
The gradiometer of  a SQUID-system for measuring very small biomagnetic signals should 
be made as insensitive as possible to the much larger uniform background fields. The 
balance of a gradiometer can be improved considerably by modifying the effective area 
of  the gradiometer loops by a system of small adjustable superconducting plates. 

This paper is intended as an aid for designing such a balancing system. We calculated the 
effective area of a gradiometer loop perpendicular to a rectangular or parallel to a circular 
plate. The paper contains graphs showing how large the plates have to be and where they 
must be placed. 

The calculations show that for accurate balancing the distance of a plate to the wire of  a 
loop must be large and that the plates must be as small as possible. 

The design of a system of adjustable superconducting 
plates for balancing a gradiometer 
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In a SQUID-magnetometer system external magnetic fields 
are coupled into the SQUID by a fluxtransformerJ If the 
magnetic fields to be measured are much weaker than other 
low gradient ambient fields, eg in our case of magnetocardio- 
graphy in an unshielded environment, this fluxtransformer 
is usually a first or second order gradiometer 2 as sketched in 
Fig. 1. When the gradiometer is ideal only inhomogeneous 
fields such as that of the human heart induce a current in the 
fluxtransformer and therefore give a flux in the SQUID. The 
total magnetic flux through all loops due to a homogeneous 
field should be zero, so that these fields are not measured. 

However any real gradiometer will always be more or less 
sensitive to uniform fields too. This imbalance can be caused 
by imperfect alignment and non-identical areas of the pickup 
loops. Magnetic fields can be picked up by the wires that 
connect the loops. Even a perfectly balanced gradiometer 
will respond to a homogeneous field when this is distorted 
by a superconducting body or by eddy-currents in normal 
metals, for example of the insulation of the cryostat. 

There are various ways to reduce the sensitivity of a gradio- 
meter to uniform magnetic fields. One of these methods is 
to change the effective area of the gradiometer loops by 
small adjustable superconducting plates, a This paper deals 
with the design of such a balancing system. 

Improving gradiometer balance with superconducting 
plates 

Because magnetic fields are expelled from superconducting 
bodies (the Meissner-effect) a superconducting plate will 
distort a magnetic field. There are two ways to use this 
effect for adjusting the effective area of a gradiometer loop: 
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Fig. 1. a - first order gradiometer; b -- second order gradiometer 

A plate parallel to the plane of the loop reduces its 
effective area to magnetic fields perpendicular to the 
loop (Fig. 2) 

A superconducting plate perpendicular to the plane of 
the loop increases its effective area to fields parallel to 
the loop (Fig. 3). 

The system of superconducting plates for balancing the 
gradiometer must be designed according to the following 
requirements. By properly adjusting the plates it must be 
possible to change the flux through the gradiometer loops 
in such a way, that the gradiometer becomes insensitive to 
uniform fields. The displacement of a plate that is required 
for a given flux-change through one of the loops must be as 
large as possible. This minimizes the effect of small vibrations 
of the plates and allows accurate balancing of the gradio- 
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Fig. 2 Reduct ion of  the effect ive area o f  a gradiometer loop to 
fields perpendicular to the loop by a superconduct ing plate 
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Fig. 3 Increasing the effective area o f  a loop to fields parallel to 
the loop by a - one or b - two rectangular superconduct ing plates, 
c - simplified two dimensional model of the loop and the plate 

meter. It is desired that the system is constructed in such a 
way, that balancing the gradiometer in one direction changes 
the balance in perpendicular directions as little as possible. 

Designing a system of small balancing plates according to 
these requirements implies answering the following questions: 

how many plates are required? 

what size and shape of plate should be chosen? 

how should the plates relate to the gradiometer loops? 

how far and in which direction have the plates to be moved 
in order to obtain the desired compensating effect? 

In order to obtain an optimal configuration of balancing 
plates it will be necessary to calculate the change of the 
effective area of a circular loop of wire due to the presence 
of a superconducting plate as a function of its position a n d  

size. These calculations have to be made for different shapes 
of the plate and for various directions of the magnetic field. 
But some of these questions can be answered without 
extensive calculations. This is done in the next section. 

Number and shape of the plates 

The imbalance of a gradiometer can be represented by a 
vector S, defined in such a way that the total magnetic 
flux through the gradiometer due to a uniform magnetic 
field B is given by: 

r b = S . B  

The gradiometer is insensitive to any uniform magnetic 
field perpendicular to the imbalance-vector S so that in 
principle it only has to be balanced in the direction of,~. 

In practice it is more convenient to decompose S into two or 
three orthogonal components and to use separate balancing 
plates for each component. It is obvious to choose one 
component along the axis of the gradiometer (Z-coordinate) 
and to balance Sz with a small plate parallel to one of the 
gradiometer loops (Fig. 2). It is to be expected that the 
influence of small vibrations of a plate will decrease on 
increasing its distance to the wire of the gradiometer. There- 
fore the best position for the plate for balancing S z seems 
to be on the axis of the gradiometer. Because of the symmetry 
its most convenient shape is then a circular disc; this allows 
a rotation of the plate during the balancing procedure, 
another advantage is that its compensating effect can be 
calculated exactly. 

The radial imbalance can be compensated by one or two 
rectangular plates perpendicular to one of the loops. One 
plate is sufficient if it can be moved independently in two 
directions: along the circumference of the gradiometer loop 
to place it perpendicular to SR and parallel to itself to 
adjust its compensating effect (Fig. 3a). If  two separate 
plates are used each plate needs to be adjustable in only one 
direction (Fig. 3b). Although there is a difference in 
balancing procedure both methods may give the same 
improvement in gradiometer balance. 

More detailed calculations of the effect of the plates are 
now required. These calculations are presented in the next 
sections. 

Mathematical model of the balancing plates 

First some simplifying assumptions are necessary: 

1. The plates are considered to be infinitely thin, so that 
only magnetic fields perpendicular to the plates are 
distorted. 

2. A superconducting plate is represented by an ideally 
diamagnetic body Oar = 0). The magnetic field in the 
neighbourhood of a plate can then be calculated by 
solving Maxwell's equations. 

3. We assume, that there are no free currents, that the 
fields change quasistatically and that outside the 
superconducting plates/a r = 1. Under these assump- 
tions MaxweU's equations reduce to: 

div/~ = 0 and 

rot B = 0 (1) 

These equations imply that/~ = - grad U, where U is a scalar 
potential, that satisfies Laplace's equation: 

V~U = 0 (2) 

As the magnetic field cannot penetrate the superconducting 
plate the normal component of B must vanish on its surface: 

aU 
B n  - - 0 ( 3 )  

On 
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The boundary condition at infinity is, that the magnetic 
field is uniform. If for example the undistorted field is along 
the x-coordinate this is equivalent to: 

U(oo) = - B~ x (4) 

The magnetic field-pattern for a given plate can be calculated 
if the corresponding boundary-value problem (2), (3), (4) is 
solved. Note that the velocity-potential that describes the 
distortion by some rigid obstacle of a uniform, incompressible 
and non-viscous fluid flow obeys exactly the same equations. 

We now consider separately a gradiometer loop with a per- 
pendicular rectangular plate and with a parallel circular plate. 
A uniform field B= is perpendicular to the plate and the 
magnetic flux through the loop has to be calculated as a 
function of the position and the size of the plate. 

The rectangular plate 
The plate is assumed to be small compared to a gradiometer 
loop. The part of the wire near the plate can then be repre- 
sented by a straight line parallel to the plate, bounding a 
semi-infinite half plane (Fig. 3c). Furthermore we assume 
that the length of the rectangular plate is much larger than 
its height, so that end effects can be neglected. This makes 
the field pattern near the plate two-dimensional and the 
plate can be considered as a piece of an infinitely long strip. 

Fig. 4 shows a cross-section of the plate and the idealized 
gradiometer loop. The height of the plate is 4b. The middle 
of the plate is situated at the origin of the coordinate system 
and the position of the wire of the loop is (xl,yO. 

The behaviour of the magnetic field near the plate can be 
derived from the rather simple field pattern of a long super- 
conducting cylinder in a uniform field by a conformal trans- 
formation .4 

The transformation yields the components of/~ along the 
coordinate axes of the plate x and y as a function of the old 
cylindrical coordinates p and O. 

Bx = B= ( p4 -  b 4) (5) 
(p2 _ b2)2 + 4b2o 2 cos20 

- 2B=b2p2 sin 20 
By (/92 _ b2)2 "1- 4b2p2cos20 (6) 

Fig. 4 Cross section of the plate of height 4b and the idealized 
loop in a uniform magnetic field parallel to the loop 

The coordinates x andy are related to r and 0 by: 

  )sinO (8) 

It is very complicated to express Bx and By explicitely as 
functions o fx  a m y ,  but this is not necessary, since we are 
only interested in the magnetic flux through the (idealized) 
gradiometer loop perpendicular to the plate (Fig. 4). For a 
plate of length I this flux is given by: 

f 
~ 

Oy(Xbyl) = l By(Xl,yl)dx 
X=X1 

f 
~ 

= l By(p,O(p)) dx 
P=P, ~ dp (9) 

Where Pl is the solution of (7) and (8) for xl  and Yx and 0 is 
related to p by (8) 

sin0 - PYl (10) 
p2 + b 2 

Differentiation to p of (7) and (8) (with y = Y0 yields: 

p2_ b 2 dO dx _ p2+b2 cos 0 sin O - -  
dp p2 p dp 

p2 b 2 b 2 dO 
0 - - sinO +P2+ c o s O - -  

p2 p dp 

dO 
After eliminating d--r we obtain: 

dx _ p2 + b2 
dp p2 

cos 0 
+ C ° 2 -  b2) 2 sin20 

p2(p2+b2) COS 0 

which can be rewritten as: 

dx _ (p2_ b2)2 + 4b2p2cos2 0 

dp p2(p2 + b 2)cos O 
(11) 

This is, together with (6) substituted into (9): 

f ~o i - 4 B  ~b 2sin O ~by(Xx,yl) = 1 b2 do 02+ 

With (10) the factor sin 0 is eliminated: 

¢by(Xl,yl) = -4lB.b2yl f 7 P , (p2+b2)2 dp 

From which follows: 

- -  2B~ob2lyl 
qby(Xl,Yl) - p~ + b2 (12) 
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Effective area of  a loop with a rectangular plate, fields 
parallel to the loop as a funct ion of  the posit ion of the plate for  a 
few values of the height of  the plate 4b: a -- b/x I = 0.22; b -- 0.43; 
c -- 0.65; d - 0.87 
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Fig. 6 Maximum effective area to fields parallel to the loop and 
the vertical posit ion of  the rectangular plate at which this max imum 
occurs as a funct ion of the height of  the plate 4b 

The calculations have been checked experimentally and the 
measurements agree very well with the calculations. Due to 
the end effects the effective length of the plate is somewhat 
smaller than its real length, the difference being in the order 
of the height of the plate. If this effective length is substituted 
into (13) the calculations o f  A el f agree within 10% with 
measured data. 

T h e  circular  p la te  

We considered a disc of radius, a, in the origin of the co- 
ordinate system and at a distance zl parallel to this disc, a 
circular loop of radius rl. A uniform field B** is perpendicular 
to the disc along the z-axis (Fig. 7). 

The derivation of the potential U that describes the distortion 
of a uniform field by a superconducting disc of  radius a is 
rather complicated. This calculation is carried out by Kochin s 
and will not be presented in this paper. The result is: 

where v is the positive root of: 

1.2 Z 2  
- -  + - -  : a 2 ( 1 5 )  
1 + t, 2 u 2 

The component of the magnetic field along the z-axis is: 

Bz = Bo. + ABz 

Where p~ is the solution of (7) and (8) for the given position 
(xbyl) of the loop relative to the plate. 

The effect of the plate can also be represented by an effective 
area A eft defined as I~y(Xl,Y0 I/B=: 

_ 2b21y2 
Aeff(xbYl) p~ + b 2 (13) 

Fig. 5 shows the behaviour of Aeff as a function o fy l  for a 
few values of b. Each value ofA eff between zero and a 
certain maximum can be obtained for two values of yl.  In a 
practical balancing system only the larger values should be 
used because then aAeff/ay is much smaller (requirement 2). 

For these values of Y1 the effect of  small variations in xl is 
also relatively small. 

In Fig. 6 the maximum effective area which may be attained 
and the value of y l  at which this maximum occurs are given 
as a function of plate dimensions. 

Fig. 7 Cross-section of  the circular plate of radius a at a distance 
z I parallel to a loop of  radius r I in a uni form magnetic field 
perpendicular to the loop 
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where 

ABz 
2Bo. 0 

it 0z 

_ 2B~ (1 

g P 

a,ccotv) 
- - a r c c o t v -  v2(v 2 + 1) (16) 

The derivative Ov/Oz is calculated by differentiating (1 5) 
with respect to v at constant r: 

Ov _ 1/Oz _ zv(1 + v2) 2 

0z 0v z2(1 +/)2)2 +/j4r2 

This is substituted into (16) 

AB z _ 2Bo. 1 - [ a r c c o t v +  z ( l + v  2) ] 
71" v [ z2p(1 + ~2~-vsr2J 

=28.[ a2v 3 ] 
/ t  [ z ~  + a - - - ~ v  4 a r c c o t  v 

The magnetic flux through a loop of  radius r~ parallel to the 
disc is: 

~ z  = (b** + Aq~z 

where ~ .  = rrB=r~ 

f 
r t  

and AtI' z = 2rt rABz(r ,  Zl)dr 
r = 0  

f /)l - -  • 
= 2zt r(v) ABz (v l zO  dr dr. (18) 

v o d v  

Vo and vl are the solutions of  (15) for r = 0 and r = r~. The 
derivative dr/dv is calculated by differentiating (I 5) with 
respect to v at constant z: 

0r _ v r +z2(1 + v 2) (19) 
Ov 1 "t" 1) 2 l'l) 3 

Now (17) and (19) are substitute d into (18): 

i [ ] Aq~z = 4B~ r 2 arccot v 
vo Z 2 + a21)4  " 

1 + v 2 r 2 v 3 

With (15) r 2 is eliminated and after reduction we obtain: 

Aqb z = 4B~ arccot v du 
v o 2 "1-a2/2 4 /)3 

= 4B~ a 2 -  a2v arccot v Vo ~ a r c c o t v  dv 

(20) 

This can readily be integrated to: 

(The primitive of  (20) vanishes for Vo; r2/a 2 - 1) 

With (15) this can be reduced to: 

A ~ z ( r b z , )  = 2B.o~ [ vv-~++l-arccotv, ] (21) 

where 

v,(rl, zl)  = I [z~ +r~ - a 2 +  [(z~+r~-a2)  2 

2 2 (22)  + 4a zl]'~]/2a 2 I '~ 

The effective area of the loop becomes: 

Aeef(r,,z,) = Ao+2r~[~. -arccotv,l (23) 
\Vl  +1 J 

where Ao = m~l andAeff  =A0 + Act =Ao + A~z 
B= 

Fig. 8 shows Aeff/A 0 a s  a function o f zdr~  for two values of 
a[pl. The graph shows that in order to minimize 0Aeff/az the 
disc should be made just large enough to attain the desired 
balancing effect. The maximum balancing effect is obtained 
for z = 0: 

r~ arc sin--rl (24) 
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Fig.  8 E f f e c t i v e  area o f  a l o o p  w i t h  a pa ra l l e l  c i r c u l a r  p l a t e  t o  a 
u n i f o r m  f i e l d  p e r p e n d i c u l a r  t o  the  l o o p  as a f u n c t i o n  o f  t he  d i s tance  
b e t w e e n  t he  l o o p  and  t h e  p l a t e  
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Fig. 9 Max imum change of  the effect ive area of  a circular loop 
due to a circular plate parallel to the loop as a funct ion of the size 
of the plate 

Fig. 9 shows z~U4ma x as a function ofrl/a. 

These equations have also been checked experimentally and 
the agreement between calculations and measurements is 
even better than for the rectangular plate. 

The experiments have been carried out with various 0.2- 
0.4 mm thick Niobium and lead discs. 

With a measuring accuracy of 5% no influence of the thick- 
ness or the material of the disc was observed. Even when the 

disc is larger than the loop, the measured data agree within 
measuring accuracy with the calculations. 

Conclusions 

It is possible to improve the balance of a nonideal gradio- 
meter by at least two orders of magnitude with a system of 
two or three small adjustable superconducting plates. 

The effect of such a plate can be calculated accurately and 
these calculations show, that the plates should be just large 
enough to obtain the desired balancing effect and that the 
rectangular plate should be at a large distance from the plane 
of the loop. 

The authors are very grateful to Prof Dr L.C. van der Marel 
and Mrs Drs J.J. Wevers-Henke for their helpful discussions 
and suggestions. 
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