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Abstract

Ax1al dispersion of gas and solid phases in a
gas—solid packed column at trickle flow. a
promising new countercurrent operation, was
evaluated using residence time distribution
(RTD) experiments. The column was packed
with dumped Pall rings, the gas phase was air
at ambient conditions and the solid was a
Dborous catalyst carrier.

The RTD experiments for the solid phase
were carried out using the ‘perfect pulse
method™, while for the gas phase the
‘9mperfect pulse method’ was used. The
model parameters were calculated by the
methods of moments and various parameter
optimization methods.

At a given solid flow rate axial dispersion
of the gas phase decreases with increasing gas
velocity and is strongly dependent upon solid
mass flux Axial dispersion of the sohd phase
18 approximately independent of the gas
velocity and it 1s reduced if the solid mass
flux is increased For conditions of practical
importance, 2 - 5 and 5 - 15 Pall ring layers
correspond to the height of a mixing unit in
the gas and solid phase, respectively.

INTRODUCTION

Trickle flow of more or less fludized solid
particles through a packed column seems to
be a promising countercurrent operation n
the chemical industry, offering interesting
heat and mass transfer properties.

In the trickle-flow process a swarm of
particles flows 1n trickles through a packing,
while a gas flows upwards countercurrently.

The packing redistributes and carries the
solid, facilitating mass transfer, while the
axial mixing of the gas and solid is reduced.

Applications may lie 1n separation
processes, based on different adsorption prop-
erties of the components, and in chemical
reactors where the unconverted reactant may
be transported back to the reaction zone, or
where reaction products are removed from
the reaction zone with the adsorbing solid.

In a previous paper [1] gas—sohd trickle
flow was compared with other gas—solid
countercurrent operations and it was
concluded that trickle flow may have
advantages over spray columns, moving beds
and multistage fluid beds. From experiments
with a cracking catalyst it was concluded that
the trickle flow of particles through packings
exhibits similar behaviour to gas—hquid
trnickle flow. Loading and flooding occurs and
hold-up can be split into dynamic or operat-
ing hold-up and static hold-up. In gas—liquid
packed columns the packing carries all the
liquid; in gas—solid tnickle flow the packing
carries up to 50% of the dynamic hold-up so
that in this case a low pressure drop 1s
obtamed.

It clearly follows from many theoretical
investigations (e g refs. 2, 3) that the axial
mixing of both phases in countercurrent
operations is very disadvantageous for mass
transfer because of the reduction in the driv-
ing force for mass transfer. If the number of
true mass transfer units is large, axial mixing
soon becomes a himiting factor for column
performance. The mass transfer for a gas—
solid packed column at trickle flow was found
to be large the height of a true mass transfer
unit 18 usually smaller than 0 1 m [4]. In this
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situation the axial mixing of both phases 1s
1mportant.

The present investigation deals with the
axial mixing of both gas and solhd phases in a
packed column at tnckle flow. As 1s usually
done, the extent of the axial mixing was
determined with residence time distribution
(RTD) measurements for both phases. The
axially dispersed plug-flow model [5] was
used to describe the degree of axial mixing.

A common technique to evaluate the
model parameters 1s to measure the response
of a system to a pulse injection which 1s
assumed to be a perfect delta function. For
practical reasons this simphfied technique had
to be apphed for the determination of the
dispersion of the solid phase.

Since 1t is often very difficult to approx-
1mate the perfect delta function, Aris [6]
introduced the imperfect pulse technique
where the response of the system 1s measured
continuously over two planes downstream of
the mjection plane. Aris (see also ref. 7)
showed that the first and second moments
around the origin of the response curves of
the system to any input injection could be
used to determine the model parameters.
Bischoff later generalized this technique and
showed that it could be used 1n any stable
linear system [8]. For the RTD measure-
ments 1n the gas phase this imperfect pulse
technique was followed.

DETERMINATION OF MODEL PARAMETERS

Two-phase countercurrent processes may be
described by a model employing plug flow
and axial dispersion in both phases and an
interphase mass transfer. More complex
mixing models have been discussed for one
phase only, but no solutions for two-phase
systems are available.

Since the tracers were present in one phase
only the above mathematical model reduces
to the one-dimensional dispersed plug-flow
model [5] for both phases.

The mathematical formulation in dimen-
sionless form is represented by the partial
differential equation

20 Pe 3E2 3t (1)

The purpose of the present investigation 1s
the determination of the mean residence time
and the Peclet number, often called the
Bodenstein number when the characteristic
length equals the packing diameter. The
Bodenstein numbers are defined by eqns. (2)
and (3):

gas phase
u.d d

Bo, = 22 =Pe, —2 (2)
eD, L,—L,

solid phase
ugd, d,

Bo, = =Pe, — 3

o= p ~Pe (3)

The Bodenstein number can be deter-
mined from either back-mixing or RTD exper-
iments [3]. The latter method was used in the
present investigations. As already mentioned
in the introduction we considered the input
for the solid phase to be a perfect delta func-
tion, while the imperfect pulse technique was
used for the gas phase. This is shown
schematically in Fig. 1.

Solid tracer was injected at the inlet and
detected at the outlet. Since sohd mixing in
the entrance and outlet zones has been
assumed to be neglgible, closed—closed
boundary conditions [5] were applied. Be-
cause the response of the column for the gas
phase was measured within the packing, the
measuring section for this situation was
assumed to be open—open for dispersion [5].
Appendix A gives the initial and boundary
conditions for both situations.

The methods to determine the model para-
meters may be divided into parameter
optimization methods and those using the
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Fig 1 Experimental scheme of injection/detection
techniques



moments of the response curves. With the
first methods the parameters are optimized in
such a way that the theoretical model gives
the best fit to the experimental data.

For the axially dispersed plug-flow model
with closed-closed boundary conditions the
response of the system to a perfect delta
function has been derived by Otake and
Kuniguta [9] (see also ref. 10). This expres-
sion is given 1n Appendix A. For the time-
domain optimization the output signal was
first normalized (surface area under response
curve made equal to unity). After that, the
optimal values of Bo, and r; were found
which minimize the sum of the squares of the
differences between the measured and
calculated values. The Bodenstemn number and
the mean residence time can also be found
from the moments around the origin of the
output signal. Van der Laan has given the
mathematical expressions [11] (see
Appendix A).

The transfer function in the time domain
for the dispersed plug-flow model with open—
open boundary conditions is given n
Appendix A, eqn. (A16) (G van Straten,
private communication). For the imperfect
pulse techmque the model parameters can be
obtained by numercal convolution [5, 12].
An alternative way to evaluate the parameters
1s to transfer the normalized RTD data to the
Laplace or frequency domamn where the
transfer function can be calculated on divid-
ing the transferred output signal by the
transferred input signal.

Laplace or s domain

75 = C;out(s)

F(s) T (4)

frequency domain

Py = Fpe) ®)
Cin(jw)

Michelsen and Q@stergaard [13] and
Clements [14] have given mathematical
expressions for the transfer functions F(s)
and F(jw) for the dispersed plug-flow model
(see Appendix A). The!Bodenstein number
and the mean residence time can be evaluated
from a best fit on the transfer function in the
same way as described above,

Four other methods for parameter estima-
tion have been given by Michelsen and Qster-
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gaard [13]. They introduced the following
functions.

Uy(s) = In F(s) (6)
__dUe(s) _ 1 dF(s)

U = TFe) e (7
_ 1 d&F(s) [ 1 dF(s))?

U2) " 7o) a2 [F—‘(?) ds ] (8)

and derived expressions for (6) - (8) in terms
of the model parameters (see Appendix A)
Uy(s) can be deduced from experimental data
via eqn. (4). To avoid numencal differentia-
tion for the evaluation of U,(s) and Uj,(s)
they introduced the weighted moments,
which 1nvolve numerical integration of the
experimental RTD data [13] From the
weighted moments, U, (s) and U,(s) can be
evaluated. Michelsen and Qstergaard [13] and
Gunn [15] introduced graphical techniques
to determine the mean residence time and the
Bodenstein number (see Appendix A).

We also used the method of moments
around the ongin to calculate the model
parameters. Aris [6] has given mathematical
expressions for the model parameters 1n terms
of these moments (see Appendix A).

EXPERIMENTAL SYSTEM

Figure 2 shows the experimental set-up. Air
enters I;, a 1.00 m long column with an
internal diameter of 0.075 m, passes through
the packing and leaves the column via a dis-
engaging section through a cyclone where the
entrained particles are collected. The column
is connected to a fluid bed via a Perspex sec-
tion containing three valves. From the fluid
bed a dense gas—sohid mixture is transported
pneumatically via two venturis through risers
R; and R, to the cyclones on top of the
column. Solid enters the column via the
diplegs of the cyclones. To ensure a good
mnitial distribution, a layer of about 0.05 m
of Pall nings is inserted 1n the disengaging sec-
tion. The particles flow through the packing
and the Perspex section to the fluid bed
which is maintained just above minimum
bubbling conditions.

The column was filled wath dumped Pall
rmgs. The properties of the packing are histed
in Table 1.
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Fig 2 Experimental arrangement for measurement of
gas- and solid-phase dispersion C, column, CATH,
catharometer, E;, E,, gas outlet, FB, flud bed,
GTI, gas tracer injection, Iy, I, gas inlets, RM,
reflectometer, Ry, Ry, nisers, STI, sold tracer injec-
tion, V4, Vg, V3, valves

TABLE 1
Properties of Pall rings

dy 0015m

) 0002 m

ap 310 m?%m3

€ 0 86

N 22x105m=3

Airr at ambient conditions was used as the
gas phase and the solid phase was a highly
porous catalyst carrier (class A according to
Geldart’s powder classification [16]). The
properties of the particles are summarized in
Table 2.

Residence time distribution experiments in
the gas phase

Helum, which does not adsorb on the sohd
[17], was used as the tracer gas during the
RTD experiments for the gas phase. The
tracer was injected in the inlet distnbutor by
means of a magnetic three-way valve which

was switched for 0.1 s from carrier gas (air) to
helium. The tracer concentration in the air
stream was detected with a flow-through
catharometer. The latter was connected with
the column via a 0.08 m long tube with an
internal diameter of 5 X 1074 m to ensure a
rapid response, The measured response time
of the gas analysing system was much less
than 1 second. To prevent particles from
entering the catharometer the tube 1nlet was
covered with a glass filter. The sample gas was
continuously sucked from the column by
means of a vacuum pump. Successive pulses
were detected 1n the packing at a distance of
0.05 m from the inlet and outlet, L, and L,
respectively.

Solid-phase dispersion measurements
Solid-phase dispersion has also been deter-
mined from RTD experiments. We used a
colour technique to trace the particles. Part of
the origmnal white particles was coloured black
with a diluted drawing ink solution. The
particles were filtered off, dried 1n the air, and
finally for 50 h 1n a fluid bed. The concentra-
tion of black particles was measured by a
reflection technique. Figure 3 shows the
specially designed reflectometer. The sample
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Fig 3. Reflectometer and electrical diagram (a)

AS, adjusting screw for optical fibre, CS, collimating
slit, OF, optical fibre for illumination, PD, photo-
diode (b) DA, differential amplifier, EF, electronic
filter, PD, photodiode (BPX 94), R, resistance (R =
10 MQ), REC, recorder, SC, oscilloscope



TABLE 2
Properties of the solid particles
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Composition

Particle diameter distribution (sieve analysis)

Diameter (X 1076 m)

<44
44 -175
76 -105
105 - 150
150 - 210
210 - 300
<300

Mean particle diameter
Skeletal density

Particle density

Fixed bed density*
Particle vord fraction €pay¢
Fixed bed void fraction*

87 wt % $10,
129 wt % A1203

Wt % Cumulative wt %
73 73

305 378

239 617

369 980
16 99 6
03 99 9
01 100

+70X1076 m

2200 kg/m3

813 kg/m3

475 kg/m3

063

078

*Settled bed after fluidization

was 1lluminated by a projector through two
optical fibres to avoid heating the reflecto-
meter by the light source. Reflected hght
reached a photodiode via two collimating shts
of 3 X 10™* m each. Durning the tests, particles
were collected 1n the Perspex section on valve
V, (see Fig. 2).

The reflectometer could be moved horizon-
tally along the wall of this measuring section
between valves V, and V,;. The photodiode
was Incorporated in a Wheatstone bridge
circuit supplied with a stable 2 V source. The
signal from the bnidge entered a differential
amplifier and an electronic filter to remove
the 50 Hz AC component from the light
source. The signal was read from an oscillo-
scope or a recorder, This measuring system
was found to be linear up to a concentration
of 5% of black particles.

We designed a special sohd tracer injector
which is shown in Fig. 4. It consisted of four
cylindrical containers which were inserted 1n a
Perspex housing and interconnected” by
cogwheels. During the RTD measurements for
the solid phase it was placed 1n the column
between the disengaging zone and the packing
(see Fig. 2). The tracer contamners could be
moved outside the injector, as shown
Fig. 4, where they were each filled with about
5 X 10™* kg of black particles and then re-
placed in the housing again. Here each
container had a cover on top to prevent the

white particles, which flowed through the
injector, from entering. By means of an
external handle the contamners were turned
upside down and the black particles then
entered the main sohd flow which passed a
redistribution gnd to ensure good initial
mixing with the tracer particles.

Applying this special construction the
tracer was spread out over the whole area
(plane injection), and was mixed with the
feed. No pressure changes occurred and the
mjection time was small.

At the moment tracer injection took place,
valve V, was closed to collect solid on top of
it. If the additional variance of the injection
and collection section 1s sufficiently small the
black—white distribution of the sample on top
of valve V, will give the RTD of the sohd.
The concentration of black particles was
measured by moving the reflectometer from
V, over the sample height. After each exper-
iment the collected powder was removed
from the system in the following way. Valve
V, contained a porous plate distributor. The
sample could be fluidized with air entering by
I,. The fludized particles were sucked from
the column through a tube which was
connected to a waterjet pump. The solid
particles were separated from the air stream in
a cyclone. Before each experiment a base line
was measured after the section had been filled
with white powder alone.
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Fig 4 Injector for solid tracer CW, cogwheels, EH, external handle to turn the tracer containers upside down,
FL, flange, IT, injection tube, RDG, redistribution gnd, S, seal, TC, cover of tracer container

RESULTS

Dispersion of the gas phase
The model parameters for the gas phase were
evaluated using the various methods described
previously. In Appendix B the criteria for the
best fit and the s- and w-1ntervals over which
the fits were carried out are given. Table 3
presents the average results from the various
methods at two different sohd mass fluxes,
the superficial gas velocity being varied. The
Peclet numbers and mean residence times for
the measuring section (see Fig. 1) were
calculated from six mput-output sets. The
standard error 1s also given. The theoretical
mean residence time was calculated according
to eqn. (9).

[ep — (1 —epant)B) (Lo —Ly)

Tgeale — ” 9)
g

At zero sohd mass flux the different
methods give almost the same results; the
Peclet number 1s about 110 and 1s indepen-
dent of the superficial gas velocity. The
Bodenstemn number for this case 1s 1.9, If the
Bodenstein number 1s equal to 2 than the
height of one Pall ning layer corresponds to
the height of a mixing unit (= 2d,/Bo).

If the solid velocity 1s low, especially at low
superficial gas velocities, the various para-
meter determination methods yield deviating
results. At higher gas velocities (which are of
practical interest) the differences are smaller.
Large differences are caused by tailing. The
method of moments around the orgin and
the Laplace fit pay more attention to the tail
of the experimental transfer function than
other parameter determination techniques.
The methods of Michelsen and Q@stergaard
[13] and Gunn [15] and the frequency-
domain fit account more for the general shape
of the transfer function.

In countercurrent processes such as adsorp-
tion this tailing will be less important because
the slow fraction will be in equilibrium. For
this reason we want to present here the results
obtained with the frequency-domain fit. A
more sophisticated comparnson of the vanous
methods 1s beyond the scope of this article
and is given elsewhere [18].

With the imperfect pulse technique 1t is not
possible to compare an experimental RTD
curve directly with the model curve in the
time domain. Instead the experimental
transfer function in the time domain can be
found from eqn. (5) by numencal inversion to
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the time domain. Figure 5 compares the
expennmental transfer function with the
model curve for a high and a low gas velocity.

2 4 1 i L i 1 1
F(-}g)

164

—_—— t/T.g

Fig 5 Dimensionless transfer functions in the time
domain S =5 83 kg/m? s Full curve, experimental,
broken curve, best fit (frequency domain) Curve 1
ug = 0024 m/s, Pe; = 8 36, 7y = 31 4 s, curve 2
ug=0143m/s, Pey = 503,7, =4 885

The model curves were calculated accord-
g to eqn. (A16) by mserting the optimal
values from the frequency-domain fit. From
Fig. 5 it can be seen that the agreement of the
mathematical model with the experimental
data is satisfactory for curve 2 (high gas
velocity) while for curve 1 there is some
tendency for tailing (low gas velocity).

In Fig. 6 the experimental mean residence
time 1s plotted against the calculated values
from eqn. (9). Deviations from the theoretical
values were nearly always smaller than 5% and
never larger than 11%.

Figure 7 shows the Bodenstein number for
the gas phase versus the superficial gas veloci-
ty at different solid flow rates. Some typical
results for a gas-liquid packed column at
tnckle flow are also given. At a given solid
mass flux the Bodenstein number increases
with increasing gas velocity. Near the flooding
point large fluctuations in the observed
Bodenstein number occur. All data hie within
the shaded area. In gas—liquid systems the
Bodenstein number for the gas phase
decreases with increasing gas velocity [19 -
21]. The disparity between gas~liquid
systems and gas—solid systems is possibly
caused by the fact that in gas—solid trickle
flow the particles become more suspended in

1 1 i 1

304 & I

T em |
e
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104 L

o N I T L T L L
(o] 10 20 30

—_— tg calc [5]

Fig 6 Experimental versus calculated mean residence
time

Symbol S (kg/m? s)
® 000
o 0 081
X 123
A 3 89
v 583

12 -
Bog

084

044

o]
[¢]

~—= ug[m/s}

Fig 7. Bodenstein number for gas phase versus super-
ficial gas velocaity Symbols see Fig 6. Relations for
gas—hquid systems (Raschig rings, d, = 0 0127 m,
liquid mass flux, L = 5 kg/m2 s) curve 1, De Mana
and White [21], Bog = 2 4 Reg0 24 x 1070 002L

curve, 2, Sater and Levenspiel [20], Bog =
34 Re‘—o 067 « 10—0 0026L

the gas phase at higher gas velocities [1], thus
there will be less accessible area for gas flow.

The dispersion of the gas phase 1s strongly
influenced by the flow of the particles, as can
be seen from Fig, 8. Here the Bodenstein



— = S [kg/m%s]

Fig 8 Bodenstein number of gas phase versus sohd
mass flux Broken curve G/L 1, De Maria and White
[21], broken curve G/L 2, Sater and Levenspiel {20].
(Raschig rings, 0 0127 m, ug =0 15 m/s )

Symbol ug (m/s)
° 0024
o) 0048
X 0077
A 0107
vV 0143

number for the gas phase 1s plotted against
the sohd mass flux at different gas flow rates.
At zero sohd flow rate the Bodenstein
number 1s about 2. Only a very small particle
flow, especially at low gas velocities, can
drastically increase gas-phase dispersion. For
practically important conditions, however
(high gas and solid flow rates), the axial dis-
persion of the gas phase is lower. Here 2 -
Pall ring layers are equivalent to the height of
one mixing unit. Consequently for longer
columns the gas phase is almost 1n plug flow.

Dispersion of the solid phase

In contrast with the RTD measurements for
the gas phase we assumed, for practical
reasons, the solid tracer injection to be a
perfect delta function. The time-domain solu-
tion for the response on a perfect delta func-
tion for closed—closed boundaries is given 1n
Appendix A. Table 4 presents the average para-
meter values calculated from the time-domain
optimization and from the moments around
the origin [11]. For each value, three or four
experiments were used; the standard error is
also given. The average solid hold-up is calcu-
lated from eqn. (10):

= —— (10)

21

Table 4 also presents the experimental
hold-up which was measured n an indepen-
dent way described 1n an earlier paper [1].
Table 4 gives a picture analogous to that of
Table 3. At a low solid mass flow flux the two
methods give different results while at high S
values the deviations are less serious. Again
this 1s caused by the fact that the model does
not represent the physical reality well enough
at a low solid mass flux.

In this region there 1s some tendency to
tailing resulting 1n a lower Peclet number for
the method of moments around the ongin,
This can also be seen from Fig. 9 where exper-
imental response curves for both a low sohd
mass flux and a high S value are plotted. The
theoretical response curves are calculated
from eqn. (A11l) by inserting the Pe; and r,
values found from the time-domain optimiza-
tion.

From Table 4 and Fig. 9 it can be
concluded that the dispersed plug-flow model
with closed—closed boundary conditions fits
the experimental data reasonably well but
tailing occurs at low solid mass fluxes. Results
presented in this paper were calculated with
the time-domain optimization technique.

In Fig. 10 the expennmental hold-up 1s
plotted against the calculated hold-up. Two
experimental hold-up lines are shown, one
including the permanent fraction of the static
hold-up, being that fraction of the static
hold-up that does not drain off the packing
even after vibration of the column for 10 min
[1], and the second excluding this contribution.

From Fig. 10 it 1s clear that the permanent
fraction of the static hold-up does not
exchange with the other particles and
consequently may be considered to be part of
the packing.

In Fig. 11 the Bodenstein number for the
solid phase 1s plotted against the superficial
gas velocity, the sohd mass flux being vaned.

As 1n gas-liquid systems the Bodenstein
number 1s almost independent of the gas flow
rate and also increases with solid flow rates.
Near the flooding point the dispersion in the
solid phase is increasing, as shown by the
broken line. Figure 12 is a cross-plot of
Fig. 11. Here the Bodenstein number for the
solid phase is plotted against the solid mass
flux, Nearly all the data lie in the shaded area.

Results for gas—liquid systems are also
presented. The absolute value of the Boden-
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Fig 9 Dimensionless response curves for sohd phase
Full curve, experimental, broken curve, best fit
(obtained by time-domain optimization) Set 1 S =
117 kg/m2? s, Pe; = 399, u; =Om/s Set 2 S =
5 83 kg/m? s, Pe; =183,ug=013m/s
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Fig 10 Calculated sohd hold-up versus experimental

hold-up Curve 1, including permanent sohd hold-up,

curve 2, without permanent solid hold-up
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Fig 11 Podenstein number for sohd phase versus
superficial gas velocity Symbols see Fig 10
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Fig 12 Bodenstemn number for solid phase versus
solid mass flux
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Gas—hquid systems (water, Raschig rings 0 0127 m)
curve 1, Furzer and Michell [23], Boy, =

13Ref Ga=1/3, curve 2, Bog, = 0 0758 Re~0-703
curve 3, van Swaay) ef al [22], graphical correlation,
wettable packing (non-wettable, Bog, = 0 5 - 2)

stein number for the liquid phase in gas—
liquid systems varies considerably. This can be
related to the different wettabilities of the
various packings [19, 22]. From Fig. 12 it is
clear that the Bodenstein number for the solid
phase exhibits the same trend as the Boden-
stein number for the liquid phase in gas—
hquid systems [22, 23]. For practical condi-
tions the axial dispersion of the solid phase 1s
low and the height of a mixing unit corre-
sponds to 5 - 15 Pall ring layers.

CONCLUSIONS

Axial dispersion 1n the gas and solid phases of
a gas—solid packed column at trickle flow has
been evaluated. Axial dispersion of the gas
phase is strongly influenced by the flow of
solid matter: if there is no sohid flow the
Bodenstein number is about 2 as can be
expected, but it becomes a factor 10 - 20
lower at very low solid flow rates.

The axial dispersion of the solid phase 1s
approximately independent of gas velocity
except near flooding, where 1t increases
shghtly. The Bodensteimn number for the solid
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phase increases with increasing solid mass
flux.

For practical conditions, 2 -5 and 5 - 15
Pall ring layers correspond to the height of a
mixing unit in the gas and solid phase, respec-
tively.

A new 1njection and detection system for
RTD measurements in a continuous solid
flow-through system has been developed. This
system works satisfactorily.

Different parameter determination
methods for the axially dispersed plug-flow
model from RTD measurements have been
compared for both the ‘perfect pulse
method” and the “imperfect pulse method”.
At low velocities of either phase, the various
methods yield deviating results; these differ-
ences decrease 1if the velocity is increased. It 18
suggested that this effect 1s caused by the fact
that the mathematical model does not
describe the physical phenomena truthfully at
low velocities (tailing).
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APPENDIX A

Mathematical expressions

Boundary conditions for eqn. (1)

The boundary conditions for eqn. (1) are
(see, for example, ref. 10):

closed—closed for dispersion (solid phase)

(06 = C(0° 1 3C(9)
(07,0)=C(0 ’6)_5755 . (A1)
s =0
C(07,8) =5(9) (A2)
_1coy (A3)
Pe, aé E=1
C(17,8)=C(@1%,0) (A4)

open—open for dispersion (gas phase)

co 0 —— 26O
’ Peg ot £=0—
1 3C(9)
C(0%,0) — — —— A5
0 == S| o (A5)
C(07,8) = C(0*,0) = f(6) (A6)
c-g— L@
Pey, 09fF |.oq-
R 1 aC(0)
c1,8) —— —— A
a0 o= |, (A7)
a17,6)=C(1",90) (A8)

Definition of the moments
The nth weighted moment 1s defined by
[13]:

M, = [ e o) dt (A9)
0

If s = 0 then (A9) reduces to the nth moment
around the ongin [11]:

M,o= [ t"C(t)dt (A10)
0

Solutions for dispersed plug-flow model

with closed—closed boundaries for

dispersion

The time-domain solution for the response
to a perfect delta function has been given by
Otake and Kuniguta [9] (see also ref. 10):

F(;:) - exp[P;’ (1 —-2':—')] X

« E 6,,(Pe,s1n§,,+228,,cos6,.)
n=1 8’21 + (_Es_) +Pes
2

com(-22 )
exp|l—— —
P Pe, 7,

(A11)

where §,, 1s given by the nth root of the
transcendental equation
] Pe,

cotgé =
8 Pe, 46

(A12)



Expressions for the moments around the
onigin have been given by van der Laan [11].
For the mean residence time he derived

M
Ty =2 (A13)
My, o
and, for the dimensionless variance,
M, M
o2 =2z.0Mo0
M%,o
2 _ 2 [—exp(—Pe)]  (Al4)
Pe, Pe? P s

Solutions for dispersed plug-flow model

with open—open boundaries for dispersion

(a) Transfer functions The expression for
the transfer function 1n the Laplace doman 1s
given by Michelsen and Qstergaard [13}] -

F(s) = exp%lz;i [1 - (1 + ‘;_:SET_: )1/2” (A15)

The transfer function 1n the time domain can
be obtained by inverse Laplace transforma-
tion of eqn. (A15) (van Straten, prive com-
munication)

)= Gt | e[ =]

(A16)

Putting s = jw 1n eqn. (A15) and separating
the real and 1maginary parts, Clements arrived
at the complex transfer function {14]:

F(w) = Rep +)Im; (A17)

where

Pe
Rep = expg—;[l — (A% + 1)1’4cosB]£ X

P
X cos[—‘;i (A2 + 1)1’4s1nB] (A18)
and

Pe
Imp = expz—?'[l — (A% +1)Y4 cos B]i X

P
X sin[—-;—‘ (A% + 1)Y4gin B] (A19)

A and B are given by

_ 4wty

e, (A20)
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and

B=1%arctg A (A21)

(b) Pe, and 1, from the weighted moments.
From eqn. (A9) 1t follows that

M, , =f tnC(t) e dt
(4]

n

ds™

= (—1)" — (C(s)) (A22)

where

C(s)= [ c(tye*de

V]

(A23)

C(s) 1s the Laplace transformed normahzed
signal at the detection.

The experimental points of the transfer
function may be calculated according to
F(S) = Zout(s) = Mo.clout

Cin (8) Mo,
Michelsen and @stergaard introduced the
following functions [13]:

(A24)

hn

Uy(s)=In F(s)=In Mg, | (A25)
__ 1 dF-(s)___Ml‘, out
BT F s My, - (A26)
and
_ 1 d@%F(s) | 1 dF(s))?
V)" 7o) as? [FTE) 5]
M2 s Ml s127 out
= |22 [k A27
[Mo.s (Mo,s)] ixl‘ ( )

From eqns. (A15), (A22) and (A25) - (A27) it
can be shown that

_Pe, [ 47y \112
MM S
U,(s) = Te (A29
O T B e ’
and

2
Uys) = 2 (A30)

Pe (1 + 457,/Pe, )

Pe, and 7, can be calculated in a number of
ways"
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Michelsen and Qstergaard I. the moments
M, , and M, , are calculated, using a fixed s-
value, and are inserted in (A25) and (A26).
Now Pe; and 7; can be obtained from (A31)
and (A32)

Uo(Up + 2sU,)

Pey = —MM — A3l
€ Uy +sU; ( )
and
—Uy U,
Tg= (A32)
UO + 23U1

Michelsen and Qstergaard II: the moments
M, ,, M, , and M, , are calculated at a fixed
s-value, Peg and 7, can be calculated from
eqns. (A26), (A27) and (A33), (A34):

ZU% 28U2 1/2
Pe, = (1 - ) (A33)
U, U,
3U2 —1/2
=y, (1 —2 —) (A34)
U,

If s = 0, then the weighted moments are re-
duced to the moments around the origin:

2U2
Pe; =
U,
_ zz(Ml‘o)z Mz,o _ Ml 0) ] ;out
Mo,0/ (Moo Mo 0
and (A35)
M u
=y, =20 °f (A36)
Mo’o in

These expressions are the same as those
obtained by Aris [6].

Michelson and Qstergaard III (graphical or
numerical): the transfer function is calculated
for different values of s, and U, 1s evaluated
via (A25). Equation (A28) may be rearranged
to give
SR S B, (A37)

Uss) Pe, '*Ul(s)

A plot of 1/Uy(s) versus s/U3(s) should yield a
straight line with an intercept —1/Pe; and
slope 74.

Michelsen and Qstergaard IV (graphical or
numernical): M, , and M, , are determined for
different s-values, and U, evaluated from eqn.
(A26); (A29) is rearranged to give

1 1 N 4
e = — s
U? TE
A plot of 1/U%(s) versus s should give a straight
line with slope 4/r Pe, and intercept 1/r3.

A38
T¢Peg ( )

Method of Gunn [15] (graphical or
numerical): for small s-values the square root
m eqgn. (A28) may be approximated by

2
Pe, Pe;, 8\ Pe

(A39)

By mserting (A39) in (A28) and rearranging,
(A40) can be obtained.

1 T 3 2

—Up(s) =—1¢ + — s + O(s7) (40)
s Pe,

If Uy(s)/s is plotted against s, one should
obtain a straight line on the interval 0 <
47.5/Pe, < 0.2 - 0.4 wath slope 72/Pe, and
Intercept —r,.

APPENDIX B

Fit criteria and fit intervals

The best fit was accomplished if the sum of
the least squares between data and model was
minimal. The mathematical formulation of
this criterion is given by the minimum of the
goal functions (B1 - B3):

time domain

> (/Y — Fo 2] (B1)
s-domain
E [F(s) — Foxp(s)]1? (B2)

frequency domain

N
21‘, [(Repgw) — Res,, jw)? +

+ (Imp(50) — Imp )] (B3)

The model parameters for Michelsen and
(stergaard’s methods I and IT have been de-
termined at s = 1/7, [13]. Michelsen and
@stergaard [13] showed by a noise analysis that



the value of s for the third and the fourth
methods should lie 1n the interval

0.4 3

—<s< —

Te Tg

The w-value always ranged from zero to the
frequency at which the experimental transfer
function began to oscillate.

NOMENCLATURE

a, surface area of packing per cubic
metre of column, m2/m3

A constant defined 1n egn. (A20)

B constant defined 1n (A21)

Bo Bodenstein number defined 1n eqns.
(2) and (3)

C normalized concentration

d, normal packing diameter, m

D dispersion coefficient, m?/s

f(6)  signal at first detection point for gas-
phase RTD experiments

F(t/r,) response on a delta function (eqn.
(Al11))

F(t/r;) transfer function in time domain
(eqn. (A16))

F(s) transfer function in s domain defined
by eqn. (4)

F(w) transfer function in frequency domain
defined by eqn. (5)

Ga  (=d3gp}/n?)Galileo number for hquid
phase of gas—liquid systems

Imp  1maginary part of complex transfer
function (eqn. (A19))

v—1

L column length, m

L, distance of first measuring pomnt from
Inlet, m

L, distance of second measuring point

from mlet, m

M, , nth weighted moment defined in egn.
(A9)

N number of Pall rings per cubic metre
of column, m™3

Pe, (= Bog[L, — L4]/dy), Peclet number
for gas phase

Pe, (= Bo,L/d,), Peclet number for sohd
phase

Re; real part of complex transfer function
(eqn. (A18))

Rep, (= prLurdy/nL), Reynolds number for
hquid phase (gas-liquid systems)

s Laplace parameter, s!

27

S solid mass flux, kg/m? s

t time, s

u superficial velocity, m/s

U, function defined by eqn. (6)

U, function defined by eqn. (7), s
U, function defined by eqn. (8), s2

Greek symbols

B hold-up of solid phase (volume of
particles/volume of column)

5 wall thickness of ring, m

5(8) perfect delta function

&, nth root of transcendental function
(eqn. (A12))

€p void fraction of packing

epart  vold fraction of particle

3 dimensionless length coordinate

Ppart  Darticle density, kg/m?

7 mean residence time, s

6 dimensionless time (6 = t/7)

w frequency, s !

Subscripts

calc  calculated

exp experimental

g gas phase

L hiquid phase of gas—liquid systems
5 solid phase

Superscripts
- Laplace transformed variable
- Fourier transformed variable

REFERENCES

1 AW M. Roesand W P M van Swaai), Chem

Eng J, 17(1979) 81

T Miyauch:1 and T Vermeulen, Ind Eng. Chem

Fundam., 2 (1963) 113

3 J C Mecklenburg and 8 Hartland, The Theory of

Backmixing, Wiley-Interscience, London, 1975.

A W M.Roesand W P M van Swaai, Chem

Eng J, 18 (1979) 29

5 O Levenspiel, Chemical Reaction Engineering,

2nd edn , Wiley, New York, 1972

R Aris, Chem Eng Sci, 9 (1959) 9.

K. B Bischoff, Chem Eng Sci, 12 (1960) 69.

K B Bischoff, Can J Chem Eng, 41 (1963)

129

9 T. Otake and E, Kunguta, Kagaku Kogaku, 22

(1958) 144

10 C Y. Wen and L T. Fan, Models for Flow
Systems and Chemical Reactors, Marcel Dekker,
New York, 1975

[ 3]

"8

o B .}



28

11
12
13
14
15

16
17

E Th van der Laan, Chem Eng. Sci, 7 (1958)
187

Y P Abbiand D J Gunn, Trans Inst Chem
Eng, 5 (1976) 225

M L Michelsen and K (stergaard, Chem Eng
Sci, 25 (1970) 583

W C Clements, Chem Eng Sci, 29 (1969) 957
D J Gunn, Chem Eng Sci, 25 (1970) 56

G Geldart, Powder Technol , 7 (1973) 285

W Bohle and W P M van Swaayj, Proc 2nd Int
Conf Fluid, Cambridge Univ Press, 1978

18 A W M Roes, Thesis, Twente Unmiversity of
Technology, 1978

19 W P M van Swaa), Thesis, Eindhoven University
of Technology, 1967

20 V A Sater and O Levenspiel, Ind Eng Chem
Fundam , 5 (1966) 144

21 F DeMarniaandR R. White, AICRE J, 6 (1960)473.

22 W P M van Swaai), J C Charpentier and J
Villermaux, Chem Eng Sci, 24 (1969) 1083

23 I A Furzerand R W Michell, AICRE J, 16
(1970) 380



