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Abstract This study explores the feasibility of objective

and ubiquitous stress assessment. 25 post-traumatic stress

disorder patients participated in a controlled storytelling

(ST) study and an ecologically valid reliving (RL) study.

The two studies were meant to represent an early and a late

therapy session, and each consisted of a ‘‘happy’’ and a

‘‘stress triggering’’ part. Two instruments were chosen to

assess the stress level of the patients at various point in

time during therapy: (i) speech, used as an objective and

ubiquitous stress indicator and (ii) the subjective unit of

distress (SUD), a clinically validated Likert scale. In total,

13 statistical parameters were derived from each of five

speech features: amplitude, zero-crossings, power, high-

frequency power, and pitch. To model the emotional state

of the patients, 28 parameters were selected from this set

by means of a linear regression model and, subsequently,

compressed into 11 principal components. The SUD and

speech model were cross-validated, using 3 machine

learning algorithms. Between 90% (2 SUD levels) and 39%

(10 SUD levels) correct classification was achieved. The

two sessions could be discriminated in 89% (for ST) and

77% (for RL) of the cases. This report fills a gap between

laboratory and clinical studies, and its results emphasize

the usefulness of Computer Aided Diagnostics (CAD) for

mental health care.

Keywords Post-traumatic stress disorder (PTSD) �
Stress � Speech � Computer aided diagnostics (CAD) �
Machine learning � Validity

1 Introduction

In our modern society, many people experience stress,

sometimes for just a brief moment, at other times for pro-

longed periods. Stress can be defined as a feeling of pressure

or tension, caused by influences from the outside world

[15, Chapter 6]. It can be accompanied by positive or nega-

tive feelings. It affects our physical state, for instance, by

increasing our heart rate and blood pressure, and by freeing

stress hormones such as (nor)adrenaline or (nor)epinephrine

[27], which stimulate autonomic nerve action. Stress may

become harmful if it occurs for too long or too frequently, or

if it occurs during a traumatic experience. It may, for

instance, result in depression or post-traumatic stress disor-

der (PTSD) [2]. To make things even worse, such stress-

related disorders stigmatize the people suffering from them,

which in itself is an additional stressor [42, 43].

Depression cannot always be related to a specific cause,

though several contributing factors have been identified

(e.g., genetic vulnerability and unavoidability of stress) [2,

25, 35]. More specifically, certain stressful life events (e.g.,
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job loss and widowhood) can lead to a state of depression.

Furthermore, chronic role-related stress is significantly

associated with chronically depressed mood [25]. Note that

the experience of stress is associated with the onset of

depression and not necessarily with the symptoms of

depression [25].

Traumas can originate from a range of situations, either

short or long lasting, such as warfare, natural disaster, and

interpersonal violence (e.g., sexual, physical, and emo-

tional abuse), intimate partner violence, or collective vio-

lence (e.g., experiencing a bank robbery). In such cases, a

PTSD may arise, which can be characterized by a series of

symptoms and causes (see [2, 44]).

Due to large inter-individual variability and a broad

variety of symptoms, the diagnosis of PTSD is hard to

make [2]. At the same time, it is clear that an efficient

treatment of PTSD requires an objective and early diag-

nosis of the patient’s problems and their therapeutic pro-

gress. Assessing the emotional distress of a patient is,

therefore, of the utmost importance. Therapists have

developed a range of questionnaires and diagnostic mea-

surement tools for this purpose (e.g., [36, 44]). Regrettably,

these may be experienced as a burden by patients, because

it demands their time and willingness to complete them.

Par excellence, this makes it a case in which ubiquitous

technology can contribute.

Given these considerations, it is abundantly clear why

both researchers and clinicians have searched for a long

time for more objective, ubiquitous ways to measure stress-

like phenomena in (patient) populations [3, 30, 35],

involving, for instance, the use of virtual reality technology

and biofeedback [37]. In parallel, ubiquitous computing

has gradually emerged as an increasingly important para-

digm over the last two decades. An excellent state-of-the-

art overview on ubiquitous computing is provided by [28].

In addition to the notion of computing itself, intelligence

and emotion quickly became important terms in ubiquitous

computing. However, as shown repeatedly over 15 years,

modeling these are still a bridge too far for current state-of-

the-art science and technology (cf. [38]). Even last year, it

was remarked that ‘‘pervasive healthcare research in the

field of stress prevention is still at an exploratory stage’’

[3, p. 70]. Despite such skepticism, the ability to reliably

and unobtrusively recognize stress in people might make a

more realistic (and consequently better) starting point than

either affective computing or modeling general (human)

intelligence.

In this article, we present research on the development

of a voice-based ubiquitous stress indicator. Such an

indicator is envisioned as part of ubiquitous technology

[28, 53] and emotion-aware consumer products [39, 52]. It

can be used as a decision support system in everyday life

(e.g., at work [3, 36]) and in mental health care settings.

The research rationale employed throughout this article is

presented next, in Sect. 2, followed by the research meth-

ods in Sect. 3. Section 4 introduces the subjective unit of

distress (SUD) and Sect. 5 describes relevant speech signal

features and their parameters. Section 6 discusses the chain

of speech signal preprocessing and Sect. 7 the classification

techniques employed in this study. The results of both

studies are presented in Sect. 8 and then discussed in Sect.

9. The article ends with a general conclusion in Sect. 10.

2 Research rationale: on the validity of stress

assessment

In the pursuit of triggering emotions and stress in a more or

less controlled manner, a range of methods have been

applied, involving, for example, images [51], sounds (e.g.,

music [23, 54]), (fragments of) movies [52, 53], virtual

reality [8], and real-world experiences [21, 23]. However,

how do we know what methods actually triggered partici-

pants’ true emotions? This is a typical concern of validity,

which is a crucial issue for emotion recognition and stress

assessment. Within the context of the current research,

validity can be best guaranteed through three approaches:

content, criteria-related, and ecological validation. We will

discuss each of these in relation to stress assessment.

Content validity refers to (i) the agreement of experts in

the domain of interest; (ii) the degree to which a measure

or its features (and its parameters) represent a construct;

(iii) the degree to which a set of features (or their param-

eters) of a given set of signals adequately represents all

facets of the domain.

Criteria-related validity is concerned with the quality of

the relation between the preferred and the measurement.

Emotions are preferably measured at the moment they

occur (e.g., online via speech); however, measurements

before (predictive) or after (postdictive) the actual event

are sometimes more feasible (e.g., off-line using the SUD).

The quality of these actual measurements is referred to as

predictive or postdictive validity. Another form of criteria-

related validity is concurrent validity. This is a metric for

the reliability of measurements applied in relation to the

preferred standard. For instance, the more stress levels can

be discriminated, the higher the concurrent validity is.

Ecological validity refers to the effect of the context on

measurements. We identify two issues here: (i) natural

stressors are sparse, which makes it hard to obtain such

data in a limited time frame; and (ii) stressors are easily

contaminated by contextual factors, which makes it of

vital importance to use a context similar to the intended

application for initial learning. Although understand-

able from a measurement-feasibility perspective, emotion

measurements are often done in controlled laboratory settings.
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This makes results poorly generalizable to real-world

applications.

These three levels of validity formed the foundation for

the research at hand. In all aspects of the design, the

implementation, and the execution of the research, content,

criteria-related, and ecological validity were taken into

account. As such, we aimed at ensuring the successful

development of the back-end of the envisioned application:

Computer aided diagnostics (CAD) for PTSD patients.

3 Methods

3.1 Patients

Recent surveys [7, 50] report that in daily life more than

twice as many women suffer from PTSD than men. This

fact provided us with a number of reasons to select solely

female patients: (i) the envisioned computer aided diag-

nostics (CAD) for PTSD patients is most relevant for

women; (ii) with more female patients available, they were

easier to include in the research; and (iii) including only a

limited number of male patients would result in a heavily

skewed distribution of gender, possibly turning this into a

source of noise instead of an additional informative factor.

In total, 25 female Dutch PTSD patients (mean age: 36;

SD: 11.32) participated of their own free will.

All patients suffered from panic attacks, agoraphobia,

and panic disorder with agoraphobia [2, 44]; see also Sect.

1. Before the start of the studies, all patients signed an

informed consent form and all were informed of the tasks

they could expect. The data from one patient with problems

in both studies were omitted from further analysis. Hence,

the data of 24 patients were used for further analysis.

3.2 Design and procedure

All participants took part in two studies: a storytelling (ST)

study and a reliving (RL) study; see Fig. 1. Possible factors

of influence (e.g., location, apparatus, therapist, and

experiment leader) were kept constant. Both studies were

designed to develop a voice-based model for experienced

stress; each therefore consisted of a stress-provoking ses-

sion and a happy session (see also Fig. 1).

Both studies were conducted in a clinic room setup to

facilitate therapy sessions. As such, the patients were

familiar with and comfortable in this setting. Moreover, the

location was free from any distractions and the room was

shielded from external sources of noise. All in all, the

context used was the same as that of the intended appli-

cation, which is known to be of vital importance.

The studies started with a practice session, during which

the participants learned to speak continuously for long

periods of time. Additionally, the practice session offered

them the opportunity of becoming more comfortable with

the research setting. Next, the test session started. Two

baseline blocks (see Fig. 1) preceded and ended both the

ST and the RL study. The baselines consisted of reading a

neutral story. The order of both studies and their conditions

were counterbalanced across participants.

In the ST study, the participants read aloud both a stress-

provoking and a positive story. This procedure allows

considerable methodological control over the invoked

stress, in the sense that every patient reads exactly the same

stories. The fictive stories were constructed in such a way

that they would induce certain relevant emotional associ-

ations. The complexity and syntactic structure of the two

stories were controlled to exclude the effects of con-

founding factors.

In the RL study, the participants re-experienced their

last panic attack and their last joyful occasion. Because the

RL sessions were expected to have a high impact on the

patient’s emotional state, a therapist was present for each

patient and during all sessions. The two RL sessions could

act like two phases of a therapy session: the start or the end

of it. For RL, a panic attack approximate the trauma in its

full strength, as with the intake of a patient. The condition

of telling about the last experienced happy event resembles

that of a patient who is relaxed or (at least) in a ‘‘normal’’

emotional condition. This should be almost the emotional

state at the end of therapy sessions, when the PTSD has

diminished.

4 The subjective unit of distress (SUD)

To evaluate the quality of our speech analysis, we had to

compare it to an independent measure of distress. We

compared the results of our speech analysis to those

obtained by means of a standard questionnaire for SUD

measurement. The SUD was introduced by Wolpe [57] in

1958 and has repeatedly proven itself since as a reliable

measure of a person’s experienced stress.

Fig. 1 Overview of the design of the research and the investigated

relations (dotted lines). The two studies, storytelling (ST) and reliving

(RL), are indicated. Each consisted of a happy and a stress-inducing

session. Baseline measurements were collected before and after the

two studies
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The SUD is measured by a Likert scale [30] that reg-

isters the degree of distress a person experiences at a par-

ticular moment in time. In our case, we used a linear scale

with a range between 0 and 10 on which the experienced

degree of distress was indicated by a dot or cross. The

participants in our study were asked to fill in the SUD test

once every minute; consequently, it became routine during

the experimental sessions.

5 Speech signal features

Voice-based stress assessment has the advantage that it can

be conducted unobtrusively at most times in our daily lives

and, in mental health care settings, therapy communication

is often recorded anyway. Speech was recorded using a

personal computer, an amplifier, and a microphone. The

sample rate of the recordings was 44.1 kHz, mono channel,

with a resolution of 16 bits. All recordings were divided in

samples of approximately one minute of speech. Because

the therapy sessions were held under controlled conditions

in a room shielded from noise (as is more generally the

case), high-quality speech signals were collected.

Various speech features have been shown to be sensitive

to experienced emotions and stress; see, for example

[13, 17, 34, 45, 55]. In our own research, we measured five

important characteristics of speech: (i) the power (or

intensity or energy) of the speech signal [13, 34]; (ii) its

fundamental frequency (F0) or pitch [13, 29, 34, 45, 55];

(iii) the zero-crossings rate [24, 41]; (iv) its wave amplitude

[34, 45]; and (v) the high-frequency power [4, 13, 34, 41].

Various speech features have been shown to be sensitive

to experienced stress; for a recent survey see [17]. The first

two extracted features were amplitude and power. The term

power is often used interchangeably with energy and

intensity. For a domain [0,T], the power of the speech

signal is defined as follows (see [31]):

20 log10

1

P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T

Z

T

0

x2ðtÞ dt

v

u

u

u

t ; ð1Þ

where the amplitude or sound pressure of the signal is

denoted in Pa (Pascal) as x(t) (see also Fig. 2a) and the

auditory threshold P0 is 2 � 10�5 Pa [10].

The power of the speech signal is also described as the

Sound Pressure Level (SPL), calculated by the root mean

square of the sound pressure, relative to the auditory

threshold P0 (i.e., in decibel (dB) (SPL)). Its discrete

equivalent is defined as follows:

20 log10

1

P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N�1

n¼0

x2ðnÞ

v

u

u

t ; ð2Þ

where N is the number of samples of the (sampled)

amplitude of the signal is denoted as x(n) in Pa (Pascal)

[10]. See Fig. 2b for an example of signal power.

As a third feature, we computed the zero-crossings rate

of the speech signal. For space reasons, we refrain from

defining the continuous model of the zero-crossings rate

(cf. [40]). Zero-crossings can be conveniently defined in a

discrete manner, through the following:

1

N

X

N�1

n¼1

I xðnÞxðn� 1Þ\0f g; ð3Þ

where N is the number of samples of the signal amplitude x.

The I af g serves as a logical function [24]. An example of

this feature is shown in Fig. 2c. Note that both power and

zero-crossings are defined through the signal’s amplitude x.

The fourth derived feature was the high-frequency power

[4]: the power for the domain [1000, 22000], denoted in Hz

(see also Fig. 2d). First, the signal was transformed to the

frequency domain via a Fourier transform X(f), defined as [31]:

Xðf Þ ¼
Z

1

�1

xðtÞe�j2pft dt: ð4Þ

Subsequently, the power for the domain [F1, F2] was

defined as:

20 log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

F2 � F1

Z

F2

F1

jXðf Þj2 dt

v

u

u

u

t : ð5Þ

To implement high-frequency power extraction, the

discrete Fourier transform [31] was used:

XðmÞ ¼ 1

N

X

N�1

n¼0

xðnÞe�j2pnm=N ; ð6Þ

where m relates to frequency by f(m) = m fs/N. Here, fs is

the sample frequency and N is the number of bins. The

number of bins typically amounts to the next power of 2 for

the number of samples being analyzed; for instance, 2,048

for a window of 40 ms sampled at 44.1 kHz. The power

for the domain [M1, M2], where f(M1) = 1,000 Hz and

f(M2) = fs/2 (i.e., the Nyquist frequency), is defined by the

following:

20 log10

1

P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M2 �M1

X

M2

m¼M1

jXðmÞj2
v

u

u

t : ð7Þ

The fundamental frequency (F0 or perceived pitch)

was extracted using an autocorrelation function. The

autocorrelation of a signal is the cross-correlation of the

signal with itself. The cross-correlation denotes the similarity

of two signals, as a function of a time lag between them. In its
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continuous form, the autocorrelation r of signal x at time lag s
can be defined as follows [9]:

rxðsÞ ¼
Z

1

�1

xðtÞxðt þ sÞ dt ð8Þ

In the discrete representation of (8), the autocorrelation

R of signal x at time lag m is defined as [48]:

RxðmÞ ¼
X

N�1

n¼0

xðnÞxðnþ mÞ ð9Þ

where N is the length of the signal. The autocorrelation is

then computed for each time lag m over the domain

M1 = 0 and M2 = N - 1. The global maximum of this

method is at lag 0. The local maximum beyond 0, lag mmax,

represents the F0, if its normalized local maximum

Rx(mmax)/Rx(0) (its harmonic strength) is large enough

(e.g.,[.45). The F0 is derived by 1/mmax. See Fig. 2e for an

illustrative output of this method.

Throughout the years, various implementations have been

proposed for F0 extraction (e.g., [9, 48]). Here, we adopted

the implementation as described in [9], which applies a fast

(a)

(b)

(c)

(d)

(e)

Fig. 2 A sample of the speech

signal features for a Post-

Traumatic Stress Disorder

(PTSD) patient in the reliving

(RL) study. In each figure, the

middle dotted line denotes the

mean value of the feature. The

upper and lower dotted lines
represent one standard deviation

from the mean. The Subjective

Unit of Distress (SUD) scores

provided by the patient at the

time window of this speech

sample were 9 (left column) and

5 (right column), which denote,

respectively, a stressed and a

neutral state. a Amplitude.

b Power (or energy). c Zero-

crossings. d High-frequency

energy. e Fundamental energy

(F0) or pitch
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Fourier transform [see also (4) and (6)] to calculate the

autocorrelation, as is often done [9, 48]. For a more detailed

description of this implementation, we refer to [9].

Next, 13 statistical parameters were derived from the five

speech signal features: mean, median, standard deviation

(std), variance (var), minimum value (min), maximum value

(max), range (max–min), the quantiles at 10% (q10), 90%

(q90), 25% (q25), and 75% (q75), the inter-quantile-range

10–90% (iqr10, q90–q10), and the inter-quantile-range

25–75% (iqr25, q75–q25). The features and statistical

parameters were computed over a time window of 40 ms,

using a step length of 10 ms (i.e., computing each feature

every 10 ms over the next 40 ms of the signal). Two vari-

ations of amplitude are reported, one in which the parame-

ters are calculated from the mean amplitude per window of

40 ms (reported as amplitude(window)), and one where the

features are calculated over the full signal (reported as

amplitude(full)). In total, 6 9 13 = 78 parameters were

determined on the basis of the speech signal features.

6 Speech signal processing

The quest for self-calibrating algorithms for consumer

products, either personalized or ubiquitous, provided some

constraints on speech signal processing. For example, no

advanced filters should be needed, the algorithms should be

noise-resistant and they should (preferably) be able to

handle corrupt data.

We therefore only applied some basic preprocessing to

the speech signal: outlier removal, data normalization, and

parameter derivation from the complete set of features. The

first and last aspects require some clarification.

6.1 Outlier removal

The same procedure for outlier removal was executed on

all speech features. It was based on the inter-quartile range

(IQR), defined as follows:

IQR ¼ Q3 � Q1; ð10Þ

with Q1 being the 25th percentile and Q3 being the 75th

percentile. Subsequently, x was considered to be a normal

data point if and only if:

Q1 � 3IQR\x\Q3 þ 3IQR: ð11Þ

All data points that did not satisfy (11) were removed from

the data set.

6.2 Parameter selection

To achieve good classification results with pattern recog-

nition and machine learning methods, the set of selected

input features is crucial. The same holds for classifying

stress and emotions. However, there is no criterion function

available for our data to define an optimal set of features.

As a consequence, an exhaustive search in all possible

subsets of input parameters (i.e., 278) was required to

guarantee an optimal set [12]. To limit this enormous

search space, a Linear Regression Model (LRM)-based

heuristic search was applied, using a B 0.1, which can be

considered as a soft threshold.

An LRM is an optimal linear model of the relationship

between one dependent variable (e.g., the SUD) and sev-

eral independent variables (e.g., the speech features). An

LRM typically takes the following form:

y ¼ b0 þ b1x1 þ � � � þ bpxp þ e;

where e represents unobserved random noise and p repre-

sents the number of predictors (i.e., independent variables x

and regression coefficients b). The linear regression equa-

tion is the result of a linear regression analysis, which aims

to solve the following n equations in an optimal fashion.

An LRM was generated using all available data, starting

with the full set of parameters, and then reducing it in 32

iterations by means of backward removal, to a set of 28

parameters. The final model is shown in Table 1. The

parameters in Table 1 are considered to be the optimal set

of parameters and used further on in the processing pipeline.

The LRM in Table 1 explained 59.2% (R2 = .592,

F(28, 351) = 18.223, p \ .001) of the variance. This

amount of explained variance is low in comparison to

previously reported results [56, Chapter 10]: an LRM

model based only on the ST conditions explained

81.00% of variance: R2 ¼ :810; R
2 ¼ :757; Fð30; 109Þ ¼

15:447; p\:001, whereas a model based only on the RL

conditions explained 64.80% of variance: R2 ¼ :648; R
2 ¼

:584; Fð22; 121Þ ¼ 10:12; p\:001. The difference in

explained variance can be attributed to the selection of data

on which the LRMs were based. First, the speech data in

the ST conditions are cleaner than in the RL conditions,

yielding better models for the ST data. Second, the baseline

conditions have normal levels of variance in the speech

parameters, but almost no variance in SUD responses;

almost no stress was reported in the baseline conditions.

This combination of points led to more noise in the relation

between SUD and speech parameters. However, because

the LRM in Table 1 is used for preprocessing and not as an

end result, the LRM had to be applicable to the full data

set; hence, it was based on all available data.

6.3 Dimensionality reduction

A principal component analysis (PCA) can be used to

further reduce the dimensionality of the set of speech signal
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parameters, while preserving its variation as much as

possible. The speech parameters are transformed to a new

set of uncorrelated but ordered variables: the principal

components a � x. The first principal component represents,

as well as possible, the variance of the original parameters.

Each succeeding component represents the remaining

variance, as well as possible. Once the vectors a are

obtained, a transformation can map all data x onto its

principal n components:

x! a0 � x; a1 � x; . . .; an�1 � xð Þ:

Out of the 78 parameters selected by means of the LRM

on the basis of the 5 speech signal features, we selected 28.

These 28 parameters were fed to the PCA transformation.

Subsequently, the first 11 principal components from

the PCA transformation were selected, covering 95% of

the variance in the data. These principal components

served as input for the classifiers that will be introduced

next.

7 Classification techniques

In our study, three classification techniques were used:

k-nearest neighbors (k-NN), in general considered a

benchmark classifier, and Support Vector Machines (SVM)

and Multi-Layer Perceptron (MLP) neural network as state-

of-the-art techniques. For an introduction to these tech-

niques, we refer to the many handbooks and survey articles

that have been published; we will only specify them here

for purpose of replication.

7.1 k-Nearest neighbors (k-NN)

We used WEKA’s [19] k-NN implementation, based on

Aha, Kibler, and Albert’s instance-based learning algo-

rithms [1]. In our study, its output was a probability of

classification to each of the classes, but not the resulting

class. In other words, if there was a single winning class,

the output was 100% for the winning class and 0% for all

the other classes. In the case of a tie between multiple

classes, the output is divided between them and 0% is

provided to the rest. All the recognition rates of the k-NN

classifier reported here were obtained by using this modi-

fied algorithm.

A correct metric and an appropriate k are crucial

parameters of a k-NN classifier. In the current study, the

1 - distance weighting metric, a brute force neighbor

search algorithm, and setting k = 4, provided the best

results.

7.2 Support vector machines (SVM)

One of its key parameters for SVM regularization is its cost

parameter C (i.e., the cost of misclassifying points). This

allows some flexibility in separating the classes as it

determines the number of training errors permitted and,

hence, it does or does not enforce rigorous margins. As

such the parameter C determines the trade off between

accuracy of the model on the training data and its ability to

generalize. For this data set, C was set on 1.

Another key feature of SVM is its kernel function,

which characterizes the shapes of possible subsets of inputs

Table 1 Standardized regression coefficients b of a LRM predicting the SUD using speech parameters

Parameters Features

Amplitude (full) Amplitude (window) Power Zero-crossings High-frequency energy Pitch

Mean -1.90*** -2.04* -0.75**

Median 1.57***

Std 2.32** -1.52*

Var 0.83*** -0.22* -1.71 0.67*** 2.04*** 0.10

Min 0.61**

Max -0.12*

Range

q10 -0.26** 0.70*

q25 1.23*** -2.14*** 0.97*** 1.39** 0.66**

q75 1.54*** 0.63***

q90 -1.68*** 0.78*** 0.53***

iqr10

iqr25 -1.16*** 0.20*

Levels of significance: *** p B .001; ** p B .01; * p B .05. For all other parameters: p B .10
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classified into one category [46]. Being SVM’s similarity

measure, the kernel function is the most important part of

an SVM. We applied a radial basis function kernel, defined

as follows:

kGðxi; x
lÞ ¼ exp �cjxi � xlj2

� �

;

where xi is a feature vector that has to be classified, xl is a

feature vector assigned to a class (i.e., the training sample),

and c is set to 1/28, with 28 being the number of input

parameters [46]. Note that the radial basis function is a

variant of the Gaussian kernel function.

For the SVM, the LibSVM implementation [11] was

used, using the cost parameter C and the kernel described

here. For all other settings, the defaults of LibSVM were

used [11].

7.3 Multi-Layer Perceptron (MLP) neural network

We computed WEKA’s [19] MLP trained by a back-

propagation algorithm. It used gradient descent with

moment and adaptive training parameters.

Experiments using various network topologies sup-

ported the claim from [5, 6, 20] that bigger MLP do not

always over-fit the data. In our case, an MLP with 3

layers with 7 nodes in the hidden layer was shown to

have optimal topology. This topology was trained with

500 cycles. For all other settings, the defaults of WEKA

were used [19].

8 Results

Using the three classifiers introduced in the previous sec-

tion, we conducted two series of analyses:

1. Cross-validation of the (precision of the) SUD with the

parameters of the speech signal features that are

classified by the k-NN, SVM, and MLP. On the one

hand, this verifies the validity of the SUD; on the other

hand, this determines the performance of the three

classifiers in objective stress detection.

2. Classification of the happiness and fear conditions of

both studies. This enables the inspection of the

feasibility of CAD for PTSD. Additionally, analyses

across both studies and of the baselines were con-

ducted to inspect the effects of experimental design.

The input for the classifiers were the principal components

described in the previous section. All classifiers were tested

using tenfold cross-validation, and their average perfor-

mance is reported in Table 2.

8.1 Cross-validation

The SUD scale consisted of 11 bins (from 0 to 10).

However, SUD score 10 was not used by any of the

patients and, hence, could not be classified. So, for the

classification 10 bins (i.e., SUD levels 0 to 9) were used.

All three classifiers were successfully employed.

Assuming the SUD provides a valid comparison for the

speech parameters, we classified the SUD scores over both

studies, including both conditions and their baselines. All

classifiers had to be capable of detecting stress from speech,

in particular when classification was simplified to the binary

comparison of low versus high stress. The correct classifi-

cation rate (CN) by the k-NN, SVM, and MLP was,

respectively, 89.74, 89.74, and 82.37 (see also Table 2).

Although the SUD is an established instrument in psy-

chology, to our knowledge the precision of this instrument

has not been assessed. The reliability of the SUD when

Table 2 The classification results (in %) of k-nearest neighbors (k-NN), support vector machine (SVM) (see also Fig. 3), and artificial neural

network (ANN)

N lN k-NN SVM ANN

CN CN
* CN CN

* CN CN
*

2 50.00 89.74 79.74 89.74 79.47 82.37 64.74

3 33.33 74.74 124.21 78.16 134.47 72.37 117.11

4 25.00 68.42 173.68 66.32 165.26 57.37 129.47

5 20.00 53.42 167.11 55.00 175.00 48.95 144.74

6 16.67 52.63 215.79 53.42 220.53 47.63 185.79

7 14.29 44.74 213.16 47.11 229.74 42.37 196.58

8 12.50 42.89 243.16 43.16 245.26 41.58 232.63

9 11.11 42.89 286.05 44.21 297.89 34.74 212.63

10 10.00 38.95 289.47 38.68 286.84 36.32 263.16

Correct classification (CN), baseline (or chance) level for classification (lN), and relative classification rate [CN
* ; see also (12)] are reported. The

Subjective Unit of Distress (SUD) was taken as ground truth, with several quantization schemes. N indicates the number of SUD levels
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aiming at a high precision of reporting, such as for a scale

of 0–10, could be doubted if people’s interoception is

unreliable [14]. While this point is under debate [14],

patients with anxiety disorders have recently been shown to

be (over)sensitive to interoception [16].

In the current research, we not only used the SUD as a

ground truth, but also quantized the scale into all possible

numbers of levels, ranging from 10 to 2. This quantization

is performed by discretizing the SUD responses into

N steps, with a step size of r/N, where r is the range of the

SUD values (i.e., 9). This quantization allows us to verify

the reliability of the SUD in relation to the obtained speech

parameters.

To provide a fair presentation of the classification

results, we do not only provide the correct classification

rate (CN), but also the relative classification rate (CN
* ) for

each of the N bins. The relative classification rate expresses

the improvement of the classification compared to baseline

(or chance) level. It is defined as:

C�N ¼
CN � lN

lN

� 100; ð12Þ

with lN being the baseline (or chance) level for N classes.

This relative classification rate is also known as a range

correction and used more often in health and emotion

research [18].

Consulting the relative classification rate [see (12)]

helps in determining the true classification performance on

each level of quantization of the SUD as an assessor of the

patient’s distress level. The three classifiers show an almost

monotone linear increase in relative classification rate; see

Fig. 3. The linear fit closely follows the data presented in

Table 2 for all three classifiers (explained variance:

R2 = .96). This underlines the validity of the SUD as an

instrument to assess people’s stress levels. Moreover, it

confirms its high concurrent validity, with its ability to

discriminate between 10 levels of distress, and indicates

that its use as ground truth for stress measurement is

adequate.

8.2 Assessment of the experimental design

The two conditions of both studies in this article functioned

as triggers of stress and relaxation. The former study was

meant to resemble a patient’s behavior in one of his first

therapy sessions; the latter the behavior of a patient in a

late therapy session. The experimental design enabled us to

conduct our research within a tight time window. This

stands in sharp contrast with a longitudinal study, the only

research alternative.

The success of the experimental design was assessed by

classifying the PCA derived from the parameters of the

speech signal features. All three classifiers (k-NN, SVM,

and MLP) were applied. On the whole, the results of the

MLP were disappointing compared to the k-NN and SVM

and, as such, are of little value. Therefore, we will refrain

from reporting the results for the MLP classifier and only

report those for the k-NN and SVM classifiers. We sepa-

rately compared the ST and the RL study with the base-

lines, which provided emotionally neutral speech signals.

A comparison between the two ST conditions and the

baselines (taken together) revealed that they were very hard

to distinguish (see also Table 3). This may be the case

because the baselines consisted of reading a neutral story.

Although ST has the advantage of a high level of experi-

mental control, its disadvantage became evident as well: it

had a limited ecological validity with respect to emotion

elicitation. Classification of the ST conditions on the one

hand, and of the baselines on the other, confirmed this

finding with 64.41% (for the k-NN) and 64.83% (for the

SVM) correct classification, respectively; see also Table 3.

Classification of the two ST conditions only showed that

these can be very well discriminated by the SVM: 88.64%

correct classification, but less so by the k-NN: 72.73%

correct classification; see also Table 3. These findings

confirm that the neutral baseline ST laid between both ST

conditions, as it was meant to be, but making it very hard to

discriminate the three conditions.

Both RL conditions could be discriminated very well

from the baselines (taken together) (see Table 3). Classi-

fication of the RL conditions on the one hand, and the

baselines on the other, confirmed this finding with 84.58%

(for the k-NN) and 90.42% (for the SVM) correct classi-

fication, respectively; see also Table 3. This result is in line

with our expectations, because RL was shown to truly

trigger emotions in patients suffering from PTSD.

Although RL may allow less experimental control, its

emotion-triggering turned out to be dominant. This finding
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Distress (SUD) and the relative correct classification using 11

principal components based on 28 parameters of speech features
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stresses the need for ecologically valid research on mental

health-related issues. Classification results indicated also

that it was harder to discriminate between the two RL

conditions, by both the k-NN and SVM, with 72.92 and

77.08% correct classification, respectively; see also

Table 3. In part, these results undermine the validity of the

baselines for the reliving study, because other factors than

emotion may have influenced the speech signal.

9 Discussion

We explored the feasibility of objective, ubiquitous stress

assessment, which can help both in daily life and in ther-

apy. To assure a controlled but ecologically valid assess-

ment of stress, 25 PTSD patients participated in a

controlled ST study and a RL study, each with a ‘‘happy’’

and a ‘‘stress triggering’’ session. The two sessions were

meant to represent one of the first and one of the last

therapy sessions a patient participates in. The stress level of

the patients was assessed by two instruments: (i) speech, as

an objective and ubiquitous stress indicator and (ii) the

SUD, a clinically validated Likert scale. The SUD and

speech model were cross-validated, using machine learning

algorithms (i.e., k-Nearest Neighbors, Support Vector

Machine, and Multi-Layer Perceptron (MLP) neural net-

work). Correct classification rates of 90, 78, 44, and 39%

were achieved on, respectively, 2, 3, 9, and 10 SUD levels.

Using the same classifiers, the two sessions could be dis-

criminated in 89% (for ST) and 77% (for RL) of the cases.

A clearer illustration of the difference in the level of

complexity between (semi-)controlled and real-world

studies could hardly be given.

The general validity of the two reported studies was

high. Content validity of the studies was high, given that

(i) the studies aimed at a specific group of patients (i.e.,

PTSD), (ii) the SUD and the speech signal features and

their parameters were chosen with care (all were prominent

in the literature), and (iii) the cross-validation of the SUD

with the speech signal features confirmed that they both

provide a complete image of the patient’s experienced

stress. Criteria-related validity was also high, because

speech was the preferred signal and can be recorded

unobtrusively. The SUD scores were provided at a rate of

one a minute, which can also be considered as accurate in

the given context, as the stress level does not fluctuate that

quickly. Ecological validity was maximized. For the RL

study, we obtained natural stressors within a limited time

window.

For decades, audio-based emotion recognition has been

examined with a limited set of features-parameters (B64)

and without any feature selection or reduction [45, 55]. In

the last decade, a brute force strategy using hundreds or

even thousands of features (e.g., see [49, 58]) has been

applied more often [47]. Together with the explosion in the

number of features, feature selection/reduction strategies

have claimed an increasingly important role.

A machine’s recognition rate of emotional speech ran-

ges from Banse and Scherer [4], who report 25%/40%

correct classification on 14 emotions, to Wu et al. [58],

who report 87%/92% correct classification on 7 emotions.

The latter results, however, are in contrast with the results

on a structured benchmark reported by Schuller et al. [47]

on the InterSpeech 2009 emotion challenge: 66–71% (2

classes) and 38–44% (5 classes). Apart from the differ-

ences in classification rate and the number of classes to be

Table 3 The classification results (in %) of k-nearest neighbors (k-NN) and support vector machine (SVM)

Baseline ST ST? ST- RL RL? RL- lN CN CN
*

k-NN • • 50.00 64.41 28.81

• • • 33.33 41.95 25.85

• • 50.00 72.73 45.45

• • 50.00 84.58 68.17

• • • 33.33 62.08 86.25

• • 50.00 72.92 45.83

SVM • • 50.00 64.83 29.66

• • • 33.33 48.31 44.92

• • 50.00 88.64 77.27

• • 50.00 90.42 80.83

• • • 33.33 59.58 78.75

• • 50.00 77.08 54.17

Baseline (or chance) level for classification (lN), correct classification (CN), and relative classification rate [CN
* ; see also (12)] are reported.

N takes either the value 2 or 3. Both the storytelling (ST) and reliving study (RL) analyzed, with ? and - denoting respectively the happiness and

stress triggering conditions
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distinguished, these studies can both be questioned with

respect to their ecological validity of the experienced

emotions. In contrast, in at least one of our two studies (in

particular, the RL study), true emotions were triggered.

Furthermore, the ST study can be considered as half-way

between common laboratory studies and real-world studies

(like the RL study). Our classification results illustrated the

considerable difference between the compromise ST study

and the real-world RL study. They show that a careful

interpretation of laboratory results is needed because a one-

on-one mapping between lab and real-world results cannot

be taken for granted.

An alternative explanation for the differences between

the ST and RL studies can be sought in the expression of

emotions rather than in their experience. Already in 1908,

Marty [32] proposed a differentiation between emotional

and emotive communication. In emotional communication,

speech serves as a spontaneous, unintentional leakage or

bursting out of emotion. In contrast, in emotive commu-

nication speech there is no automatic or necessary relation

to ‘‘real’’ inner affective states. As such, emotive com-

munication is considered to be a strategy to signal affective

information in speech. It uses signal patterns that differ

significantly from spontaneous, emotional expressions,

which can be initiated both intentionally and unintention-

ally [4, 26]. Possibly, emotional communication was

dominant in the RL study and emotive communication in

the ST study. Further research may reveal whether this

distinction underlies the differences in classification in the

two studies that we observed.

10 Conclusion

In this article, we have presented two studies involving one

and the same group of PTSD patients. This experimental

design provided us with two unique but comparable data

sets that only differed with respect to task. As such, a

comparison of two stress elicitation methods, ST and RL,

was possible. The comparison revealed both commonalities

and differences between the two studies, which are directly

relevant to several theoretical frameworks, such as the ones

outlined just before in the discussion.

It would be of interest to apply the models developed in

this research to patients suffering from other related psy-

chiatric disorders, such as depression [2, 25, 35], insomnia

[2], and generalized anxiety disorder [2, 37]. Probably,

even for less related psychiatric disorders, the current

approach would be a good starting point. In such a case, the

general framework and speech signal processing scheme,

as presented in this article, could be employed. Most likely,

only the set of parameters used for the processing pipeline

would have to be tailored to the specific disorders.

Apart from being unobtrusive, the speech signal pro-

cessing approach, as applied in the current studies, has

another major advantage: it enables the remote determi-

nation of people’s stress. This feature enables its use in yet

another range of contexts; for instance, in telepsychiatry

[22, 35], as personal stress indicator [3, 35], and in call-

centers [17, 33] that frequently have to cope with highly

agitated customers. However, as for the different psychi-

atric disorders and the other application areas mentioned,

the processing pipeline should be adapted to this situation

as well.

Taken together, an important and significant step was

made toward modeling stress through an acoustic model,

which can be applied in our daily lives and in mental health

care settings. By the specific research design, it was

ensured that ‘‘real’’ stress was measured. In addition, both

precise subjective measurement using the SUD, as well as

objective measurement through speech signal processing,

were shown to be feasible to detect stress and as such

determine therapy progress in an unobtrusive manner.

Statistical models were constructed on the basis of a

selection from 78 parameters of five speech features, which

showed reliable and robust stress classification. In sum, we

hope to have shown that unobtrusive and ubiquitous

automatic assessment of emotion and experienced stress is

possible and promising.
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