
Annals of Mathematics and Artificial Intelligence 7(1993)289-346 289

Actors, actions, and initiative in normative system
specification

R.J. Wieringa
Department of Mathematics and Computer Science, Vrije Universiteit,

De Boelelaan 1081a, NL-1081 HV Amsterdam, The Netherlands

J.-J.Ch. Meyer
Vrije Universiteit, Amsterdam and University of Nijmegen, The Netherlands

Abstract

The logic of norms, called deontic logic, has been used to specify normative
constraints for information systems. For example, one can specify in deontic logic the
constraints that a book borrowed from a library should be returned within three weeks,
and that if it is not returned, the library should send a reminder. Thus, the notion of
obligation to perform an action arises naturally in system specification. Intuitively,
deontic logic presupposes the concept of an actor who undertakes actions and is responsible
for fulfilling obligations. However, the concept of an actor has not been formalized until
now in deontic logic. We present a formalization in dynamic logic, which allows us to
express the actor who initiates actions or choices. This is then combined with a formalization,
presented earlier, of deontic logic in dynamic logic, which allows us to specify obligations,
permissions, and prohibitions to perform an action. The addition of actors allows us to
express who has the responsibility to perform an action. In addition to the application
of the concept of an actor in deontic logic, we discuss two other applications of actors.
First, we show how to generalize an approach taken up by De Nicola and Hennessy,
who eliminate ~ from CCS in favor of internal and external choice. We show that our
generalization allows a more accurate specification of system behavior than is possible
without it. Second, we show that actors can be used to resolve a long-standing paradox
of deontie logic, called the paradox of free-choice permission. Towards the end of the
paper, we discuss whether the concept of an actor can be combined with that of an
object to formalize the concept of active objects.

1. Introduction

Deontic logic is the logic of permissions, prohibitions, and obligations. Surveys
of several deontic logics that have been devised in the past have been given by A1-
Hibri [1], Fr [14], Kalinowski [25], and Aqvist [2]. Recently, deontic logic
has been applied to the specification of software systems, in particular to the specification
of information systems. Lee [31] applies traditional deontic logic as developed by

�9 J.C. Baltzer AG, Science Publishers

290 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

Von Wright [52] to system specification, but others have developed new branches
of deontic logic that are more suitable to software specification than the more
traditional one. Fiadeiro and Maibaum [13] extend temporal logic with deontic
operators, Khosla and Maibaum [28,29], Van der Meyden [32], as well as Meyer
[10, 34] extend dynamic logic [20,30] with deontic operators. In earlier papers, we
applied Meyer's logic to the specification of conceptual models of information
systems [48,51]. We take this application as the point of departure in this paper.
The approach is extended with the concept of an actor, and we start with listing
some of the reasons why we want to do this.

This paper is a revision and an extension of two abstracts that appeared
earlier [37,49]. Those abstracts contained a formalization of actors, active choice,
that we have replaced, in the current paper, by a formalization in terms of passive
and active choices. This allows us to simplify the approach at some points, while
at the same time making it more expressive.

1.1. THE SYSTEM AS ACTOR IN THE UoD

In an earlier paper [48], we specified a library in which an administration of
books and library members is maintained. Members can borrow a book for three
weeks, and are then obliged to return it. If they do not return it, the library will send
a reminder. This is specified in the current version of the logic as

Vp, b[borrow(p; b)]O(return(p; b)(<21d)) (1)

Vp, b[borrow(p; b)] [clock (21)] (PERF : borrow(p; b) ---> O(remind(self ; p, b))). (2)

Formula (1) says that after occurrence of the event borrow(p; b), the obligation
predicate O(return(p; b)t<21d)) holds. The meaning of this predicate is that there is
an obligation that the action return(p; b) occurs before the clock ticks 21 days. The
meaning of formula (1) is that after a person p borrowed a book b, he should retum
the book within 21 days. Formula (2) says that after p borrowed b, it is the case
that after the clock ticks 21 days, if b is still borrowed by p, then there is an
obligation on the library (self) to send p a reminder. The intention of the formulas
is that the object executing an action is the first argument of an action, separated
from the other arguments by a semicolon. Thus, in (1), p executes return and in (2),
se/fexecutes remind. However, in the formal semantics there is nothing that expresses
this intention. What is expressed by (1) and (2)'is just that after certain events occur,
certain obligations exist, without any formal indication of who does the action or
who has the obligation. (We identify actions and events for the moment.) Still, this
information is relevant. If (1) and (2) are used as integrity constraints in an automated
information system, then (2) can be automated in such a way that the obligation
specified in it is always fulfilled in a valid run of the system, because self is the
automated system. However, (1) cannot be so automated, because the obligation to

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 291

return the book rests on the library member, and he or she cannot be specified to
fulfill this obligation with certainty.

To be able to express that the system itself is an actor in the universe of
discourse, we must first be able to express that there are actors at all. In this paper,
we concentrate on the last idea. Every event occurrence will be labeled by an actor
who initiates it. We will write t:a i f the actor t initiates atomic event a, and call
t:a an action (rather than an event). If we do not care who the actor in an action
is, we write a instead of t :a .

1.2. INTERNAL AND EXTERNAL CHOICE AND INTERNAL EVENTS

In order to explain the difference between internal and external events,
Milner [38] sketches an intuitive picture of black box M equipped with buttons that
can be pushed by an observer O. Buttons may or may not be blocked, depending
upon the internal state of M. If O tries to push a button, he makes an observation,
viz. that the button is blocked or that the button can be pushed.

If M has two buttons a and b that are unblocked, then O is in a position to
choose whether to push one or the other button. Using CSP-like notation, the
process executed is then a [] b, where [] stands for external choice, i.e. a choice
made by O. If, on the other hand, M chooses to block one or the other button, then
the process executed is a N b, where VI stands for internal choice, i.e. a choice
made by M. The difference between the two processes is that in a V] b, O just f n d s
that he can push one of the two buttons and that the other is blocked, whereas in
a [] b, O has the freedom to choose between pushing either button.

This vivid example can be generalized to the case of n actors for any n > 1,
by allowing any actor to make a choice. The distinction between internal and
external then loses its meaning, for we will not identify with any actor in the
system. Thus, actors allow a generalization of the concept of internal and external
choice to the concept of an active choice, i.e. a choice labeled by an actor who
makes the choice. We will write t: (x �9 y) for the active choice made by actor I.

This seems to reduce the number of different kinds of choices from two
(internal and external choice) to one (active choice). However, we need another
kind o f choice, which we will call passive choice or alternative occurrence. A
passive choice between processes x and y is an underspecification, because it is the
process x or the process y, but it is not specified which. We write + for passive
choice. Thus, x + y is the process in which x or y occurs, but it is not specified
which. Note, incidentally, that + is not really a choice but absence of choice on
the part of the specifier.

Active and passive choice differ, as can be seen from the axioms that we
could set up for them. For example, (x + y) + z = x + (y + z), but active choice is
not associative. The order of choices made by t in l : (t : (x ~ y) � 9 z) differs from
that in t: (x �9 t: (y �9 z), and it is not a priori the case that these two processes are
equal. If the choices are made by different actors, equality is even less obvious.

292 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

Note that + is not CSP's internal choice []. We would write x [] y as M: (x �9 y).
Our approach makes clear that in CSP, internal choice [] is overloaded with two
meanings, underspecification and internal choice by the machine. We distinguish
these as passive and active choices.

CCS and ACP [4] use the idea that a choice is made by performing a first
event of one of the branches. They use "r to stand for 0 or more events that are
initiated by M and invisible to O. Using these two conventions, "r + xy represents
a choice made by M. We would represent "rx + "ry by M: (x �9 y). As De Nicola and
Hennessy [39] note, this approach of using "t" gives problems with the interpretation
of x + 'ry if x does not begin with a "r, because it does not give a clue about who
makes the choice. This ambiguity does not exist in our approach. We would represent
x + "ry by x + M:a;y for a machine action a. This is a passive choice in which one
branch is known to start with an action initiated by M. This also shows that CCS
and ACP choice + is overloaded with active and passive meanings.

The idea of making a choice by performing a first event of one of the
branches can be explicated by introducing atomic actions t : (x ~ y) and t : (x ,T, ~- y),
which represent the event that t chooses the left branch and the right branch,
respectively. We call these actions internal choices. They can be made invisible in
a separate abstraction step. Naming them explicitly allows us to solve a paradox of
deontic logic, discussed below.

Note that z" combines the ideas of initiative by the machine and invisibility
to O. We separate these two ideas and explicitly write the initiator of every event
in front of the event. An action initiated, i.e. performed, by actor t is obviously
visible to t, but the converse is not true in general. We are not concerned with
visibility of events and will not represent which event is visible to which actor.
(Doing this would probably lead to different equality relations on processes, one
for every actor/observer.)

1.3. THE PARADOX OF FREE CHOICE PERMISSION

Traditionally, deontic logic has been plagued by numerous paradoxes.
Castafieda [8] and Von Wright [52] have proposed that a number of these paradoxes
can be resolved by distinguishing actions from states. The definition of deontic
logic in dynamic logic we use is one formalization of this approach. One paradox
still remains, however, called the paradox of free choice permission described,
among others, by Hilpinen [21] and Kamp [26]. This is that the following formula
is derivable (P(a) says that event a is permitted):

P(buy chewing gum) ---> P(buy chewing gum or kill the queen). (3)

This is counterintuitive if we interpret the right-hand side as saying that you are
permitted to choose between buy chewing gum and kil l the queen. Meyer [33]
observed that we can get out of this paradox if we use the CSP distinction between

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 293

internal and external choice. We now show that this idea can be generalized by
using the distinction between active and passive choice.

First, we must remark that in our formalization of deontic logic, an action
a is permitted if it may lead to a permitted state of the world. In general, an action
a is nondeterministic and may lead to one out of a set of possible states of the world.
If at least one of these states is permitted, then there is a way of doing a that is
permitted, and we say that a itself is permitted. Thus, we should read "a may be
beneficial" for P(a).

Second, connect ing this with the two kinds o f choices, note that the
nondeterminism of an action a is of the underspecification kind. a reprsents a
passive choice among a set of state transitions, which have in common only that
they contain the action a. Thus, we must read for a "a occurs, and possibly other
things as well".

Connecting these two remarks, we think the formula

P(a) ~ P(a + b) (4)

is valid, a and b are actions in which we do not care who the actors are. a + b is
a transition to a next world, such that the transition contains an occurrence of a or
of b (or both). Now, if among the transitions represented by a there is one that leads
to a permitted state of the world, then among the transitions represented by a + b
there is one that leads to a permitted state of the world. If a may be beneficial, then
a + b may be beneficial.

The formula is invalid if we read active choice in it. Thus, we want

P(a) ~ P(t: (a �9 b)) (5)

to be invalid. From the fact that a is permitted, it should not follow that any actor
is permitted to choose between doing a or something else. t : (t : a �9 z:b) is called
a free choice in deontic logic, and P(t: (z: a ~ z: b)) is called free choice permission.
We will call to:(tt:a �9 t2:b) imposed choice if to differs from at least one of tt and
z2 and we call P(to:(tl:a �9 t2:b)) imposed choice permission.

We will show that the concept of actor and the distinction between active and
passive choice allows us to eliminate the paradox of free choice permission in
several ways. To illustrate this, we present one system in which (4) is a theorem
and (5) is not. In fact, in that system, we have the theorems

P(a + b) ~ P(a) v P(b), (6)

P(t:(t:a �9 t :b)) -~ P(t : a) ^ P(t :b) . (7)

Formula (7) blocks the paradox of free choice permission. There is no such theorem
as (7) in the case that at least two of the three actors in an active choice are
different.

294 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

Fig. 1. Overall structure of the model.

We also present another system, using the internal choices z : (x ~ y) and
t : (x ,T, ; y) , in which neither (4) nor (5) is a theorem, but in which the conditions
under which we grant an actor permission to make a choice can be specified
precisely. This system has more axioms than the first one, but has a simpler semantics
and agrees more closely with our intuition. These two systems are not the only
axiomatizations of free choice permission, but at least they suffice to show that the
paradox of free choice permission can be eliminated by using the concept of an
actor.

1.4. PLAN OF THE PAPER

The paper has the following structure. We want to be able to specify a system
as a set of possible states which all contain an underlying abstract data type (ADT)
as reduct. Thus, for example, if the natural numbers are part of the underlying ADT,
then 1 + 1 = 2 is valid in all possible states of the system. Events and processes can
take one from one state to another state, but will leave the validity of equations in
the underlying ADT intact. Events and processes will be specified as functions on
the set of possible states. Thus, the system is a Kripke structure with multiple
accessibility relationships, one for each event and process.

In more detail, we model any system as shown in fig. 1. Each world in the
set PW of possible worlds contains the underlying ADT, called .~AOr, as reduct. In
addition, there is an algebra -~p,ocess of processes, of which the elements are events
and processes, and the operators are choices, sequence, synchronous execution, etc.
The process algebra also contains the underlying ADT as reduct. Finally, to interpret
events and processes as functions on possible worlds, there is a function p which,
for each event and process, yields a function on PW that states the effect of the
event or process on the possible worlds.

In section 2, we rehearse some definitions relevant to equational specification
of ADTs and treat two kinds of equational specifications that we need, the equational
specification of abstract data types (ADTs) and the equational specification of
process algebras. ADT specifications are needed for, among others, the specification

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 295

of actor identifiers, and process algebras are needed to axiomatize the concepts of
active and passive choice. In addition, the concept of action negation is axiomatized,
which is needed to define deontic operators later on.

In section 3, we extend equational logic to full first-order logic with equality,
and show how to specify static integrity constraints in it. This is a brief section, but
some fine points concerning the semantics of static constraint specifications are
treated.

Section 4 extends first-order logic with equality to a particular brand of
dynamic logic with equality. Dynamic logic is a logic for reasoning about post-
conditions of terminating processes, and the processes reasoned about are the processes
defined in the process algebra specification given in section 2. A sound and complete
inference system for this system of dynamic logic is given. Furthermore, section 4
defines what dynamic constraint specifications are.

Section 5 extends dynamic logic to deontic logic. This again is a brief section
in which we introduce only the ideas necessary for our purpose.

Throughout the paper, we give a specification of a library as example
specification. For convenience, this is given in the appendix. In section 6, we give
two models of this library specification, both of which solve the paradox of free
choice permission. The structure of both models is shown in fig. 1, but they differ
in that the second model uses the atomic actions t : (x , -~ y) and t : (x ~ y) to
represent internal choices.

Finally, section 7 contains a discussion of the relations between nondeterminism
and initiative as formalized in CSP, CCS and in this paper, and of a possible
extension of this work to the concept of active object in object-oriented
specification. Section 8 summarizes and concludes the paper.

2. Specification in equational logic

In any system specification, we will need some abstract data types (ADTs)
such as natural numbers, Booleans or strings. We simply assume these given,
but point out that we will specify actors as an ADT as well. First, we rehearse
some definitions relevant to algebraic specification of ADTs, and then we give
some examples of specifications of actor ADTs. We use order-sorted algebraic
specification [11, 19,44].

DEFINITION 1 (ORDER-SORTED SIGNATURE)

An order-sorted signature is a triple ((S, <), F, P), where (S, <) a poset of
sort names, F a set of function declarations over S of the form f : sl • �9 �9 �9 sn ~ So
for so sn ~ S, and P a set of predicate declarations over S of the form
P : sz • • sn. If P = ~ , the signature is called equational.

296 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

Although it would be more accurate to call a signature without predicate
declarations functional, we call it equational because it is the kind of signature used
in equational specifications.

For each sort s ~ S of a signature, we assume an infinite set X, of variables
of sort s. All Xs for all s ~ S are assumed to be mutually disjoint. So Xsl n X~2 =
even if sl <-$2. The set of all variables is X = U~GsX~.

A Sig-term of sort s is either a variable of sort s ' -< s or a term of the form
f (t l tn), where f is declared as f : sl • sn --~ So with So <- s and the sort of
ti is less than or equal to si, i = 1 n [19,44]. T(Sig),(X) is the set of Sig-terms
containing variables from X. The set of closed Sig-terms of sort s is T(Sig)s. We
omit Sig if the signature is understood or irrelevant. Goguen and Meseguer [19]
show that under certain weak conditions, called regularity, the terms of an equational
signature always have a unique least sort. In the definitions, we assume that all
specifications satisfy these conditions.

DEFINITION 2 (EQUATIONAL LANGUAGE)

Let Sig - ((S, <), IF) be an equational signature.

�9 A connected component of S is an equivalence class with respect to the
transitive symmetric closure of <.

�9 Two sort names in S are compatible if they are in the same connected component.

�9 A Sig-equation (X, tl = t2) consists of a pair of terms tl, t2 over Sigeq whose
least sorts of tl and t2 are compatible, and a set X of variable declarations such
that all variables in tl and t2 are declared in X.

�9 A conditional equation has the form (X, hi = t,1 ^ - �9 �9 A hk = t,k ~ h0 = t~o),
with (X, hi = t~i) a Sig-equation.

�9 The equational language Leq(Sig) is the set of all conditional equations over
Sig.

Declarations are needed to be able to define inference rules that are sound
and complete even if empty sorts are allowed [18,9]. For brevity, we gather the
declaration together in one place in the examples. There is a relation I-Eq that defines
equational deduction and a relation ~ that defines truth of a conditional equation
in a structure. We do not go into detail about these relations here; definitions can
be found elsewhere [17, 19,44] and in section 4.1, we give inference rules and a
truth definition for dynamic logic with equality, which includes equational logic.
Whichever definition is used, we assume here that I-e~ =~ ~eq.

DEFINITION 3 (EQUATIONAL SPECIFICATION)

Let SigF~ be an equational signature. A SigEq-Specification SpecEr is a pair
(Sig~r E) where E is a set of conditional equations over Sig~r

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 297

2.1. EQUATIONAL ABSTRACT DATA SPECIFICATION

Abstract data types (ADTs) can be specified equationally [11, 12, 19, 44]. Our
intended semantics of equational ADT specifications is the initial algebra semantics
explained in the references above. Basically, in this semantics, a data element is a
closed term modulo equality. This means that each data element of an ADT is
named by at least one closed term, and that two closed terms denote equal data
elements iff they can be proved equal from the specification, using the inference
rules of equational logic. Goguen and Meseguer [19] call this the no j u n k and no
confusion properties of the initial algebra semantics. Junk is unnameable data
elements, and the more dignified term mystical elements may also be used.

Our running example contains the following ADT specifications.

value spec Personldentifiers
import

Booleans
sorts

PERSON
functions

Po : PERSON
next : PERSON --> PERSON
eq : PERSON x PERSON ~ BOOL

variables
x, Xl, x2 : PERSON

equations
[1] x eq x = true

[2] Po eq next(x)=false
[3] next(x) eq Po =false
[4] next(xl) eq next(xz) = xl eq x2
end spec Personldentifiers

We assume that our example contains an ADT specification Booleans which
declares sort of interest (SOl) BOOL, for which the usual Boolean operators are
defined. Personldentifiers then adds a sort PERSON, which is populated with closed
terms of the form nextn(po) for n E N. The elements of PERSON are called person
identifiers.

Without giving them, we assume a number of ADT specifications. The
specification PersonQueues has SOl PERSON_QUEUE of queues of person identifiers.
The eq function for book identifiers is needed in the PersonQueues specification.
We also assume a specification Bookldentifiers with SO1 BOOK of book identifiers,
a specification Money with SO1 MONEY, and a specification Libraryldentifiers with

298 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

SOI LIBRARY. This last sort contains only one element, 10, identifying the library
we are interested in.

To specify a system, we assume that there is an ADT specification containing
a distinguished sort of actor identifiers, called the actor sort of the ADT specification.
An actor identifier is just a data element of a sort that will be used in a certain way
in the rest of the system specification, as illustrated below. We will use t, ~r as
metavariables for terms of the actor sort of a specification. In our running example,
we declare the actor identifier sort ACTOR as follows.

value spee Actorldentifiers
import

P ersonldentifiers, Libraryldentifiers
sorts

PERSON -< ACTOR
LIBRARY -< ACTOR

end spec Actorldentifiers

These will be the data elements that identify actors in the system. Terms t, Ir of the
sort ACTOR will receive special treatment in the process algebra.

In general, the symbol -< used in the example specification is not the -< of the
signature determined by the specification. The above specification determines a
signature in which ({PERSON, LIBRARY, ACTOR}), -<) is a poset of sort names.
The partial ordering -< in this poset is the reflexive transitive closure of the relation -<
declared above. Thus, in the poset we have, for example, PERSON -< PERSON, but
this is not declared in the specification.

In what follows, the concept of a conservative extension of an ADT specification
will be essential. In the next definition, we write (So, -<o)c_ ($1, <1) for So ~ $1
and -<o ~ ---1.

DEFINITION 4 (EXTENSION)

LetSpeco = ((So, -<o), IFo, Po, Eo) and Specl = (($1, <1), U:l, Pl, El) be two equational
specifications.

�9 Specl = (($1, -<0, F1, Pl, El) is an extension of Speco iff (So, ---o) ~ ($1, ---1),
F o ~ f l , Po C - Pl, and Eo~EI.

�9 Specl is an enrichment of Speco iff it is an extension with (So, -<o) = ($1, -<i).

DEFINITION 5 (CONSERVATIVE EXTENSION)

Let Specl be an extension of Speco = ((So, <o), Fo, Po, Eo).

(1) Specl is a complete extension of Speco iff for any s E So and any t E T(Specl)s
there is a t" E T(Speco)s such that Specl F~ t = t'.

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 299

(2) Specl is a consistent extension of Speco iff for any s ~ So and any tl, t2 ~ T(Speco),
we have Specl I-~ tl = t2 iff Speco b~ tl = t2.

(3) Spec~ is a conservative extension of Speco iff it is a complete and consistent
extension of Speco.

In this definition, we follow the definition of conservativeness given by Ehrig
and Mahr [12, p. 153]. Note that "conservative extension" may also be used in the
meaning of "complete extension" as defined above. Thus, a complete extension of
Speco adds no data elements to the ADT specified by Speco, and a consistent
extension identifies no more data elements than were already identified by Speco.
Jointly, these two properties defined conservative extensions. If we choose the
initial semantics of the extended specification Speco, then any conservative extension
of Speco preserves the no junk and no confusion properties of the initial semantics
of Speco.

2.2. EQUATIONAL PROCESS ALGEBRA SPECIFICATION

The behavior of a system will be specified in process algebra [4 - 7]. It is not
customary to give a purely equational specification of this, so we give one in this
subsection. New elements in this specification are the inclusion of an underlying
ADT specification, the presence of actors, and an axiomatization of action negation.
First, we define the relation between a process specification and the underlying
ADT specification.

DEFINITION 6 (PROCESS SIGNATURE)

Let SigAor be an ADT signature. A process signature Sigt'roces, over SigAor is
an extension of Sigaor with declarations of sort and function names. One sort added
in the process specification will be called the process sort. Terms of that sort are
called process terms.

DEFINITION 7 (PROCESS SPECIFICATION)

Let SpecAor be an ADT specification. A process specification Spect,ro~,ss over
SpecAor is a conservative extension of SpecAor whose signature is a process signature
over the signature of S p e c i f .

Any conservative extension of an ADT specification, with a distinguished
sort called the sort of processes, is a process specification. This is because at the
level of equational specification, there is nothing special about the fact that a
specification is a process specification rather than a specification of natural numbers
or stacks. Calling a conservative extension of Spec, w r a process specification is an
expression of the intention of the specifier and is not something visible from the
syntax of the specification alone.

300 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

Note that for us, a process specification is the same thing as a process theory.
We will use the two terms as synonymous. A process specification is for us a set
of axioms for processes, and not a process definition, i.e. a set of equations that
defines a single process.

There are many possible models of process specifications, such as process
graphs, event structures, or Petri nets [4,16], each with many different equality
relations between processes. These models differ in the way they model concurrency,
nondeterminism, and in general in their discriminating power between processes.
We allow the specifier to use his or her preferred intended process model but
require that, whichever model is chosen, the process specification is a conservative
extension of the ADT specification. Thus, no data elements must be added to the
ADT sorts, and no data elements in those sorts must be identified that were not
already identified in the ADT specification. This preserves the no junk and no
confusion properties of Specaor.

We now show an example extension of an underlying ADT specification to
a process specification and give an intended semantics of this specification
afterwards. Our example process specification is given in three parts: a specification
of atomic events, of single-step processes, and of processes containing the sequence
operator.

process spec LibraryEvents
import

Personldentifiers, Bookldentifiers, Libraryldentifiers, Money
sorts

PERSON_EVENT
LIBRARY_EVENT

functions
borrow : BOOK ---> PERSON_EVENT
return : BOOK ---> PERSON_EVENT
reserve : BOOK ---> PERSON_EVENT
pay : MONEY ---> PERSON_EVENT
notify : PERSON • BOOK ---) LIBRARY_EVENT

end spec LibraryEvents

Terms of the sort PERSON_EVENT and LIBRARY_EVENT are called atomic
events. We use a, b as metavariables over atomic events, i.e. as variables over

TpERSO~_~V~tcr and TUBRARr_ZV~r.
Because Specaor is imported in Spece,o~,s,, we have that pay(S2) = pay(S1 + $1)

exactly when $2 = $1 + $1 in the underlying ADT specification. If the process
specification would not be a consistent extension of SpeCAOT, then we could have
pay(S2) = pay(S3), even though $2 ;~ $3 in SpecAor, which is undesirable. IfSpecp,oc,,,
would not be a complete extension of Specaor, then the process specification could

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 301

introduce new data elements. We think that would be undesirable, and that all data
elements should be declared in SpecAor. Further discussion of the use of conservative
extensions follows in section 3.

The next specification adds non-atomic events. All events, atomic and
non-atomic, need actors to occur. An ac t ion is an event initiated by an actor.
Just like we have atomic and non-atomic events, we have atomic and non-atomic
actions.

process spec A c t i o n s

import
LibraryAc t ions , L i b r a r y A c t o r s

sorts
P E R S O N _ E V E N T < E V E N T

L I B R A R Y _ E V E N T < E V E N T

C H O I C E < E V E N T

A T O M I C _ A C T I O N < A C T I O N

functions
any �9 E V E N T

f a i l " E V E N T

(9 : A C T I O N • A C T I O N ---> C H O I C E

_" _" P E R S O N x P E R S O N _ E V E N T ---> A T O M I C _ A C T I O N

_ "_" L I B R A R Y • L I B R A R Y _ E V E N T --> A T O M I C _ A C T I O N

_" �9 A C T O R • E V E N T ---> A C T I O N

_ + _" A C T I O N • A C T I O N ---> A C T I O N

_ & _" A C T I O N • A C T I O N ---> A C T I O N

- �9 A C T I O N ---> A C T I O N

var iables

t, to, t l , tz" A C T O R

0~" E V E N T

or, oil, tr,2, ot3 " A C T I O N

equations
[PC1] it1 + 0.2 = 0.2 + al

tPc2] (a l + t;t2) + t~3 = al + (tr,2 + u3)
[PC3] a+ a = a

[NI] -- -- a= a

[N2] - - (al + a2) = - a l& - t r a

[N3] -- (a l & {/.2) -- -- al 4- - - (M/

[D] a & (a~ + a2) = (a & a~) + (a & a2)

302 R~I. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

[ANY1] t : o t + t : a n y = t : a n y
[ANY2] t : a & t : a n y = t : a

[ACl] t : (a I (B (~t.2) = I, : (12(2 (9 al)

end spec Actions

We use the convention that n-ary operators bind stronger than m-ary operators,
n < m, but if we wish we can add brackets to emphasize operator binding. Just as
we use a, b as metavariable over atomic events, we use a, b as metavariable over
atomic actions, i.e. closed terms of sort ATOMIC_ACTION. All atomic actions have
the form t : a for an actor t and an atomic event a. The intuitive interpretation of
t : a is that t does (initiates, performs) a. For example, the term l : notify(p, b)
stands for the action of the library l notifying p that book b is overdue.

We use a as metavariable over EVENT terms and a as metavariable over
ACTION terms. By any and fail, we mean any and fail events initiated by any actor.
So any is t : any for any t.

An event is a transition to a next state that needs an actor to be performed.
An event a may be

�9 an atomic event a (PERSON_EVENT or LIBRARY_EVENT),

�9 any or fail,

�9 or a choice (9 between actions.

An event cannot occur on its own but must be initiated by an actor. An event
initiated by an actor is called an action. Apart from actions of the form t : tr., there
are actions composed of more elementary actions by alternative occurrence (+),
synchronous occurrence (&), and action negation (-) . We now explain the axioms
in the specification.

(1) Passive choice has the usual properties of choice in process algebras: it is
commutative, associative, and idempotent. It can be proven in equational logic
from the above axioms that & has the same properties as passive choice, i.e.
it is commutative, associative, and idempotent. Synchronization also distributes
over choice, as is usual in process algebra.

(2) - a means that it is not the case that a occurs. Action negation is required to
be a Boolean algebra with passive choice and synchronous occurrence. If we
assume [NI], then [N2] and [N3] are equivalent.

(3) [ANY1] defines t : any as the local zero of additions for t. It enforces the
interpretation on any that it is a passive choice over any action. Saying that
I does anything or a thus gives no extra information over the statement that
t does anything.

(4) [ANY2] defines t : any as the local unit of multiplication for t. It enforces the
interpretation on t : a in which to say that t does a is synonymous with the

Rd. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 303

statement that t does tr., and possibly anything besides as weU. This interpretation
is convenient for the interpretation of action negation, as we will see, but it
is not necessary. It could be omitted from the system if necessary.

(5) We finally add a minimal axiom for active choice, viz. that it is commutative.
This much is uncontroversial about active choice. We will in a moment see
that other axioms, which seem reasonable at first sight, are questionable.

We now discuss the axioms we considered, but did not include in the example
specification, for fa i l , active choice, and action negation.

Failure. It would have been neat to include the axioms

t : a + t : f a i l = t : t ~

t : ct & t : fa i l = t : f a i l

(8)

(9)

to complement [ANY1] and [ANY2]. Axiom (8) defines t : fa i l to be the zero of
addition. It is one of the standard deadlock axioms of process algebra, viz. when
given the choice to fail or do something, an actor will always do something. However,
since we use pass ive choice in (8), the axiom should be read as

the statement that t fails or does o., but we do not say which,
is synonymous with the statement that t does a.

This is valid only if t : a is a choice over a set of options that includes t : fa i l and
that is highly questionable. In the models we give later on, it is false. We therefore
omitted the axiom from the specification.

Formula (9) defines t : fa i l to be the local zero of parallel composition. It says
that when t fails, it cannot do anything besides fail. This seems reasonable, but it
is false if we interpret & as the synchronous occurrence of two actions and allow
different actors to perform actions independently of each other. The right-hand side
of (9), t : fai l , expresses that t fails but the rest of the world can still continue
performing actions. The left-hand side of (9), t : ot & t : fai l , denotes a situation in
which t fails to do anything and does ~ However, it is inconsistent to say that t
does something and does nothing at the same time. So t : a & t : f a i l specifies some
kind of impossible action, which would be identified with the failure event t : fai l .
It is possible to add this axiom, but since we have different intuitions about what
the left- and right-hand side mean, intuitively, we chose to be careful and omitted
the axiom.

Active choice. Looking for other axioms for active choice, we may try idempotence,

304 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

As it stands, this is questionable, for on the left-hand side it is t who does something,
whereas on the right-hand side it is tr who does something. However,

t : (t : a ~ t : a) = t : a (10)

seems reasonable and we could add it. The axiom is valid in our first example
model below, because we there treat the left-hand side of the equation as an atomic
action that turns out to have the same effect as the action on the right-hand side.
The axiom is not valid in the second model we give, because there we make the
choice explicit and the left-hand side is not an atomic action anymore (even though
the net effect of the left-hand side equals the effect of the action on the right-hand
side). We therefore omitted it from the example specification.

Associativity of active choice is not valid, in general, for take the equation

t : (ic: (a~ ~9 a2) �9 a3) = ~r (a~ �9 t : (0.2 �9 a3)).

This is not a priori true intuitively, because t and tc make completely different
choices on the left-hand side and on the right-hand side. In addition, they make their
choices in a different order on the left- and right-hande sides. This is also true in

t: (t : (a~ �9 ~) �9 a3)= t : (a ~ e t : (~ a3)).

By omitting associativity, actors can only make binary choices in our setting. Given
the current axioms, an actor can only make a choice between n alternatives, n > 2,
by making a sequence of binary choices, and these sequences are not equivalent.
What is needed here is an n-ary choice for n > 0. In the case of n = 0, we have
failure, and in the case of n > 0, we have an active choice between n options.
However, such a choice is not axiomatizable in first-order equational logic.

It is possible to reduce active to passive choice by adding the axiom

to:(al �9 0,2) = to: "rl; oq + to: "ta; a2, (11)

where 'r ~ is a single invisible action performed by to, and ; the sequence operator
axiomatized below. An active choice would then be a term of the sort PROCESS
declared below and not of sort ACTION. This is similar to the CCS interpretation
of internal choice, which says that a choice is made by doing the first event of one
of the branches. However, it is not the same as CCS internal choice, for "r 1 is one
invisible action initiated by to, and not zero, one or more invisible actions initiated
by a machine M, as it is in CCS.

If we add axiom (11), then idempotence of active choice for a single actor
(10) is false, because we would have

t: (t : a @ t : a 2) = t : 1:~; t : a

and this cannot be reduced to t : a.

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 305

t �9 z 1 expresses the fact that t performs one action, but it is not said which.
A refinement of this is to name the action explicitly. In to: (a~ @ a2), to actively
chooses between al and a2. This active choice can be modeled as a passive choice
between two actions performed by to. One action is

to:(ai '-~ ~),

pronounced "to chooses a~ out of the possibilities a~ and a2", and one is

to:(~ ~ a2),

in which to chooses a2 out of the possibilities al and a2. As said before, these
actions are called internal choices and they are atomic actions, to can perform these
internal choices irrespective of who are the actors in al and a2, i.e. they may be
equal to or different from to. For every triple to, al and ~ , there are such atomic
actions. Using internal choices, we can then define active choice in terms of passive
choice by

to : (~ ~ tr,2) = to:(ai *-~ tr2); ai + to : (~ ~ " tr2); a2. (12)

This definition has the advantage that it requires no extra machinery beyond the
well-understood passive choice to interpret and that it makes clear why ~ lacks a
number of properties that + has. In addition, it will allow us to specify precisely
where the problem lies with the paradox of free choice permission, as we will see
in section 6.2. However, it does not solve the problem that active choice should
really be n-ary rather than binary.

Action negation. - a is the same kind of underspecification as al and a2.
Thus, - a means " a does not occur, and it is not specified what does occur". This
is similar to the meaning of negation in propositional logic, and this meaning
explains why negation forms a Boolean algebra with passive choice and synchronization.
We call this interpretation of action negation passive action negation.

There is another meaning of action negation, which we call active action
negation, in which - t : a means "t does not initiate a". The difference with a is
that we now explicitly mention the actor who does not do something. This can be
interpreted in a local way as the statement that t does something other than a, or
in a global way as the statement that another actor than t does a. A passive
disjunction between these two interpretations is also possible. The local interpretation
of active negation is enforced by the axiom

t : a + - t : a = t : a n y .

The global interpretation of action negation cannot be axiomatized in the example
specification, for it requires a constant that denotes the process "any actor does
something".

306 R~I. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

Note that a seemingly plausible axiom like

- z : f a i l = z : any

is only reasonable if we assume local active negation. It defines negation to be a
complement operator.

We now turn to the specification of processes that contain a sequence operator.
The sort P R O C E S S below is the process sort of our process specification.

process spec Processes

import
Act ions

sorts
A C T I O N < P R O C E S S

functions
; : P R O C E S S x P R O C E S S ---> P R O C E S S

+ : P R O C E S S x P R O C E S S ---> P R O C E S S

& : P R O C E S S x P R O C E S S ---> P R O C E S S

(9 : P R O C E S S • P R O C E S S ---> C H O I C E

variables
t : A C T O R

a : A C T I O N

~, A, 1~, 1~ :PROCESS
equations

[s l] (f l,;/~);/~ = fl,; (/~;/~)
[Pc4] fl,+~=~+fl,
[v c s] (tl,+/~)+/~=fl,+(/~+/~)
[PC6] fl+ fl= fl

[S~NI] ((,,; fl,) a (~; ~) = ((z, a a~_); (fl, a/32)
[SYN2] (Z, a ((:re.; ,~) = (a, & (;e.); ,/~
[SYN3] (r fl,) a (;.2 = (=1 a 12%); fl,

[DI] ill; f13 + f12; 133 = (fl! + fl'2); 133
[D2] f13; fl! + f13; fl! = f13; (ill + f12)
[D3] l.: (ill; fl'3 6) f12; f13) = L: (ill (33 fl'2); f13

[FAIL1] L : fai l ; t : fl= t : fa i l

[FAIL2] t : fai l ; [Jl; i : [J2 = t : fai l ; [Jl

[AC2] Z : (fit �9 = t : (~ (9 fit)
end spec Processes

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 307

We use o~ as metavariable over terms of sort ACTION and]3 as metavafiable
over terms of sort PROCESS. We use the convention that : binds stronger than ;.
PROCESS is the process sort of our example process theory, as mentioned in
definition 6.

Remarks

(1) [Syn:l. - 3] define synchronization between processes as the synchronous
performance of each of their steps. When the shortest process runs out of steps to
do, the other continues. This deafly differs from interleaving. Meyer and De Vink [36]
call this synchronous start semantics.

(2) [132] defines determinism for passive choice. This motivated by the
observation that the statement

t3 occurs, followed by fll or]32, but it is not specified which

gives the same information as

t3 occurs, followed by ill, or t3 occurs followed by]32, but it
is not specified which.

If we define active choice in terms of passive choice, as in (12), then we should
drop the declaration of (9 from the specification Actions, because it then contains
a sequence. [D1] and [D3] then imply

= (t + z :

which agrees with our intuitions.

(3) In the case of active choice, we have the well-known non-equivalence of

and
t : (f13; fll ~ f13; fl'z) "t chooses between f13; fll and f13;/]2"

/]3; (t : (/]1 ~) f12) "f13 occurs, and then t chooses between fll and f12".

Thus, there is no left-distributivity of active choice. On the other hand, there is
right-distributivity, as shown by axiom [193], which states that t makes a choice
between the first events of two branches and cannot see anything that occurs
after that. This could be generalized to actors with n-step lookahead, as in LR(n)
parsers.

308 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

(4) [FArr.:l., 2] say that if t deadlocks, t cannot do anything anymore but
other actors can still display initiative as if nothing happened.

viz.
In CSP, there is an axiom in which external choice equals an internal choice,

O : (O:a; fll ~ O:a; f12) = O:a; M:(fll ~)]32).

O loses initiative to the machine because O cannot look ahead more than one step.
A possible formalization of this with actors is

where t loses initiative, but it is not stated who gets it, if anyone gets it. This would
not hold when active choice is defined in terms of passive choice, as in (11) or (12),
so we omitted it.

To keep matters simple, we do not allow negation of processes, although this
has been formalized in an earlier version of the language [10,34], and can easily
be added here.

To keep matters even more simple, we assume the initial semantics of our
example process specification. Thus, ,~J,,oc,,s in fig. 1 is the initial algebra of
Processes. Thus, Processes is surely a conservative extension of the underlying
ADT. Other models could be chosen, but this matter is orthogonal to the problem
of initiative upon which we concentrate in this paper.

3. Specification of static constraints in first-order logic

To specify static system properties, we use first-order logic with equality.
This is in itself nothing special, but there are some subtleties concerning the import
of ADT specifications and concerning the semantics of static system specifications,
which we treat in this section. We explain this in the next few paragraphs.

DEFINITION 8 (STATIC CONSTRAINT SIGNATURE)

Let SigAor be an ADT signature. A static constraint signature Sigstat is an
enrichment of an ADT signature Sigaor with declarations of function and predicate
symbols. SigAor is called the underlying ADT signature of Sigstat and Sigstat is called
a static signature over SigAor.

DEFINITION 9 (STATIC CONSTRAINT LANGUAGE)

The order-sorted constraint language L(Sigs~t) over a static constraint signature
Sigst,a is the set of all first-order formulas that can be built from the signature
according to the following BNF:

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 309

::= 6 - t21e(tl t~)l--,01~ A WI0 v ~10 ~ ~10 ~ wlVx(O) I~x(~).

Note that if Sigstat is a static constraint signature over Sigaor, then

Laor(SigAor) ~ Lst,t(Sigst~t)

and each Sigaor specification is a Sigstat constraint specification. L, wr(Sigaor)-
equations are to be treated as universally quantified formulas in Lstat(Sigstat).

There are definitions of an inference relation ~-st~t in Lst~t(Sigstat) and a truth
relation ~st~t for formulas in this language such that t-st~t r ~stat. They extend the
inference and truth relations in equational logic [17]:

Specsmt ~s~t tl = t2 r Specstat ~ADT tl = t2,

Specstat ~'Stat tl = t2 r Specstat ~-AOr tl = t2.

We give an inference relation and a truth definition for dynamic logic with equality
below (section 4.1) that extends these relations.

DEFINITION 10 (STATIC CONSTRAINT SPECIFICATION)

Let SpecADr = (Sig.~T, E) be an ADT specification. Then Specstat = (Sigstat, C)
is a static constraint specification over Specaor iff it is a conservative enrichment
of SpecAor.

Our running example contains the following static constraint specification.

static constraint spec StaticLibraryConstraints
import

Persons, Bookldentif iers, Queues
functions

reservations : B O O K ---) Q U E U E
predicates

Reserved : B O O K
Available : B O O K
Present : B O O K

variables
b : B O O K

static constraints
[C 1] Available(b) ~ Present(b) ^ - ,Reserved(b)

end spec StaticLibraryConstraints

The underlying ADT specification in the example is the specification of
persons, books, and queues. In the specification of dynamic library constraints to

31o R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

be given later, Reserved(b) will be set to true if a person reserves a book and is
set to false if the queue of reservations is emptied. We use the convention that the
leftmost quantifier can be omitted if it is a universal quantifier. All others must be
shown.

SpeC ADT

SpeC stat Spec process

Fig. 2. Two conservative extensions
of the underlying ADT specifications.

Figure 2 shows the import relations between specifications. The underlying
ADT specification is conservatively extended in two directions, which will not be
related until we introduce dynamic specifications below.

Since Specst, n is an enrichment of SpeCAOT, it does not add any sorts. Since
it is a conservative enrichment of SpecAor, it does not add any data elements to the
ADT sorts and it does not identify any data elements that were not already identified
in SpecAor. This is important in a database context, as we will see in a moment.

DEFINITION 11 (POSSIBLE WORLDS)

Let Specst~, be a static constraint signature over SpecAoT. A possible world
of Specs~t is a model of Specstat. The set of all possible worlds of Specs~at is called
PW(Specsu, t), or PW if the specification is understood or irrelevant. We use w as
metavariable over PW.

Each possible world provides an interpretation of the function and predicate
symbols in Specst,~t that satisfies the constraints. Due to the requirement that Specstat
be a conservative enrichment of Spec~or, the interpretation of the sort and operation
symbols, all declared in SpecADT, is the same in all possible worlds. Thus, the
underlying ADT sdAor is a SpecAor-reduct of the intended process algebra and the
intended model of Specs,,,t, as illustrated in fig. 3, where w is any possible world
of Specsmt. If w c PW, it is a possible model of Sigs~t, so we can write w ~st,,t ~.
The requirement that Specstat is a conservative enrichment of Spec,wr means that
Specst,a is a complete and consistent extension of SpecAor, and this is a generalization
of Reiter's [40,41] domain closure and unique name axioms.

Reiter's domain closure axioms say that each element in the model must have
a constant as name. The initial semantics generalizes this by requiring each element

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 311

< w . , _

Fig. 3. The underlying ADT is a reduct of two different algebras.

to have a closed term as name. By allowing only enrichments of the ADT specification,
no data sorts are added in Specs~t, and by the completeness requirement, the domain
closure property is preserved in each w. Thus, all sorts have the same extension in
all possible w ~ PW, and there are no unnamed elements in any sort.

In addition, by the consistency requirement, the names given in Specstat to

data elements in w are equal to the names given in SpecAoT. For example, in every
state of the library and for every closed term reservation(b), there will be a data
element q of QUEUE such that reservation(b) = q is true. Without this requirement,
reservation(b) could be a data element of QUEUE that would not be equal to any
data element specified in QUEUES.

Reiter's unique name axiom says that different constants denote different
elements of the model. Initial semantics generalizes this to the property that two
closed terms are equal if and only if they can be proved equal from SpecAoT. The
conservativeness requirement preserves this property in Specst~t.

Because all data sorts contain the same elements in all possible worlds, we
must add a mechanism to distinguish, in each possible world, between those elements
that actually exist and those that only have possible existence. We do this by
assuming a special unary predicate E that is applicable to terms of all sorts. This
is a standard solution to existence problems in modal logic [15]. If E(x) is true in
w, then by definition, x actually exists in w. If st < s2, then by the construction of
order-sorted algebras, in any world w we then have that the set of existing objects
of sort sl is a subset of the set of existing objects of sort s2.

We use the abbreviations

3Exr 3x(E(x) ^ r
and

'r -->

We have no requirements for the unary existence predicate E in our definitions. We
may want to avoid "dangling pointers" by adding axioms like

312 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

P(x I x n) .--.> E(xl) ^ . . . ^ E(x,t)

to the specification. Nothing hinges on these axioms in this paper, and we just
ignore them.

4. Specification in dynamic logic

In this section, we temporarily turn our attention to a more general logic. In
section 4.1, we define the syntax, inference rules and semantics of a first-order logic
with multiple modalities and equality. In section 4.2, we turn to the more special
case of specification in dynamic logic.

4.1. LANGUAGE, SEMANTICS AND INFERENCE RULES

Dynamic logic is a logic to reason about postconditions of terminating
processes [20,30]. Usually, the terms denoting these processes are not defined
algebraically and the focus is on the logic of postconditions. In this section, we
define a particular version of dynamic logic that explicitly defines a logic of processes
in addition to the logic of postconditions.

DEFINITION 12 (SIGNATURE OF DYNAMIC LOGIC)

A dynamic logic signature Sigoyn is an order-sorted signature consisting of two
(possibly overlapping) subsignatures Sigstat and Sige,o~,,,, with

Sigoyn = Sigsu, t u Sigproces s.

This is a minimal definition of a dynamic logic signature. In the definition,
we have made no assumptions about the signatures Sigstat and Sige,o,:,ss and until
further notice, these are just arbitrary order-sorted signatures. (Of course, these
names foreshadow the use to which they will be put later on.) Sigs,,~ and Sigproc,ss
are arbitrary order-sorted signatures and therefore generate languages L(Sigstat) and
L(Sigp,o~es,). There is an inference relation FStat and a truth definition ~Stat for these
languages, that collapse to the equational versions I-F~ and ~gq for an equational
signature.

DEFINITION 13 (LANGUAGE OF DYNAMIC LOGIC)

Let Sigoy,~ = Sigstat u Sigprocess be a dynamic logic signature. The dynamic
logic language L(Sigoy,,) generated by SigDyn, with typical elements ~ and ~ , is
given by the BNF:

R.J. Wieringa. J.-J.Ch. Meyer, Actors. actions, and initiative 313

where r ~ L(Sigs~t) and fl is a term over Sigt,,o~,,s. We use

(#>a,

as an abbreviation o f - - , [f l] ~ .

The intention is that terms over Sigero~,ss are process terms, and that the
intuitive semantics of [fl]t~ is

"after execution of fl, t~ holds necessarily".

This is partial correctness of nondeterminist ic programs fl, for it says that if fl
terminates, i.e. leads to a next world, then in all next worlds to which fl can lead,

�9 holds. The intuitive semantics of (fl)O is, dually

"there is an execution of fl after which ~ holds".

This is total correctness, for it says that fl terminates, and that in at least one state
reachable by fl, �9 holds.

Note that by our definition of Loy,~(Sigoy,O-formulas, terms over Sigt,ro~es~ can
only occur inside the modal operator. A dynamic logic formula containing no modal
operators is just a formula from L(Sigstat).

We now assume that for L(Sigstat) and L(Sigp,oc,,s), the concept of a semantic
structure has been defined, and use these to define the concept of a structure for
L(Sigoyn).

DEFINITION 14 (INTERPRETATION STRUCTURES FOR L(Sigoyn))

An interpretation structure for L(Sigoyn) is a triple

~toyn = (PW, ~e,o.,,, p),
where

�9 PW is a non-empty set of non-empty structures for L(Sigstat);

�9 ~ ' ,oc, ,s is a non-empty structure for L(Sige,oc,,,);

�9 if E is the set of all sort-preserving assignments tr to variables, then p is a
function

p : Tproc,s,(X) ~ (Z --~ (PW ~ ~(PW))),

satisfying the requirement that for ill, f12 ~ Te,oc,,,(X),

~l~o ' , sdp. .~ -" ~fl2]O',sdp :::0 P (~ I) (O ') " P (f l2) (O ') .

p is called the state transition semantics of processes.

The definition is illustrated in fig. 4.

314 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

pw(" f ~ < P ~ ~ - O ~ P r o c e s s

Fig. 4. Structures for L(Sigt~n).

Remarks

(1) PW functions as a Kripke structure for L(Sigo~n), and each w ~ PW interprets
L(Sigstat).

(2) The Kripke structure PW is extended with an algebra -~e,o~,,, in which
process terms are interpreted. There are no requirements on the relation between
PW and ~P,oce~.

(3) There are requirements, however, on the relation between ~p,o, ess and the
accessibility relations on PW. Roughly, each process p 6 ~e,oc, ss must define an
accessibility relation p(p) on PW, which may be nondeterministic, i.e. several
worlds are accessible from one world by following p(p) in one step. This is because
in general, processes are nondeterministic in the sense that the state reached by
performing the process may not be defined uniquely.

(4) To explain the definition of p more precisely, for each process term
e Tt,,o~,,,(X) and each variable assignment cr ~ Z, an accessibility relation p(fl) (o')

is defined in such a way that terms that are equal in ,~,,o~,,, are assigned equal
accessibility relations. The denotation function [�9 Lr,~j,,,~,,, is the usual interpretation
function of equational logic.

(5) If we think of Sigt,,o~,,, as a process signature, L(Sigoyn)-structures assign
two kinds of semantics to process terms. One is an algebraic semantics ofuninterpreted
process terms, in which the operations on processes (choice, sequence, parallel
composition) are given a semantics, without looking at the effect of the processes
on the state of the world. The other kind of semantics is a kind of labeled transition
system that defines the effect of each process on the state of the world, p(p) defines
the effect p has on the extension of the function and predicate symbols in L(Sigoyn).

DEFINITION 15 (TRUTH OF L(Sigt~)-FORMULAS)

Let ~oyn = (PW, .~e,oce,,, P) be a structure for L(SigDyn) and a: X ---> Jl~oyn be
an assignment to all variables, then truth of a dynamic logic formula in w ~ PW
under assignment cr is defined by:

�9 for each fl ~ Terocess(X), we have w, cr ~oyn [/3] �9 iff for all w ' ~ p(fl)(o') (w),
we have w', o" I=oyn ~.

�9 Truth of the other dynamic logic formulas is defined as usual.

For each o', we define AtOyn, o" ~oyn ~ iff w, a ~oyn ~ for all w e PW. Truth of a
formula in a world (w ~oyn ~) and in a structure (Atoyn ~oy,, ~) are defined as usual.

R.J . W i e r i n g a , J . - J .Ch . M e y e r , Ac to r s , ac t ions , a n d in i t ia t ive 315

This truth definition coincides with the standard truth definition for r in
L(Sigst=t), which we denote ~st, n, and with the standard truth definitions for equations
in L(SigAor), which we denote ~aDr. We have for all w ~ PW that

w ~ A o r t l = t2 r w ~Stat t l = t2.

We will therefore omit the subscript from ~ from now on.
Next to a truth definition, we need an inference relation for L(Sigoyn). We

use the inference rules [N] and [DL1] of modal logic, and the rules for equational
reasoning [Ref], [Sym], [Tran], [Conl], [Subl], and [Con2], extended with one
extra rule for equality, [Sub2], as given in table 1. We call the set of rules in table
1 DYN •.

Table 1

The set D Y N = of inference rules for synamic logic with equality.

All axioms and theorems of first-order logic.

[MP] q'' �9 ~ u/ [G] �9 [N] �9
~' vx(~) [Pl~

[Ref] [Sym]

t = t tl = t2 "--~ t2 = tl

t I = t 2
[Conl]

t{x ~ t,} = t{x ~ t=}

[I = t2
ICon:Z]

P(tt) ~ P(t 2)

[DL1] [~](~bl --~ q~z) ~ ([/1]•l "-> [/I]r

ITran]

(t I = t 2 ^ t2=t3) ~ t 1 = t 3

[Subl]
t l ----" f2

t~{x ~ t} = q{x ~ t}

[Sub2]
([F,]+ ~ [P,]~')

An inference rule has the form H , with H a set of formulas. If H = 0 , the
rule is also called an axiom. The equality axioms [Refl, [Sym] and [Tran] hold for
all terms, including process terms. It is extremely important to note that there are
two kinds of inferences we can do in L(Sigoyn):

�9 inferences in L(Sigp,oc,s,) in Which we reason about equality of process terms,
and

�9 dynamic logic inferences on L(SigDyn) formulas. These include inferences in
L (S i g s t a t) .

Note that DYN = restricted to equations is just equational logic.

316 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

If q~ is derivable from a set H of L(Sigoy~) formulas, we write H ~-oyn alP. To
reiterate what we just said, these inference rules monotonically extend the corresponding
rules Fs~t and bAor for L(Sigst~t) and L(Sigaor). We have

H Fstat ~P r H kDy, q)

H baor tl = t2 r H koyn tl = t2.

We drop the subscript from l- from now on.

THEOREM 1 (SOUNDNESS AND COMPLETENESS)

I- * r I=*.

Proo f

Soundness is easy to prove. For completeness, the [Ref], [Sym], [Tran],
[Conl], [Con2], and [Subl] axioms are known to completely axiomatize first-order
logic with equality. It is essential that we look at all models here; if we restrict
ourselves to initial models, completeness would only hold with respect to ground
equations [9].

We prove completeness of the model part of D Y N = by using a Henkin-style
proof that is standard in model logic [24]. First note that [N] and [DL1] characterize
Kripke structures, with accessibility relations R e for each fl ~ Tp,oc,,s(X). Moreover,
the inference rule [Sub2] corresponds to the property that

= Re, = (1 3)

Let us call the class of Kripke structures satisfying (13) %. Completeness is then
the statement that for all ~ ~ L(Sigoyn),

if for all At ~ % we have At ~ ~, then D Y N = ~- r

This is equivalent to the statement that for all tb ~ L(Sigoyn), there is an At E g such
that

F / ~ ~ At I~--,cb. (14)

According to the standard argument, in order to prove (14), it is sufficient to prove
that all maximally consistent sets of formulas H c L(Sigoyn) are satisfiable within
g , i.e. that there is an At ~ g and a world w ~ At such that

At, w ~ r for all r

To do this, the standard argument constructs a canonical model, which we call Ato,
in which the worlds w are maximally consistent sets of L(SigorlV) formulas, and the
reachability relation is defined by

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 317

Rfl(Wl, w2)~=~ Vtll([~]O E w I =:~ tI~ E w2).

This canonical model satifies the property that ~0, w ~ ~ for every r ~ w. In order
to prove (14), it must be shown that this canonical model satisfies the defining
property (13) for the class % of Kripke structures. However, this is easy to prove,
for let ~e,oc,ss ~ fll = f12. Then with inference rule [SUB2], we infer

[3]o o

It is known that each w ~ 3(o contains all theorems (since it is a maximally consistent
set), so we know that

([/3110 wl.

Because worlds in ~0 are maximally consistent sets, and hence are closed under
logical consequence, we have that for all �9 ~ L(Sigoy,,),

([f l l]O EW 1 ~ O EW2) r ([f1211~ I EW l ::::) O EW2).

We conclude that for all wl, WE E J/tO, Rijl(wl, w2) = Rib(w1, w2), and therefore R~ = R/h.
This shows that J/o ~ , and we have proven (14). []

THEOREM 2

The following theorems hold in L(Sigoyn) with inference relation DYN =.

(1) [fl] true.

(2) -~(fl)false.

(3) [j~](O 1 A 02) ~ ([f l]O 1 A [fl]~[~2)-

(4) [fl](Ol V 02) 6 - ([f l]O I V [fl]O2).

(5) (3) (O1 V 02) ('--) ((3)O1 V (3) 0 2) .

(6) (3)(O1 A 02) o ((fl)O1 A (fl)O2).

Proof
See [34]. The others follow from [Sub2] and the step axioms for our process

theory. []

These are standard theorems in modal logic. They do not assume anything
about the process terms fl and they do not relate the structure of process terms to
the structure of postconditions. To state truths about the process terms, we must
assume a particular process specification. Using our example specification Processes,
we have the following.

318 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

THEOREM 3

The following theorems hold in L(Sigoy,), using the specification Process to
supply Sigp,o~e,,, and DFN = as inference relation.

(1) [- (al + oa)]O ~ [(- a t & - ~)] q ~ .

(2) [- (a ~ & a 2)] ~ [(- a ~ + - a 2)] o .

(3) [- (- a 2)] e ~ [a]e .

Proof
The proof is immediate with [Sub2]. []

These theorems hold for any modal logic and do not take into account the
special nature of the Process specification. In the multimodal logic considered in
this section, formulas like [al + ~]q~ ~ [al]q~ ^ [~] O are not valid because at
this point, we do not relate the internal structure of �9 to the internal structure of
fl in [/310. The truth of such formulas depends upon the particular choice of p in
a model, and to choose a particular p, we should choose particular specifications.
We therefore turn to specifications in dynamic logic in the next section, and then
define intended models of these specifications in which the desired validities hold.
We start with defining what a specification in L(Sigoyn) should look like.

4.2. DYNAMIC CONSTRAINT SPECIFICATIONS

DEFINITION 16 (DYNAMIC CONSTRAINT SIGNATURE)

Let Specaor be an ADT signature and SigDrN = Sigstat U Sigproce,s be a dynamic
logic signature. Sigo~ is called a dynamic constraint signature over Sig, wr, Sigst=t,
and Sigp,oce~ iff

�9 Sigsua is a static contraint signature over Sig, wr,

�9 Sigp,o~,,, is a process signature over Sigaor, and

�9 the function symbols declared in both extensions are the function symbols
declared in Sigaor, i.e. Fsu,t C~ Fp,o~,,, = Faor.

From now on, we assume that our Sigoyn satisfies definition 16. Figure 5 shows
the import relations between the signatures. The dynamic signature does not add any
declarations to the static signature or the process signature. All machinery required
to specify dynamic constraints is already present in those signatures.

DEFINITION 17 (DYNAMIC CONSTRAINT SPECIFICATION)

Let Specaor be an ADT specification with signature Sigaor, and let Sigoyn
= Sigst= u Sige,o~,u be a dynamic constraint signature. Then a dynamic constraint
specification over Specaor, Specst= and Specp,o~,,s is defined by

R~I. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 319

Sigaor

S igstat S i gproces s

Sigoyn

Fig. 5. Import relations between signatures.

where
Specoy. = (Sigoy., Eoy.),

Eoy,, c L(SigDy.),

(Sigst,,t, Eoy. n L(Sigstat)) is a static constraint specification over SpecAor, and

(Sigp,o~.=, Eoy. c~ L(Sige,o~.=)) is a process specification over SpecAor.

Thus, Specoy. contains a static constraint specification over SpecAoT and a
process specification over SpecAor. Both extend Spec/mr conservatively, and only
process specification is allowed to introduce any new sorts. All formulas added by
Specoyn to these two specifications are modal formulas.

An example dynamic constraint specification is

dynamic constraint spec DynamicLibraryConstraints
import

StaticLibraryConstraints, Processes
variables

p : PERSON
b : BOOK
q : QUEUE

dynamic constraints
[D 0] [p : borrow(b)]Borrowed(b, p) ^ --,Present(b)
[DI] Reserved(b) -->

(p = head(q) A q = reservations(b) --->
[p : borrow(b)] reservatwns(b) = tail(q))

320 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

[132] Reserved(b) --->
(--,(p = head(q) ^ q = reservations(b)) ---> [p : borrow(b)]false)

end spec DynamicLibraryConstraints

[DO] says that the effect of borrowing a book is that it is not present and is
borrowed. [D 1 , 2] say that in the case of reserved books, we remove the borrower
from the queue of reservations if he is the first in the queue, otherwise the event is
blocked.

Because the process specification and the static contraint specification
conservatively extend the same ADT specification, ADT terms that occur in process
terms as well as in static constraint formulas have the same meaning and are subject
to the same equalities. For example, suppose we have a predicate Payed : PERSON
x MONEY. Then it is easy to show that we have

[p : pay($3)]Payed(p, $3) ~ [p : pay(S1 + $2)]Payed(p, $3)

,--> [p :pay(S1 + $2)]eayed(p, $1 + $2)

[p : pay($3)]Payed(p, $1 + $2).

Reasoning about the equality of process terms is done within Specp,o~,ss and reasoning
about the equality of predicate applications is done in Specst~t. The inference rules
of DYN = make these inferences Specoy,, inferences as well. The point of the example
is that the equalities between terms Specaor-terms derived in Spect,,oc,s, will be the
same as those derived in Specstat, because both are conservative extensions of
Spec ~T .

5. Specification in deontic logic

If Sigoyn is a dynamic logic signature, L(Sigoy,,) can be used as a language
for deontic constraints by introducing violation states V : t : a and V : t : -o~, with
the intuitive meaning of "t illegally performed a" and "t illegally failed to perform
a", respectively. With any dynamic logic signature Sigoyn, a deontic logic signature
Sigo,o,, corresponds, in which these predicates are all declared for all t and a. We
introduce the deontic modalities by definition for all process terms as follows:

def
�9 P(oO r --1 [a]V: a (' a is permitted"),

�9 O(a) ~:~ [- or]V: a (" a is obligatory"),

�9 F(a) ~--1 P(a) ("ct is forbidden").

Every
is that
effect

action now has a deontic effect and a non-deontic effect. The deontic effect
it raises a violation flag (a V-predicate becomes true) or not; the non-deontic
is the effect it has on the other predicates and on the attributes.

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 321

This simple introduction of deontic modalities into dynamic logic is surprisingly
powerful and resolves many paradoxes of deontic logic. We will not go into this,
but refer the reader to work done earlier on this [10,34,35,51].

An example deontic specification is

deontie constraint spec DeonticLibraryConstraints
import

DynamicLibraryConstraints
variables

p : PERSON
b, b" : BOOK
l : LIBRARY

deontic constraints
[NO] P (p : borrow(b)) ~->

Member(p) ^ --,V : p : - return(b')
[N1] [p : borrow(b)] [clock(21)](Borrowed(b,p)

V : p : -return(b))
IN2] V : p : -return(b) ~->

[p : return(b)](V : p : return(b) A --,V : p : -return(b))
IN3] [p : pay(S2, b)] --,V : p : return(b)
[N4] [p : borrow(b)]O(p : return(b), < 21)
[N5] [p : borrow(b)] [clock(21)] (Borrowed(b, p) <-40(l : remind(p, b))
IN6] Present(b) ^ Reserved(p)

(p = front(reservations(b))O(l : notify(p, b)))
end spec DeonticLibraryConstraints

[NO] says that a book can be borrowed only by members who are not in
violation of the constraint on returning a book within three weeks. V : p : - re turn(b ')
is a predicate with two arguments, p and b'. It is the violation flag raised when p
does not perform return(b') on time. [N1] gives a condition under which this flag
is raised. It says that the flag V :p : -return(b') is raised if the book is still borrowed
after 21 days. clock(21) is the process in which the clock makes 21 ticks (defined
in [48]). [N2] says that returning the book too late cancels the violation of not
returning it, but raises another one, called V : p : r e t u r n (b) , which [N3] says can
be cancelled by paying $2. [N4] says that borrowing a book creates the obligation
to return it within 21 days. O(p : return(b), < 21) is an obligation to perform a choice
of steps, viz. return the book, or let the clock tick once and return the book, etc. A
precise semantics of this binary predicate is given in [48]. If a book is not returned
within 21 days, [N5] says that the library is obligated to send a reminder. Finally,
if a book is retumed, the library should notify the person who is the first reserver
of the book (IN6]) . Reserved(p) shields the application of front to an empty queue.

322 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

6. Two models for free choice

The axioms presented so far have many models, and the completeness result
of theorem 1 holds only if we take all models into account. We now return to our
original concern with the paradox of free choice permission and define two particular
models of a deontic constraint specification that resolve that paradox. Since a
deontic constraint specification is just a dynamic constraint specification with some
extra predicates, we continue the discussion in terms of dynamic constraint
specifications.

A model of a dynamic constraint specification will have a structure as shown
in fig. 1, which is repeated in fig. 6. By the definition of dynamic constraint
specifications, each w ~ PW and the process algebra ~J,,o~,,, must contain the underlying

Fig. 6. The structure of any intended model
of a dynamic constraint specification.

ADT. To define an intended model ~ f for free choice, we will take for PW the set
of all possible worlds that contain ~ r as a SpecAor-reduct. In our example
specification, we took the initial algebra of Processes as our S~e,o~es,, but any other
process algebra containing s~aor as SpecAoT is alSO admissible. We assume such a
choice made, and then define two intended models, ~ f andd[/[a , by defining two
functions pf and Pa that define the effect of each process on the world. Roughly,
both functions will use a step-trace semantics, in which each action is interpreted
as a set of possible state transitions, and each process containing sequence operators
as a set of traces of such transitions. The two functions differ in the interpretation
they assign to active choice.

6.1. MODEL 1: A MODEL FOR FREE CHOICE

First, we assume a function

effect : TATCI~IClCTIoN(X) --') (~'- "-") (P W .-') PW)) .

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 323

e f f ec t (a) (cr) defines the effect of an atomic action on the state of the world. In
general, a dynamic logic specification does not determine the effect of actions
exhaustively. Several ef fec t functions remain possible with respect to a given
specification, and we need a kind of frame assumption to choose between these
possibilities. For example, one can stipulate that whatever is not specified to change
does not change when an atomic action is applied. We leave open how ef fec t is
chosen, and require only that the function satisfies

[a]~e,o,.,,,o = [b]~e,o~,~,,r r ~ e f fec t (a) (a) = e f f ec t (b) (or). (15)

We first define p f on TACrtoN(X) and later extend this to a function on TpROCESs(X).
To define p f : TAcr~oN(X) ---> (~ ---> (P W ---> ~ (P W))) , we define a set of functions
P W ---> P W to each r e T~cr~o~(X). We do this inductively. First, we need the domain
of s teps .

DEFINITION 18 (STEPS)

The set of all possible s teps is

S T E P = ~;+(TAToMIC_ACTIoN(X)) ,

with typical element S. (~;+ is the finite non-empty subset operator.) The elements
of S T E P are written

a2 ~ �9

an
I f t : a E S , we write t E S .

DEFINITION 19 (COMPATIBLE STEPS)

A step [,l]i
an

is called compat ib l e iff for all w E P W and all a E Y.

ef fect(a1) (or) o . . . o e f f e c t (a ,) (o')(w) = effect(ait) o . . . o ef fect(ai ,) (w)

for all permutations (il i ,) of (1 n). The set of compatible steps is called
STEpC~

A step is a synchronous occurrence of a non-empty finite set of atomic
actions. To cater for nondeterminism, we introduce step choices.

324 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

DEFINITION 20 (STEP CHOICES)

The set of all possible step choices is defined by

CHOICE = ~(STEpC~

with typical element C.

A step choice C is thus any set of the form

al
a2
i '

an

bll }
I)2

This is a passive choice between steps. To define our intended free choice model,
we must define an accessibility relation for every process term. We will call this
relation pf. As an intermediate step in the definition of pf, we first define a step
choice for every action. The case of processes containing the sequence operator is
a simple extension of this, given later.

DEFINITION 21 (STEP CHOICE INTERPRETATION)

The function

choice : TACTIoN(X) -'~ CHOICE

is defined as follows:

(1) choice(a) = {S ESTEpC~ ~S} .

(2) choice(t : fail) = {S E STEpC~ I t r S}, where t E S is shorthand for "there is
an a with t : a E S " .

(3) choice(t : any) = {S ESTEpC~ It ES}.

(4) choice(tzl + tx2) = choice(al) u choice(tz2).

(5) choice(a] & ix2) = choice(al) t~ choice(tr,2).

(6) choice(- a) = STEpc~

(7) choice(t : (t : cz 1 (3 t : era)) = choice(t : a l) n choice(t : 0~2).

(8) choice(to : (tl : tzl �9 t2 : tx2)) = choice(t1 : a]) u choice(t2 : ct2), where at least
two of to, tl, t2 differ.

choice is well defined, because it preserves compatibility of steps.

Remarks

(1) choice(a) is a passive choice over the set of all compatible steps in which
a participates. This is nondeterminism of the underspecification kind. Performance

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 325

of a can thus lead to any world out of a set of possible worlds. This makes it easy
to interpret action negation below.

(2) choice(t : fai l) is the set of all compatible synchronization sets in which
t does not participate. Together with clause (4) of the definition, this has the
consequence that equality (8),

t : a + t : f a i l = t : o~,

does not hold. choice(t : a + t : fai l) is a choice in which t participates or in which
it does not participate, and this is not equal to choice(t : a), which is a choice in
which t participates.

With clause (5) of the definition, it has the consequence that equation (9),

t : ot & t : fa i l = t : fail ,

does not hold. The choice associated with the left-hand side is empty, because the
intersection between choice(t : or) and t : fa i l is empty, but the choice associated
with the right-hand side includes all steps in which t does not participate. Only in
a single-actor world are these choices equal.

(3) choice(t : any) is the set of all compatible synchronization sets in which
t participates.

(4) Passive choice is just the union of the passive choices that are the branches,
This gives us commutativity, associativity, and idempotence of passive choice
(properties [P C l - 3] in the specification Actions). Because (t : a) u choice(t : any)
= choice(t : any), axiom [ANY1] in Actions is satisfied.

(5) t~l & ~2 is a passive choice over steps that are in both choice(oil) and
choice(or2). There may be no common steps, so synchronous execution may fail.
This definit ion gives us distributivity of synchronization over passive choice (axiom
[D] inActions) . This interpretation of synchronization satisfies t : a & z : any = t : ot

(axiom [ANY2] in Actions).

(6) Actions are negated with respect to all possible steps. Thus, - t : a is the
set of all possible steps in which t does not participate with a. These are the steps
in which t participates with another event, or in which I does not participate at all.
Note that - t : fa i l is a passive choice over t : any and any action in which t does
not participate. Thus, in this semantics, - t : fa i l # t : any. This definit ion of action
negation makes CHOICE a Boolean algebra (properties IN1-3] in Actions).

(7) choice defines the effect of free choice as the intersection of the effect
of branches and the effect of imposed choice as the union of the effect of the
branches. This is a particular view of active choice which formalizes the deontic
effect of such a choice as follows. In t : (t : oq ~ t : tr,2), t chooses between ix1 and
~ , and to resolve the paradox of free choice permission, we must formalize the fact
that t must have permission to perform both branches of the choice, not just one

326 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

as in classical deontic logic. This is formalized by (7) by simply taking the effect
of the choice to be the conjunction of the effect of the branches. If one of the
branches raises a violation flag, the choice will do so as well. In the case of imposed
choice, active choice has the same effect as passive choice, so that the deontic effect
of making the imposed choice is equal to the union of the deontic effects of
performing the branches.

This gives us what we want for the deontic effect of an action, but for non-
deontic effects, this is counterintuitive. For example, it gives us that the deontic
effect of choosing between shooting the president and chewing the gum is to raise
a violation flag, which gives us that it is forbidden to make the choice because one
of the branches is forbidden. However, the non-deontic part of the effect, which
does not concern the effect on the violation flag but on the rest of the world, is
defined to be the intersection of the effects of the branches as well. But in the
example this intersection is empty, which would give us that there is no non-deontic
effect of making the choice. This is counterintuitive. The internal choice model
presented below does not have this defect.

Having associated a passive choice with every action, we can now define the
effect of every action on the world. The accessibility relation pf is then defined in
terms of the effect function.

DEFINITION 22 (EFFECT OF A STEP)

The function effect is overloaded with the declaration

effect : STEP c ~ --) (F, --~ (PW ---) ~(PW)))

by defining for S �9 STEP c~

effect(S) (tr) = effect(al) (tr) o . . . o effect(a,) (tr),

where the effect on the right-hand side is the one already defined.

Thus, the effect of performing a finite non-empty set of atomic actions is the
composition of the effects of the atomic actions, if they are compatible, and is not
defined otherwise.

DEFINITION 23 (FREE CHOICE SEMANTICS)

The state transition semantics for free choice,

pf: TACrIoN(X) -O (Z ~ (PW ~ ~(PW))) ,
is defined by

pf(t~) (tr)(w) = {effect(S)(tr) (w) I S �9 choice(u)}.

R~I. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 327

Starting from a world w, pf simply leads to the set of worlds reachable by
the steps in choice(a), as determined by the effect of the atomic actions in each
step.

Any/7 may assign the same effect to different processes, so that processes
that are different in s~e,o,:,** may be indistinguishable in their effects on the world.
For example, passive choice is distributive over synchronization as far as pf is
concerned, but this equality does not hold in the process algebra.

T H E O R E M 4

For any dynamic constraint specification Specoyn that includes Actions as a
process specification, At/is a model.

Proof
This has been proven in the remarks explaining our definition of pf. []

We can now relate the internal structure of process terms to the internal
structure of postconditions.

are not all equal, then the following formulas are true in Mr.

^

(a O) v (aa)a,.

[a~]~ v [~]O.

T H E O R E M 5

If to, t l and t2

(1) [at + a2]~

(2) (a~ + ~a)~

(3) [a~ & a2]O

(4) (al & ~) ~ ' .---) (a l)~ ^ (o~2)~.

(5) [I0 " (I'1 " Ofl (3) /'2 " 17"2)](I) ~ [t l : a l] (I) A [12 " 0~2](I).

(6) (to : (h : al @ 12 : 0~2))I~) ~ (11 "- 0~1)~I) V (t 2 : ~2)I~).

(7) [t : (t : al �9 t : a 2)] O ~ [t : a l] ~ v [t : a2]O.

(8) (t : (t : t~ 1 �9 t : t~2))t~ --~ (t : a l) ~ A (1 : aZ) t~ .

Proofs of this can be found in [34].

Remarks

(1) Formulas (1)-(4) are standard. To be certain that the effect ~ is produced
by a passive choice, we must be certain that it is brought about by both branches
(1), but to know that it can be brought about by a passive choice is equivalent to
knowing that it can be brought about by at least one of the branches (2).

328 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

(2) Formulas (3) and (4) reflect the fact that the synchronized actions may
not be compatible, a~ & a2 may not have a successor world at all, whereas separately
al and a2 have. [al & a2]~ is then trivially true but [a~]* v [a2]~ may be false,
so the implication goes only one way. The logic is not able to express necessary
conditions for two steps to be compatible. This is a general problem with the
intersection of accessibility relations in a Kripke model with multiple accessibility
relations, that can only be solved by strengthening the language. Meyer [35] did this
by adding DONE : a predicates to the language, but Van der Hoek and Meyer [23]
show how to do this in general.

(3) Free choice has the properties of synchronous execution and imposed
choice has the properties of passise choice. The properties of free choice can be
given an intuitive interpretation as follows. We must realize that in active choice,
choice does not bring us to a next possible world, but it does occur at a point in
time preceding the execution of al and tr, 2. The left-hand side of (8) then says

"after t 's choice, the system is in a state
where * can be brought about",

and this indeed implies the right-hand side, which says that both branches can bring
about ~ . Applying the duality, the left-hand side becomes

"it is not the case that after t 's choice, the system is in a state
where ~ can be brought about",

which is equivalent to

"after t 's choice, the system can be in a state
where �9 will be brought about"

and this is the correct reading of the left-hand side of (7). It is indeed implied by
the right-hand side of (7), which says that one of the branches will bring about ~ .

Using the definitions of deontic operators, the following theorem follows
immediately.

THEOREM 6

If to, tl and z2 are not all equal, then the following formulas are true in My.

(1) F(al + a2) ~ F(al) ^ F (~) .

(2) P(a~ + o.2) ~ P(al) v P(a2).

(3) F(a~ & a2) r F(a~) v F(~) .

(4) P(a~ & ~) ~ V(al) ^ V(~) .

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 329

(5) F(/o : (h : a l (9 t2 : a2)) ~ F(tl : al) A F(t2 : tr.2).

(6) P(to : (LI : Ofl ~ 12 : 17.2)) ~ P(t l : a l) v P(t 2 : 0c2).

(7) F (/ : (t : al �9 t : a2)) ~-- F(t : a l) v F(t : a2).

(8) P (t : (t : a l 6) t : try2)) --~ P(t : a l) A P(t : 0:2).

Formulas (7) and (8) resolve the paradox of free choice permission. An actor
is permitted to do a, as well as a2 iff he is permitted to choose between them and
he is forbidden to choose between them if he is forbidden to do one of the branches.
For imposed choice and passive choice, on the other hand, the usual validities hold.
Thus, al + o,2 is permitted to occur if at least one of the branches is permitted to
occur. This is natural, for "permitted to occur" means "can lead to a permitted state
of the world". On the other hand, a l + o,2 is forbidden to occur iff both branches
are forbidden, for then it is certain that the passive choice will lead to a forbidden
state of the world.

Note that P(a l + a2) has a different reading than P(t : (t : al (9 t : oc2)). In
P(a l + a2), there is no actor and we just state something about desirability of the
possible states of the world that can he reached by the passive choice. In
P(t : (t : al (9 t : a2)), on the other hand, there is an actor and we state something
about the desirability of his making a choice.

To give a state-transition semantics to processes, we must extend the definition
of pf to Tvaoczss(X). The basic idea is simply that the effect of the sequence operator
on the world is simply a composition of the effect functions of its arguments. The
only complication is that deadlock should remain local, so that, for example (see
[F A I L 1 - 2] in Processes)

Pl(i :fail; ~1; t : a ; f12) ---p(t :fail; ill; f12).

Other actors can continue even when t gets stuck. The easiest way is to define Pl
for terms in which all occurrences of t after t has failed are removed, and then
extend the definition to other process terms that are in its congruence class.

DEFINITION 24 (REDUNDANCY)

Let fl 6 TpRocEss(X).

(1) Every term of which the main (outermost) operator is ; is called a sequence.

(2) A sequence is called redundant if it contains a pattern t :fail; rq; t: O; 13,
where 0 is either a or fail, and 13 is a (possibly empty) context. A sequence
is called non-redundant if it is not redundant.

(3) fl is called non-redundant if it does not contain redundant sequences.

The following is easy to prove.

330 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

LEMMA !

In the specification Processes, for any fl �9 Tt, Rocvss(X) there is a unique non-
redundant PROCESS term equal to it.

DEFINITION 25 (EXTENSION OF pl TO PROCESS TERMS)

Extend the definition of Pl as follows.

Pf : TpRocvss(X) "> (X ---> (PW "> ~(PW)))

is defined inductively by

(1) If fl �9 TmT~oN(X), then use the definition for STEP terms.

(2) If fl is of the form t : (/31 (9 ~) , then use the corresponding definition for
STEP terms.

(3) Otherwise, let fl be the unique non-redundant process term equal to t , and
let fl = ill; ~ (any arbitrary decomposition will do). Then by the inductive
build-up, p(fli)(a) is a function PW---> @~(PW), for i = 1, 2. Then define
P/(~)(a)(w) = {f2 o / i I)~ �9 P/(fli) (a) , i = 1, 2}, where o is the usual function
composition lifted to sets.

THEOREM 7

For any dynamic constraint specification Specoyn that includes Processes as
a process specification, Atf is a model.

THEOREM 8

The following formulas are t rue in At/.

(1) [~; ~] ~ ~ [3~]([~1~).
(2) (~,; ~) ~ ~ <~)((~)~).

(3) F(flz; ~) ~ [flt]F(fl2).
(4) P(fll; ~) ~-> (fll)P(~z).

Formulas (1) and (2) are standard theorems of dynamic logic [34]. They
follow immediately from the definition of sequence as function composition.

Formula (3) says that a sequence is forbidden iff the prohibition will remain
in force when we start performing the sequence, and a violation is raised when the
whole sequence is performed. Secondly, a sequence is permitted iff after performing
an initial part we may reach a state in which the last part is permitted. Clause (4)
may be viewed as a paradox, because it says in effect that the goal (/]2) justifies

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 331

any means (/31) [32]. This paradox can be easily removed by introducing iterated
permission as follows.

DEFINITION 26 (ITERATED PERMISSION)

Iterated permission of a sequence is inductively defined as follows.

�9 P*(a) ~:~ P(a).

�9 P*(/~ +/]2) ~:~ P*(~) v P*(]~2).

�9 P*(~ &/]2) ~:~ P*(/~) ^ P*(fl2).

�9 P * (~ ; ~ 2) ~ P * (~) ^ (~l)P*(~2).

This preserves the properties of P but the last clause eliminates the problem
that a permitted goal justifies any means. We will use iterated permission to solve
the paradox of free choice permission in the model of internal choice given below.

6.2. MODEL 2: A MODEL FOR INTERNAL CHOICE

The state transition semantics that p /g ives to active choice concentrates on
deontic effects of an action, i.e. on the effect of that an action has on the violation
predicate. It takes the effect of a free choice t : (l : a~ ~ l : a2) to be the intersection
of the effects of z : a~ and t : ~ . This is true for the deontic effect of an action,
but it is false in general for the non-deontic effects of an action. What we would
like is the following:

�9 The non-deontic effect of an active choice is defined compositionally in
terms of the non-deontic effect of the branches. In particular, the non-deontic
effect of an active choice should just be the union of the non-deontic effects
of its branches, just as in the case of passive choice. Thus, if you choose, you
choose and you do not perform both branches simultaneously))

�9 The deontic effect of an active choice is defined compositionally in terms of
the deontic effect of its branches. In particular, we would like to define the
deontic effect of performing the choice as the conjunction of the deontic
effect of performing the branches. This corresponds to the intuition that if we
have permission to choose between fll and f12, then we have permission to
choose fll and permission to choose/32.

We can do this simply if we define active choice in terms of passive choice
via equation (12), reproduced here:

I) This may be called Tomas' Predicament: In Milan Ktmdera's The Unbearable Lightness of Being,
Tomas has problems choosing between Tereza and Sabina and then complains "If only I could live two
lives simultaneously and then choose the best afterwards".

332 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

~o:(O~ �9 a2) = ~o:(~ ~ a 2) ; ~ + ~o:(O~ O-, o~); o~. (12)

Remember that t0: (at ~ ~) and to: (~ ~ ~) are the atomic actions of
making a binary choice.

We extend Processes to Pocesses + by adding axiom (12).

DEFINITION 27 (INTERNAL CHOICE SEMANTICS)

The intended model ~ i of a specification Specoyn that imports Processes + is
defined in the same way as A~f, except that

�9 we take the function Pi instead of pf, where

�9 Pi is defined just as p/(definition 23),

�9 except that we use the function choice/instead of choice, where

�9 choice/, in turn, is defined just as choice (definition 21), but clauses (7) and
(8), giving a semantics to active choice, are dropped.

Clauses (7) and (8) are not needed in this model because active choice is
reduced to passive choice. The following is then trivial.

THEOREM 9

oRi is a model of any dynamic constraint specification SpecDy,, that includes
Processes + as a process specification.

To solve the paradox of free choice permission using (12), we need two
axioms that we call the axioms o f free choice permission:

P(t : (t : al O-, t : a2)) ~ P(t : a l) A P(t : a2), (16)

P(t : (t : a I * -~ t : a2)) ~ P(t : a l) ^ P(t : a2) . (17)

An actor is permitted to choose between two actions iff he is permitted to
perform both branches. This gives us that an active free choice is permitted iff he
is permitted to perform either branch and after his choice, the chosen branch is still
permitted, as stated in the following theorem.

THEOREM 10

If Spect)yn imports Processes + and contains axioms (16) and (17), then

P*(t : (L" a I �9 l" 0~2)) (-~ P(t : r A P(t" Ix2) A ((t" it" Oq ~-~ t" a2))P(oq)

v (t : (l : a 1 ~ t :a2))P(a2)).

Rd. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 333

Proof

P*(t" (t " a t (9 t" a2))

~ . (P*(t" (a! ~ a2)) ^ (t" (a 1 ~-~ a2))P*(al)) v (12) and

(P*(l �9 (a I ~ 0~2)) ^ (l �9 (oq ~-o ~2))p*(a2)) def. of P*

~-4 (P(a l) ^ e (a2) ^ (t : (a I *-~ a2))P(a l)) v (16), (17)

(P (a I) ^ P (a 2) ^ (t : (t~ 1 ~ tz2))P(a2))

~-~ P(t : a l) ^ P(t : a2) ^ prop. logic

((t : (t : a 1 *-~ t : a2))P(a l) x/(l : (t : (a 1 0 -~ t : a2))P(a2)) . []

This result is intuitively plausible, for it says that

it is possible that an active choice leads to a permitted state of
the world

iff
each of the branches can lead to a permitted state of the world
and after at least one internal choice, the chosen branch can
still lead to a permitted world.

The theorem can be simplified if we assume that a permission cannot be created
by an internal choice,

([t o : (a i ~-~ r ~ P(a) , (18)

([to : (a i ~ - ' ~)] P (a)) ~ P(a) , (19)

for arbitrary a, a l and a2. This is a plausible assumption that can be motivated by
an appeal to intuition. These formulas imply their duals (using (-) instead of [�9]),
and these allow us to simplify theorem 10 as follows.

THEOREM 11

If Specoyn imports Processes + and contains axioms (16), (17), (18), and (19),
then

P (/ : (t : al (9 t : a2)) ~ P (/ : a t) ^ P(t : a2). (20)

The proof of this is immediate. The assumptions on which this result is based
can be summarized as follows.

334 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

(1) There is a difference between active and passive choice.

(2) Active choice does not create permission that was not already there.

(3) Active free choice is permitted iff the actor making the choice is permitted
to choose both branches.

There is no magic here; as in any formal system, what we get out is what
we put in. However, what we put in can be judged reasonable on independent
grounds, and we have developed a formalism in which we can state precisely what
we want to put in, without getting counterintuitive results like the paradox of free
choice permission.

We should perhaps add that parts (1)-(4) of theorem 6 are still valid in .~t.i.
For example, we have

P(al + ~) ~ P(a l) v P(tr,2).

Theorem 20 defines the deontic effect of an active choice compositionaUy as
the conjunction of the deontic effect of the branches. The non-deontic effect of the
active choice is still defined in terms of the non-deontic effect of performing its
branches, as stated in the following theorem.

THEOREM 12

If Specoyn imports Processes+, then

[to : (ai �9 ~] ~ ~ [to : (ai ' -~ ~)] [a i]~ v [to : (a~ O-, a2)] [~] ~ .

This holds even without the axioms of free choice permission.

7. Discussion

7.1. NONDETERMINISM AND INITIATIVE IN CCS AND CSP

De Nicola and Hennessy [39] give a translation function t r from CCS to
TCCS which deletes all occurrences of "r and replaces choice by internal or external
choice, depending upon the first event of the chosen branches. This translation
makes sense if we restrict ourselves to a two-actor system, where one actor (the
observer o) initiates all atomic events and either actor (o or the machine m) can
initiate a choice. Example translations (in our actor formalism) are

(1) t r (a+b)=o:(o:a~o:b) ,

(2) t r (' r ; a + b) = m : (o : (o : a ~ o : b) ~ o : a) ,

(3) t r (' r ; a + p ; b) - - m : (o : (o : a ~ o : b) ~ o : a ~ o : b) .

R.I. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 335

The last translation assumes choice is associative, which we saw earlier is not
obvious in an actor-oriented specification. Making actors explicit shows that there
are more ways to interpret "r. For example, the translation in (2) says that m chooses
between letting o do a or giving o the choice to do a or b. A translation that stays
closer to the original would be

(2') t r(z; a + b) = o : ((m : c ; o : a) (9 o : b)

for an event c, and assuming CCS choice is extemal. One can argue that o is not
able to make the choice on the right-hand side of (2') because o does not know what
m will do, but then neither is m on the right-hand side of (2) able to make a choice.
Perhaps the problem in (2) is that the initiative of the choice lies partly with m and
partly with o (if o is fast enough, he can press the button before m does "r).

This problem is also present in (3), where the intention is that the choice is
made by m. A simpler translation would therefore be

(3') t r (' r ;a + z;b) = m : (o : a (9 o : b).

Using internal choices, this becomes

(3") tr('r; a + "r; b) = o : (m : to : (~ ~ ~) ; o : a (9 m : t o : (a i ~ tr2); o : b).

Using actors, one is forced to make explicit which choice one makes.
The problem that an actor cannot choose if he has not enough information

is illustrated neatly by a number of CSP laws [22, pp. 103-107]. Translated into
process terms with actors, these are:

(1) m : (o : a ; x (9 o : a ; y) = o : a ; m : (x (g y) ,

(2) o : (o : a ; x (9 o : a ; y) = o : a ; m : (x (g y) ,

(3) m : (x (9 o : (y (9 z)) = o : (m : (x (B y) (9 m : (x (9 z)),

and another one like (3), with the roles of o and m reversed. In (1), m cannot make
the choice on the left-hand side and the initiative to do something lies with o.
However, m retains initiative as far as the choice is concerned. In (2), o does not
choose at all, but simply does a and passes control over the choice to m. It is not
obvious why control should be passed to m in (2). Together, (1) and (2) imply that
the initiative for a "truly" nondeterministic choice always lies with m. Thus, two
forms o f nondeterminism are identified: "true" nondeterminism of the ax + ay kind,
in which an event leads to an element of a set of possible next states, and lack of
control over a choice, as in to : (t : al (9 ~) , where t has no control over the choice
but t0 has. We see nothing wrong in identifying these two forms of nondeterminism,
but see no particular reason for making this identification either.

336 Rd. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

iff

Formula (3) says that

Mary chooses between x and giving Otto the choice between
y and z

Otto chooses between offering Mary the choice between
x and y and offering Mary the choice between x and z.

The problem with this is that the order of choices as well as what the actors choose
from is different. Hoare [22, pp. 107-108] argues for this equation on the grounds
that the effect of both sides is the same. We think these conflicting intuitions can
be harmonized as follows. To do justice to the intuition that the processes are not
equal, we simply delete axiom (3) from the process theory. This prevents them from
being equal in ~e,o~,,s. However, to do justice to Hoare's intuition that the two
processes have the same effect in PW, we could add

(3') [m : (x ~ o : (y ~ z))] ~ [o : (m : (x ~ y) + m : (x ~ z))] ~ ,

as an axiom to Specoyn. p then assigns the same effect to these otherwise different
processes.

7.2. ACTIVE OBJECTS

In our approach, the concept of a globally unique identifier for each actor is
crucial. Identifiers are also crucial for objects [3,27], so we could try to unify the
concepts of actor and object in that of an active object. Elsewhere [45,47], it is
argued that in an algebraic specification framework, the only essential addition to
be made to get an object-oriented specification language is the idea of localization
of properties (often called local state, local instance variables, local attributes) and
of events (often called method). Localization is often called encapsulation in object-
orientation. We can bring this in quite easily by a number of syntactic restrictions.
We briefly show how this can be done.

Let us call any sort for which Specs~t or Specoyn defines functions ot predicates
as object idenitifer sort. Properties are localized by allowing only unary functions
and predicates to be declared for identifier sorts. We then call a function an attribute
and can say of every attribute and (non-deontic) predicate that is has a single
subject. For deontic predicates (obligation, permission, prohibition, violation), we
call the actor of the event to which the predicate is applied the subject. Thus, the
subject of reservations(b) is b, and of O(p:re turn(b)) it is p. The predicate
Borrowed(b,p) is inadmissible in this approach, because it has more than one
argument. We can now think of each DB state as a set of tuples of the form
(oid, (al : vl an : vn, el : bl Pm : bin)), where ai and Pj are all attributes
and predicates applicable to the object identifier oid, vi are values (possibly used
as oid's elsewhere) and bj are Boolean values.

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 337

Events can be localized by treating their first (non-actor) argument as the
identifier of the object whose state is changed by the event. We call this the subject
of the event. For example, in p : return(b), b is called the event subject. This means
that we regard p : return(b) as an event in the life of b, even though it is initiated
by p. Furthermore, we regard it as a local event in the life of b that may change the
local state of b. To represent the fact that p initiates the event, we must define
p : return(b) as part of a communication event in whichp and b participate, each with
a local event. Pursuing this idea would exceed the bounds of this paper, but this has
been done in detail elsewhere [46, 50,47] in the context of the specification language
CMSL. See [42,43] for a related approach in the context of the specification language
Oblog.

We call a constraint local if there is a single subject appearing in all subject
argument positions of predicates, attributes and events. Static ICs may be local or
global, but we require dynamic ICs (containing occurrences of [�9]) to be local only,
in order to enforce a local state to be changed by a local event only. We look at
each of the constraints given in this paper to see whether they are local or global.
The different parts of the specification are collected together in the appendix.

In StaticLibraryConstraints, constraint [Cl] is local and in DynamicLibrary-
Constraints, [D1] and [192] are all local because all predicates, attributes and
events occurring in them have one argument, and that argument is the same variable
throughout each constraint. They are constraints on individual books. [132] blocks
the event borrow initiated by a person but suffered by a book, and by our decisions
this is seen as an event in the life of a book (it may change the state of the book
it is applied to) but not of a person (it cannot change the state of the person
initiating the event). This makes clear that the decision to localize all events is too
severe, for it disallows communication between objects. Some events are global in
the sense that they are shared by objects. Localization can still be maintained by
requiring a shared event to consist of the synchronous execution (composition by
&) of a number of local events, and to prohibit defining the effect of a shared event
other than by stating of which local events it is composed.

[190] is not local, because it uses a predicate that is not local. We fix this
below. [NO] and [N2-4] are all local rules applicable to persons. IN2.] and [N5]
are not local, because of their use of the binary predicate Borrowed. IN6] is global
static IC with three subjects, a book, a person, and a library. An example of how
to make some of these constraints local is

deontic constraint spec ObjectOrientedLibrarySpec
attributes

reservations : BOOK ---> QUEUE
last_borrower : BOOK --~ PERSON

predicates
Present : BOOK
Borrowed : BOOK

338 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

IS0']
[DO']
[D3']
[NI']

constraints
Present(b) ~ ~Borrowed(b)
[p : borrow(b)]Borrowed(b) A last_borrower(b) = p
[p : return(b)]Present(b) ^ --,Borrowed(b)
[p : borrow(b)] [clock(21)]
(Borrowed(b) ^ last_borrower(b) = p ~ V : p : -return(b))

deontic constraint spec ObjectOrientedLibrarySpec

[NI'] is about persons, and in addition contains a reference to the clock.
Probably, we should allow clock events to appear in any rule. [NI'] ignores the
possibility that the same person returned and borrowed the book for the second time
within three weeks. This can be fixed if we monitor the process of borrowing and
returning more closely. We omit this for reasons of space.

It is important to realize that the important concept of encapsulation in qtbject-
oriented modeling has several different formalizations that are not equivalent, fex tual
encapsulation is the hiding of names declared in one part of a specification from
visibility in other parts of a specification. This is handled adequately by the import
mechanism common in algebraic specifications, possibly supplemented with a name-
hiding mechanism. Semantic encapsulation is the localization of state and behavior
in individual objects, so that each object has a local state that is only changed by local
events. Localization of state is enforced by the requirement that attributes and predicates
are unary, and localization of state changes is enforced by the requirement that
dynamic constraints, which define the effect of events on objects, are local. The
concept of encapsulation in object-oriented specification is discussed at length in [47].

In this approach, the concept of active object is formalized as an actor that
is also an object. An active object need not be active all the time. Rather, activity
is a relation between an actor and an event occurrence, and actors may perform or
suffer events. However, only actors can perform events, and non-actors can only
suffer them.

8. Summary and conclusions

We gave a semantic structure for dynamic logic with equality that separates
the algebraic semantics -~e,oc,= of uninterpreted process terms from the state transition
semantics p of the effect that processes have on the world. This allowed us to
experiment with different state transition semantics, keeping the algebraic process
semantics invariant. We gave a sound and complete inference system for this version
of dynamic logic.

In addition to the semantic structure mentioned above, special features of our
version of dynamic logic are the absence of iteration as a process operator and the
introduction of the synchronous execution and action negation operators, as well as
the explicit specification of these in algebraic specifications.

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 339

The extension of dynamic logic to deontic logic builds on earlier work done
by Meyer [34], and the use of active and passive choice to solve the paradox of free
choice permission builds upon the earlier idea to use the CSP distinction between
internal and external choice to solve this paradox [33]. The extension of the specification
language given in this paper to object-oriented specification is motivated in more
detail in Wieringa [45,47].

As a preliminary to implementing parts of the language, current work includes
giving an operational semantics to sublanguages of the specification language used
in this paper. A topic high on our priority list is the exploration of different semantics
of action negation and in general of more interesting process semantics than the
initial semantics. Extension of dynamic logic to recursively defined processes and
to processes with communication will also be investigated.

Appendix: The example specification

value spec P e r s o n l d e n t i f i e r s

i m p o r t
Booleans

sor ts
P E R S O N

funct ions
Po : P E R S O N
next : P E R S O N ~ P E R S O N
eq : B O O K • B O O K ~ B O O L

variables
x , x l , x 2 : P E R S O N

equa t ions
[1] x eq x = true

[2] PO eq nex t (x) -~ - fa l se
[3] next (x) eq Po = fa lse
[4] next(x1) eq n e x t (x 2) = xl
end spec P e r s o n l d e n t i f i e r s

eq x2

value spec A c t o r l d e n t i f i e r s
i m p o r t

Per sonl denti f i e r s, L ibr a r y l denti f ier s
sor ts

P E R S O N (_ A C T O R ,

L I B R A R Y < A C T O R
end spec Ac tor Iden t i f i e r s

340 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

process spec L i b r a r y E v e n t s

i m p o r t
P e r s o n l d e n t i f i e r s , B o o k l d e n t i f i e r s , L i b r a r y I d e n t i f i e r s , M o n e y

sor t s
P E R S O N _ E V E N T

L I B R A R Y _ E V E N T

func t ions
b o r r o w : B O O K - - ~ P E R S O N _ E V E N T

r e t u r n : B O O K ., P E R S O N _ E V E N T

r e s e r v e : B O O K . ~ P E R S O N _ E V E N T

p a y : M O N E Y .., P E R S O N _ E V E N T

n o t i f y : P E R S O N x B O O K , L I B R A R Y _ E V E N T

end spec L i b r a r y E v e n t s

process spec A c t i o n s

i m p o r t

L i b r a r y A c t i o n s , L i b r a r y A c t o r s

sor t s
P E R S O N _ E V E N T < E V E N T

L I B R A R Y _ E V E N T < E V E N T

A T O M I C _ A C T I O N < A C T I O N

func t ions
a n y : E V E N T

f a i l : E V E N T

@ : A C T I O N x A C T I O N ~ E V E N T

_ : _ : P E R S O N x P E R S O N _ E V E N T

_ : _ : L I B R A R Y x L I B R A R Y _ E V E N T

: : A C T O R • E V E N T ~ A C T I O N

+ : A C T I O N x A C T I O N , A C T I O N

& : A C T I O N x A C T I O N - . , A C T I O N

-_ : A C T I O N ~ A C T I O N

var iables
~,L0, ~1,L2 : A C T O R

: E V E N T

ol, a l , r r : A C T I O N

equa t ions
[PCl] a l ~u a 2 = a 2 -~- Otl

[PC2] (a l + a2) + aa = a l + (a2 + a~)
[PC3] a + a = a

, A T O M I C _ A C T I O N

A T O M I C _ A C T I O N

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 341

[NI]
[N2]
[N3]

-- -- (:X _~_ O~

- (~1 + a2) = - a l & - a2
- (a l & a2) = - a l + -a.o

[D]

[ANY1]
[ANY2]

~:~ + ~:any = t : a n y

t:c~ ~: L:any = I~:a

[ACl] ~:(o~1 �9 of 2) • t:(~2 ~ ~1)
e n d spec A c t i o n s

process spec Proccsses

import

[sl]

A c t i o n s

sor t s
E V E N T < C H O I C E S

A C T I O N <_ P R O C E S S

f u n c t i o n s
; : P R O C E S S • P R O C E S S , P R O C E S S

+ : P R O C E S S • P R O C E S S ---~ P R O C E S S

@ : P R O C E S S x P R O C E S S , C H O I C E S

: : A C T O R x C H O I C E S , P R O C E S S

var iab les
: A C T O R

a : A C T I O N

~, /~1, /92,83 : P R O C E S S

e q u a t i o n s

[PC4]

[PCS]
[pcs]

/91 +/92 ~" /92 "~-/91
(/91 -[-/92) +/93 : /91 "~ (~2 "Jr"/93)
8 + / 9 = / 9

[SYNI]
[SYN2]
[SYN3]

(OZl;/91)~(OL2;/92) ---~ (~Xl~L~2); (/91~/32)

(Otl ; /91)~Ot2 -~- (Oqc~La2);~l

[D1]
[D2]
[D3]

Zl;/93 +/92;Z3 = (Z, + ~);/93
/93;/91 +/33;/91 =/93;(/91 +/95)
~: (/91;/93 �9 = ~: (/91 �9 ~2); 83

342 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

[s2]

[FAIL1] t : fa i l ; ~:/9 = ~:fail
[FAIL2] e:fail;fl;L:/3 = L:fail;

end spec P r o c e s s e s

static constraint spec S t a t i c L i b r a r y C o n s t r a i n t s
impor t

P e r s o n s , B o o k l d e n t i f i e r s , Q u e u e s

functions
r e s e r v a t i o n s : B O O K , Q U E U E

predicates
R e s e r v e d : B O O K
Avai lable : B O O K
P r e s e n t : B O O K

variables
b : B O O K

static constraints
[C1] Avai lable(b) ~-+ P r e s e n t (b) A -~Reserved(b)

end spec S i a t i c L i b r a r y C o n s t r a i n t s

dynamic constraint spec D y n a m i c L i b r a r y C o n s t r a i n t s

impor t
S t a ~ i c L i b r a r y C o n s t r a i n t s , P r o c e s s e s

variables
p : P E R S O N

b : B O O K

q : Q U E U E
dynamic constraints

[DO] ~ : b o r r o w (b) l B o r r o w e d (b , p) A -~Present (b)
[D1] Reserved (b) --*

(p = head(q) A q = r e se rva t i o ns (b) --*
[p:borrow(b)lreservations(b)'= tail(q))

[D2] Reserved (b) --*
(-~(p = head(q) A q = r e s e r v a t i o n s (b)) --* ~ ' b o r r o w (b)] f a l s e)

end spec D y n a m i c L i b r a r y C o n s t r a i n t s

RJ. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 343

d e o n t i c c o n s t r a i n t spec DeonticLibraryConstraints
i m p o r t

Dynamic L ibr aryC onstr aints
var iab les

p : P E R S O N
b, bt : B O O K
l : L I B R A R Y

d e o n t i c c o n s t r a i n t s
[NO] P(p:borrow(b))

Member(p) ^ - ret rn(b')
[111] ~p:borrow(b)][clock(21)](Borrowed(b,p) .-.

V:p: - return(b))
[N2] V:p: - return(b)

Lo: et ,rn(b)](V:p: et rn(b) ^ - retu (b))

[N3] ~:pay($2, b)]-~V:p:return(b)
IN4] ~:borrow(b)]O(p:return(b), < 217
[N S] ~9:borrow(b)][clock(21)](Borrowed(b,p) ~ O(l:remind(p, b))
[N6] Present(b) A Reserved(p) *-~

(p = f ront(reservations(b))O(l:noti f y(p, b)))
e nd spec DeonticLibraryConstraints

Acknowledgements

Earlier versions of this work were presented at the International Joint Conference
on Theory and Practice of Software Development (TAPSOFr '91) in Brighton and
at the 3rd Symposium on Mathematical Fundamentals of Database and Knowledge
Base Systems (MFDBS'91) in Rostock. We thank the referees of those papers for
their constructive comments. This work was also presented at a meeting of the
Esprit working group COMPASS in Braunschweig. We thank the participants of
that meeting, especially Professors Hans-Dieter Ehrich and Hartmut Ehrig, who
pointed out our nonstandard use of the terminology of conservative extensions. The
concept of internal choice was discussed with Martin Sadler of Hewlett-Packard
Laboratories, who suggested that the idea might not be as bad as it first seemed.
Paul Spruit eliminated a number of errors in an earlier version of the paper. Thanks
are due to the anonymous referee who gave detailed and constructive comments on
the paper, which led to some significant improvements.

References

[1] A. al Hibri, Deontic Logic (University Press of America, 1978).
[2] L. ,~qvist, Deontic logic, in: Handbook of Philosophical Logic II, ed. D.M. Gabbay and F. Guenthner

(Reidel, 1984) pp. 605-714.

344 R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

[3] M. Atkinson, F. Bancilhon, D. DeWitt, K. Dittzich, D. Maier and S. Zdonik, The object-oriented
database system manifesto, in: 1st Int. Conf. on Deductive and Object-Oriented Databases,
exl. W. Kim, J.-M. Nicolas and S. Nishio (1989) pp. 40-57.

[4] J.C.M. Baeten and W.P. Weijland, Process Algebra, Cambridge Tracts in Theoretical Computer
Science 18 (Cambridge University Press, 1990).

[5] J,A. Bergstra and J.W. Klop, Process algebra for synchronous communication, Info. Control.
60(1984)109-137.

[6] J.A. Bergstra and J.W. Klop, Algebra of communicating processes with abstraction, Theor. Comput.
Sci. 37(1985)77-121.

[7] J.A. Bergstra and J.W. Klop, Algebra of communicating processes, in: Mathematics and Computer
Science, ed. J.W. de Bakker, M Hazewinkel and J.K. Lenstra, CWI Monographs 1 (North-Holland,
1986) pp. 89-138.

[8] H.-N. Castefieda, The paradoxes of deontic logic, in: New Studies in Deontic Logic (Reidel, 1981).
[9] D.T. Sannella and D.B. MacQueen, Completeness of proof systems for equational specifications,

IEEE Trans. Software Eng. SE-11(1985)454-461.
[10] F.P.M. Dignum and J.J.Ch. Meyer, Negations of transactions and their use in the specification of

dynamic and deontic integrity consu:aints, in: Semantics for Concurrency, ed. M.Z. Kwiatkowska,
M.W. Shields and R.M. Thomas (Springer, 1990) pp. 61-80.

[11] H.-D. Ehrich, M. Gogolla and U.W. Lipeck, Algebraische Spezifikation abstrakter Daten~pen (B.G.
Teubner, 1989).

[12] H. Ehrig and B. Mahr, Fundamentals of Algebraic Specification 1. Equations and Initial Semantics,
EATCS Monographs on Theoretical Computer Science, Vol. 6 (Springer, 1985).

[13] J. Fiadeiro and T. Maibaum, Temporal reasoning over deontic specifications, J. Logic Comput.
1(1991).

[14] D. Fr and R. Hilpinen, Deontic logic: An introduction, in: Deontic Logic: Introductory and
Systematic Readings, ed. R. Hilpinen (Reidel, 1971) pp. 1-35.

[15] L.T.F. Gamut, Logic, Language and Meaning 2: lntensional Logic and Logical Grammar (University
of Chicago Press, 1991). L.T.F. Gamut is a pseudonym for J.F.A.K. van Benthem, J. Groenendijk,
D. de Jongh, M. Stokhof and H. Verkuyl.

[16] R.J. van Glabbeek, Comparative concurrency semantics and refinement of actions, Ph.D. Thesis,
Vrije Universiteit/Centrum voor Wiskunde en Informatica, Amsterdam (1990).

[17] R.J. van Glabbeek and F.W. Vaandrager, Modular specifications in process algebra with curious
queues, in: Algebraic Methods: Theory, Tools, and Applications, ed. M. Wirsing and J.A. Bergstra,
Lecture Notes in Computer Science 394 (Springer, 1989) pp. 465-506.

[18] J.A. Goguen and J. Meseguer, Completeness of many-sorted equational logic, SIGPLAN Notices
17(1982)9-17.

[19] J.A. Goguen and J. Meseguer, Order-sorted algebra I: Equational deduction for multiple inheritance,
overloading, exceptions and partial operations, Technical Report SRI-CSL-89-10, SRI International,
Computer Science Lab (July 1989).

[20] D. Hard, Dynamic logic, in: Handbook of PhilosophicalLogic II, ed. D.M. Gabbay and F. Guenthner
(Reidel, 1984) pp. 497-604.

[21] R. Hilpinen, Conditionals in possible worlds, in: Contemporary Philosophy, A New Survey, Vol. 1,
ed. G. FlCstad (Reidel) pp. 299-335.

[22] C.A.R. Hoare, Communicating Sequential Processes (Prentice-Hall, 1985).
[23] W. van der Hock and J.-J.Ch. Meyer, Explicating some issues in implicit knowledge, Technical

Report, Deparlment of Mathematics and Computer Science, Vrije Universiteit, Amsterdam (September
1990).

[24] G.E. Hughes and M.J. Cresswell, A Companion to Modal Logic (Methuen, 1984),
[25] G. Kalinowski, Einfiihrung in die Normenlogik (Atheniium Press, 1972).
[26] H. Kamp, Free choice permission, Aristotelian Soc. Proc. N.S. 74(1973-1974)57-74.

R.J. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative 345

[27] S.N. Khoshafian and G.P. Copeland, Object identity, in: Object-Oriented Programming Systems,
Languages and Applications, SIGPLAN Notices 22 (12) (1986) pp. 406-416.

[28] S. Khosla, System specification: A deontic approach, Ph.D. Thesis, Department of Computing,
Imperial College, London (1988).

[29] S. Khosla and T.S.E. Maihaum, The prescription and description of state based systems, in: Temporal
Logic in Specifu:ation, exi. B. Banieqbal, H. Barringer and A. Pnueli (Springer, 1987) pp. 243-294.

[30] D. Kozen and J. Tiuryn, Logics of programs, in: Handbook of Theoretical Computer Science, ed.
J. van Leeuwen (Elsevier Science, 1990) pp. 789-840.

[31] R.M. Lee, Bureaucracies as deontic systems, ACM Trans. Office Info. Syst. 6(1988)87-108.
[32] R. van der Meyden, The dynamic logic of permission, in: Prec. 5th IEEE Conf. on Logic in

Computer Science, Philadelphia (1990) pp. 72-78.
[33] J.J.Ch. Meyer, Free choice permissions and Ross' paradox: Internal vs external nondeterminism,

Technical Report IR-130, Department of Mathematics and Computer Science, Vrije Universiteit,
Amsterdam (August 1987).

[34] J.-J.Ch. Meyer, A different approach to dcontic logic: Deontic logic viewed as a variant of dynamic
logic, Notre Dame J. Formal Logic 29(1988)109-136.

[35] J.-J.Ch. Meyer, Using programming concepts in deontic reasoning, in: Semantics and Contextual
Expression, ed. R. Bartsch, J.F.A.K. van Benthem and P. van Emda Boas (FORIS Publications,
Dordrecht/Riverton, 1989) pp. 117-145.

[36] J.-J.Ch. Meyer and E. de Vink, Step semantics for "true" concurrency with recursion, Distr. Comput.
3(1989)130-145.

[37] J.-J.Ch. Meyer and R.J. Wieringa, Actor-oriented system specification with dynamic logic, in: Prec.
Int. Joint. Conf. on Theory and Practice of Software Development (TAPSOFT'91), Vol. 2, ed.
S. Abramsky and T.S.E. Maibaum, Lecture Notes in Computer Science 494 (Springer, 1991)
pp. 337-357.

[38] R. Milner, A Calculus of Communicating Systems, Lecture Notes in Computer Science (Springer,
1980).

[39] R. de Nicolas and M. Hennessy, CCS without 'r's, in: Prec. Int. Joint Conf. on Theory and Practice
of Software Development (TAPSOFT), Vol. 1, ed. H. Ebrig, R. Kowalski, G. Levi and U. Montanari,
Lecture Notes in Computer Science 249 (Springer, 1987) pp. 138-152.

[40] R. Reiter, Equality and domain closure in f'wst-order databases, J. ACM 27(1980)235-249.
[41] R. Reiter, Towards a logical rexxmstruction of relatitional database theory, in: On ConceptualModelling,

ed. M.L. Brodie, J. Mylopoulos and J.W. Schmidt (Springer, 1984) pp. 191-233.
[42] A. Sernadas and H.-D. Erhich, What is an object, after all?, in: Object-Oriented Databases (DS.4),

Windermere, UK (July 1990), IFIP Working Group 2.6.
[43] A. Semadas, J. Fiadeiro, C. Sernadas and H.-D. Ehrich, The basic building blocks of information

systems, in: Information System Concepts: An In-Depth Analysis, ed. E.D. Falkenberg and P. Lindgreen
(North-Holland, 1989) pp. 225-246.

[44] G. Smolka, W. Nutt, J. Goguen and J. Meseguer, Order-sorted equational computation, in: Resolution
of Equations in Algebraic Structures, Volume 2: Rewriting Techniques, ed. M. Nivat and H. Ait-
Kaci (Academic Press, 1989) pp. 297-367.

[45] R.J. Wieringa, Algebraic foundations for dynamic conceptual models, Ph.D. Thesis, Department of
Mathematics and Computer Science, Vrije Universiteit, Amsterdam (May 1990).

[46] R.J. Wieringa, Equational specification of dynamic objects, in: Object-OrientedDatabases: Analysis,
Design, and Construction (DS-4), ed. R.A. Meersman, W. Kent and S. Khosla (North-Holland, 1991)
pp. 415-438.

[47] R.J. Wieringa, A formalization of objects using equational dynamic logic, in: 2nd Int. Conf. on
Deductive and Object-Oriented Databases, ed. C. Delobel, M. Kifer and Y. Masunaga, Lecture
Notes in Computer Science 566 (Springer, 1991) pp. 431-452.

346 R,I. Wieringa, J.-J.Ch. Meyer, Actors, actions, and initiative

[48] R.J. Wieringa, J.-J. Ch. Meyer and H. Weigand, Specifying dynamic and deontic integrity constraints,
Data Knowledge Eng. 4(1989)157-189.

[49] RJ. Wieringa and J.-J.Ch. Meyer, Actor-oriented specification of dynamic and dcontic integrity
constraints, in: 3rd Symp. on Mathematical Fundamemals of Database and Knowledge Base Systems
(MFDBS 9/), ed. B. Thalheim, J. Demetrovics and H.-D. Gerhardt, Lecture Notes in Computer
Science 495 (Springer, 1991) pp. 89-103.

[50] R.J. Wieringa and R.P. Van De Riet, Algebraic specification of object dynamics in knowledge base
dom~ns, in: Artificial Intelligence in Databases and Information Systems (DS-3), ed. R.A. Meersman,
Zhongshi Sift and Chen-Ho Kung (North-Holland, 1990) pp. 411-436.

[51] R.J. Wieringa, H. Weigand, J.-J.Ch. Meyer and F. Dignum, The inheritance of dynamic and deontic
integrity constraints, Ann. Math. Art. Int. 3(1991)393-428.

[52] G.H. yon Wright, An essay in deontic logic and the general theory of action, Acta Philosophica
Fennica, Fasc. 21 (North-Holland, 1968).

