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Optimal Linear Stochastic Control for
Systems with Multiplicative Noise

ARUNABHA BAGCHI ano TOM SCHILPEROORT

Abstract—The stochastic control problem of a linear dynamical system
with multiplicative noise and with incomplete and inaccurate observation,
has been studied for quadratic performance criterion. A suboptimal solu-
tion, which is the best linear control based on the available observations,
has been worked out when the observations are given only at discrete-time
points,

I. INTRODUCTION

We obtain the best linear control law for a stochastic control problem
with linear dynamics, but with multiplicative noise, based on observa-
tions at discrete-time points. We convert the problem into successive
control problems where the control depends on the current observation
only. Mclane [1] solved this type of problem using the matrix maximum
principle of Athans [2). This gives explicit control laws for our problem,
which involves successive solutions of nonlinear boundary value prob-
lems.

II. PROBLEM FORMULATION

We consider a dynamical system described by

dX,=A(1) X, dt—B()U,dt+ D(t, X,) dW,,+ E(t) dW,, 2.1)
dY,=C()X,dt+G(t, X)) dW,,+ F(1)dW,,, 0<t<T. (22)

Xy, Yy are independent random vectors, X, is an n-dimensional state, U,
is a p-dimensional control, ¥; is an m-dimensional observation, and

D(t, X, )= é:l D)X, G(t, X,)= 'él G(DX,

with X, being the ith component of X, and D,(¢) and G;(t) are
appropriate dimensional matrices. W, i=1,2,3,4, are independent
Brownian motions of dimensions d4;, independent of X, and ¥,. The
matrices A(¢), B(t), C(¢), E(2), F(¢) have appropriate dimensions.

Let t,=0 and ¢, =kT/N, k=1,---, N, and at these time points we
observe the process ¥,. We can generalize to the case of nonequidistant
ty's. For t€[4;_y, 1), j=1,--, N, let ¥/~ !=col (Y, .+, Yp). Let
®f={¢;: [#;1,2,)XR™/R" such that ¢,(1, y)=Z{Zk(1)Y, }. We de-
note by AU,; the class of control U;, where
1€ t,-1.1)), €.

Uy=o(1, Y71, (2.3)

A control U, t€[0, T), is now admissible if
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) U=U, t€[t_n4),j=1--,N
i) U, €Uy, Jj=1,--,N.

Denote this class by @;,. We want to determine a control U, in this class
that minimi

30)=£{ [T X+ UROU) dr+ X3, |

with “prime” denoting transpose, where the matrices Q(#) >0, Q;>0,
and R(7)>0 ae. .

III. DETERMINATION OF THE OPTIMAL LINEAR CONTROL

Let
X,
Zt—(y;)l tE[O,T]

and C=(0,,,1pym) Where 0,,, is the mXn zero matrix and 1,,, is the
mXm identity matrix, so that ¥,=CZ,. For j=1,---, N, define sto-
chastic processes

. Z R _
Z,J=(Zj:l), with Z/"'=col(Z, _,," -, Z,), IE[tj_,,tj).
3.1
Define, for j=1,---, N, matrices of dimensions p X ny:
KA =(KL_ (1), Kf(D))- 32)
Let T/ be a jx (ji+ 1) block mx (n+m) matrices with (C/),, ,,,=Cand
(C/)y=0 for Is£k+1, k=1,-++, j; I=1,-+-, j+1. A control U, €,
can be expressed as U, = K/(t)C/Z], so that, using this control, Z7 is the
solution of )
dzj=(4%(t)- B ()KX1)C)) Z] dt+o/(t, Z])dW,  (3.3)
where
W,=col(Wy,, Wy, , Wy,, Wa,),
n n
o1, 20)=( 2, DHeX 2] B0) 3, 6H020), P
= ™

and the matrices 47(f), B/(t), D/(t), EX(t), G/(t), F/(t) have easily
identifiable structure.
Define, for t€[t;_1,2;), j=1--, N,
Li(1, )= (Y[ @)+ (EYKaYRMK(T ]2 (34)

where Q/(¢)=Dblock diag (Q(),0,0) so that we have

N
J=E{ kz f’* LE(s, Zf)d9+(Z’TV)’Q}VZ¥} 3.5)
=141
with @f=block diag (¢;,0,0).
Let
i !
sos 2 [ k(2 ar(zyO)E| 69
3 Ad S
and

t,
W},‘=ft % LE(s, Z¥) ds.
k—1

Bellman’s principle of optimality yields the following procedure for
determining the optimal control sequence U*,,,---,U*y,.
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1) Find Uy, €U, for which J2 is a minimum. Use J§* to denote the
minimum value of J£, j=1,---, N.
2) Find, successively, for Jj= (N -1,

E{ W}+Jy+l)'}

U, €U, ; for which

9 ‘jt

is a minimum.
To carry out these minimizations, consider functions V{(t, z4), j=
1,---, N, which are solutions of the backward equations

E(L, 27)

o +24(2, 22t 7)Y+ LE(t, 27) =0

(1,2 E[ 1,

with the final conditions, for j=N,

b L)XRHMUED (37)
VT, :My=(Nygf" (3.8a)
and for j=N-1,---,1,
Vé(tj,zj)=V£+1(tJ-,z-",zj)
where the differential generator £4(1, z/), 2/ @ R*™U+ D is defined by

Bf;(r.zf)=(zf)'[Af(z)—Bf(r)Kf(:)c‘f]%

(3.8b)

+1ip a/(t,27)o/(t, 7Y

) 3.9
3 Y (39

The system of equations (3.7), (3.8a), (3.8b) has a unique solution which
follows from standard existence results in partial differential equations
with slight modification {3}. The It6 differentiation rule [4] gives

J=E{ Vi{y-n2Z).)},  j=l--, N (3.10)
We propose a solution of (3.7) in the form
Vi, 27y =(27Y PE()2/ +pk (1) (.11

with PL()EH 4 myj+1y» J=1,-+ -+ N, where H,, stands for the class of

all nX» symmetric matrices.
Substituting (3.11) in (3.7), we get for j=1,---, N,
P+ Pi( A4/ — BIKIC})+(A/— B/KCIY Pf+ Q)
+89(2, PE)+TY(z, PL)+(C/)(K/YRKIT/=0 (3.12)

with the maps A’ and T defined by

&,T/ [; 1 )X Hpn s i iy Hin e my 1y

[Af(r,M)l.-k={“[”r’(’)’M"f(‘)l; hk=leon (g3
0  otherwise
[rf<z,M>1,»,,={“[G!(t)'MGt‘(r)]; k=l
0 otherwise.
The final conditions are
PE(N=0f 3.19)
and for j=1,-+-,N—1,
Z
Zj P
(25, 1 20) PE(;) =(z;z;- 2o)p§* 1(1,) . (3.159)
Zg z.o

The last condition, after simple calculation, yields
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[PE(D], = éll él [PEr ()], (3.15b)
[P )] [ )= Z [,
=2, ,(n+m)(j+1) (3.15¢)
[Pé'(t] [P/{(f)] =[5 ) Lar i
k,1=2,--,(n+m)(j+1). (3.16)
For pf(t), we have
Ph()==[w{ EEIYP{(0) ) +u{ F(FIYPi(D)} ].
pk(1,)=0. (3.17)
Finally, we have

E(wi+agt Y =u] Pi(;_)E{ 2] (21 ) ]+pk(2,-). (3.18)
The determination of the optimal sequence of controls Uy,,- - -
be accomplished in two stages.

1) First, find K™(¢) for which JZ given by (3.17) is a minimum, where
P¥(2) and p¥(t) are solutions of (3.12), (3 14), and (3.16). Denote the
optimal P{(¢) and pZ(1) by P{* (¢) and py .

2) Suppose that optimal K"*(¢), n=j+1,-- -, N, has been determined.
Determine X/(¢) for which E(W{ +JU"")‘) given by (3.17) is a mini-
mum, where P£(?) and pf(z) are solunons of (3.12), (3.15a)—(3.15¢), and
(3.16), where in the right-hand sides of (3.15a)—(3.15c) we use P}{"" ')'(t Y
the optimal values of P¢/* D(#;). This is possible because E{Z]_(Z{_ l) }
is independent of the choice of X/(¢) in [2-15 1))

The minimizations may be carried out successively. We briefly outline
the minimization procedure for 1). The rest can be performed similarly.
We may write

=l Py DE(Z (2B )+ [ ) as

, U, can

Take P(1), t€[ty_, T) as the “state matrix” and K¥(z) as the “con-
trol matrix” and define the Hamiltonian

H(PE(), SE). 6. K¥(0)) 2 pE(0) +u( BE(1)SE())

with S7(¢) denoting the “costate matrix.” The matrix maximum princi-
ple gives the following result (see [2] for details).

Assuming that the matrix CYSZ(CVY is invertible for t€[ty_,,T]
there is a unique K¥*(¢) that minimizes J¥, given by

KM(0)=R(1)™ B¥(Y B (0¥ )Ty (CPsp(ENy) !
where SY*(7) is the unique solution of
SPr=SY*{4¥ - BNKN* TV} + (AN - BNK¥+CV)shr
+M(2, SE* ) +N(1, SF* )+ EN(ENY + FN(FNy
SE (tw_)=E{ZNe (2]*)'}
where M: [0,T|XH,_ ,—H,,,, with
M(z,8)= 2
ig=1
We see that the optimal controls X/*(¢) need solutions of nonlinear

two-point boundary value problems, j=N,---,1.

IV. ConNcLusioN
We indicated a solution technique for obtaining the optimal linear
stochastic control problem for dynamical systems with multiplicative
noise and with quadratic criterion, where observations are available only
at discrete-time points. The details may be found in [5].
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Suboptimal Control Using Pade
Approximation Techniques

JAYANTA PAL

Abstract— A method is given for the design of suboptimal controllers
for single-input single-output systems using partial state feedback. This is
based on the Pade approximation technique for model order reduction.

INTRODUCTION

One of the drawbacks of optimal control theory is that it requires
feedback from all the state variables that are defined to describe the
dynamics of the plant. Unfortunately, the whole state vector is seldom
available for measurement. One alternative is to reconstruct the missing
states by using a Kalman filter or an observer. This introduces high-order
dynamics in the control function and leads to a complicated and costly
controller. This has motivated the design of incomplete state feedback
suboptimal control laws using only the measurable states [1], [2].

In this paper a method for suboptimal controller design using mea-
surable states for feedback is proposed. The suboptimal controller is
derived from the “optimal” one by introducing constraints in the control
structure. The Pade approximation technique for model order reduction
[3] is used for arriving at the controller parameters.

Tue DesicN METHOD

The basic optimal control problem may be stated as follows. Consider
the nth order single-input single-output linear dynamic system described
by

x=Ax(t)+bu(t)

y=cTx(1) m
with the quadratic cost function
J= fo P UxT()Qx(t) +ru?(e)} de @

where Q is an (nXn) positive semidefinite matrix and r is a positive
weight. 4, b, and ¢ are matrices of appropriate dimensions. It is well
known that the optimal feedback control law is a linear combination of
the state variables

u()=—r"'0TPx=—k%x A3)

where P is a symmetric positive definite matrix whose elements may be
found by solving the matrix Riccati equation

ATP+PA—Pbr~1pTP+ Q=0. ()
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The closed-loop transfer function with the optimal controller of (3) is

T*(s)=cT[sI—A+bkT]"'b
_ bg+bis+bysi+ -+ +b, 15" '+b,s™

n—1 n
1877 T +a,s

)

agtas+aysit - +a,_
=dg+dis+dys?+--- 6
where (6) is the power series expansion of (5) about s=0. Restricting the

admissible control law to be linear and utilizing only the available states
for feedback, the suboptimal controller may be specified as

)

where k ;=0 if x,(¢) is not available for feedback. Assuming that such a
suboptimal controller exists, ie., system (1) may be stabilized by the
control law (7), the overall transfer function becomes

T(s)=cT[sI-A+bkT]" b
_ bo+bys+bys - +b, 5" b, 5"
Jotfis+fos? 4 +f,_ys" 14 f 57

®

For the choice of control laws in (3) and (7), the numerator polynomials
in (5) and (8) will be the same. f; (j=0,1,--,n) will contain the
unknown feedback parameters in 7. The incomplete state feedback
problem is concerned with finding the elements of £7 on some basis. For
the suboptimal system response to be favorably comparable with that of
the optimal one, the function in (8) should approximate T*(s) in (5) in
some sense. The design technique is to use the Pade approximation
method to find the unknown controller parameters in k7.
For T(s) to approximate T*(s) in the Pade sense, we have [3)

bo=fody
by=fd, +fdq
by=foydy+fid\+hdy

by=fodpm+ 18 m_1+fpdm—2t " +fady
O=fod, i1 tfidmtfodm—+ - +fn+140
0=-ﬁ)dm+n+fldm+n-—l+ te +j;|— ldm+1+-,;|dm‘ (9)

Assuming that o state variables (v<n) are available for feedback, the v
unknown elements of k7 can be explicitly determined by solving the first
o linear equations in (9). The method is illustrated by the following
example.

ExAMPLE
The voltage regulator example [4] is given by (1), where

-02 0.5 0.0 0.0 0.0

00 -05 1.6 0.0 0.0

A= 0.0 00 —14.29 85.715 0.0
0.0 0.0 00 -—-250 75.0

0.0 0.0 0.0 0.0 -10.0

b=[00 00 00 00 300]".
Choosing Q=diag{1,0,0,0,0}; and r=1, in (2), on solving (4) we get
kT=-[09245 0.1711 0.0161 00492 02643].
Using the above &7, we have T*(s)=432.0/a(s), where

a(s)=432.05518+169.8943 15+ 33.3645255>
+3.394570853 +0.1621612.5%+0.00285°.
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