
Stochastic Processes and their Applications 11 (1981) 261-271 
North-Holland Publishing Company 

u THE 

Erik A. van DOORN* 
Twente University of Technology, Enschede, The Netherlands 

Received 12 February 1979 
Revised 19 May 1980 

Conditions are obtained for the truncated birth-death process to be stochastically monotone in 
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1. Introduction and summary 

A stochastic process {X(t): t 20) with discrete state space S c R is 
stochastically increasing (decreasing) on the interval (tI, f2) iff for all 
tls71<72<t2 and all keS, 

said to be 
71, 72 with 

P{X(T~) 2 k}2 (+P{X(T~) 2 k} (1.1) 

with inequality for at least one k:. The purpose of this paper is to study the 

phenomenon of stochastic monotonicity in the context of birth-death processes 
on a finite state space. Such a truncated birth-death process is defined as a 
temporally homogeneous Markov process {X(t): t 2 0) with state space S = 
{-l,O, 1,. . ., N, N + l}, say, and transition probabilities 

which satisfy the conditions 

P-l.j(t) = fJ-1,j and PN+l,j(t) =&+f~, j&T, tiB0 (l.2) 
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(f5, is Kronecker’s delta) and, for i = 0, 1, . . . , N, 

Pi,i+l(t) = Ait +0(t) 

pi,i(t) = 1 -(;\i +/X+i)t+O(f) (1.3) 

p&i-l(t) =’ pit +0(t) 

as tJ0. Here Ai and bi, i = 0, 1, . . . , N, are non-negative constants: the birth and 
death rates. Throughout this paper we assume hi > 0 for i = 0, 1, . . l , N - 1, and 
p,i>Ofori=l,2 ,..., N. 

In Section 3 we will show that if luo = 0 or AN = 0, the truncated birth-death 
process is stochastically monotone in the long run for almost all initial distributions. 
The precise conditions are as follows. The process {X(t)} is stochastically increasing 
in the long run if ~0 = 0 and AN > 0, or, ~0 = AN = 0 and 1 qiQi(Xz) >O; it is 
stochastically decreasing in the long run if ~0 > 0 and AN = 0, or, ~0 = AN = (i and 
1: qiQi(xz) < 0, Here (qi) is the initial distribution, Qi, i = 0, 1, . . . , N, are the 
birth-death polynomials, and x2 is the second point in the spectrum of the process. 

In comparison to van Doorn [ 11, where birth-death processes with an infinite state 
space are analyzed, our approach is rather direct and we do not need the concept of 
dual processes and the sign variation diminishing property of the transition prob- 
ability matrix of the process, although it is feasible to obtain ou,r results by making use 
of them instead of the algebraic tools that are presently used. 

2. Preliminaries 

Using the conditions (1.2) and (1.3) and the Markovian nature of the truncated 
birth-death process, it is easy to show that the matrix P(r) = (pii(t i, j E S must 
satisfy the initial condition 

P(0) = I, (2.1) 

and the differential equations 

P’(t) = AP(t) (2.2) 
and 

P’(t) = P(t)A (2.31 

where A = (aij), i, j E S, is the matrix 

10 0 0 0 . . . l 

PO -@o+po) Ao 0 . . . . 

A=0 g1 

: 

-(h+pd A1 . . . l 

(2.4) . l . . . . 

. . . 0 JL&N -ON+~IU) 

. l . 0 0 0 
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It is well known (see, e.g., [6]) that the differential equations (2.2) and (2.3) (with 
initial condition (2.1)) have the same unique solution, which is a stochastic semi- 
group. That is, P(t), t 2 0, has the properties 

P(t + s) = P(t)P(s), (2.5) 

(P(t))ij a 0 (2.6) 
and 

P(t)1 = 1, cm 

1 denoting the column vector consisting of 1’s. It is clear now that the truncated 
birth-death process as introduced in Section 1 is a well-defined temporally homo- 
geneous Markov process on the state space S. 

According to Karlin [2, Theorem 3.3.41 the matrix p(t) = (pii(t i, j = 0, 1, . . . , IV, 

is strictly totally positive for t > 0, which means that each subdeterminant of I’(t), 
t > 0, is strictly positive. An immediate and useful consequence is 

pii > 09 DO, i,j=O,l,..., N. (2.8) 

Another consequence which will be used in Section 3 is 

det(P(r)) # 0, t 3 0. (2.9) 

Our next step is to give explicit expressions for the probabilities pii( i, i E S. From 
(2.1) and (2.3) one gets 

and 

J 
r 

pi,-l(t) = PO PiotT) dT9 i ~0, 19 l l 9 N (2.10) 
0 

J 
I 

pi,N+l(t) = AN piN(T) d7, i = 0,19 l 9 l 9 N- (2.11) 
0 

Thus our attention is focused on the probabilities pii( i, j = 0, 1, . . . , N. Several 
authors have indicated that these have spectral representations (Ledermann and 
Reuter [7], Kemperman [6], Keilson [4], Karlin and McGregor [3], and Rosenlund 
[9]). In what follows our notation will be essentially the same as Karlin and 
McGregor’s. The potential coefficients vi9 i = 0, 1, . . . 9 N, of {X(r)} are defined as 

m = 19 

AoAl A* 1-l 
ri =---•**- i=1,:2,...,N. 

PlPuZ Pi ' 

(2.12) 

Associated with the birth and death rates are also the polynomials Qi(s), 
i=O,l,... y N, defined by the recurrence relations 

,ioC?dd = ~Ao+~o-x)Qo(x), 
(2.13) 

AiQi+l(X) = (Ai +pi -X)Qi(X)-~iQi-l(X)9 i = 19 29 9 . l 9 N- 19 
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and the polynomial QN+I(sc) of degree N + 1, defined by 

Q~+l(x) = (AN +pN -X)C?N(X)-~~VQ~-~(X)~ (2.14) 

Karlin and McGregor [3] have shown t! st Q N+&) has iv + 1 distinct, real zeros 
xl<x*‘:’ ’ l I xN+l. They give the spectral representation Of pij( t), i, j = 0, 1, . . . , h&, 

as 

N+l 

pii = Vi 1 eXp(-Xkt)Qi(Xk)Qj(Xk)Pk 
k=l 

where 

(2.15) 

(2.16) 

It follows by induction that for x <: 0 

1 = Qo(x) < Ql(x) < l l l < c!N(x)- (2.17) 

As a consequence of (2.17) and (2.‘14) one has QN+I(x))A~?N(X)~O for X<O, 

whence we conclude x1 3 0. Considering that 

1 if i = 0, 
Q(O) =:: i - 1 (2.18) 

1-+() c 1lhkTk ifi=1,2 ,..., N, 
k-0 

so that 

N-l 

QN+~(~)=~.N+~oI~N+~NCLO c llbrk, 
k=O 

it follows that the next, more detailed statement holds. 

Lemma 2.1. (i) If po = AN = 0, fheut x1 = %a. 
(ii) If PO > 0 or AN > 0, then x1 > 0. 

Because of (2.1) and (2.15) one has 

N+l 

rj ,zl Qi(Xk)Qi(Xk)Pk =aijv i, j = 0, 1, l l l 9 Np (2.20) 

(2.19) 

which exhibits the fact that the polynomials Qi(x), i = 0, 1, . . . p IV; are orthogonal 
polynomials belonging to the mass distribution with masses Pk located at the AV + 1 
points xk. SzegG [ 1 l] gives in Chapter III of his book a number of general properties 
of orthogonal polynomials. Although these are formulated in terms of an infinite 
system, it is easily verified by adapting &ego’s proofs that the next two lemmas hold 
with regard to our finite system ( i(x), i =O,l,, . l 3 N}. 
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Lemma 2.2. The zeros of the polynomials Qi(x), i = I, 2, . . . , IV, are real and distinct. 
They are located in the interval (XI, XN+I). 

‘5 . . R 

i Q2,(xh, = 

Aiwi{Qf (x)Qi+l(X) - Q!+l (x)Qi(x)I if Osi<N, 

n=O m,{Qh(x)Q~+dx) - Q’ N+I <x,Qdx>) if i = N. 

Since XL_, Qi(x)n;, 3 Qg(x)wo = 1 for i = 0, 1, . . . , N, we have the following 

corollary. 

Corollary 2.4. 

Q:(xjQi+l(x)>Q:+l(x)Qi(X), i=O* 1, l l l 9 N* 
We note that as a consequence of this result the polynomials Qi(x) and Qi+l(,x) 

cat-mot have common zeros. 
In Section 3 we shall encounter the problem to determine whether the sequence 

Qoh), QI (4, . . . , QN(xk) is monotone or not, where k = 1 if po> 0 or AN => 0 
(exclusiveMy),andk=l,2,...,N+lif~o=AN = 0. The case k = 1 is covered by the 
next theorem. 

Theorem 2.5. (i) If 1~0 = AN = 0, then Qi(xl) = 1 for i = 0, L l l .y N. 
(ii) If ho = 0 and AN >O, then 1 = QO(XI) > Ql(xlJ> l l l > QN(XI) ‘0. 

(iii) If ,uo > 0 and AN =0, then QN(x~))QN-I(xI)>* l l >Qo(xd=l~ 

Proof. Considering Lemma 2.1 and (2.18), (i) is evident. 
To prove (ii) and (iii) we observe that xlQi(xl) > 0 if ~0) 0 or AN > 0, in view of 

Lemma 2.1, Lemma 2.2 and (2.18). Consequently, by (2.13), QlL(xl) < Qo(xl) = 1 if 
go = 0 and AN > 0, and (ii) subsequently follows by induction. Furthermore, by (2.14) 
one obtains IN > QN-~(x~) > 0 if ~0 > 0 and AN = 0, and then (iii) follows by 

induction, using (2.13). 

Let u = (~0, ~1,. . . , u,,.,)~ be a vector of real numbers. We denote by S(u) the 
number of sign changes in the sequence uo, ul, . - . , urn by deleting all zero terms, 
with the special convention S(0) = - 1,O denoting the vector consisting of 0’s. The 
solution of the aforementioned problem for the case ~0 = AN = 0 is now given by the 
next theorem. 

Theorem 2.6. Let PO= AN 

Ql(x), . . -9 

;O, OskSN and A(x)=(Ql(x)-Qdxi, Q&+- 

QN(x) - QN-l(x)) . (xk+& = k - 1. Moreover, the first 
component of A(xk+l) is negative if k > 0. 

As a consequence of Theorem 2,5(i) the above theorem is valid for k = 0. 
proof for k > 0 has been relegated to the appendix. 
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3. Stochastic monotonicity 

Let 4 = (+I, 40, . . . 9 a~, 4~+1)~ he 

birth-death process (X(t): t 2 0). To avoid inessential difficulties we will assume 

q-1 = av+l = 0. Furthermore let p,i(t) = P{X(t) = i Ia}, i = --Lo, . . . , N N + 1. Let 

p(t) = (p-l(t), pow, 9 l l 9 pdt), Plv+dtNT, thm 

pTtt) = qTP( t) and PT( t)l = qTl = 1. (3.1) 

We define the vector e(t) = (e-l(t), e&t), l . . , edt), eN+dt)JT for t 2 0 as 

eT(t) = (d/dt)pT(t)T (3.2) 

where T is the lower triangular matrix with entries tii = 1 ii i aj and tij = 0 otherwise. 
Then T-’ is given by (T-*)ij = 1 if i = j, (T-‘)ij = -1 if i = j + 1 and 0 otherwise. From 

(34, (2.2) and (2.5) we find 

eT(t+s)=qTP’(t+s)T=qTAP(t+s)T 

= qTAP(t)P(s)T = qTAP(t)TT-‘P(s)T = eT(t)T-‘P(s)T, 

whence 

e(t + s) = ( T-lP(s)T)Te(t). (3.3) 

From 15, Theorem 2.11 we obtain 

(T--l P(s) T)ij 3 0, (3.4) 

a result that we will use in the proof of the next lemma. Vector inequality is defined as 

a s b iff ai s bi for all i. 

Lemma 3.1. Let e ~0. In (aj and (b) below, the statements (i), (ii) and (iii) are 
equivalent. 
(a) (i) {X(t)} is stochastically increasing on (tl, tl+ 8). 

(ii) {X(t)} is stochastically increasing on (tl, 00). 
(iii) ~0 = 0, e(tl) 3 0 and e(tl) # Q. 

(I)) (i) {X(l)} is stochastically decreasing on (tl, tl+ E). 
(ii) {X(t)} is stochastically decreasing on (tl, 00). 

(iii) hnr = 0, e(t,) =G 0 and e(tl) # 0. 

roof. (a) Let {X(t)} be stochastically increasing on (tl, tl+ E). Then in particular, 

i.e., p-1(72) c p--l(n), for h s TIC 72 < tl + e, so that 
~0 = 0 in view of (210) and (2.8). Furthermore for j = -1,Q. . . , N, N + 1, 

ej(tl) = [(dldt)pT(t)‘~]~=,, = [(dldt) 

which is evidently non-negative. Finally e( for in view of (3.3) the opposite 

would imply equakty in (1 .l) for all k and 72 > 71 * tl. 



E.A. van Doom / Truncated birth-death process 3.67 

Now let ~0 = 0, e(tl) 20 and e(tl) # 0. As a consequence of (2.9) and (1.2), P(S), 
s 2 0, is regular, whence T-‘P(s)T is regular for s 2 0. T?(s) 7’ therefore has no 
zero rows. It follows by (3.3) and (3.4) that e(tl +s) 3 ande(rl+s)#Oforalls>& 
whent.. e {X(t)) is stochastically increasing on (tl, a~) and a fortiori on (tl, tl + E). 

(b) is proven similarly. 

Remark 3.2. The equivalence of (i) and (ii) in (a) and (b) is well known (see, 

e,g., DOI). 

Obviously we may write 

eT(t) = qTP’(t)T = qTP(t)AT =pT(t)AT, (3.5) 

so that in particular 

eT(0) = qTAT. (3.6) 

It follows with Lemma 3.1 that {X(t)} is stochastically increasing (decreasing) on the 
whole positive time axis iff qTAT # 0 and qTAT 2 (+O, a result that has been 
derived previously by Keilson and Kester [S, Theorem 3.41. In this paper we are 
concerned with the question whether {X(t)} is stochastically monotone in the long 
run or not. We proceed by observing that (3.51, (3.1) and (2.4) imply 

I 0 - ifj=-1, 

ej(tJ = 

-&oPo( a ifj = 0, 

Aj-lpi-l(t)-pjpj(t) ifj= Y,2,. 8 l 9 N, 
(3.7) 

(ANPN(f) ifj=N+I. 

Substitution of the spectral representation (2.15) of p&> in (3.7) yields for 

j=O,l,...,N 
N+l 

ej+I(t) = AjVj c exp(-Xkt)(Qi(Xk)-Qj+l(X&)} c” qiG)i(xk)= (3.8) 
k =! i=o 

Considering that the first non-zero term in the above sum becomes dominant 
as t grows, the next theorem is readily obtained as a result of Theorem 2.5 and 
Lemma 3.1. 

Theorem 3.3. (i) 1fp0> 0 and AN = 0, then (x(t)) is stochastically decreasing in the 

long tun. 
(ii) If po = 0 and hN > 0, then {X(t)} is stochastically increasing in the long rrm. 

In case go=AN =0 we have Qi(xl) = 1 for all i =O, 1,. . . , N by Theorem 2.5. 
Consequently (3.8) reduces to 

N f?j+l(t) = A jrj ,lZ, exP(-x k+lt){Qj(Xk+l)-Qj+l(Xk+l)} f ~~Q~~.~~~~~ i=o 



E.A. van Doom / Truncated birth-death process 

withj=O, 1,. . . , N. If z:, qiQi(xk+i) = 0 for k = 1,2,. . . , N (which can be shown 
to Qe the case iff the initial distribution is the stationary distribution), then e(t) = 0, so 
that the process is not stochastically monotone. Next suppose that x^, the smallest of 
the xk+l, k = ‘l, 2,. . , , N, Eor which CE, qiQi(Xk+l) # 0, exists. If 2 )x2, it follows 
from (3.9) and Theorem Z!.6 that for t sufficiently large (and hence for all t> 0 by 
Lemma 3.1) there will be components of e(t) with opposite sign, whence {X(t)} is 
nowhere stochastically monotone. If R = x2, however, then the non-zero components 
of e(t) will have the same sign for t sufficiently large by Theorem 2.6. Thus we have 
the next theorem. 

Theorem 3.4. Let b0 = AN = 0. 

69 {X(t)} is stochastically increasing in the long run iff CL, qiQi(x2) > 0. 
(ii) {X(t)} is stochastically decreasing in the long run iff CEO qiQi(x2) c 0. 

(iii) {X(t)} is nowhere stochastically monotone iff CL-, qiQi(x2) = 0. 

Appendix. Proof of Theorem 2.6 for k>O 

For the proof of Theorem 2.6 for k > 0 we will resort to Sturm’s theorem. Before 
we can state and apply this theorem, however, we need some preliminaries. 

Lmma A.1. Let u = (~0, ul, . I) . , u,)~, with m > 0, be a vector of real numbers with 
thdl properties (i) u. z 0, (ii) urn f 0 and (iii) if ui = 0 (O< i cm), then ui-lui+l < 0. 
Wtth fi = (Co, Cl,. a., ii,,,JT denoting the vector having components ui = (-1 )‘ui, one 
has S(u) + S(C) = m. 

Praof. Let X,,, (m B 0) be the set of vectors u = (uo, ul, . . . , u,)~ satisfying the 
conditions (i), (ii) and (iii), and let Prop(u), with u = (uo, ul, . . . , u,)~, denote the 
proposition S’(u) + S(G) = m. The proof is readily established by induction through 
verification of the next four statements, where u E Xm. 

(19 If m = 1, then Prop(u). 

(II? If m = 2 and ul = 0, then Prop(zr). 

m9 If m > 1 and u,-~ # 0 and (if v E X[,,+ then Prop(u)), then Prop(u). 

(IV) Ifm>2andu,_1= v E Xme2, then Prop(v)), then Prop(u). 

(0 
(ii) 

(iii) 

(iv9 

.2. A sequence of m + 1 > 1 polynomials P o, Pi, . . . , P,,, is called a 
ence on the interval (a, b) iff the following four conditions are satisfied: 

P,(x)#Ofor x =a, b. 
PO(x) P 0 for all x E [a, b]. 
If Pi(x)=0 (O<i<m) and ~[a, b], then Pi-l(x)Pi+l(X)<O. 
If PJAy)=O and rE[a, b], en P,&)P&(x)>O. 

The next theorem holds [8, Satz 71. 
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Theorem A.3. (Sturm’s theorem). If the sequence of polynomials PO, PI, . . . , P,,, is a 
Sturmian sequence on the interval (CE, b), then the number of zeros of P, in the interval 
(a, b) equals S( (a )) - S(P(b)) where (x) = (PO(X), PI(X), . , , ) P*(x)y. 

Wedefinethepolynomials Ui(x),i=O,l,**.,N,N+l,as 

Uo(x)= 1, 

Ui+l(x) = Aini(Qi+l(X)-Qi(Xj), i = 0, 1, l l l 3 N- 1, 61) 

u-iv+1(x) = mv(Q~+dx) -hvQ~(xh 

Since h$Ti =~i+l~i+l far i = 0, 1, . . . J&-l, we obtain from (2.13) and (2.14) the 
relations 

wx> = po-x9 

(A.2) 
Lpi+ I(X) = Ui(X)-xQi(X)wi, i = 1,2, * l l 9 N 

Lemma A.4. Let b >a >O be such that UN+l(a) ZO and UN+l(b) f 0, then the 
sequence of polynomiak UO(X), -rJ,(x), u*(x), . . . , (-l)N” UN+&) is a ~turmian 
sequence on the interval (a, b). 

Proof. The: cond,itions (i) and (ii) of Definition A.2 are clearly satisfied. 
To prove (iii) suppose that Ui(x^) = 0, with 0 < i s N and x E [a, b]. If i = I we have 

Q&C) = Qn(i) = 1, and from (A.2) it is seen that U*(f) = -x^Q1(i)n1, whence 

U&) Lr,(x^) = --fnl < 0, considering that x^ >a>O.Ifi>lwehaveQi(x^)=Qi-i(f), 
and from (A.2) we obtain Vi-l(f) = x^Qi-l(x^)ri-1 and Ui+l(x*) = -~Qi(x^)~i. 
Consequenthy, 

The latter is strictly negative since Qi(x^) = Qi-l(XI), and we know from Corollary 2.4 
that Qi and Qi-1 do not have common zeros. SO condition (iii) is satisfied. 

Finally suppose x^ E [CE, b] and U N+l(i)=O. From (A.l) we see &+I (f) = 
rN(Qh+, (2) --A&&)) and from (A.2), U~(x^)l = XIQN(.?)WN~ Furthermore 
Q;J(f)QN+l(g) > QN(x^)Qh+l(i?) by Corollary 2.4. Combining these results we have 

(-l)NUN($)(-l)N”Uh+, (i) = -.?QN(~)T$(QL+I (~)-~NQkCx^I) 

> -X^Q~(X^)~2N(QN+1(x^)-hNQN(XI)) = -xIQh(f)n~u~+~(f) = 0 

Hence condition (iv) is satisfied too. 

As a result of the above lemma, Sturm ;5 theorem and Lemma A.1 the next ~emrn~ 
holds. 
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Lemma AS. Let b > a > 0 and UN+I(x) # 0 for x = a, b. The number of zeros of 
UN+&x) in the interval (a, b) equals S(Utb))-WJ(a>) where V(x)= 

m(x), U,(x), l l l ? UN(X), UN+lW) 
T 

l 

We recall that we must determine the number of sign changes in the sequence 

Q~(x~+~) - Qo(xk+l), Qz(Xk+d - Qdmc+d, . . .y QN(~+I) - QN-da+d, 

i.e. the number of sign changes in the sequence 

&(x/(+1), U*hc+d, l l ’ 9 UNbk+l) 

for k > 0. A few more steps must be taken to settle the problem. 

Lemma A.6 If po z= 0, then S( U(E)) = 1 for E > 0 sufficiently small. 

Proof. We find from (A.2), 

Uo(O) = 1, &+1(O) = PO, i = 0, 1, . . . , AK (A.3) 

If p. = 0, then Q:(O)> Q:+,(O), i = 0, 1, . . . , N - 1, and M&(O)) Qk+@) by 
(2.18), (2.19) and Corollary 2.4. Consequently we obtain from (Al): 

Ifpo=OandO ‘g i s N, then U:+, (0) C 0. (A.4) 

The lemma follows readily from (A.3) and (A.4). 

Lemma A.7. Let hN = 0, then S( U(xk -E)) = S( U(xk)) for E > 0 sufficiently small. 

Proof. When AN = 0, then UN+I(X~) = w&?N+l(xk) = 0 by (A.l). We also have, by 
Lemma A.4 and Definition A.2, that UN(X,)U~+~ (xk) < 0. Consequently 

(I) uN(%c -&)UN+l(xk -&)a0 for OS& c&+1, say. 
If 0~ m s N and Um(xk) = 0, then, by Lemma A.4 and Definition A.2, 

U,_~(xdU~+dxd<O, whence 
(II@ &-1(Xk - e)U,+l(xk-+OforO~&<S,,say. 

Finally, if 0 c m c N and U,(xk) j (C) 0, then 

(IIb) U&& - e)>(C)0 for OGc <a,, say. 
(I), (IIa) and (IIb) are easily seen to imply that S(U(xk -n)) = S(U(xk)) for 

0<&<6=minS,. 

Now let ~0 = hfi, =0, O<k<N and E>O so small that E<x~, E<x~+I--xk, 

S(U(s)) = 1 and S(U(xk+l- E)) = S(U(xk+& Obviously the number of zeros of 
UN+~(X) = r&N+l(x) in the interval (E, xk+l -E) equals k - 1. Therefore Lemma 
A.5 implies S( U(xk+l - E))-S(U(E)) = k - 1. Thus, by the Lemmas A.6 and A.7, 

s(Uh+l)) = k. (A.9 

We further note that Uo(xk+l) = 1 and, by (A.2), U~(xk-+~) = -xk+l< 0, so that one of 
the k sign changes in (xk+i) occurs between Uo and U1. Finally UN+I(XR+I) = 
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mflN+l(~k+l) = 0. These observations and (AS) complete the proof of Theorem 2.6 

for k>O. 
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