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Abstract 

Axtal dasperston of gas and solad phases in a 
gas-sohd packed column at trickle flow. a 
promisang new countercurrent operataon, was 
evaluated using resrdence tame distrabution 
(RTD) experiments. The column was packed 
with dumped Pall rings,, the gas phase was au 
at ambten t conditions and the solid was a 
porous catalyst carrier. 

The RTD experiments for the sohd phase 
were carried out using the “perfect pulse 
method “‘, whrle for the gas phase the 
“tmperfect pulse method” was used. The 
model parameters were calculated by the 
methods of moments and various pammeter 
optimization methods. 

At a given solid flow rate ax& dtspersaon 
of the gas phase decreases wa th increasmg gas 
velocrty and as strongly dependent upon solid 
mass flux Axral dtspersron of the sokd phase 
1s approxrmately independent of the gas 
veloctty and tt IS reduced if the solid mass 
flux IS increased For condttrons of pmcttcal 
Importance, 2 - 5 and 5 - 15 Pall rang layers 
correspond to the height of a mtxrng untt an 
the gas and sohd phase, respectwely. 

INTRODUCTION 

Trickle flow of more or less fhudized solid 
particles through a packed column seems to 
be a promising countercurrent operation m 
the chemical mdustry, offermg mterestmg 
heat and mass transfer properties. 

In the trickle-flow process a swarm of 
particles flows m tnckles through a packmg, 
while a gas flows upwards countercurrently. 

The packing redistributes and carries the 
sohd, facilitating mass transfer, while the 
axial mixmg of the gas and solid is reduced. 

Applications may lie in separation 
processes, based on different adsorption prop- 
erties of the components, and in chemical 
reactors where the unconverted reactant may 
be transported back to the reaction zone, or 
where reaction products are removed from 
the reaction zone with the adsorbmg solid. 

In a previous paper [l] gas-sohd trickle 
flow was compared with other gas-solid 
countercurrent operations and it was 
concluded that trickle flow may have 
advantages over spray columns, moving beds 
and multistage fluid beds. From expenments 
with a cracking catalyst it was concluded that 
the trickle flow of particles through packmgs 
exhibits sun&u behavlour to gas-liquid 
tnckle flow. Loading and flooding occurs and 
hold-up can be split into dynamic or operat- 
mg hold-up and static hold-up. In gas-liquid 
packed columns the packing carries all the 
liquid; m gas-solid trickle flow the packing 
carries up to 50% of the dynamic hold-up so 
that m this case a low pressure drop IS 
obtamed. 

It clearly follows from many theoretical 
mvestigations (eg refs. 2, 3) that the axial 
mixmg of both phases m countercurrent 
operations is very disadvantageous for mass 
transfer because of the reduction in the dnv- 
mg force for mass transfer. If the number of 
true mass transfer units is large, axial mixing 
soon becomes a limiting factor for column 
performance. The mass transfer for a gas- 
solid packed column at trickle flow was found 
to be large the height of a true mass transfer 
unit is usually smaller than 0 1 m [4 1. In this 



14 

sltuatlon the axial mlxmg of both phases 1s 
important. 

The present mvestrgatron deals with the 
axial mrxmg of both gas and solid phases in a 
packed column at tnckle flow. As IS usuahy 
done, the extent of the axial mrxmg was 
determined wrth residence time drstributlon 
(RTD) measurements for both phases. The 
axmlly dispersed plug-flow model [53 was 
used to descnbe the degree of axial mixmg. 

A common technique to evaluate the 
model parameters 1s to measure the response 
of a system to a pulse InJection which 1s 
assumed to be a perfect delta function. For 
practical reasons this simphfred technique had 
to be apphed for the determination of the 
dispersion of the solid phase. 

The purpose of the present investigation 1s 
the determination of the mean residence time 
and the Peclet number, often called the 
Bodenstein number when the characteristm 
length equals the packing diameter. The 
Bodenstem numbers are defined by eqns. (2) 
and (3): 

gas phase 

urr d* Bo, =- 4 
4 

= Pe, - 
L2--4 

solid phase 

us4 Bo, = - 4 
PD, = Pes Z- 

Smce rt is often very difficult to approx- 
imate the perfect delta function, Aris [6] 
introduced the imperfect pulse technique 
where the response of the system IS measured 
continuously over two planes downstream of 
the inJection plane. Aris (see also ref. 7) 
showed that the first and second moments 
around the origin of the response curves of 
the system to any input inJection could be 
used to determme the model parameters. 
Blschoff later generalized thus technique and 
showed that it could be used m any stable 
lmear system [8]. For the RTD measure- 
ments m the gas phase this imperfect pulse 
technique was followed. 

The Bodenstem number can be deter- 
mmed from either back-mixmg or RTD exper- 
iments [ 3 1. The latter method was used in the 
present mvestigationo. As already mentioned 
m the introduction we considered the input 
for the sohd phase to be a perfect delta func- 
tron, whrle the Imperfect pulse technique was 
used for the gas phase. This is shown 
schematically in Fig. 1. 

DETERMINATION OF MODEL PARAMETERS 

Two-phase countercurrent processes may be 
described by a model employmg plug flow 
and axial drspersron in both phases and an 
m&phase mass transfer. More complex 
mixmg models have been discussed for one 
phase only, but no solutions for two-phase 
systems are avdable. 

Solid tracer was mlected at the inlet and 
detected at the outlet. Since solid mnsmg in 
the entrance and outlet zones has been 
assumed to be neghgible, closed-closed 
boundary conditrons [ 51 were applied. Be- 
cause the response of the column for the gas 
phase was measured within the packing, the 
measuring section for this situation was 
assumed to be open-open for dispersion [S] . 
Appendix A gives the initial and boundary 
conditions for both situations. 

The methods to determine the model para- 
meters may be divrded mto parameter 
optimization methods and those usmg the 

Since the tracers were present m one phase 
only the above mathematical model reduces 
to the onedunensional dispersed plug-flow 
model [5] for both phases. 

The mathematrcal formulatron m dimen- 
sionless form is represented by the partial 
differential equation 

aC 1 a2c ac -=-_-_ 
ae Pe ag2 ar (1) Fig 1 Experimental scheme of injectlon/detectlon 

79 7) techniques 

(2) 



moments of the response curves. With the 
first methods the parameters are optlmlzed m 
such a way that the theoretical model gives 
the best fit to the experimental data. 

For the axially dispersed plug-flow model 
with closed-closed boundary conditions the 
response of the system to a perfect delta 
function has been derived by Otake and 
Kumguta [9] (see also ref. 10). This expres- 
sion is given m Appendix A. For the time- 
domain optimization the output signal was 
first normalized (surface area under response 
curve made equal to unity). After that, the 
optimal values of Bo, and r, were found 
which mmimize the sum of the squares of the 
differences between the measured and 
calculated values. The Bodenstem number and 
the mean residence tune can also be found 
from the moments around the origin of the 
output signal. Van der Laan has given the 
mathematical expressions [ 111 (see 
Appendix A). 

The transfer function m the time domam 
for the dispersed plug-flow model with open- 
open boundary conditions is grven m 
Appendnc A, eqn. (A16) (G van Straten, 
private commumcatlon). For the imperfect 
pulse technique the model parameters can be 
obtamed by numerical convolution [5, 121. 
An alternative way to evaluate the parameters 
is to transfer the normalized RTD data to the 
Laplace or frequency domam where the 
transfer function can be calculated on divid- 
ing the transferred output signal by the 
transferred mput signal. 

Laplace or s domam 

Lt<s> P(s) = - 
&l(s) 

(4) 

frequency domain 

(5) 

Michelsen and @stergaard [13] and 
Glements [14] have given mathematical 
expressions for the transfer functions p(s) 
and &jo ) for the dispersed plug-flow model 
(see Appendix A). The lBodenstem number 
and the mean residence time can be evaluated 
from a best fit on the transfer function in the 
same way as described above. 

Four other methods for parameter estuna- 
tion have been given by Michelsen and Qster- 

gaard [13]. They 
functions. 

U,(s) = In F(s) 

duo@) 
&@)= -xi- 
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mtroduced the following 

(6) 

1 M(s) =_- 
F(s) ds 

(7) 

1 d2P(s) 
U,(s) = 7 - - 

F(s) ds2 
(8) 

and derived expressions for (6) - (8) m terms 
of the model parameters (see Appendix A) 
U,,(s) can be deduced from experimental data 
via eqn. (4). To avoid numerical differentia- 
tion for the evaluation of Vi(s) and U,(s) 
they introduced the weighted moments, 
which involve numerical integration of the 
experimental RTD data [13] From the 
weighted moments, U,(s) and U,(s) can be 
evaluated. Michelsen and Qstergaard [13] and 
Gunn [ 151 introduced graphical techniques 
to determme the mean residence time and the 
Bodenstem number (see Appendix A). 

We also used the method of moments 
around the ongm to calculate the model 
parameters. Ans [6] has given mathematical 
expressions for the model parameters in terms 
of these moments (see Appendix A). 

EXPERIMENTAL SYSTEM 

Figure 2 shows the expenmental set-up. Au 
enters 11, a 1.00 m long column with an 
internal diameter of 0.075 m, passes through 
the packing and leaves the column via a dls- 
engagmg section through a cyclone where the 
entramed particles are collected. The column 
is connected to a fluid bed via a Perspex sec- 
tion contaming three valves. From the fluid 
bed a dense gas-solid mixture is transported 
pneumatically via two venturis through risers 
Ri and Rs to the cyclones on top of the 
column. Solid enters the column via the 
diplegs of the cyclones. To ensure a good 
m&l distribution, a layer of about 0.05 m 
of Pall rmgs is inserted m the dlsengagmg sec- 
tion. The particles flow through the packing 
and the Perspex section to the fluid bed 
which is maintamed Just above minimum 
bubblmg conditions. 

The column was filled with dumped Pall 
rmgs. The properties of the packmg are hsted 
in Table 1. 
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H&M Ah 

Fig 2 Experimental arrangement for measurement of 
gas- and sohd-phase dlsperslon C, column, CATH, 
catharometer, El, Ez, gas outlet, FB, fluld bed, 
GTI, gas tracer qectlon, 11, 12, gas Inlets, RM, 
reflectometer, RI, Rz, risers, STI, sohd tracer mJec- 
tion, VI, V2, Va, valves 

TABLE 1 

Properties of Pall nngs 

4 0 015 m 
6 0 002 m 
% 310 m2/m3 
% 0 66 
N 22X106mw3 

AU at amblent conditions was used as the 
gas phase and the solid phase was a highly 
porous catalyst carrier (class A according to 
Geldart’s powder classification [ 161). The 
propertles of the particles are summarized in 
Table 2. 

Resrdence time dwtribution experiments m 
the gas phase 
Hehum, which does not adsorb on the sohd 
[ 171, was used as the tracer gas during the 
RTD experiments for the gas phase. The 
tracer was inJected in the inlet distnbutor by 
means of a magnetic three-way valve which 

was smtched for 0.1 s from tamer gas (an) to 
helium. The tracer concentration in the an 
stream was detected with a flow-through 
catharometer. The latter was connected with 
the column via a 0.08 m long tube with an 
internal diameter of 5 X 10n4 m to ensure a 
rapid response. The measured response time 
of the gas analysmg system was much less 
than 1 second. To prevent particles from 
entering the catharometer the tube inlet was 
covered with a glass filter. The sample gas was 
continuously sucked from the column by 
means of a vacuum pump. Successive pulses 
were detected m the packmg at a distance of 
0.05 m from the inlet and outlet, LX and L2 
respectively. 

Sohd-phase dasperslon measurements 
Solid-phase dlsperslon has also been deter- 
mined from RTD experiments. We used a 
colour technique to trace the particles. Part of 
the origmal white particles was coloured black 
urlth a tiuted drawing ink solution. The 
particles were filtered off, dned m the U, and 
finally for 50 h m a fluid bed. The concentra- 
tion of black particles was measured by a 
reflection technique. Figure 3 shows the 
specmlly designed reflectometer. The sample 

PD 

(a) 

L. 
.lV -IV 

(b) 

Fig 3. Reflectometer and electneal dlllgram (a) 
AS, adjustmg screw for optical fibre, CS, colhmatmg 
slit, OF, optical fibre for illumination, PD, photo- 
diode (b) DA, differenw amplifier, EF, electronic 
filter, PD, photodiode (BPX 94), R, remstance (R = 
10 Ma), REC, recorder, SC, otwxlloscope 
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TABLE 2 

Properties of the sohd particles 

Composition 

Particle diameter d&rib&on (meve analysis) 
Dmmeter (X low6 m) 
<44 

44 - 75 
75 - 105 

105 - 150 
150 - 210 
210 - 300 
<300 

Mean particle diameter 
Skeletal den&y 
Particle den&y 
Fixed bed density* 
Particle void fraction enpart 
Fixed bed void fraction* 

87 wt % SlOZ 
129wt%A1203 

wt % Cumulative wt % 
73 73 

30 5 37 8 
23 9 617 
36 9 98 0 

16 99 6 
03 99 9 
01 100 

*70X10+ m 
2200 kg/m3 
813 kg/m3 
475 kg/m3 
0 63 
0 78 

*Settled bed after fluldlzatton 

was illuminated by a projector through two 
optical fibres to avoid heating the reflecto- 
meter by the light source. Reflected light 
reached a photodiode via two colhmatmg shts 
of 3 X 10m4 m each. Dunng the tests, particles 

The reflectometer could be moved horizon- 
tally along the wall of this measuring section 

were collected m the Perspex section on valve 

between valves VZ and Vr. The photodiode 
was mcorporated in a Wheatstone bndge 
circuit supplied with a stable 2 V source. The 

Vz (see Fig. 2). 

signal from the bndge entered a differential 
amplifier and an electronic filter to remove 
the 50 Hz AC component from the light 
source. The signal was read from an o&lo- 
scope or a recorder. This measuring system 
was found to be hnear up to a concentration 
of 5% of black particles. 

We designed a special solid tracer mjector 
which is shown in Fig. 4. It consisted of four 
cylmdncal contamers which were inserted m a 
Perspex housing and interconnected- by 
cogwheels. During the RTD measurements for 
the sohd phase it was placed m the column 
between the disengagmg zone and the packmg 
(see Fig. 2). The tracer contamers could be 
moved outside the injector, as shown m 
Fig. 4, where they were each filled with about 
5 X 10T4 kg of black particles and then re- 
placed in the housing again. Here each 
container had a cover on top to prevent the 

white particles, which flowed through the 
injector, from entermg. By means of an 
external handle the contamers were turned 
upside down and the black particles then 

Applying this special construction the 
tracer was spread out over the whole area 

entered the main solid flow which passed a 

(plane injection), and was mixed with the 
feed. No pressure changes occurred and the 

redistnbution grid to ensure good initial 

mjection time was small. 

mixing wrth the tracer particles. 

At the moment tracer mlection took place, 
valve Vs was closed to collect solid on top of 
it. If the additional variance of the injection 
and collection section IS sufficiently small the 
black-white &stribution of the sample on top 
of valve Vz wrll grve the RTD of the sohd. 
The concentration of black particles was 
measured by moving the reflectometer from 
Vs over the sample height. After each exper- 
iment the collected powder was removed 
from the system in the following way. Valve 
Vs contained a porous plate distributor. The 
sample could be flmdized with air entering by 
Is. The fhudized particles were sucked from 
the column through a tube which was 
connected to a waterjet pump. The solid 
particles were separated from the au stream in 
a cyclone. Before each experiment a base line 
was measured after the section had been filled 
with white powder alone. 
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Fig 4 InJector for sohd tracer CW, cogwheels, EH, external handle to turn the tracer continers upsIde down, 
FL, flange, IT, lnlectlon tube, RDG, redlstnbutlon gnd, S, seal, TC, cover of tracer container 

RESULTS 

Dlspersaon of the gas phase 
The model parameters for the gas phase were 
evaluated using the various methods described 
previously. In Appendix B the criteria for the 
best fit and the s- and w -mtervals over which 
the fits were carried out are given. Table 3 
presents the average results from the various 
methods at two different sohd mass fluxes, 
the superficial gas velocity being varied. The 
Peclet numbers and mean residence tunes for 
the measuring section (see Fig. 1) were 
calculated from six Input-output sets. The 
standard error is also given. The theoretical 
mean residence time was calculated accordmg 
to eqn. (9). 

Tgcalc= if&l -(l --%art)P1(L~ --IL,) (9) 
4 

At zero sohd mass flux the different 
methods give almost the same results; the 
Peclet number is about 110 and is mdepen- 
dent of the superficial gas velocity. The 
Bodenstem number for this case is 1.9. If the 
Bodenstein number is equal to 2 than the 
height of one Pall nng layer corresponds to 
the height of a mixing unit (= 2d,/Bo). 

If the solid velocity is low, especially at low 
superficial gas velocities, the various para- 
meter determination methods yield deviatmg 
results. At higher gas velocities (which are of 
practical interest) the differences are smaller. 
Large differences are caused by tailing. The 
method of moments around the ongm and 
the Laplace fit pay more attention to the tail 
of the experimental transfer function than 
other parameter determination techniques. 
The methods of Mmhelsen and Q)stergaard 
[ 131 and Gunn [ 151 and the frequency- 
domam fit account more for the general shape 
of the transfer function. 

In countercurrent processes such as adsorp- 
tion this tailing will be less important because 
the slow fraction will be in equilibrium. For 
this reason we want to present here the results 
obtamed with the frequencydomam fit. A 
more sophisticated comparison of the various 
methods is beyond the scope of this article 
and is given elsewhere [ 181. 

With the imperfect pulse technique it is not 
possible to compare an experimental RTD 
curve directly with the model curve m the 
time domam. Instead the experimental 
transfer function m the time domain can be 
found from eqn. (5) by numerical inversion to 
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the time domam. Figure 5 compares the 
experimental transfer function with the 
model curve for a high and a low gas velocity. 

24i I , I 1 
t 

F( ) +!3 2 

r 
0 1 2 3 

- t/rg 

Frg 5 Dlmensronless transfer functions m the trme 
domain S = 5 83 kg/m2 s Full curve, experimental, 
broken curve, best fit (frequency domain) Curve 1 
us = 0 024 m/s, Pea = 8 36, 7s = 314 s, curve 2 
us = 0 143 m/s, Pes = 50 3,rs = 4 88 s 

The model curves were calculated accord- 
mg to eqn. (A16) by msertmg the optimal 
values from the frequency-domain fit. From 
Fig. 5 it can be seen that the agreement of the 
mathematical model with the experimental 
data is satisfactory for curve 2 (high gas 
velocity) while for curve 1 there is some 
tendency for tailing (low gas velocity). 

In Fig. 6 the experimental mean residence 
time IS plotted against the calculated values 
from eqn. (9). Deviations from the theoretical 
values were nearly always smaller than 5% and 
never larger than 11%. 

Figure 7 shows the Bodenstein number for 
the gas phase versus the superficial gas veloci- 
ty at different sohd flow rates. Some typical 
results for a gas-liquid packed column at 
tnckle flow are also given. At a given solid 
mass flux the Bode&em number mcreases 
with mcreasmg gas velocity. Near the flooding 
point large fluctuations in the observed 
Bodenstein number occur. All data he within 
the shaded area. In gas-liquid systems the 
Bodenstein number for the gas phase 
decreases with increasmg gas velocity [ 19 - 
211. The disparity between gas-liquid 
systems and gas-sohd systems is possibly 
caused by the fact that in gas-solid trickle 
flow the particles become more suspended in 

oy , 0 1 I c 
0 10 20 30 

-‘5gca1c k.1 

Frg 6 Expenmental uersus calculated mean resrdence 
trme 
Symbol S ( kg/m2 8) 

l 0 00 

0 0 081 
X 1 23 
A 3 89 
D 5 83 

f i 
08 

1 

04- 

0 y, 
0 008 

1 

016 
--c ug[mbl 

Frg 7. Bode&em number for gas phase versus super- 
ficial gas velocrty Symbols see Frg 6. Relatrons for 
gas-hqurd systems (Raschtg rmgs, d, = 0 0127 m, 
hqurd mass flux, L = 5 kg/m2 s) curve 1, De Mana 
and Whrte 1211, Boa = 24 Reho24 X 10-oooaL, 
curve, 2, Sater and Levensprel [20], Bos = 
3 4 Re;o 067 x 10-O OU26L 

the gas phase at higher gas velocities [l] , thus 
there will be less accessible area for gas flow. 

The dispersion of the gas phase I strongly 
infhienced by the flow of the particles, as can 
be seen from Fig. 8. Here the Bodenstein 



24-j , 
t 

t 
16 

08 

0 2 4 6 

- S h/m2sl 

Fig 8 Bodenstem number of gas phase uersus sohd 
mass flux Broken curve G/L 1, De Mana and White 
[ 211, broken curve G/L 2, Sater and Levensplel [ 201. 
(Raschlg nngs, 0 0127 m, ua = 0 15 m/s ) 
Symbol up (m/s) 
0 0 024 
0 0 048 
X 0 077 
A 0 107 
v 0 143 

number for the gas phase 1s plotted against 
the sohd mass flux at different gas flow rates. 

At zero sohd flow rate the Bodenstein 
number is about 2. Only a very small particle 
flow, especially at low gas velocities, can 
drastically mcrease gas-phase dispersion. For 
practically important conditions, however 
(high gas and solid flow rates), the axial dls- 
persion of the gas phase is lower. Here 2 - 5 
Pall ring layers are equivalent to the height of 
one mixmg unit. Consequently for longer 
columns the gas phase is almost m plug flow. 

Dispemon of the solid phase 
In contrast with the RTD measurements for 
the gas phase we assumed, for practical 
reasons, the solid tracer injection to be a 
perfect delta function. The timedomam solu- 
tion for the response on a perfect delta func- 
tion for closed-closed boundaries is given m 
Appendix A. Table 4 presents the average para- 
meter values calculated from the time-domain 
optimization and from the moments around 
the origin [ 111. For each value, three or four 
experiments were used; the standard error is 
also given. The average solid hold-up is calcu- 
lated from eqn. (10): 

21 

Table 4 also presents the experimental 
hold-up which was measured m an mdepen- 
dent way described m an earlier paper [ 11. 
Table 4 grves a picture analogous to that of 
Table 3. At a low solid mass flow flux the two 
methods give different results while at high S 
values the deviations are less serious. Again 
this is caused by the fact that the model does 
not represent the physical reality well enough 
at a low solid mass flux. 

In this region there 1s some tendency to 
tailing resulting m a lower Peclet number for 
the method of moments around the ongm. 
This can also be seen from Fig. 9 where exper- 
imental response curves for both a low sohd 
mass flux and a high S value are plotted. The 
theoretical response curves are calculated 
from eqn. (All) by inserting the Pe, and 7, 
values found from the tlmedomam optimiza- 
tion. 

From Table 4 and Fig. 9 it can be 
concluded that the dispersed plug-flow model 
with closed-closed boundary conditions fits 
the experimental data reasonably well but 
taihng occurs at low solid mass fluxes. Results 
presented in this paper were calculated with 
the timedomam optunization technique. 

In Fig. 10 the expenmental hold-up is 
plotted against the calculated hold-up. Two 
experimental hold-up lines are shown, one 
includmg the permanent fraction of the static 
hold-up, being that fraction of the static 
hold-up that does not drain off the packing 
even after vibration of the column for 10 mm 
[l] , and the second excludmg this contnbution. 

From Fig. 10 it IS clear that the permanent 
fraction of the static hold-up does not 
exchange with the other psrtmles and 
consequently may be considered to be part of 
the packing. 

In Fig. 11 the Bodenstein number for the 
solid phase is plotted against the superficial 
gas velocity, the sohd mass flux being varied. 

As m gas-liquid systems the Bodenstem 
number 16 almost mdependent of the gas flow 
rate and also mcreases with solid flow rates. 
Near the flooding point the dispersion in the 
solid phase is increasing, as shown by the 
broken line. Figure 12 is a cross-plot of 
Fig. 11. Here the Bodenstein number for the 
solid phase is plotted against the solid mass 
flux. Nearly all the data lie in the shaded area. 

Results for gas-liquid systems are also 
presented. The absolute value of the Boden- 
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Frg 9 Dimensionless response curves for sohd phase 
Full curve, experimental, broken curve, best fit 
(obtamed by trme-domam optrmizatron) Set 1 S = 
1 17 kg/m2 s, Pe, = 3 99, us = 0 m/s Set 2 S = 
5 83 kg/m2 s, Pes = 18 3, = IQ 0 13 m/s 

O- 
-l-be 

Frg 10 Calculated sohd hold-up uersus expenmental 
hold-up Curve 1, mcludmg permanent sohd hold-up, 
curve 2, without permanent sohd hold-up 
Symbol S (kg/m2 6) 
0 1 17 
0 1 67 
X 2 34 
A 3 90 
V 5 63 

1 

030- 

B% 

Ij:I x 

? 

018 'it,, 

t x 
“0 

x - 0 6 ‘-.,x - 

. D 
. ‘\\ 

006-l 
1 \ 

‘&.; 

1 
0 Oc% 076 

- ug L-w-1 

Frg 11 Eodenstem number for sohd phase versus 
superficial gas velocity Symbols see Frg 10 

t I- 
O 2 4 6 

- s[kg/m*s] 

Frg 12 Bode&em number for solid phase versus 
sohd mass flux 
Symbol ug (m/s) 
0 0.033 
V 0 130 
X 0 078 
A 0 

Gas-hquld systems (water, Raschrg rmgs 0 0127 m) 
curve 1. Furzer and Michell 1231. Bol = 
13ReE iGa-1/3 , curve 2, Bo;. =o 07% Re-“.703, 
curved, van Swaarl et al- [ 2$], graphrcal correlatron, 
wettable packmg (non-wettable, BOL = 0 5 - 2) 

stem number for the liquid phase in gas- 
liquid systems vanes consrderably. Thus can be 
related to the different wet&abilities of the 
various packings [ 19, 22 1. From Fig. 12 it is 
clear that the Bodenstem number for the solid 
phase exhibits the same trend as the Boden- 
stem number for the liquid phase in gas- 
hqurd systems [22,23]. For practrcal condi- 
tions the axial dispersron of the solid phase IS 
low and the height of a mlxmg unit corre- 
sponds to 5 - 15 Pall ring layers. 

CONCLUSIONS 

Axial dlspersron m the gas and solid phases of 
a gas-solid packed column at trickle flow has 
been evaluated. Axml dlsperslon of the gas 
phase is strongly influenced by the flow of 
solid matter: rf there is no solid flow the 
Bodenstein number is about 2 as can be 
expected, but it becomes a factor 10 - 20 
lower at very low solid flow rates. 

The axial dispersron of the solid phase IS 
approximately independent of gas velocity 
except near flooding, where rt increases 
shghtly. The Bodenstem number for the solid 
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phase increases with increasing solid mass 
flux. 

For practical conditions, 2 - 5 and 5 - 15 
Pall rmg layers correspond to the height of a 
mixmg unit m the gas and solid phase, respec- 
tively . 

A new mlection and detection system for 
RTD measurements m a continuous solid 
flow-through system has been developed. This 
system works satisfactorily. 

Different parameter determmation 
methods for the axiaUy dispersed plug-flow 
model from RTD measurements have been 
compared for both the “perfect pulse 
method” and the “imperfect pulse method”. 
At low velocities of either phase, the various 
methods yield deviating results; these differ- 
ences decrease d the velocity is mcreased. It is 
suggested that this effect is caused by the fact 
that the mathematical model does not 
describe the physical phenomena truthfully at 
low velocities (tailing). 

ACKNOWLEDGMENTS 

The authors msh to thank DSM for financial 
support dunng the present mvestigatron. We 
are also much indebted to Dr G. van Straten 
who made the computer programs for the 
parameter optunization in the frequency 
domain. 

APPENDIX A 

Mathemattcal expressrons 
Boundary condrtrons for eqn. (1) 
The boundary conditions for eqn. (1) are 

(see, for example, ref. 10): 

closed-closed for dasperszon (solid phase) 

1 z(e) 
C(O_,8) = C(O’, e) -g- - 

at [=O’ 
(Al) 

II 

qo-,e) = 6 (e) 

1 aw9 
-Pe, at .t=i= 

o 

(A2) 

ql-, e) = c(i+, e) W4) 

open-open for dlsperslon (gas phase) 

C(f)-,e)-_$ acO = 
g a-5 E=o- 

1 x(e) 
c(o+, e) - - - 

Pe, at I E50+ 

qo-, e) = c(o+, e) = f(e) 

ql-,e)-_2-ac0 = 
Peg at p1- 

1 aqe) 
c(l+, e) - Pe - 

g at +,+ 

(A5) 

W) 

(A’3 

qr, e) = c(l+, e) (W 

Definltaon of the moments 
The nth weighted moment IS defined by 

[13] : 

m 

M = n.* J t”e-“C( t) dt W) 
0 

Ifs = 0 then (A9) reduces to the nth moment 
around the ongm [ll] : 

m 

M = n, 0 $ PC(t) dt (AW 
0 

Solutions for daspersed plug-flow model 
wt th closed-closed boundaries for 
dlsperston 
The tune-domam solutron for the response 

to a perfect delta function has been grven by 
Otake and Kunrguta [9] (see also ref. 10): 

F(k)=exp[P$(l-&)] X 

00 6,(Pe, sin6. +26. cos6,) 
XC X 

n=l Pe, 2 
6; + 2 + Pe, 

( 1 

X exp(-2 :) 

where 6, is given by the nth root of the 
transcendental equation 

s Pe, 
cot436 =Pe-4S s 

(All) 

(AW 
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Expressions for the moments around the 
ongm have been given by van der Laan [ 111. 
For the mean residence time he derived 

Ml.0 

rS =My 
(A13) 

and, for the dlmenslonless vanance, 

o2 ="2&02M0.0 _-1 

1.0 

2 
=-- 2 [l - exp(-Pe,)] 

Pe, Pe,2 
(A14) 

Solu trons for dispersed plug-flow model 
wt th open-open boundanes for dlsperslon 
(a) Transfer functtons The expressron for 

the transfer function m the Laplace domam LS 
gwen by Mlchelsen and (pstergaard [ 131. 

fl(s)=exp\%[l- (1~2)11~]/ (A15) 

The transfer function m the time domam can 
be obtained by inverse Laplace transforma- 
tion of eqn. (A15) (van Straten, pnve com- 
munication) 

F(-f-) = (‘$ r”exp[-2 (1 -ir] 

(AW 

Putting s = jo m eqn. (A15) and separatmg 
the real and rmagmary parts, Clements amved 
at the complex transfer functron [ 141: 

P(JW) = Rek +Jbn+ (A17) 

where 

Rep = exp 
1 

P% 
--[l - (A2 + l)“‘cosB] 

i 
X 

x cos 
1 
Pe, --2- (A2 + 1)114 sm I3 1 (A181 

and 

Imp = exp - 
1 
‘; [1 - (A2 + 1)1’4 cos B]i X 

xsin -2 [ 
peg (A2 + l)1’4sm B 1 (Al% 

AandBaregrvenby 

4wrg 
A=- 

Peg 
(A29) 

and 

B=%arctgA 0421) 

(b) Peg and rg from the weighted moments. 
From eqn. (A9) it follows that 

M = n, 8 J 
t”C(t) eWsf dt 

0 

= (-1)” 2 (Qs)) 

where 

(A221 

c(s) = r C(t) emat dt 
0 

(~23) 

f?(s) IS the Laplace transformed normahzed 
srgnal at the detectron. 

The experimental pomts of the transfer 
function may be calculated accordmg to 

&s) _ @s, _ Mo,rLut 
Gin 0) MO. & 

(~24) 

Mlchelsen and Qstergaard introduced the 
following functions [ 13 ] : 

U,(s) = In p(s) = In MO,, Of (~25) 
m 

1 G(s) MI,, opt 
Q(s)=-_ - =- 

F(s) ds MO,, 111 
(A23) 

and 

1 d2&s) 
U2(s)= _ - - 

1 d&s) 2 

F(s) ds2 
__ 
F(s) ds 1 

= [5&2J] T (~27) 

From eqns. (A15), (A22) and (A25) - (A27) it 
can be shown that 

l/2 

1 1 
(A281 

WV 

peg 
v,(s)=2 l- [ ( 4srg 

l+F 
I 

” (‘) = (1 + Ll/Peg )1/s 

and 

U,(s) = 

27; 

Pe,(l + 4srg/Peg)3/2 
(A301 

Pe, and 7g can be calculated m a number of 
ways- 
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1 1 4 
-= 
Uq 2 + ’ r,Pe, 

(A33) Michelsen and Qstergaard I. the moments 
Mo,s and Ml,, are calculated, using a fixed s- 
value, and are inserted in (A25) and (A26). 
Now Pe, and rp can be obtamed from (A31) 
and (A32) 

A plot of l/U:(s) uersus s should give a straight 
lme with slope 4/r,Pe, and intercept l/r:. 

Method of Gunn [ 151 (graphical or 
numerical): for small s-values the square root 
m eqn. (A28) may be approxunated by 

(A31) 
Pe = Uo(Uo + =Jl) 

I 
i7, •t su, 

and P+zf, 112 zl+--_ 2srg Pe, 8 1 ( 4srg - Pe, 1 2 + O(s3) 

(~32) 
+JOUl 

rg = 
u, + 2su, (A391 

By msertmg (A39) m (A28) and rearrangmg, 
(A40) can be obtained. 

Michelsen and Qstergaard II: the moments 
M o.~~ MI,~ andM2.s are calculated at a fixed 
s-value. Pe, and rg can be calculated from 
eqns. (A26), (A27) and (A33), (A34): + Uo(s) = -Tg + gs + O(s2) 

I 

If Uo(s)/s is plotted against s, one should 
obtam a straight line on the interval 0 < 
47,s/Pe, < 0.2 - 0.4 with slope ~i/Pe, and 
intercept --TV. 

tA33) 

(A34) 

Ifs = 0, then the weighted moments are re- 
duced to the moments around the ongin: APPENDIX B 

2u; 
Peg = - 

u2 

At crttena and fit m tervals 
The best fit was accomplished if the sum of 
the least squares between data and model was 
minimal. The mathematical formulation of 
this criterion is given by the minimum of the 
goal functions (Bl - B3): 

= 2p,‘[~-(~,‘l’/ oz . . 
and (A35) 

M 
Tt3 

= u, - 1.0 Ol;t 
MO.0 in 

(A36) tame domaan 

t [F(F) -F..P(;)]~ These expressions are the same as those 
obtamed by Aris [6]. 

(Bl) 

Michelson and Qstergaard III (graphical or 
numerical): the transfer function is calculated 
for different values of s, and U. 1s evaluated 
via (A25). Equation (A28) may be rearranged 
to give 

s-domain 

g m -&ml 2 

1 1 S 

- -=--+7tz ux) 
UO(S) Peg 

(A37) frequency domaan 

+ Wwjw) - Imkexp(jw))21 (B3) 

The model parameters for Michelsen and 
Qstergaard’s methods I and II have been de- 
termined at s = 11~~ [ 131. Michelsen and 
9stergaard [ 131 showed by a noise analysis that 

A plot of l/U,(s) uersus s/U;(s) should yield a 
straight line with an intercept -l/Peg and 
slope rg. 

Michelsen and 9stergaard IV (graphical or 
numerical) : MO,, and MI, l are determined for 
different s-values, and VI evaluated from eqn. 
(A26); (A29) is rearranged to give 
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the value of s for the third and the fourth 
methods should he m the mterval 

--<s<? 
0.4 

TiS Tg 
The o-value always ranged from zero to the 
frequency at which the experimental transfer 
function began to oscillate. 

NOMENCLATURE 

UP surface area of packmg per cubic 
metre of column, m2/m3 

A constant defined m eqn. (A20) 
B constant defined m (A21) 
Bo Bodenstein number defined m eqns. 

(2) and (3) 
C normalized concentration 

dP normal packing diameter, m 

Y(e) 
dispersion coefficient, m2/s 
signal at first detection pomt for gas- 
phase RTD experiments 

F( t/r,) response on a delta function (eqn. 
(All)) 

F(t/rg) transfer function m time domam 

m 
fl(Jo ) 

Ga 

Irng 

:. 
L1 

L2 

M n.6 

N 

%7 

Pe, 

Rep 

ReL 

s 

@w (AW) 
transfer function m s domam defined 
by eqn. (4) 
transfer function m frequency domam 
defined by eqn. (5) 
(= d~gp~/~~)Galileo number for liquid 
phase of gas-hquid systems 
imaginary part of complex transfer 
function (eqn. (A19)) 
d-1 
column length, m 
distance of first measurmg pomt from 
inlet, m 
distance of second measurmg pomt 
from mlet, m 
nth weighted moment defined m eqn. 
(A9) 
number of Pall rings per cubic metre 
of column, mm3 
(= J3oJL2 -L,] /dp), Peclet number 
for gas phase 
L;Ee,L/dp), Peclet number for sohd 

real part of complex transfer function 
(eqn. (AW) 
(= pLuLdp/qL), Reynolds number for 
liquid phase (gas-liquid systems) 
Laplace parameter, s-l 

s solid mass flux, kg/m2 s 
t time, s 
U superficial velocity, m/s 
uo function defined by eqn. (6) 
u1 function defined by eqn. (7), s 
u2 function defined by eqn. (8), s2 

Greek symbols 
hold-up of solid phase (volume of 
particles/volume of column) 
wall thickness of rmg, m 
perfect delta function 
nth root of transcendental function 
(eqn. (A12)) 
void fraction of packing 
void fraction of particle 
dimensionless length coordmate 
particle density, kg/m3 
mean residence time, s 
dunensionless time (0 = t/T) 
frequency, s-l 

Su bsmp ts 
talc calculated 
exp expenmental 

z 
gas phase 
liquid phase of gas-liquid systems 

S solid phase 

Superscnp ts 
- Laplace transformed variable 1 

Fourier transformed variable 
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