\lambda \leq 1$) of

Theorem 1. If a graph G is D_{λ} -cyclic, then, for every nonempty proper subset S of V(G),

 $\omega_{\chi}(G - S) \leq |S|,$

The proof, being an easy extension of the proof of [6, Theorem 4], is omitted,

For future reference we denote by \mathscr{X}_{λ} the class of graphs not satisfying the necessary condition of Theorem 1. Thus G is in \mathscr{X}_{λ} iff, for some noncompty proper subset S of V(G), $\omega_{\lambda}(G - S) \simeq |S|$.

3. Sufficient conditions involving subgraph degrees

We now turn our attention to sufficient conditions for the existence of D_{λ} -cycles. One of the earliest results in hamiltonian graph theory to be generalized here is due to Dirac.

Theorem B [3, Theorem 4.3], If G is a graph with $\nu \ge 3$ and $\delta \ge \frac{1}{2}\nu$, then G is hamiltonian.

We also mention a result of Chvátal and Erdős,

Theorem C [4, Theorem 1]. If G is a k-connected graph with $v \ge 3$ and $\alpha \le k$, then G is hamiltonian.

Bondy proved a common generalization of Theorems B and C.

Theorem D [2, Theorem 2]. Let G be a k-connected graph with $v \ge 3$ such that, for every k + 1 mutually nonadjacent vertices u_0, u_1, \ldots, u_k of G,

$$\sum_{i=0}^{k} d(u_i) > \frac{1}{2}(k+1)(\nu-1).$$

Then G is hamiltonian.

In order to extend Theorems B, C and D to results on D_{λ} -cycles for $\lambda > 1$ we need some additional definitions. As in [6], two subgraphs H_1 and H_2 of a graph G are said to be close in G if they are disjoint and there is an edge of G joining a vertex of H_1 and one of H_2 ; if no such edge exists in G, then H_1 and H_2 , provided they are disjoint, are *remote* in G. Thus, if H_1 and H_2 both consist of exactly one vertex, H_1 and H_2 are close (remote) iff the corresponding vertices are adjacent (nonadjacent). By $\alpha_{\lambda}(G)$ (or just α_{λ}) we denote the maximum number of mutually remote connected subgraphs of order λ of G. Thus α_1 coincides with the independence number α . The degree of a subgraph H of G, denoted $d_G(H)$ or d(H), is the number of vertices in V(G) - V(H) adjacent to one or more vertices of H. In other words, considering vertices as subgraphs of order 1, d(H) is the number of vertices of G close to H. If H consists of a single vertex, then d(H) is just the degree of this vertex. The minimum degree of connected subgraphs of order λ will be denoted δ_{λ} , so that $\hat{\sigma}_1 = \delta$. If Q is an oriented cycle or path in a graph and u and v are vertices on Q, then $\tilde{Q}[u, v]$ and $\tilde{Q}[v, u]$ denote. respectively, the segment of Q from u to v and the reverse segment from v to u. Furthermore, $\vec{Q}(u, v] := \vec{Q}[u, v] - \{u\}, \vec{Q}[u, v] := \vec{Q}[u, v] - \{v\}$ and $\bar{Q}(u, v) := \bar{Q}[u, v] - \{u, v\}$. Three more defining relations are obtained by reversing the arrows in the previous sentence.

We are now ready to prove a generalization of Theorem C.

Theorem 2. Let $k \le nd \ \lambda$ be positive integers such that either $k \ge 2$ or k = 1 and $\lambda \le 2$. If G is a k-connected graph, other than a tree (in case k = 1), with $\alpha_{\lambda} \le k$, then G is D_{λ} -cyclic.

Proof. By contraposition. Let G be a k-connected non- D_{λ} -cyclic graph other than a tree. We will show that $\alpha_{\lambda} > k$. Put $t+1 = \min\{i \mid G \text{ is } D_i$ -cyclic}, so that $t \ge \lambda$. Let C be a longest D_{i+1} -cycle among all D_{i+1} -cycles C' of G for which $\omega_i(G - V(C'))$ is minimum. As in the proof of [6, Theorem 3] one shows that C has length at least k+1. Fix an orientation on C. By assumption, C is a D_{i+1} -cycle, but not a D_i -cycle of G. Hence G - V(C) has a component H_0 of order t. All vertices of G close to H_0 are on C and, since G is k-connected and $|V(C)| \ge k$, we have that $d(H_0) \ge k$. Let v_1, \ldots, v_k be k vertices of C close to H_0 . For $i = 1, \ldots, k$, let u_{0i} be a vertex of H_0 adjacent to v_i (for $i \ne j$, u_{0i} and u_{0j} may coincide). Assume that v_1, \ldots, v_k occur on C in the order of their indices and let u_{i1} be the immediate successor of v_i on C ($i = 1, \ldots, k$). It will prove possible to choose, for i = 1, ..., k, a subgraph H_i of G satisfying the following requirements:

(i) H_i is connected and has order t,

(ii) $H_i \cap C = \vec{C}[u_{i1}, u_{i2}]$, where u_{i2} is a vertex of $\vec{C}[u_{i1}, v_i)$ chosen in such a way that

(iii) The length of $\overline{C}[u_{i1}, u_{i2}]$ is minimum, i.e. if H is a connected subgraph of order t of G with $H \cap C = \overline{C}[u_{i1}, w]$, then $\overline{C}[u_{i1}, u_{i2}]$ is a subpath of $\overline{C}[u_{i1}, w]$. Note that u_{i1} and u_{i2} may coincide, in other words $\overline{C}[u_{i1}, u_{i2}]$ may have length 0.

If k = 1, then C may have length 3 and the existence of a subgraph H_1 with the above properties is guaranteed only if $t \le 2$.

If $k \ge 2$, then, for $1 \le i \le k$,

(a) a subgraph H_i with the mentioned properties exists, and

(b) v_{i+1} does not belong to $\tilde{C}[u_{i1}, u_{i2}]$ (indices mod k).

Assuming the contrary to (a) or (b), consider the cycle

 $C' = v_i u_{0i} \vec{P}[u_{0i}, u_{0,i+1}] u_{0,i+1} v_{i+1} \vec{C}[v_{i+1}, v_i],$

where P is a $u_{0i}u_{0,i-1}$ -path within H_0 (degenerate if $u_{0i} = u_{0,i+1}$). Ey assumption, $\vec{C}(v_i, v_{i+1})$ is not contained in a component of order at least t of G - V(C'). Since, moreover, $|H_0 - V(C')| < t$, it follows that C' is a D_{t+1} -cycle of G with $\omega_t(G - V(C')) < \omega_t(G - V(C))$, contradicting the choice of C.

Thus we have shown that, for $1 \le i \le k$, a subgraph H_i satisfying the requirements (i), (ii) and (iii) indeed exists, provided $t \le 2$ in case k = 1. Following an analogous reasoning one proves that H_0 and H_i are disjoint and, a fortiori, remote.

Next we prove by contradiction that, for $1 \le i \le j \le k$, the subgraphs H_i and H_j are remote. Assume that H_i and H_j are close or non-disjoint. Then a $u_{i2}u_{j2}$ -path P' can be found such that

(1) $P' \cap C = \tilde{C}[u_{i2}, w_i] \cup \tilde{C}[w_i, u_{j2}]$, where w_i and w_j are vertices of $\tilde{C}[u_{i2}, u_{i1}]$ and $\tilde{C}[u_{i1}, u_{i2}]$, respectively,

(2) no vertex of V(P') - V(C) is in H_0 ,

(3) the sum of the lengths of $\tilde{C}[u_{i2}, w_i]$ and $\tilde{C}[w_i, u_{i2}]$ is maximum, i.e. no $u_{i2}u_{i2}$ -path satisfying (1) and (2) has more vertices with C in common than P'. Now consider the cycle

$$C'' = v_i u_{0i} \vec{P}''[u_{0i}, u_{0j}] u_{0j} v_j \vec{C}[v_j, u_{i2}] \vec{P}'[u_{i2}, u_{i2}] \vec{C}[u_{i2}, v_i],$$

where P'' is a $u_{0i}u_{0i}$ -path in H_0 . In Fig. 1 the cycle C'' is indicated by arrows.

Denote by L_i and L_j the components of G - V(C'') containing the vertices (if any) of $\vec{C}[u_{i1}, w_i)$ and $\vec{C}[u_{j1}, w_j)$, respectively. If L_i and L_j would coincide, then a $u_{i2}u_{j2}$ -path satisfying (1) and (2) could be indicated having more vertices with C in common than P', a contradiction with the choice of P'. Thus L_i and L_j are distinct. Moreover, by the way H_i and H_j were chosen, both L_i and L_j have order less than t (otherwise (iii) would be violated). But then C'' is a D_{i+1} -cycle with $\omega_t(G - V(C'')) < \omega_t(G - V(C))$, contradicting the choice of C.

Fig. 1.

Thus we have shown that the connected subgraphs H_0, H_1, \ldots, H_k of G of order t are mutually remote, so that $\alpha_t > k$. Since α_x is easily seen to be a nonincreasing function of x, it follows that $\alpha_\lambda \ge \alpha_t > k$. \Box

For $s \ge \lambda$, the graph $K_k \lor (k+1)K_s$ is non- D_λ -cyclic and satisfies $\alpha_\lambda = k+1$, showing that Theorem 2 is, in a sense, best possible.

Theorem 2 can be improved to a generalization of Theorem D. Referring to the proof of Theorem 2, it can be shown that

$$d(H_i) + d(H_i) \leq \nu + k - \lambda - k\lambda \qquad (0 \leq i < j \leq k).$$

Bondy [2] showed these inequalities to hold in case $\lambda = 1$. The proof of the general case is completely analogous and hence omitted. Summing the above inequalities eventually yields

Theorem 3. Let k and λ be positive integers such that either $k \ge 2$ or k = 1 and $\lambda \le 2$. If G is a k-connected graph, other than a tree, such that, for every k + 1 mutually remote connected subgraphs H_0, H_1, \ldots, H_k of order λ of G,

$$\sum_{i=0}^{k} d(H_i) > \frac{1}{2}(k+1)(\nu+k-\lambda-k\lambda),$$

then G is D_{λ} -cyclic.

From Theorem 3 one easily deduces a generalization of Theorem B: a k-connected graph with $\delta_{\lambda} > \frac{1}{2}(\nu + k - \lambda - k\lambda)$ is D_{λ} -cyclic ($k \ge 2$ or k = 1 and $\lambda \le 2$). However, we can do better.

Theorem 4. Let k and λ be positive integers such that either $k \ge 2$ or k = 1 and $\lambda \le 2$. If G is a k-connected graph, other than a tree, with

$$\delta_{\lambda} > \begin{cases} (\nu - (k+1)\lambda + k^2)/(k+1) & \text{if } \lambda \ge k, \\ (\nu - \lambda)/(\lambda + 1) & \text{if } \lambda \le k, \end{cases}$$

then G is D_{λ} -cyclic.

Proof. By contraposition. Assume that G is k-connected and non- D_{λ} -cyclic. Set $t+1 = \min\{i \mid G \text{ is } D_i\text{-cyclic}\}$, so that $t \ge \lambda$. Let C be a $D_{t+1}\text{-cycle}$ of G for which $\omega_t(G - V(C))$ is minimum. We may assume C to have length at least k. Let H_0 be a component of G - V(C) of order t and let v_1, \ldots, v_m be the vertices of C close to H_0 , where $m = d(H_0)$. Choose to each v_i a subgraph H_i of G of order t as in the proof of Theorem 2 $(i = 1, \ldots, m)$. The choice of C then implies, among other things, that the vertex sets $V(H_0), V(H_1), \ldots, V(H_m)$ and $\{v_1, \ldots, v_m\}$ are mutually disjoint. Thus

$$\nu \ge (d(H_0) + 1)t + d(H_0), \tag{1}$$

or, equivalently,

 $d(H_0) \leq (\nu - t)/(t+1)$

and consequently

$$\delta_{\lambda} \leq (\nu - t)/(t + 1) + t - \lambda. \tag{2}$$

Since G is k-connected, H_0 has degree at least k, so (1) implies that

$$\nu \ge (k+1)t + k. \tag{3}$$

If $\lambda \ge k$, then also $t \ge k$. The inequality (3) is then equivalent to

$$\frac{\nu-t}{t+1} + t - \lambda \leq \frac{\nu-(k+1)\lambda + k^2}{k+1}.$$
(4)

Combination of (2) and (4) proves the first part of the theorem.

If $\lambda \leq k$, then from (3) it follows that

$$\nu \ge (\lambda + 1)t + \lambda, \tag{5}$$

Since $t \ge \lambda$, the inequality (5) is satisfied if and only if

$$\frac{\nu-t}{t+1} + t - \lambda \leq \frac{\nu-\lambda}{\lambda+1}.$$
(6)

The proof is now completed by combining (2) and (6). \Box

For $\lambda \ge k$, the collection $\{K_k \lor (k+1)K_t \mid t \ge \lambda\}$ consists of infinitely many k-connected non- D_{λ} -cyclic graphs with $\delta_{\lambda} = (\nu - (k+1)\lambda + k^2)/(k+1)$. If $\lambda \le k$, then $\{K_t \lor (t+1)K_{\lambda} \mid t \ge k\}$ is an infinite collection of k-connected non- D_{λ} -cyclic graphs with $\delta_{\lambda} = (\nu - \lambda)/(\lambda + 1)$. Thus Theorem 4 is, in a sense, best possible.

In view of Theorem 4, Theorem 3 might be improved to

Conjecture 1. Let k and λ be positive integers satisfying either $k \ge 2$ or k = 1 and $\lambda \le 2$. If G is a k-connected graph, other than a tree, such that, for every k+1 mutually remote connected subgraphs H_0, H_1, \ldots, H_k of order λ of G,

$$\sum_{i=0}^{k} d(H_i) > \begin{cases} \nu - (k+1)\lambda + k^2 & \text{if } \lambda \ge k \\ (k+1)(\nu - \lambda)/(\lambda + 1) & \text{if } \lambda \le k, \end{cases}$$

then G is D_{λ} -cyclic.

If H is a subgraph of order k of a graph G and v is a vertex of H, then $d(H) \ge d(v) - k + 1$. From this observation one easily deduces that the truth of Conjecture 1 (for $\lambda = k$) would imply the truth of the following, which is a weaker version of a conjecture due to Bondy.

Conjecture A (cf. [2, Conjecture 1]). Let G be a k-connected graph such that the degree-sum of every k+1 independent vertices is at least $\nu + k(k-1)$, where $\nu \ge 3$. Then there exists a cycle C of G such that G - V(C) contains no path of length k-1.

In fact, Bondy conjectured that, under the condition of Conjecture A, every longest cycle C of G has the property that G - V(C) contains no path of length k-1.

So far, the truth of Conjecture 1 has been established in the following cases:

(a) $\lambda = 1$ and $k \ge 1$ (Theorem D), (b) $\lambda = 2$ and k = 1 [6, Theorem 2], (c) $\lambda = 2$ and k = 2 [6, Corollary 3.2].

Without giving it we mention that the proof of [6, Corollary 3.2] is easily extended to a proof of Conjecture 1 for k = 2 and $\lambda > 2$.

Theorem 5. Let G be a 2-connected graph such that the degree-sum of every three mutually remote connected subgraphs of order $\lambda \ge 2$ is at least $\nu - 3\lambda + 5$. Then G is D_{λ} -cyclic.

By Theorem 4, a 2-connected graph G has a D_{λ} -cycle $(\lambda \ge 2)$ if $\delta_{\lambda} \ge \frac{1}{3}(\nu - 3\lambda + 5)$. Under the assumption that $G \notin \mathscr{X}_{\lambda}$ the existence of a D_{λ} -cycle can be proved if the weaker inequality $\delta_{\lambda} \ge \frac{1}{3}(\nu - 3\lambda + 3)$ is satisfied (the proof is a

slight extension of the proof of Theorem 4; instead of inequality (1) one demonstrates the inequality $\nu \ge (m+1)t + m + 2$, where $m = d(H_0)$, using the fact that deletion of the *m* vertices of *C* close to H_0 does not create a graph with more than *m* components of order at least *t*). Thus, in particular, every 2-connected graph *G* satisfying $G \notin \mathcal{X}_2$ and $\delta_2 \ge \frac{1}{3}\nu - 1$ is D_2 -cyclic, providing an extension of the following consequence of a result of Bigalke and Jung [1, Satz 1]: a graph *G* with $G \notin \mathcal{X}_1$ and $\delta \ge \frac{1}{3}\nu$ has a D_2 -cycle. The latter result, in turn, easily implies the following, due to Nash-Williams [5, Lemma 4]: if *G* is a 2-connected graph and $\delta \ge \max(\alpha, \frac{1}{3}(\nu+2))$, then *G* is hamiltonian.

References

- A. Bigalke and H.A. Jung, Über Hamiltonsche Kreise und unabhängige Ecken in Graphen, Monatsh. Math. 88 (1979) 195-210.
- [2] J.A. Bondy, Longest paths and cycles in graphs of high degree, Research Report CORR 80-16, Department of Combinatorics and Optimization, Faculty of Mathematics, University of Waterloo, Waterloo, Ontario, Canada (1980).
- [3] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications (Macmillan, London and Elsevier, New York, 1976).
- [4] V. Chvátal and P. Erdös, A note on hamiltonian circuits, Discrete Math. 2 (1972) 111-113.
- [5] C. St. J.A. Nash-Williams, Edge-disjoint hamiltonian circuits in graphs with vertices of large valency, in: L. Mirsky, ed., Studies in Pure Mathematics (Academic Press, London, 1971) 157-183.
- [6] H.J. Veldman, Existence of dominating cycles and paths, Discrete Math. 43 (1983) 281-296.

e,