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Optimal Linear Stochastic Control for 
Systems with Multiplicative Noise 

ARUNABHA BAGCHI AND TOM SCHILPEROORT 

Absbact-Tk stodmtic control problem of a linear dymudcal system 
with muttiplicative noise and with incomplete and hamuate -on, 
has been studied for quadraCic performance criterion. A suboptimal sob 
tion, which is &e best linear control based on the available obserwtions, 
hasbeenworkedoutwbentheobseRationsaregivenoalyatdiscretetime 
Pinta 

I. INTRODUCTION 

We obtain the  best linear  control law  for  a stochastic  control problem 
with linear dynamics, but with multiplicative  noise,  based on obsema- 
tions at discrete-time  points.  We  convert the problem into successive 
control  problems  where  the control  depends on the current observation 
only.  Mclane [l] solved this type of problem  using  the matrix maximum 
principle of Athans [2]. This gives explicit  control  laws for our problem, 
which  involves  successive  solutions of nonlinear boundary value  prob- 
lems. 

II. PROBLEM FORMULATION 

We consider  a  dynamical  system  described by 

d X , = A ( t ) X t d ? - B ( ? ) V , d i + D ( t , X t ) d ~ ~ t + E ( ? ) d w ~ t  (2.1) 

fl,=C(t)X,di+G(t,X,)dW3,+F(?)dW4,, 0 6 t 6 T .  (2.2) 

X,,, Yo are independent random vectors, X, is an n-dimensional state, V, 
is a  p-dimensional control, 7 is an m-dimensional  observation, and 

n n 

o ( t , X , ) =  ,X Di( t )Xi , ,G( t ,X , )=  x Gi(t)Xi,  

with X, being  the ith component of X, and Di(t)  and G,(t)  are 
appropriate dimensional matrices. e.,, i= 1,2,3,4, are  independent 
Brownian motions of dimensions di,  independent of X, and Yo. The 
matrices A(t ) ,  B( t ) ,  C ( t ) ,  E(t) ,  F ( t )  have appropriate dimensions. 

Let to=O and  t,=kT/N, k=l, . . . ,N, and  at these  time  points we 
observe  the  process 7. We can generalize to the case of nonequidistant 
t,‘s. For tE[tj-Ir t i ) , j= l , - . - ,N ,  let Yj-’=col  (I;,-,,..;,Yo). Let 
@i=(+i: [ti-], ti)XRmj+RP such that +Jt, y)=Z{I;k,(t)&,}.  We d e  
note by Qlj the  class of control q, where 

1- 1 i- 1 

qt=+i(t,Yi-’), t € [ t j - , , t i ) ,  +.Ea$. (2.3) 

A control V,, t E[O, TI, is now admisrible if 
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i) q=q,, r ~ [ t ~ - ~ . t ~ ) , j = l , . . . , ~  
ii) q,€%,,, j = l , . - .  , N* 

Denote this class  by Cia. We want to determine a control V, in this class 
that mirrimizes 

J ( U ) = E I S T ( X ~ Q ( t ) X f + U ; R ( r ) V , )  *+X+Q+T} 

with  “prime’’ denoting  transpose,  where the matrices Q(t )>O,  Q,>O, 
and R(t)>O &e. t .  

III. DETERMINATION OF TEE OPTIMAL LINEAR CONTROL 

Let 

and c= (Q,,nI,,), where Om, is the m Xn zero matrix and I,, is the 
m X m  identity matrix, so that T=FZ,. For j= l , . . - ,N ,  define  st+ 
chastic  processes 

z+( z, ) with z/-’= co1(Z,,-,,.-,Zo), t E [ t j _ I . t , ) .  
zj-I ’ 

(3.1) 

Define, for j =  1, - . . , N, matrices of dimensions p X ny’: 

K i ( ? ) = ( K ~ - l ( r ) , . . . , K g ( r ) ) .  (3  *2) 

Let~’beajx(j+l)blockmx(n+m)matriceswith(~~) , , ,+,=~and 
(c’),,=O for I#k+I, k = l , - - ‘ ,  j ;  I = l , . . - , j + l .  A control L$€9Lli 
can be expressed as q,=Ki(t)FiZj, so that,  using this control, Z; 1s the 
solution of 

d Z : ’ = ( A ~ ( t ) - B ~ ( t ) K ~ ( t ) ~ ~ ) Z j d i + a j ( t , Z : ) d ~  (3.3) 

where 

~=col(wl,,w~Y,,,w3,,w~Y,,), 

a’( t , Z / )  = x Dl( t ) (  Z/) , E’( I )  f: G{( t ) (  Z/)i F’( t )) 

and the matrices Ai(?), Bi( t ) ,  Di’<t), Ei(t) ,  Gj( t ) ,  Fj ( t )  have  easily 
identifiable  structure. 

( i 1 1  i- 1 

Define,fort€[tj  -l,ti),j=l,...,N, 

L ~ ( t , ~ j ) = ( = i ) ~ [ Q i ( t ) + ( c ‘ / ) ’ K i ( t ) ’ R ( ? ) K i ( t ) F i ] z i  (3.4) 

where Q’( t ) =block  diag  (Q( t ), 0,O) so that we have 

J = E  I‘k L:(s, Z,“)  ds+(ZF)’QyZg) (3.5) { k:l ,k+1 

with Qj=block diag (Q,,O,O). 
Let 

and 

Bellman’s principle of optimality  yields the following  procedure for 
determining  the  optimal umtrol sequence  U*l,,. * e ,  U.,. 
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1) Find UNf E%,,, for which J[ is a minimum. Use Jp to denote the 

2) Find,  successively, forj=(N- I),. * -, 1, qf€9Llj for which 
minimumvalueofJ~,j=l;.-,N. 

E{ Wi+.&‘+’)’} 

isaminimwn 

1,. . . , N, which are solutions of the backward equations 
To carry out these minimhtions, consider functions Vi ( r , z j ) ,  j =  

d ( t ,  z ’ ) d ( r ,  zj)‘- . (3.9) 
a ( d ) 2  a 2  1 

The system of equations (3.3, (3.8a),  (3.8b) has a  unique solution which 
follows from standard existence  results in partial differential equations 
with  slight  modification [3]. The It6 differentiation rule [4]  gives 

We  propose  a  solution of  (3.7) in the form 

vi(r,~i)=(zj)’Pi(t)Ei+Pk(r) (3.11) 

with P ~ ( I ) E H ( n + m X i + l ) , j = l , . . . , N ,  where H,, stands for the class of 
all n X n symmetric  matrices. 

Substituting (3.11) in (3.3, we get for j= 1,. . - , N, 

with the maps Aj and rj defined by 

(3.14) 

.1 

‘j . . (3.15a) 

(3.15b) 

I 

For p k ( t ) ,  we  have 

Finally, we have 

The determination of the optimal sequence of controls V i , .  . . , Gf can 
be  accomplished in two  stages. 

1) First, find K N ( t )  for which J$ given by  (3.17) is a minimum, where 
P g ( t )  andpg(r) are solutions of (3.12),  (3.14), and (3.16). Denote the 
optimal P$(r) andpi(r)  by PKN‘(t) andpP(1) .  

2) Suppose that optimal K“*(t) ,  n=j+ 1,. .. , N, has been determined. 
Determine K’(t) for which E(WL +e+’)*) given  by  (3.17) is a mini- 
mum,  where P i ( r )  andpj;(r) are solutions of  (3.12), (3.15a)-(3.15~), and 
(3.16). where in the  right-hand  sides of (3.15a)-(3.15~) we  use PP+l)*(ri), 
the optimal values of Pp+’)(ri) .  This is possible because E{Z<-l(Z(-l)’} 
is independent of the choice of K’(r) in [ti- 1, t j ) .  

The minimi.rrrtions may be carried out successively.  We briefly outline 
the minimi.rrction procedure for 1). The rest can be performed similarly. 
We  may  write 

Take P,”(r), r€[rN-, ,T) as the “state matrix” and KN(r )  as the “con- 
trol matrix” and define the HamiIronian 

n 

M ( t , S ) =  x Si,Di. 
i, j -  1 

We see that the optimal controls Kj*( t )  need solutions of nonlinear 
two-point boundary value problems,j=N;-. , l .  

IV. CONCLUSION 
We indicated a solution technique for obtaining the optimal linear 

stochastic control problem for dynamical  systems  with  multiplicative 
noise and with quadratic criterion,  where  observations are available only 
at discrete-time  points. The details may be found in [5]. 
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for feedback, the suboptimal controller may be specified as 

a o + a l s + a 2 s 2 + . - -  + ~ , - ~ s ~ - ~ + a , , s ~  

;= -kTx (7) 

Suboptimal Control Using Pade 
Approximation Techniques 

where i,=O if x,(t) is not available for feedback.  Assuming that such a 
suboptimal controller  exists, i.e., system (1) may be stabilized  by the 
control law 0, the overall transfer function becomes 

JAYANTA PAL f(s)=cT[sI-A+biq-'b 

Absbclct-A method is given for the. design of saboptimal coatrdlers 
for single-input single-output systems using partial state feedback 'Ibis is 
based on the Pade approximation technique for model order reductioa. 

INTRODUC~ON 

One of the drawbacks of optimal control theory is that it requires 
feedback from all the state variables that are defined to describe the 
dynamics of the plant. Unfortunately, the whole state vector is seldom 
available for measurement.  One alternative is to reconstruct the missing 
states by  using a Kalman filter or an observer. This introduces high-order 
dynamics in the control function and leads to a  complicated and costly 
controller. This has motivated the design of incomplete state feedback 
suboptimal control  laws  using  only the measurable states [I], [Z]. 

In this paper  a  method for suboptimal controller design  using  mea- 
surable states for feedback is proposed. The suboptimal controller is 
derived  from the "optimal" one by introducing constraints in the control 
structure. The Pade approximation technique for model order reduction 
[3]  is used for arriving at the controller parameters. 

For the  choice of control laws in (3) and 0, the numerator polynomials 
in (5) and (8) will be the same. 4 ( j = O ,  1,- . . , n) will contain the 
unknown feedback parameters in LT. The incomplete state feedback 
problem is concerned with finding the elements of i ron  some basis. For 
the suboptimal system  response to be favorably comparable with that of 
the optimal one, the function in (8) should approximate T*(s) in (5) in 
some sense. The design technique is to use the Pad? approximation 
method-to  find  the unknown controller parameters in k? 

For T(s) to approximate P ( s )  in the Pade sense, we have [3] 

bo=f,do 

bl =fad, +fIdO 

b2=fod,+f,d,  +fzdo 

................... 
bm=f0dm+fldm-l+f~dm-2+... +fmdo 

The  basic  optimal control problem  may be stated as follows.  Consider 
the nth  order single-input  single-utput linear dynamic system  described 

.................................... 
O=fod~+n+fldm+n-I+...  +f.-1dm+1+fndm. (9) 

bY 

;=Ax( t )+bu( t )  

y=cTx(r )  

with the quadratic cost function 

Assuming that u state _variables (u < n )  are available for feedback, the u 
unknown elements of kT can be explicitly determined by solving the first 
u linear equations in (9). The method is illustrated by the following 

(1) example. 

EXAMPLE 

J = ~ " { ~ ' ( l ) Q x ( r ) + n , ~ ( r ) ) d r  0 (2) The  voltage regulator example [4] is given  by (I), where 

where Q is an ( n x n )  positive  semidefinite  matrix and r is a  positive 
weight. A ,  b, and c are matrices of appropriate dimensions. It is well A = [  
known that the  optimal  feedback control law is a linear combination of 
the state variables 0.0 0.0 0.0 0.0 - 10.0 !!I -0.2 0.5 0.0 0.0 

0.0 -0.5 1.6 0.0 
0.0 0.0 -14.29 85.715 
0.0 0.0 0.0 -25.0 75 .O 

u ( r ) =  -r-'bTPx=  -kTx (3) b=[0.0 0.0 0.0 0.0 30.OIT. 

where P is a symmetric  positive definite matrix whose  elements  may be aoosing Q=~g{LO,O,O,O}; and r=  1, in (2), on solving (4) we get 
found by  solving the. matrix Riccati equation 

kT=-[0.9245 0.1711  0.0161 0.0492 026431. 
ATP+fA-Pbr-'bTP+Q=0. 

(4) Using the above kr, we have T*(s)=432.0/a(s), where 

Manuscript received June 29. 1979; revised April 9, 1980. a(s)=432.05518+169.89431s+33.364525s2 
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