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The energy budget and dissipation mechanisms during droplet impact on solid surfaces
are studied numerically and theoretically. We find that for high impact velocities and
negligible surface friction at the solid surface (i.e. free slip), approximately one-half of
the initial kinetic energy is transformed into surface energy, independent of the impact
parameters and the detailed energy loss mechanism(s). We argue that this seemingly
universal rule is related to the deformation mode of the droplet and is reminiscent of
pipe flow undergoing a sudden expansion, for which the head loss can be calculated
by multiplying the kinetic energy of the incoming flow by a geometrical factor. For
impacts on a no-slip surface also dissipation in the shear boundary layer at the solid
surface is important. In this case the geometric head loss acts as a lower bound on
the total dissipation (i.e. the spreading on a no-slip surface approaches that on a free-
slip surface when the droplet viscosity is sent to zero). This new view on the impact
problem allows for simple analytical estimates of the maximum spreading diameter
of impacting drops as a function of the impact parameters and the properties of the
solid surface. It bridges the gap between previous momentum balance approaches and
energy balance approaches, which hitherto did not give consistent predictions in the
low viscosity limit. Good agreement is found between our models and experiments,
both for impacts on ‘slippery’ or lubricated surfaces (e.g. Leidenfrost droplet impacts
and head-on droplet–droplet collisions) and for impacts on no-slip surfaces.

Key words: drops, drops and bubbles, interfacial flows (free surface)

1. Introduction
The common event of a liquid drop colliding with a solid surface is a very rich

phenomenon: droplets can splash, spread or bounce (Rein 1993; Yarin 2006; Marengo
et al. 2011; Quéré 2013; Josserand & Thoroddsen 2016), often entrapping air in the
process (Chandra & Avedisian 1991; Thoroddsen et al. 2005). But despite the great
experimental progress on the droplet impact problem (Thoroddsen, Etoh & Takehara
2008) consensus has yet to be reached on many of its basic laws. One of the very
basic questions (see figure 1) is to find out the maximum spreading diameter Dm of the
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On the spreading of impacting drops 637

FIGURE 1. (Colour online) The canonical problem in droplet impact: a droplet hits a solid
surface with initial velocity V0 and diameter D0. What will be its maximum spreading
diameter Dm as a function of the liquid properties (surface tension γ , viscosity µ, density
ρ) and solid properties (slip length λ, (dynamic) contact angle θ )?

droplet, given its initial diameter D0, its impact velocity V0, the properties of the liquid
(density ρ, surface tension γ and viscosity µ) and the conditions at the solid surface:
the slip length λ (Lastakowski et al. 2014) and the (dynamic) liquid–solid contact
angle θ (Šikalo et al. 2005; Antonini, Amirfazli & Marengo 2012). The influence
of the surrounding air is often negligible in the overall spreading dynamics (Visser
et al. 2015). Using dimensional analysis, the problem can be reduced to finding the
spreading ratio D̃m ≡Dm/D0 = f (We, Re, λ/D0, θ), where

We≡ ρD0V2
0

γ
and Re≡ ρD0V0

µ
(1.1a,b)

are the impact Weber and Reynolds numbers, which reflect, respectively, the
importance of the surface tension and viscosity with respect to the initial inertia
of the drop.

Knowing the maximum surface coverage that an impacting drop can reach is of
great importance in a wide variety of applications: from ink-jet printing (Van Dam &
Le Clerc 2004), spray cooling (Kim 2007) and self-cleaning surfaces (Blossey 2003),
to blood spatter analysis in crime scenes (Laan et al. 2014) and anti-icing of aircraft
wings (Mishchenko et al. 2010). All these applications deal with high inertia impacts
(We� 1, Re� 1) in which the droplets greatly deform. This regime will be the focus
of this work.

In the literature one can identify two strategies to estimate D̃m: (i) an energy
balance or (ii) a force/momentum balance. In the first case it is usually assumed that
the initial kinetic energy is mainly consumed by the creation of new surface area
and by viscous dissipation in the shear boundary layer growing into the droplet from
the solid surface (Chandra & Avedisian 1991; Pasandideh-Fard et al. 1996; Aziz
& Chandra 2000; Ukiwe & Kwok 2005; Lee et al. 2016). Although this approach
works reasonably well in the viscous limit, where the boundary layer dominates the
dynamics, it has been found that it severely overestimates the maximum spreading
for cases in which viscous dissipation is supposed to be negligible (Chandra &
Avedisian 1991; Jiang, Umemura & Law 1992; Clanet et al. 2004; Attané, Girard
& Morin 2007). Viscosity free models based on a momentum balance, on the other
hand, predict the spreading in this regime quite well (Clanet et al. 2004; Eggers
et al. 2010; Lastakowski et al. 2014). The question is whether we can bring the two
approaches in line.

As has previously been noted by Villermaux & Bossa (2011), Roisman et al.
(2012), such a discrepancy between energy and momentum approaches also occurs in
a closely related fluid dynamics problem: that of the growth of a hole in a punctured
liquid film (Taylor 1959; Culick 1960). Taylor found that, after a start-up period
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(Sünderhauf, Raszillier & Durst 2002; Savva & Bush 2009), a thick cylindrical rim
forms that consumes the film at a constant retraction velocity Vc. Using momentum
and mass conservation he derived that for a film of thickness h this velocity must be
Vc=√2γ /hρ, in good agreement with experiments. One year later, Culick, seemingly
unaware of Taylor’s result, wrote a short comment on the same problem, finding the
same steady state velocity. Moreover, he emphasized that this velocity is lower
by a factor of

√
2 than what one would get from an energy balance between the

kinetic energy of the rim and the surface energy consumed by it. That is, one-half
of the available surface energy never makes it into kinetic energy. The rest must be
dissipated somewhere, somehow. Although viscous stresses do not enter explicitly in
the momentum balance for the retraction problem, Culick argued a posteriori that
they have to be concentrated near the rim entrance, where fluid from the stationary
film is accelerated to match the velocity in the rim. The volume over which the
associated dissipation occurs must then scale in such a way with viscosity as to make
the final answer independent of it. Interestingly, the problem can also be related to
the head loss in a pipe flow undergoing a sudden expansion (Villermaux & Bossa
2011). In this situation, the energy is generally lost to recirculation eddies forming
downstream of the expansion section. But also here the final dissipation is insensitive
to the details and can be directly calculated by multiplying the initial kinetic energy
by a geometric factor (Batchelor 1967).

In this work we use direct numerical simulations to demonstrate that a similar
universal energy loss occurs for droplets which greatly deform during impact (i.e.
at high Weber numbers). Taking this loss into account in a simple energy balance
allows us to predict (without fitting parameters) the spreading diameters found in
impact situations in which surface friction is negligible (as is the case, for example,
for Leidenfrost droplets, for head-on droplet–droplet collisions or for impacts at
very high Reynolds numbers). To make the story complete, we extend this model to
spreading on ‘dry’ solid surfaces at intermediate Reynolds numbers, for which the
flow is also hindered by the no-slip boundary condition.

2. Method
The calculation and visualization of energy dissipation inside an impacting

droplet requires detailed information about the flow field. To this end, we used
the open source volume of fluid solver Gerris (Popinet 2009) to simulate the impact
event. Gerris solves the incompressible Navier–Stokes equation on an adaptive grid
(Popinet 2003) and is renowned for its physically sound treatment of interface
dynamics (Popinet 2009). This makes Gerris well suited for simulating two-phase
flows involving a multitude of length scales, such as droplet impact (Thoraval et al.
2012, 2013).

In each simulation an axisymmetric droplet, surrounded by a gas, was set to collide
with an impermeable boundary of the domain. For the high Weber number cases the
minimum refinement levels were 10 in the interior of the droplet and 13 at its surface
(corresponding to N= 210/3≈ 340 and N= 213/3≈ 2730 cells in one droplet diameter).
During the simulations, these resolutions were adaptively increased in regions of high
vorticity and strong curvature (up to levels 12 and 16, respectively). The liquid–air
density and viscosity ratios were set to ρ/ρg= 1000 and µ/µg= 50, mimicking water
in air. In Visser et al. (2015) we compared the droplet profiles obtained with this
numerical scheme to experimental recordings with high temporal and spatial resolution.
Good agreement was found in all cases.

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/jfm.2016.584
Downloaded from https:/www.cambridge.org/core. Twente University Library, on 30 Mar 2017 at 12:45:58, subject to the Cambridge Core terms of use, available

https:/www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2016.584
https:/www.cambridge.org/core
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The numerical approach makes it relatively straightforward to impose different slip
conditions and liquid–solid contact angles at the solid surface. For maximal contrast,
we studied the limiting cases of no-slip (slip length λ→ 0, radial velocity vr = 0 at
z = 0) and free-slip boundary conditions (λ→∞, ∂zvr = 0 at z = 0). In the no-slip
simulations the interface of the impacting droplet often did not coalesce with the
surface, so that a thin layer of air remained between the surface and the liquid. During
the spreading phase the effective slip length introduced by this air layer was always
small compared to the thickness of the shear boundary layer in the liquid, so that
it did not noticeably change the overall dynamics as compared to true no slip (we
checked this for a few cases by forcing the droplet to coalesce at initialization). This
non-coalescence behaviour fixed the contact angle for the no-slip droplets to θ = 180◦.
For the free-slip case we used both θ = 180◦ and θ = 90◦. The latter case describes the
head-on collision of two equally sized droplets that coalesce upon contact (Roisman,
Berberovi & Tropea 2009).

With the axisymmetry assumed in the simulations we obviously cannot capture non-
axisymmetric effects such as azimuthal rim destabilization and break-up (Villermaux
& Bossa 2011). However, this idealization allows us to test basic models in the very
high (>1000) Weber number regime, which is difficult to access experimentally.

3. Deformation modes: from puddle to pizza
When the Reynolds number is high, the qualitative mode of deformation of

an impacting droplet mainly depends on its Weber number. In figure 2 we show
numerically obtained profiles and internal flow patterns (at maximal spreading) for
four orders of magnitude in Weber number (We ∈ {0.3, 3, 30, 300}). The results for
no-slip and free-slip boundary conditions are shown side by side to facilitate a direct
comparison. The Reynolds number was 500 in all eight cases.

For We = 0.3 the surface tension of the droplet dominates over its inertia and
the droplet therefore deforms only slightly from spherical during impact. The close
similarity between left and right profiles in figure 2 indicates that there is no large
effect of the slip length in this case. This can be easily understood from the fact
that, at this low Weber number, the impact time is too short for the shear boundary
layer at the no-slip surface to grow appreciably. The thickness of the boundary
layer at the time of maximum deformation, τm, can be estimated as the distance
of momentum diffusion Hb ≈ √ντm (Roisman 2009; Eggers et al. 2010; Visser
et al. 2015), with ν ≡ µ/ρ the kinematic viscosity of the liquid. Comparing this to
the central height Hc(τm) ≈ D0 of the droplet, gives Hb/D0 ≈

√
τ̃m/Re, where we

introduced τ̃m = (V0/D0)τm. From our simulations we find that τ̃m ≈ 0.3 for We= 0.3,
so that Hb/D0 ≈ 0.02� 1.

As the Weber number is increased beyond We = 1, the droplet gradually starts to
lose its spherical shape. At We= 3, the spread-out droplet resembles a puddle with a
flattened top and a rounded edge. Although the droplet height is now lower, Hc(τm)≈
D0/2, and the dimensionless spreading time has increased, τ̃m ≈ 0.5, there is still no
noticeable effect of the no-slip condition. Indeed, a quick calculation gives Hb/Hc ≈
0.06� 1. In contrast to the We= 0.3 case, the central part of the We= 3 droplet still
moves down at the moment of maximum spreading. Markedly, near the top surface,
the downwards flow velocity is even higher than the initial impact velocity. When
the simulation is continued, this ‘jet’ further penetrates into the bulk, creating an
indentation in the drop’s upper surface before the droplet finally retracts and rebounds.
It has been shown that at approximately We= 10 this indentation almost completely
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No-slip Free-slip

FIGURE 2. (Colour online) Droplet profiles and flow patterns at maximum spreading
obtained from our simulations as a function of the Weber number. Impacts on a no-slip
surface are shown on the left and impacts on a free-slip surface on the right. The Reynolds
number was 500 for all cases (and θ = 180◦). The downward arrows above each droplet
depict the initial impact velocity V0.

perforates the droplet, giving it the appearance of a doughnut (Renardy et al. 2003).
Under these special conditions a fast upwards jet is produced as the thick retracting
rim closes in on the central hole and squeezes out the air (Bartolo, Josserand & Bonn
2006).

Around We = 30 yet another mode of deformation starts to set in. Shortly after
impact, a rim (now thin compared to D0) is squeezed out from the bottom part of
the droplet, while the rest of the droplet moves on in an almost undisturbed way. As
the droplet sinks into the solid, more and more liquid flows out into this rim, which is
at the same time pulled back by surface tension. The liquid in the rim whirls around
as it is pushed out through the narrow neck connecting the rim and the central part of
the droplet (Clanet et al. 2004). As can be seen in figure 2, this vortical motion is still
present at the moment of maximum spreading. In this deformation mode we start to
see an influence of the slip condition on the spreading. The thickness of the boundary
layer Hb(τ̃m)/D0≈√1.1/500≈ 0.05 is not negligible compared to the thickness of the
neck, Hn(τ̃m)/D0 ≈ 0.2. As a consequence the neck is slightly thicker in the no-slip
case, and the droplet spreads out somewhat less.

When the Weber number is increased by another order of magnitude, to We= 300,
the qualitative features of the drop’s deformation discussed for We= 30 become more
pronounced. In this case a thin lamella bordered by a rim spreads out radially from
the impact zone (see also figure 4a,b). The vortical motions in the rim are now absent
(see insets figure 2). Again the bulk of the droplet moves on in an undisturbed way
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On the spreading of impacting drops 641

initially, but around t̃≈ 0.5 it gradually starts to slow down (Eggers et al. 2010). At
the moment of maximal extension the droplet has attained the shape of a pizza: a thin,
almost flat central part, bordered by a thick cylindrical rim. The maximum diameter
and the time in which it is reached now strongly depend on the slip length. On the
free-slip surface the droplet spreads out approximately twice as far as on the no-slip
surface, and it takes approximately twice as long (τ̃m≈ 2.0 for no slip and τ̃m≈ 3.5 for
free slip). For higher Weber numbers this discrepancy between no-slip and free-slip
impacts further increases, but the qualitative mode of deformation remains the same.

To summarize: for We<1 an impacting droplet deforms only slightly from spherical.
Then between approximately We= 1 and We= 30 it undergoes a transition from being
puddle shaped (thick rim compared to D0) to being pizza shaped (thin rim compared
to D0). In this transitional regime the flow can be very complex and is therefore
difficult to characterize in general. For We> 30 the pizza shape becomes progressively
more pronounced and no new transitions (in shape) occur.

From the above considerations the following message can be taken: if some simple,
general laws could be found for droplet impact, then one would expect them, at the
very least, to be different in the regimes We< 1 (spherical shape) and We> 30 (pizza
shape). At low Weber numbers, when the deformations are small, simple laws can be
derived in a relatively straightforward manner (Richard & Quéré 2000; Okumura et al.
2003). For We> 30, on the other hand, it is not so clear whether this is possible (even
in principle), as we will outline in the next section.

4. Energy loss mechanisms

As mentioned in the introduction, the most straightforward approach to estimate D̃m

is to assume that all of the initial energy E0 = Ek0 + Es0 is used up by the work Es

done against surface tension, with Ek0= (π/12)ρD3
0V2

0 and Es0=πγD2
0 the kinetic and

surface energy of the droplet before impact. If we exploit the fact that for We > 30
the droplet spreads out into a thin disk (see § 3), then Es can be estimated as Es ≈
(π/4)γD2

m(1 − cos θ), where the term proportional to (cos θ) accounts for the work
done in expanding the wetted area with a dynamic contact angle θ (Šikalo et al. 2005).
Equating E0 and Es leads to

D̃m(We, θ)=
√

4
1− cos θ

[
1
12

We+ 1
]
. (4.1)

(For simplicity we assume that the contact angle remains constant during the
spreading, which, in general, does not have to be the case, but it holds for our
simulations.)

As shown in figure 3, this naive expression correctly captures the large Weber
number trend D̃m ∼

√
We for free-slip impacts. However, the predicted pre-factor

is completely off. For We = 30 and θ = 180◦ (4.1) predicts a spreading ratio of
D̃m ≈ 2.6. This is approximately 30 % higher than the ratio found in our simulations
(and in experiments). A first hint as to where this difference comes from was already
discussed in the context of figure 2. The fact that some of the initial kinetic energy
shows up as vortical motions in the rim invalidates the assumption underlying (4.1)
that all of it is spend on surface energy (Clanet et al. 2004). As vortical motions are
absent for We= 300, one might expect the above approximation to become better here,
at least for the free-slip case, where there is no boundary layer. But as it turns out,
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1
30 300

We
3000

10
No-slip
Free-slip

Equatio
n (4

.1)

20

FIGURE 3. (Colour online) Maximum spreading ratio as a function of the Weber number,
obtained from simulations with Re= 500, θ = 180◦. The solid line shows the prediction
from a naive energy balance between the initial kinetic energy and the final surface
energy (4.1).

it becomes even worse. Equation (4.1) predicts D̃m ≈ 7.2, while the actual spreading
ratio is D̃m ≈ 5.1, a difference of 41 %.

Since at high Weber numbers the ‘left-over’ kinetic energy alone cannot account
for the observed deviation from (4.1), we must seek for other loss channels. In
our simulations the only other possibility is viscous dissipation. Figure 4(a,b) shows
simulation snapshots for We= 300 (free slip on the left, no slip on the right) in which
the red shading indicates the local dissipation rate εd in cylindrical coordinates (r, z):

εd(r, z, t)= 2µ

[(
∂vr

∂r

)2

+ v
2
r

r2
+
(
∂vz

∂z

)2
]
+µ

[
∂vr

∂z
+ ∂vz

∂r

]2

, (4.2)

where vr and vz are the radial and vertical velocity, respectively.
In the no-slip case the term µ(∂zvr)

2 causes a significant amount of viscous
dissipation near the solid surface, which somewhat occludes the picture. In the
free-slip droplet this boundary layer is absent, and we can now easily identify other
regions of high dissipation. A strong peak appears for example where liquid from
the lamella enters the rim (see inset figure 4b). This is reminiscent of the dissipative
behaviour described in the introduction for a retracting rim (the Taylor–Culick
problem). However, notice that at the initial stage of the impact (figure 4a) there is
also a large contribution to the dissipation where liquid from the central part of the
droplet flows around the corner into the lamella.

To see how these two different contributions evolve during the spreading, and how
much they contribute to the total dissipation rate, Ėd(t̃), it is convenient to look at
cumulative plots of the dissipation rate, integrated along the r-axis, i.e.

Cd(r, t̃)= 2π

∫ r

0

∫ Hc

0
r′εd(r′, z′, t̃) dz′ dr′. (4.3)

The lines Cd(r) are shown in figure 4(c) for different times t̃ = 0.1, 0.2, . . . , τ̃m and
for r running from the centre of the drop, r= 0, to the tip of the rim at r=R(t̃). The
final value, Cd(R(t̃), t̃), of each of these lines then corresponds to Ėd(t̃).
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No-slip

(a)

Free-slip

0.100.2

0.1

1 0 1 2

0.05

L R
(b)

(c)

FIGURE 4. (Colour online) Visualization of viscous dissipation inside an impacting droplet
(We = 300, Re = 500, θ = 180◦). No slip on the left, and free slip on the right.
(a,b) Simulation snapshots at (a) t̃=0.3 and (b) t̃=1, in which the local dissipation rate εd
is indicated by a red shading. For clarity, the intensity was clipped at εd= 10ρV3

0/D0. For
the free-slip droplet a close-up of the transition between the lamella (L) and rim (R) region
is shown. (c) Spatio-temporal evolution of the energy dissipation. The solid lines represent,
for different times t̃ = 0.1, 0.2, . . . , τ̃m, the cumulative dissipation rate, (4.3), normalized
by ρD2

0V3
0 . For each solid curve the final value corresponds to the total dissipation rate

Ėd at time t̃, i.e. Ėd(t̃)= Cd(Dm/2, t̃). Note the different scale on the y-axis for the two
cases. The vertical dotted lines relate the features seen in (a–c).

In the free-slip case two dissipative phases can be distinguished. For dimensionless
times t̃ < 1 most of the dissipation happens where the liquid flows into the lamella,
while for t̃> 1 the peak near the rim becomes dominant (see figure 4c, right panel).
While the first contribution slowly diminishes in time, the contribution from the
peak first increases and then approaches a constant value. For the impact parameters
considered here it turns out that both phases contribute about the same amount to the
total dissipation: Ed =

∫ τm

0 dtĖd(t) (see also figure 5).
During the no-slip impact the total dissipation rate Ėd is initially approximately

twice as high as that for the free-slip impact (note the different scales on the axes). As
the droplet spreads out, this high rate then quickly drops to approximately the same
final value as observed for the free-slip case. Dissipation in the shear boundary layer
now overwhelms the two contributions described above, although some signs of those
can still be seen in the snapshots (figure 4a,b, left panels).

To conclude, during droplet impacts at We> 30 there can be at least four different
loss mechanisms at work: (i) left-over kinetic energy (in the form of vortical motions),
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No-slip

Free-slip

1

Re 500 500100 1000

2 0.3 3 30 300 3000

0.3321 3 30

We
300 3000

1

(a) (b)

0

1

0

(c) (d)

FIGURE 5. (Colour online) Energy budget for (a,b) no-slip impacts, and (c,d) free-slip
impacts, normalized by the initial kinetic energy. The left graphs (a,c) show for a reference
case (We= 300, Re= 500, θ = 180◦) how, over time, the kinetic energy Ek is transformed
into an increase 1Es of the surface energy and into heat Ed. The bar plots on the right
(b,d) show the final energy distribution for all simulations with θ = 180◦ at the time of
maximum spreading τ̃m. The dashed line indicates the 1/2 level. The arrows in (b,d) mark
the cases for which the full time evolution is shown in (a,c).

(ii) viscous dissipation in the flow from the bulk into the lamella, (iii) viscous
dissipation in the flow from the lamella into the rim, and, on a no-slip surface (iv)
dissipation in the shear boundary layer. Only their combined effect can explain the
overall mismatch between (4.1) and observations (simulations). Coming back to the
concluding statement of the previous section, it may seem unlikely, at first sight, that
this complex behaviour could give rise to a single simple law.

5. Overall energy budget
Despite the pessimistic forecasts concluding the previous sections, a surprisingly

simple picture emerges when we look at the final energy distributions shown in
figure 5. For free-slip impacts (figure 5b), the part of the initial kinetic energy that
finally makes it into surface energy is virtually independent of We and Re. For (at
least) two orders of magnitude in Weber number (from 30 to 3000) the change
in surface energy amounts to approximately 1/2 of the initial kinetic energy. At
We= 30, the remaining 1/2 is distributed approximately equally among kinetic energy
and viscous dissipation, while at the higher Weber numbers it is mainly dissipated.
In other words, it seems that for We > 30 (and free slip) the overall energy loss is
independent of both the detailed loss mechanism and the overall impact parameters.

As outlined in the introduction, we believe that this ‘1/2-rule’ is a manifestation
of a geometrical head loss, that also occurs, for example, in suddenly expanding pipe
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flows and for retracting rims. In other words, the amount of dissipation seems to be
imposed by the deformation mode of the droplet. Although we did not succeed in
finding a general proof of this rule for the highly transient flow situation presented by
droplet impact (as can be done for steady pipe flow and rim retraction), experiment
will be our judge (§ 7).

As expected, the 1/2-rule breaks down for no-slip impacts (figure 5a), for which
dissipation in the boundary layer often also plays an important role (§ 4) and for
We < 30, where the mode of deformation drastically changes (§ 3). In figure 5(b)
we can also observe a deviation from the 1/2-rule when the Reynolds number gets
too low compared to the Weber number, as is most clearly seen for the free-slip
droplet with We= 3000 and Re= 100. This marks the transition to a regime in which
also viscosity greatly influences the deformation of the droplet. In the rim retraction
problem this transition sets in for Ohh ≡ µ/√hργ > 1, where Ohh is the Ohnesorge
number with as relevant length scale the thickness h of the liquid film (Sünderhauf
et al. 2002; Savva & Bush 2009). If we tentatively assume that this result extends to
the droplet impact case, with D0 as length scale, i.e. Oh≡µ/√D0ργ =

√
We/Re, we

find that for We=3000 a deviation from the 1/2-rule can be expected at approximately
Re = √3000 ≈ 50, consistent with the simulations. For We < 1 things become
simple again as one here approaches the ‘elastic regime’ of small deformations.
In this regime practically all of the initial kinetic energy is transformed into surface
energy, and back (Richard & Quéré 2000; Okumura et al. 2003; De Ruiter et al.
2014). Assuming that the droplet deforms into a slightly oblate ellipsoid, one finds
Dm/D0 − 1 = √5/96

√
We ≈ 0.23

√
We (Richard & Quéré 2000), which is consistent

with experiments (Okumura et al. 2003).
The 1/2-rule for droplet impacts with We> 30 and Oh� 1 is the main finding of

this work. It can be concisely stated as follows: even if friction at the solid surface is
negligible, still approximately one-half of the initial kinetic energy is lost as far as its
transformation to surface energy is concerned. On a no-slip surface it acts as a lower
bound as Re→∞.

In the next sections we will use this rule to derive simple analytical expressions for
the spreading ratios in both free-slip and no-slip circumstances, and compare these to
our simulation results and experiments.

6. Analytical expressions for the spreading ratio in free-slip and no-slip impacts

We will now return to the basic impact problem formulated in the introduction,
and assess whether the discovered 1/2-rule can be applied to estimate the maximum
spreading ratio D̃m=Dm/D0. This will allow for a direct comparison to a large set of
experimental data.

For free slip, the 1/2-rule states that the initial surface energy Es0 = πγD2
0 and

approximately half of the initial kinetic energy Ek0/2= (π/24)ρD3
0V2

0 are transformed
into the final surface energy Es= (π/4)γD2

m(1− cos θ). Equating these energies, Es0+
Ek0/2= Es, and solving for Dm/D0, leads to:

D̃m =
√

4
1− cos θ

(
1

24
We+ 1

)
(free-slip,We> 30). (6.1)

Qualitatively, this expression is similar to (4.1), but it should now also be
quantitatively correct, as we have properly accounted for the head loss EH

d ≈ Ek0/2.
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Roisman et al. (2009)
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We
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FIGURE 6. (Colour online) Maximum spreading ratios as a function of the impact Weber
number found in simulations with Reynolds numbers of 100 (s), 500 (q,@) and 1000 (u),
and contact angles of θ =180◦ (s,q,u) and 90◦ (@). Green symbols are used for impacts
on a free-slip surface, and red symbols for impacts on a no-slip surface. The black curves
show the predictions by (6.1) (solid curve for θ = 180◦, dashed curve for θ = 90◦) and
(6.3) (dotted, θ = 180◦). The insets show the typical shape of the droplets at low (puddle
shaped), and high Weber numbers (pizza shaped). The vertical line at We= 30 indicates
the starting point of the fully developed inelastic regime (where the 1/2-rule holds).

In figure 6 we have plotted (6.1) for θ = 90◦ and θ = 180◦, together with the
maximum spreading diameters found in our simulations for these contact angles. For
the free-slip cases with Re= 500 and Re= 1000 we find an excellent agreement. Of
course this agreement was to be expected for the 180◦ simulations, as these gave us
the idea for the 1/2-rule in the first place. That it also works for θ = 90◦ is evidence
of its generality. In the next section a direct comparison to experiments, for which
the Reynolds number was higher by an order of magnitude, will further strengthen
this idea.

As anticipated, the no-slip simulations show a large deviation from (6.1) at high
Weber numbers. Here the spreading is also hindered by dissipation in the shear
boundary layer at the solid surface. Integrating (4.2) over both volume and time gives
that this contribution scales as EBL

d ∼ µ(V0/Hb)
2(D2

mHb)τm. For the thickness of the
boundary layer we use, as before, H̃b ∼

√
τ̃m/Re (see e.g. Eggers et al. (2010)). The

simplest (general) assumption we can make for the spreading time τm is that it is
proportional to the maximum spreading diameter Dm over the typical flow velocity
V0, i.e. τ̃m ∼ D̃m. It turns out that for We > 30 the relation τ̃m = (D̃m − 1) describes
our simulation data quite well over a wide range of impact conditions (see figure 7).
Using this in our estimate of EBL

d we find

EBL
d

Ek0
≈ α D̃2

m

√
D̃m − 1√
Re

, (6.2)

where α will be a fitting parameter of O(1). In the limit where the retraction by
surface tension is negligible (We → ∞) and the spreading is large D̃m � 1 we
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No-slip

Free-slip10

1

10

100

1

500

1000

Re

1

FIGURE 7. (Colour online) Spreading time τ̃m versus spreading diameter D̃m for all
simulations with We> 30. To better reveal the scaling, we plot D̃m − 1 on the horizontal
axis and use a double logarithmic plot. The solid line indicates τ̃m = D̃m − 1.

will have EBL
d /Ek0 ∼ 1, so that (6.2) gives D̃m ∼ Re1/5. This famous scaling law for

the viscosity dominated regime was previously derived from slightly different (but
consistent) starting points (Clanet et al. 2004; Roisman 2009; Eggers et al. 2010). The
advantage of the derivation given here is that the underlying assumptions, and thereby
(6.2), are still valid for finite Weber numbers, when the spreading is also hindered by
the simultaneous retraction of the rim. If we assume, as a first approximation, that
the dissipation in the boundary layer EBL

d and the head loss EH
d can simply be added

to find the total dissipation Ed, then the energy balance Ek0 + Es0 = Es + Ed in terms
of D̃m becomes:

3(1− cos θ)
We

D̃2
m +

α√
Re

D̃2
m

√
D̃m − 1= 12

We
+ 1

2
(no-slip,We> 30). (6.3)

One can easily check that this expression reduces to (6.1) in the limit Re → ∞.
Although (6.3) does not allow for an explicit analytical solution for D̃m(We, Re, θ)
it can be easily solved numerically. As shown in figure 6, with α ≈ 0.7 it predicts
the spreading ratios found in the no-slip simulations reasonably well. In § 7 and
the Appendix it is shown that the same value of α also works well for previous
experimental data, covering a wide range of impact conditions. The observed
deviations can be partly understood from a careful inspection of (4.2) for the
local dissipation rate. In places where the boundary layer and expansion flows
overlap, cross-terms proportional to µ(∂zvr)(∂rvz) give additional contributions to the
dissipation in the boundary layer. Also the strong assumption that the hindrance of
the flow in the boundary layer does not affect the head loss, is probably not precisely
true. In hindsight it is thus quite surprising that (6.3) works so well. Interestingly,
for (Re = 100, We = 3000) (6.3) severely underestimates the spreading. As it turns
out (see figure 8a), the combination of this low Reynolds number with a high Weber
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FIGURE 8. (Colour online) (a) No-slip droplet profiles at t̃ = 5 for We = 300 (left) and
We= 3000 (right) and different Reynolds numbers. For combinations of a low Reynolds
number and a high Weber number, a thin sheet is ejected from the edge of the droplet,
which is not hindered by the no-slip conditions at the solid surface. (b,c) Full time
evolution of the central height Hc(t̃)/D0 of the impacting droplets for (b) We= 300 and
(c) We = 3000. The black curves show how the height would change without impact.
The logarithmic scale reveals an exponent of −2 during the spreading phase. For no-slip
impacts (red) the height saturates to a plateau value of 0.7 Re−2/5. The height of the
free-slip droplets (green) keeps decreasing until it finally recoils. The times of maximum
spreading τ̃m are indicated by the thick symbols on each curve.

number, makes that a thin sheet is ejected from the edge of the droplet during impact.
This sheet is lifted from the surface, so that the no-slip condition has no effect on this
part of the droplet, leading to the larger than expected spreading in this special case.

In the derivation of (6.3) we took the free-slip scenario as our basis and then
corrected it for the dissipation in the shear boundary layer on no-slip surfaces. One
can also approach this problem from the opposite side, and instead correct the
large Weber number no-slip limit, Dm ≈ D0 Re1/5, for the simultaneous retraction
of the rim (Roisman et al. 2009). Assuming that the rim retracts over a typical
distance Lc ≈ Vcτm, where Vc = √2γ /hρ is the Taylor–Culick retraction velocity on
a stationary sheet, and using the fact that in the shear dominated limit one has τ̃m ∼
D̃m ∼ Re1/5 and h̃ ∼ Re−2/5 (see below) one arrives at the expression D̃m ≈ a Re1/5 −
b We−1/2 Re2/5, where a and b are adjustable parameters (Roisman et al. 2009). We
found that a = 0.95 and b = 0.70 best describe our results (Roisman et al. (2009)
originally proposed a = 0.87 and b = 0.40). As shown in figure 6, this expression
captures our simulation data quite well. Likewise, it describes the recent results by
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Laan et al. (2014) as discussed in the Appendix. However, we note that this
expression does not approach the correct limit if the Reynolds number is sent to
infinity for a fixed Weber number, i.e. if the thickness of the boundary layer is small
compared to the final thickness of the droplet. In this case it is more appropriate to
use (6.3), which (by design) does handle this limit correctly (see also the Appendix).

Although the maximum spreading ratio of no-slip droplets depends on both We and
Re, this is not the case for the minimum droplet thickness Hm reached during the
impact. As can been seen in figure 8(b), where we have plotted the time evolution of
the central height Hc(t̃), this minimum thickness is reached later than the maximum
spreading and is well described by H̃m≈ 0.7 Re−2/5 for both We= 300 and We= 3000
(i.e. independent of We). As argued in Roisman et al. (2009), Eggers et al. (2010) the
scaling can be understood as a collision of the upper part of the drop surface, which
according to potential flow theory decreases in time as H̃c ∼ 1/t̃2, and the boundary
layer, which grows as H̃b ∼

√
t̃/Re. In the absence of a thick rim (i.e. We→∞)

the final droplet shape will approximate that of a disk. Using mass conservation,
(2/3)D3

0 = D2
mHm, one recovers the upper bound D̃m ≈ Re1/5 for no-slip impacts. For

free-slip impacts, on the other hand, the central height of the droplet does not reach
a minimum value and keeps on decreasing as H̃c∼ 1/t̃2 until rebound. These findings
are in good agreement with recent experiments (Lagubeau et al. 2012; Lastakowski
et al. 2014).

7. Comparison to experiments
Our simulations were done for a limited set of Reynolds numbers between 100 and

1000, but we hypothesised that the 1/2-rule and the equations derived from it, (6.1)
and (6.3), should hold quite generally. In figure 9 we compare these models with
available experimental data on (a) free-slip and (b) no-slip impacts.

Following Lastakowski et al. (2014) we expect the free-slip condition to hold for
impacts of Leidenfrost droplets (Tran et al. 2012), which hover on a vapour film,
and for symmetric droplet–droplet collisions (Jiang et al. 1992; Willis & Orme 2003),
where the mirror symmetry is equivalent to a free-slip condition and a contact angle of
90◦ (Roisman et al. 2009). Figure 9(a) shows that there is a good agreement between
the free-slip data and (6.1), especially if one takes into account that the Reynolds
number reached in the experiments is one order of magnitude higher than that in
our simulations. This provides strong evidence that the 1/2-rule is indeed independent
of Re. Notice that the droplet collision data for the highest viscosity (30 cSt) lay
somewhat below the θ = 90◦ line, and come closer to the prediction for θ = 180◦.
This could either be a manifestation of the Reynolds number dependence we observed
also in our simulations at low Reynolds numbers, or an indication that the droplets
did not coalesce. However, the latter possibility is very unlikely, as these experiments
were performed under vacuum conditions.

The no-slip condition generally holds for impacts on dry surfaces at room
temperature, for which experimental spreading ratios obtained for water droplets (Stow
& Hadfield 1981; Clanet et al. 2004; Visser et al. 2015) are shown in figure 9(b).
The data points overlap with free-slip experiments at low Weber numbers, but start
to deviate at larger Weber numbers. Here we expect them to bend towards the limit
D̃m ≈ Re1/5, as was the case in our simulations. However, whereas in the simulations
we kept Re fixed as We was varied, in experiments it is usually the impact velocity
V0 that is varied, while the droplet diameter and liquid properties are kept fixed.
For the free-slip prediction this is of no consequence, as it only depends on We,
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FIGURE 9. (Colour online) Comparison between the derived spreading models (lines)
and (a) free-slip and (b) no-slip experiments (symbols). The colour of the symbols
indicates the Reynolds number, which in experiments with a single liquid cannot be varied
independently of the Weber number. The black curves represent the model for free-slip
impacts ((6.1), dashed line: θ = 90◦, solid line: θ = 180◦). In (a) the simulation results
for free slip are also shown (open symbols). In (b) the coloured dotted lines show the
spreading limit Re1/5

We =Oh−1/5 We1/10 for two different droplet diameters (D0 = 3 mm and
D0 = 40 µm) together with the full model, (6.3).

but for experiments on no-slip surfaces it means that the spreading limit effectively
keeps shifting up as We is increased. For a given droplet diameter and liquid, we
can predict this shift by expressing the Reynolds number in terms of We, as follows:
ReWe = (ργD0 We)1/2/µ = Oh−1 We1/2, so that one expects the droplet diameters to
stay below D̃m ≈ Re1/5

We = Oh−1/5 We1/10. In figure 9(b) we have plotted this relation
for water droplets of D0 = 3 mm and D0 = 40 µm, corresponding to the liquid and
diameters used in the experiments (straight dotted lines). The bended dotted lines
represent (6.3) with θ = 180◦ and α= 0.7 as before. For both diameters this model fits
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the data well within experimental error. The match even seems to be somewhat better
than for our simulations. This may indicate that the assumption that the dissipation
in the boundary layer and the head loss can be added independently, is satisfied more
closely for these experimental parameters. The use of a constant dynamic contact
angle of 180◦ in the model is justified by the fact that for high Weber number
impacts, wettability effects play only a minor role compared to inertia and viscous
shear (Rioboo, Marengo & Tropea 2002). Furthermore, in experiments it is seen that
the dynamic contact angle of an impacting drop is generally closer to 180◦ than to
their static value (Šikalo et al. 2005).

8. Conclusion and outlook

Inelastic droplet impact (We>30) seems to fall into a special class of fluid problems
in which the total energy loss associated with surface deformations does not explicitly
depend on the properties of the liquid, nor on the detailed loss mechanism(s). This
universal head loss is significant, as it always amounts to approximately 1/2 of the
initial kinetic energy, even when all other sources of dissipation are negligible.

When this 1/2-rule is incorporated in a simple energy balance one obtains an
accurate analytical expression for the spreading ratio on free-slip surfaces (6.1). For
impacts on no-slip surfaces this result must be corrected for dissipation in the shear
boundary layer. The resulting expression (6.3) is in reasonable agreement with both
simulations and experiments and is consistent with previous modelling approaches.
The advantage of an energy balance approach is that it can generally be easily
adapted to new scenarios. One can, for example, include a finite slip length λ into
the model by simply replacing the estimate ε ∼ µ(V0/Hb)

2 by ε ∼ µ(V0/(Hb + λ))2
in the derivation of (6.3), or even incorporate non-Newtonian effects (Boyer et al.
2016).

The 1/2-rule breaks down for We < 30 where a different mode of deformations
sets in as one approaches the elastic regime observed for We< 1. Coincidentally the
behaviour for X̃= D̃m− 1 in the elastic regime, X̃≈ 0.23

√
We (Richard & Quéré 2000;

Okumura et al. 2003), is almost the same as that for D̃m for free-slip impacts at high
Weber numbers (for θ = 180◦), D̃m =√We/12 ≈ 0.29

√
We. A plot of D̃m − 1 versus

We on a logarithmic scale will therefore give the impression of a uniform scaling for
D̃m − 1 over the whole range from elastic to inelastic impacts. However, this does
not have any physical significance, as the origin of the numerical pre-factors is very
different in both cases.

Also when the Reynolds number is small compared to the Weber number, deviations
from the 1/2-rule can be observed. Based on the analogy to the Taylor–Culick
problem we speculated that this transition sets in for Oh = √We/Re > 1. This is
consistent with our current simulations, but a more systematic study around this
transition would have to be performed to put this idea on more firm grounds.

We hope that this study provides a useful new view on the old problem of droplet
impact. On the other hand, the universal head loss discovered for this complex
transient flow problem raises the interesting question as to its general applicability
to free-surface flows involving large deformations. It will be interesting to study the
involved boundary layer dynamics and the coupling between flow and free-surface
surface deformation on a more fundamental level in simpler flow geometries. With the
current advent of reliable and flexible numerical fluid solvers such as Gerris, such a
systematic approach is well within reach.
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FIGURE 10. (Colour online) Comparison of no-slip droplet impact models to the
experimental data in Laan et al. (2014). (a) Spreading data as a function of Weber number
for three different water–glycerol mixtures. (b) Basic model in which the droplet spreads
into a disk with the thickness set only by the shear boundary layer. (c) Modified model
proposed by Roisman et al. (2009) in which the (estimated) distance over which the rim
retracts is explicitly subtracted. (d) Current model (6.3) in which the free-slip scenario is
corrected for dissipation in the shear boundary layer.
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Appendix. Comparison of no-slip droplet impact models to experiments Laan
et al. (2014)

In the main text (§ 6) we discussed two complementary approaches to model the
impact of a droplet onto a no-slip surface. One approach is to take the free-slip case
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as a basis and correct it for dissipation in the shear boundary layer (6.3). The other
approach is to start from the limit in which the thickness of the spreading lamella
is set by the boundary layer, so that D̃m ≈ a Re1/5, and then subtract a correction,
b Re2/5 We−1/2, for the simultaneous retraction of the rim on this film (Roisman et al.
2009). We found that both approaches capture our no-slip simulation data reasonably
well. Here we further test the models and the parameters proposed for them (α= 0.70
and a = 0.95, b = 0.70, respectively) by a direct comparison to an extensive set of
experimental data kindly provided to us by Laan et al. (2014).

As shown in figure 10, overall both models agree well with the experimental
data. As can be expected the model by Roisman et al. (2009) (figure 10c) is
somewhat more accurate for the larger spreading ratios, where the shear boundary
layer dominates the dynamics, but it shows an underestimation (especially for the
low viscosity water) for D̃m < 2.5. Here, the boundary layer (with thickness Hb) does
not occupy the whole thickness of the spreading lamella. As a consequence, the
retraction velocity (based on Hb in this model) is overestimated (and the spreading
is thus underestimated). Equation (6.3) on the other hand does not assume that the
lamella thickness is set by the boundary layer and it therefore does not have this
problem (figure 10d). However, for this model the match is somewhat less good at
larger spreading ratios.
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