
Spatial prediction of species’ distributions from

occurrence-only records: combiningpoint pattern analysis,

ENFAand regression-kriging

Tomislav Hengl a,∗ Henk Sierdsema b Andreja Radović c Arta Dilo d
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Abstract

A computational framework to map species’ distributions (realized density) using occurrence-only data and environmental

predictors is presented and illustrated using a textbook example and two case studies: distribution of root vole (Microtes

oeconomus) in the Netherlands, and distribution of white-tailed eagle nests (Haliaeetus albicilla) in Croatia. The framework

combines strengths of point pattern analysis (kernel smoothing), Ecological Niche Factor Analysis (ENFA) and geostatistics

(logistic regression-kriging), as implemented in the spatstat, adehabitat and gstat packages of the R environment for statistical

computing. A procedure to generate pseudo-absences is proposed. It uses Habitat Suitability Index (HSI, derived through

ENFA) and distance from observations as weight maps to allocate pseudo-absence points. This design ensures that the simulated

pseudo-absence points fall further away from the occurrence points in both feature and geographical spaces. After the pseudo-

absences have been produced, they are combined with occurrence locations and used to build regression-kriging prediction

models. The output of prediction are either probability of species’ occurrence or density measures. Addition of the pseudo-

absence locations has proven effective — the adjusted R-square increased from 0.71 to 0.80 for root vole (562 records), and

from 0.69 to 0.83 for white-tailed eagle (135 records) respectively; pseudo-absences improve spreading of the points in feature

space and ensure consistent mapping over the whole area of interest. Results of cross validation (leave-one-out method) for

these two species showed that the model explains 98% of the total variability for the root vole, and 94% of the total variability

for the white-tailed eagle. The framework could be further extended to Generalized multivariate Linear Geostatistical Models

and spatial prediction of multiple species. A copy of the R script and detailed instruction on how to run such analysis are

available via contact author’s website.
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1 Introduction 1

A Species Distribution Model (SDM) can be defined 2

as a statistical/analytical algorithm that predicts (ei- 3

ther actual or potential) distribution of a species, given 4

field observations and auxiliary maps, as well as ex- 5

pert knowledge. A special group of Species Distribution 6
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Models (SDMs) focuses on the so-called ‘occurrence-1

only records’ — pure records of locations where a2

species occurred (Elith et al., 2006). The most fre-3

quently used techniques to generate species’ distribution4

from occurrence-only records seem to be various kernel5

smoothing techniques, the Environmental-Niche Factor6

Analysis (ENFA) approach of Hirzel and Guisan (2002),7

the Genetic Algorithm for Rule-Set Prediction (GARP)8

approach of Stockwell and Peters (1999), and the Max-9

imum entropy method (Maxent) introduced by Phillips10

et al. (2006). It has never been proven that any of11

these techniques outperforms its competitors. Zaniewski12

et al. (2002) evaluated performance of General Additive13

Models versus ENFA models and concluded that ENFA14

will likely be better in detecting the potential distri-15

bution hot-spots, especially if occurrence-only data is16

used. Tsoar et al. (2007) compared six occurrence-only17

methods for modeling species distribution (BIOCLIM,18

HABITAT, Mahalanobis distance method, DOMAIN,19

ENFA, and GARP), and concluded that GARP is sig-20

nificantly more accurate than BIOCLIM and ENFA;21

other techniques performed similarly. Jiménez-Valverde22

et al. (2008b) argue whether it is sensible to compare23

SDMs that conceptually aim at different aspects of spa-24

tial distribution at all — there is especially big differ-25

ence between models predicting potential and realized26

distributions (although both are put under SDM).27

So far, geostatistical techniques have not yet been28

used to generate (realized) species’ distributions us-29

ing occurrence-only data, mainly for two reasons: (1)30

absence locations are missing (‘1’s only), so that it is31

not possible to analyze the data using e.g. indicator32

geostatistics; and (2) the sampling is purposive and33

points are often clustered in both geographical and fea-34

ture spaces, which typically causes difficulties during35

the model estimation. Spatial statisticians (e.g. Diggle36

(2003) and/or Bivand et al. (2008)) generally believe37

that geostatistical techniques are suited only for mod-38

eling of features that are inherently continuous (spatial39

fields); discrete objects (points, lines, polygons) should40

be analyzed using point pattern analysis and simi-41

lar techniques. Bridging the gap between conceptually42

different techniques — point pattern analysis, niche43

analysis and geostatistics — is an open challenge.44

Some early examples of using geostatistics with the45

species occurrence records can be found in the work of46

Legendre and Fortin (1989) and Gotway and Stroup47

(1997). Kleinschmidt et al. (2005) uses regression-48

kriging method, based on the Generalized mixed model,49

to predict the malaria incidence rates in South Africa. 50

Miller (2005) uses a similar principle (predict the regres- 51

sion part, analyze and interpolate residuals, and add 52

them back to predictions) to generate vegetation maps. 53

Miller et al. (2007) further provide a review of predictive 54

vegetation models that incorporate geographical aspect 55

into analysis. Geostatistics is considered to be one of 56

the four spatially-implicit group of techniques suited for 57

species distribution modeling – the other three being: 58

autoregressive models, geographically weighted regres- 59

sion and parameter estimation models (Miller et al., 60

2007). Pure interpolation techniques will often out- 61

perform niche based models (Bahn and McGill, 2007), 62

although there is no reason not to combine them. Hy- 63

brid spatial/niche-analysis SDMs have been suggested 64

also by Allouche et al. (2008). Pebesma et al. (2005) 65

demonstrates that geostatistics is fit to be used with 66

spatio-temporal species occurrence records. Analysis of 67

spatial auto-correlation and its use in species distribu- 68

tion models is now a major research issue in ecology and 69

biogeography (Guisan et al., 2006; Rangel et al., 2006; 70

Miller et al., 2007). 71

Engler et al. (2004) suggested a hybrid approach to 72

spatial modeling of occurrence-only records — a combi- 73

nation of Generalized Linear Model (GLM) and ENFA. 74

In their approach, ENFA is used to generate the so- 75

called ‘pseudo-absence’ data, which are then added to 76

the original presence-only data and used to improve 77

the GLMs. In our opinion, such combination of factor 78

analysis and GLMs is the most promising as it utilizes 79

the best of the two techniques. In this paper, we extend 80

the idea of Engler et al. (2004) by proposing a com- 81

putational framework that further combines density 82

estimation (kernel smoothing), niche-analysis (ENFA), 83

and geostatistics (regression-kriging). We implement 84

this framework in the R statistical computing environ- 85

ment, where various habitat analysis (adehabitat pack- 86

age), geostatistical (gstat package), and point pattern 87

analysis (spatstat package) functions can be successfully 88

combined. We decided to use a series of case studies, 89

starting from a most simple to some real-life studies, 90

to evaluate performance of our framework and then 91

discuss its benefits and limitations. 92

2 Theory: combining kernel density estimation, 93

ENFA and regression-kriging 94

The key inputs to a SDM is the inventory (population) 95

of animals or plants consisting of a total of N individ- 96

uals (a point pattern X = {xi}N1 ; where xi is a spa- 97
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tial location of individual animal/plant), covering some1

area BHR ⊂ R2 (where HR stands for home-range and2

R2 is the Euclidean space), and a list of environmental3

covariates/predictors (q1, q2, . . . qp) that can be used to4

explain spatial distribution of a target species. In prin-5

ciple, there are two distinct groups of statistical tech-6

niques that can be used to map the realized species’ dis-7

tribution: (a) the point pattern analysis techniques, such8

as kernel smoothing, which aim at predicting density of9

a point process; and (b) statistical, GLM-based, tech-10

niques that aim at predicting the probability distribu-11

tion of occurrences. Both approaches are now explained12

in detail in the following sections.13

2.1 Species’ density estimation using kernel smoothing14

and covariates15

Spatial density (λ; if unscaled, also known as “spatial16

intensity”) of a point pattern for a given time interval is17

estimated as:18

E [N(X ∩B)] =
∫
B

λ(x)dx (1)

In practice, it can be estimated using e.g. a kernel esti-19

mator (Diggle, 2003; Baddeley, 2008):20

λ(x) =
n∑
i=1

κ · (‖x− xi‖) · b(x) (2)

where λ(x) is spatial density at location x, κ(x) is the21

kernel (an arbitrary probability density), xi is location22

of an occurrence record, ‖x− xi‖ is the distance (norm)23

between an arbitrary location and observation location,24

and b(x) is a border correction to account for missing25

observations that occur when x is close to the border26

of the region. A common (isotropic) kernel estimator27

is based on a Gaussian function with mean zero and28

variance 1:29

λ̂(x) =
1
H2
·
n∑
i=1

1√
2π
· e−

‖x−xi‖2
2 · b(x) (3)

The key parameter for kernel smoothing is the band-30

width (H) i.e. the smoothing parameter, which can be31

connected with the choice of variogram in geostatistics.32

The output of kernel smoothing is typically a map (im-33

age) consisting of M grid nodes, and showing spatial34

pattern of species’ clustering.35

Spatial density of a point pattern can also be modeled 36

using a list of spatial covariates q’s (in ecology, we call 37

this environmental predictors), which need to be avail- 38

able over the whole area of interest B. For example, us- 39

ing a Poisson model (Baddeley, 2008): 40

logλ(x) = log β0 + log q1(x) + . . .+ log qp(x) (4)

where log transformation is used to account for the 41

skewed distribution of both density values and covari- 42

ates; p is the number of covariates. Models with covari- 43

ates can be fitted to point patterns e.g. in the spatstat 44

package (this actually fits the maximum pseudolikeli- 45

hood to a point process; for more details see Baddeley 46

(2008)). Such point pattern–covariates analysis is com- 47

monly run only to determine/test if the covariates are 48

correlated with the feature of interest, to visualize the 49

predicted trend function, and/or to inspect the spatial 50

trends in residuals. Although statistically robust, point 51

pattern–covariates models are typically not considered 52

as a technique to improve prediction of species’ distri- 53

bution. Likewise, the model residuals are typically not 54

used for interpolation purposes. 55

2.2 Predicting species’ distribution using ENFA and 56

GLM (pseudo-absences) 57

An alternative approach to spatial prediction of species’ 58

distribution using occurrence-only records and envi- 59

ronmental covariates is the combination of ENFA and 60

regression modeling. In general terms, predictions are 61

based on fitting a GLM: 62

E(P) = µ = g−1(q · β) (5)

where E(P) is the expected probability of species occur- 63

rence (P ∈ [0, 1]), q·β is the linear regression model, and 64

g is the link function. A common link function used for 65

SDM with presence observations is the logit link func- 66

tion: 67

g(µ) = µ+ = ln
(

µ

1− µ

)
(6)

so the Eq.(5) becomes logistic regression (Kutner et al., 68

2004). 69
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The problem of running regression analysis with1

occurrence-only observations is that we work with 1’s2

only, which obviously means that we can not fit any3

model to such data. To account for this problem, species4

distribution modelers (see e.g. Engler et al. (2004);5

Jiménez-Valverde et al. (2008a) and Chefaoui and Lobo6

(2008)) typically insert the so-called “pseudo-absences”7

— 0’s simulated using a plausible model, such as ENFA,8

to depict areas where a species is not likely to occur.9

ENFA is a type of factor analysis that uses observed10

presences of a species to estimate which are the most11

favorable areas in the feature space, and then uses12

this information to predict the potential distribution of13

species for all locations (Hirzel and Guisan, 2002). The14

difference between ENFA and the Principal Component15

Analysis is that the ENFA factors have an ecological16

meaning. ENFA results in a Habitat Suitability Index17

(HSI∈ [0 − 100%]) — by depicting the areas of low18

HSI, we can estimate were the species is very unlikely19

to occur, and then simulate a new point pattern that20

can be added to the occurrence locations to produce a21

‘complete’ occurrences+absences dataset. Once we have22

both 0’s and 1’s, we can fit a GLM as shown in Eq.(5)23

and generate predictions using geostatistical techniques24

as described in e.g. Gotway and Stroup (1997). Chefaoui25

and Lobo (2008) recently demonstrated that insertion of26

pseudo-absences greatly controls the success of species’27

distribution modeling by GLMs.28

2.3 Predicting species’ spatial density using ENFA and29

logistic regression-kriging30

We now describe the technique that is advocated in this31

article, and that combines the two previously-described32

approaches. We make several additional steps that make33

the method somewhat more complicated, but also more34

suited for occurrence-only observations used in ecology.35

First, we assume that our input point pattern represents36

only a sample of the whole population (XS = {xi}n1 ), so37

that the density estimation needs to be standardized to38

avoid biased estimates. Second, we assume that pseudo-39

absences can be generated using both information about40

the potential habitat (HSI) and geographical location of41

the occurrence-only records. Finally, we focus on map-42

ping the actual count of individuals over the grid nodes43

(realized distribution), rather than mapping the proba-44

bility of species’ occurrence.45

Spatial density values estimated by kernel smoothing46

are primarily controlled by the bandwidth size (Bivand47

et al., 2008). Obviously, the higher the bandwidth, the48

lower the values in the whole map; likewise, the higher 49

the sample size (n/N), the higher the overall intensity, 50

which eventually makes it difficult to physically inter- 51

pret mapped values of spatial intensity. To account for 52

this problem, we propose to use relative density (λr : 53

B → [0, 1]) expressed as the ratio between the local and 54

maximum density at all locations: 55

λr(x) =
λ(x)

max {λ(x)|x ∈ B}M1
(7)

An advantage of using the relative density is that the 56

values are in the range [0, 1], regardless of the bandwidth 57

and sample size (n/N). Assuming that our sample XS is 58

representative and unbiased, it can be shown that λr(x) 59

is an unbiased estimator of the true spatial density (see 60

e.g. Diggle (2003) or Baddeley (2008)). In other words, 61

regardless of the sample size, by using relative intensity 62

we will always be able to produce an unbiased estimator 63

of the spatial pattern of density for the whole population 64

(see further Fig. 1). 65

Furthermore, assuming that we actually know the size 66

of the whole population (N), by using predicted relative 67

density, we can also estimate the actual spatial density 68

(number of individuals per grid node): 69

λ(x) = λr(x) · N
M∑
j=1

λr(x)
;

M∑
j=1

λ(x) = N (8)

which can be very handy if we wish to aggregate the 70

species’ distribution maps over some polygons of inter- 71

est, e.g. to estimate the actual counts of individuals. 72

Our second concern is the insertion of pseudo-absences. 73

Here, two questions arise: (1) how many pseudo-absences 74

should we insert? and (b) where should we locate them? 75

Intuitively, it makes sense to generate the same num- 76

ber of pseudo-absence locations as occurrences. This is 77

also supported by the statistical theory of model-based 78

designs, also known as “D-designs”. For example, as- 79

suming a linear relationship between density and some 80

predictor q, the optimal design that will minimize the 81

prediction variance is to put half of observation at one 82

extreme and other at other extreme. All D-designs are 83

in fact symmetrical, and all advocate higher spreading 84

in feature space (for more details about D-designs, see 85

e.g. Montgomery (2005)), so this principle seems logical. 86
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After the insertion of the pseudo-absences, the extended1

observations dataset is then:2

Xf =
{
{xi}n1 , {x

∗
i}n∗1

}
; n = n∗ (9)

where x∗i are locations of the simulated pseudo-3

absences. This is not a point pattern any more because4

now also quantitative values — either relative densities5

(λr(xi)) or indicator values — are attached to locations6

(µ(xi) = 1 and µ(x∗i) = 0).7

The remaining issue is where/how to allocate the8

pseudo-absences? Assuming that a spreading of species9

in an area of interest is a function of the potential habi-10

tat and assuming that the occurrence locations on the11

HSI axis will commonly be skewed toward high values12

(see further Fig. 3 left; see also Chefaoui and Lobo13

(2008)), we can define the probability distribution (τ)14

to generate the pseudo-absence locations as e.g.:15

τ(x∗) = [100%−HSI(x)]2 (10)

where the square term is used to insure that there are16

progressively more pseudo-absences at the edge of low17

HSI. This way also the pseudo-absences will approxi-18

mately follow Poisson distribution. In this paper we pro-19

pose to extend this idea by considering location of oc-20

currence points in geographical space also (see also an21

interesting discussion on the importance of geographic22

extent for generation of pseudo-absences by VanDerWal23

et al. (2009)). The Eq.(10) then modifies to:24

τ(x∗) =
[
dR(x) + (100%−HSI(x))

2

]2
(11)

where dR is the normalized distance in the range25

[0, 100%], i.e. the distance from the observation points26

(X) divided by the maximum distance. By using Eq.(11)27

to simulate the pseudo-absence locations, we will pur-28

posively locate them both geographically further away29

from the occurrence locations and in the areas of low30

HSI (unsuitable habitat).31

After the insertion of pseudo-absences, we can attach to32

both occurrences-absences locations values of estimated33

relative density, and then correlate this with environ-34

mental predictors. This now becomes a standard geosta-35

tistical point dataset, representative of the area of in-36

terest, and with quantitative values attached to point 37

locations (see further Fig. 2d). 38

Recall from Eq.(7) that we attach relative intensities to 39

observation locations. Because these are bounded in the 40

[0, 1] range, we can use the logistic regression model to 41

make predictions. Thus, the relative density at some new 42

location (x0) can be estimated using: 43

λ̂+
r (x0) =

[
1 + exp

(
−βT · q0

)]−1
(12)

where β is a vector of fitted regression coefficients, q0 44

is a vector of predictors (maps) at new location, and 45

λ̂+
r (x0) is the predicted logit-transformed value of the 46

relative density. Assuming that the sampled intensities 47

are continuous values in the range λr ∈ (0, 1), the model 48

in Eq.(12) is in fact a liner model, which allows us to ex- 49

tended it to a more general linear geostatistical model 50

such as regression-kriging (also known as “universal krig- 51

ing” or “kriging with external drift”). This means that 52

the regression modeling is supplemented with the mod- 53

eling of variograms for regression residuals, which can 54

then be interpolated and added back to the regression 55

estimate (Hengl, 2007): 56

λ̂+
r (x0) = qT

0 · β̂GLS + δT0 ·
(
λ+
r − q · β̂GLS

)
(13)

where δ is the vector of fitted weights to interpolate the 57

residuals using ordinary kriging. In simple terms, logistic 58

regression-kriging consists of five steps: 59

(1) convert the relative intensities to logits using 60

Eq.(6); if the input values are equal to 0/1, replace 61

with the second smalles/highest value; 62

(2) fit a linear regression model using Eq.(12); 63

(3) fit a variogram for the residuals (logits); 64

(4) produce predictions by first predicting the regression- 65

part, then interpolate the residuals using ordinary 66

kriging; finally add the two predicted trend-part 67

and residuals together (Eq.13) 68

(5) back-transform interpolated logits to the original 69

(0, 1) scale by: 70

λ̂r(x0) =
eλ̂

+
r (x0)

1 + eλ̂
+
r (x0)

(14)

After we have mapped relative density over area of in- 71

terest, we can also estimate the actual counts using the 72

Eq.(8). 73
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2.4 Species’ Distribution Modeling using a textbook ex-1

ample2

At this stage the above introduced theory might seem3

rather difficult to follow (especially because it links to4

different statistical theories such as ENFA, geostatistics,5

D-designs and point pattern analysis), hence we will also6

try to illustrate this theory using a real data set and7

prove our assumptions using a simple example. For read-8

ers requiring more detail, the complete R script used in9

this exercise with plots of outputs and interpretation of10

steps is available from the contact authors’ homepage 1 .11

1.000

0.667

0.333

0.000

1.000

0.667

0.333

0.000

(a)

(b)

Fig. 1. Relative density estimated for the original bei data

set (a), and its 20% sub-sample (b). In both cases the same

bandwidth was used: H=23 m.

We use the bei dataset, distributed together with the12

spatstat package, and used in textbooks on point pattern13

analysis by Baddeley (2008) and many other authors.14

This data set consists of a point map showing locations15

of trees of the species Beilschmiedia pendula Lauraceae16

(in this case we deal with the whole population) and17

Digital Elevation Model (5 m resolution) as an auxiliary18

map, which can be used to improve mapping of the tree19

species. What makes this dataset especially suitable for20

such testing is the fact that the complete population of21

the trees has been visited/mapped for the area of interest22

(N is known, and so is BHR). We will now implement all23

steps described in section 2.3 to predict spatial density24

of trees over the area of interest (M=20301 grid nodes).25

We will use a sample of 20% of the original population,26

and then validate the accuracy of our technique versus27

the whole population.28

1 http://spatial-analyst.net

We start by estimating a suitable bandwidth size for 29

kernel density estimation (Eq.3). For this, we use the 30

method of Berman and Diggle (1989) (as described in 31

Bivand et al. (2008, p.166–167)) that looks for the small- 32

est Mean Square Error (MSE) of a kernel estimator. 33

This only shows that we should not use bandwidths sizes 34

smaller than 4 m (which is below resolution of our GIS); 35

higher values seem plausible. We also consider the least 36

squares cross validation method to select the bandwidth 37

size using the method of Worton (1995), and as imple- 38

mented in the adehabitat package. This does not con- 39

verge, hence we need to set the bandwidth size using 40

some ad hoc method (this is unfortunately a very com- 41

mon problem with many real point patterns). As a rule 42

of thumb, we can start by estimating the smallest suit- 43

able range as the average size of block (
√

area(B)/N), 44

and then set the bandwidth size at two times this value. 45

There are 3605 trees (N) in the area of size 507,525 m2, 46

which means that we could use a bandwidth of 24 m (H). 47

We next derive a relative kernel density map (Eq.7), 48

which is shown in Fig. 1a. If we randomly subset the 49

original occurrence locations and then re-calculate the 50

relative densities, we can notice that the spatial pattern 51

of the two maps does not differ significantly, neither do 52

their histograms. This supports our assumption that the 53

relative density map (Eq. 7) can be indeed reproduced 54

also from a representative sample (n=721). 55

We proceed with preparing the environmental predic- 56

tors and testing their correlation with the density val- 57

ues. We can extend the original single auxiliary map 58

(DEM) by adding some hydrological parameters: slope, 59

topographic wetness index and altitude above channel 60

network (all derived in SAGA GIS). The result of fitting 61

a non-stationary point process with a log-linear density 62

using the ppm method of spatstat shows that density 63

is negatively correlated with wetness index, and posi- 64

tively correlated with all other predictors. A comparison 65

between the Akaike Information Criterion (AIC) for a 66

model without predictors and with predictors shows that 67

there is a slight gain in using the covariates to predict the 68

spatial density. Visually (Fig. 2a), we can see that the 69

predicted trend seriously misses some hot-spots/clusters 70

of points. This shows that using point pattern analysis 71

techniques only to map (realized) species’ distribution 72

with covariates will be of limited use. 73

We proceed with ENFA. It shows that this species gen- 74

erally avoids the areas of low wetness index, i.e. it prefers 75

ridges/dry positions (Fig. 2b; see also supplementary 76

materials). This spatial correlation is now more distinct 77
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Fig. 2. Spatial prediction of the species distribution using the bei data set (20% sub-sample): (a) fitted trend model (ppm)

using elevation, slope, topographic wetness index and altitude above channel network as environmental covariates; (b) Habitat

Suitability Index derived using the same covariates; (c) the weight map and the randomly generated pseudo-absences using

the Eq.(11); (d) input point map of relative intensities (includes the simulated pseudo-absences); (e) the final predictions of

the overall density produced using regression-kriging (showing number of individuals per grid cell as estimated using Eq.8);

and (f) predictions using a binomial GLM.

(compare with the trend model in Fig. 2a). This demon-1

strates the power of ENFA, which is in this case more2

suited for analysis of the occurrence-only locations than3

the regression analysis i.e the point pattern analysis.4

By combining HSI and buffer map around the occur-5

rence locations (Eq. 11), we are able to simulate the6

same amount of pseudo-absence locations (Fig. 2c).7

Note that the correlation between the HSI and density8

is now clearer, and the spreading of the points around9

the HSI feature space is symmetric (Fig. 3, right). Con-10

sequently, the model fitting is more successful: the ad-11

justed R-square fitted using the four environmental pre-12

dictors jumped from 0.07 to 0.28. This demonstrates the13

benefits of inserting the pseudo-absence locations. If we14

would randomly insert the pseudo-absences, the model15

would not improve (or would become even noisier). 16

We proceed with analyzing the point data set indi- 17

cated in Fig. 2d using standard geostatistical tools. We 18

can fit a variogram for the residuals, and then run the 19

regresssion-kriging, as implemented in the gstat pack- 20

age. For a comparison, we also fit a variogram for the 21

occurrence-absence data but using the residuals of the 22

GLM modelling with binomial link function, i.e. 0/1 23

values (Fig. 4). As with any indicator variable, the var- 24

iogram of the binomial GLM will show higher nugget 25

and less distinct auto-correlation then the variogram 26

for the density values. This is also because the residuals 27

of the density values will still reflect kernel smoothing, 28

especially if the predictors explain only a small part of 29

variation in the density values. 30

7
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Fig. 4. Variogram models for residuals fitted in gstat using occurrence-absence locations: (left) density values (logits), and

(right) probability values.

Fig. 3. Correlation plot HSI vs relative density with occur-

rence-only locations (left) and after the insertion of the pseu-

do-absence locations (right). Note that the pseudo-absences

ensure equal spreading around the feature space (below).

The resulting map of density predicted using regression-1

kriging (Fig. 2e) is indeed a hybrid map that reflects ker-2

nel smoothing (hot spots) and environmental patterns,3

thus it is a map richer in contents than the pure density4

map estimated using kernel smoothing only (Figs. 1), or5

the Habitat Suitability Index (Fig. 2b). Note also that,6

although the GLM-kriging with bimodial link function7

(Fig. 2f) is statistically a more straight forward proce-8

dure (it is completely independent from point pattern 9

analysis), it’s output is limited in content because it also 10

misses to represent the hot-spots/quantities of individ- 11

uals. GLM-kriging in fact only shows the areas where a 12

species’ is likely to occur, without any estimation of how 13

dense will the population be. Another advantage of us- 14

ing the occurrences+absences with attached density val- 15

ues is that we are able not only to generate predictions, 16

but also to generate geostatistical simulations, map the 17

model uncertainty, and run all other common geostatis- 18

tical analysis steps. 19

In the last step of this exercises we want to validate the 20

model performance using cross-validation and the orig- 21

inal complete population. The ten-fold cross validation 22

(as implemented in gstat) for the intensities interpolated 23

regression-kriging shows that the model is highly precise 24

— it explains over 99% of the variance in the training 25

samples. Further comparison between the map shown 26

in Fig. 2e and Fig. 1a shows that, with a 20% of sam- 27

ples and four environmental predictors, we are able to 28

explain 96% of the pattern in the original density map 29

(R-square=0.96). Fig. 5 indeed confirms that this esti- 30

mator is unbiased. 31

One last point: although it seems from this exercise 32

that we are recycling auxiliary maps and some analysis 33

techniques (we use auxiliary maps both to generate the 34

pseudo-absences and make predictions), we in fact use 35

the HSI map to generate the pseudo-absences, and the 36

original predictors to run predictions, which not neces- 37

sarily need to reflect the same features. Relative densi- 38

ties, do not have to be directly correlated with the HSI, 39

8



Fig. 5. Evaluation of the mapping accuracy for the map

shown in Fig. 2e versus the original mapped density using

100% of samples (Fig. 1a).

although a significant correlation will typically be antic-1

ipated. Likewise, we use kernel smoother to estimate the2

intensities, but we then fit a variogram, which is obvi-3

ously controlled by the amount of smoothing, i.e. value of4

the bandwidth, hence the variogram will often show ar-5

tificially smooth shape, as shown in Fig. 4. The only way6

to avoid this problem is to estimate the bandwidth us-7

ing some objective technique (which we failed to achieve8

in this example), or to scale the variogram fitted for the9

indicator variable (Fig. 4; right) to the density values10

scale.11

3 Methods and materials12

The computational framework used in this article follows13

the example described in the previous section (2.3), ex-14

cept it implies a larger number of predictors and several15

additional processing steps. A general workflow, as im-16

plemented in the R environment for statistical comput-17

ing, is presented in Fig. 6. In order to fully understand18

all processing steps in detail, the interested readers can19

look at the R script provided via the contact authors’20

website.21

The framework comprises six major steps. First, the oc-22

currence locations are used to derive the density of a23

species for a given area based on the kernel smoother.24

Kernel density can be estimated in R using several meth-25

ods; here we use the density.ppp method, as imple-26

mented in the spatstat package (Baddeley and Turner,27

2005). In R, the smoothing parameter (bandwidth) can 28

be estimated objectively; when it does not converges to 29

a local minimum we use an ad hoc bandwidth selected 30

as two times the average length of the block occupied by 31

an individual (2 ·
√

area(B)/N). The output kernel den- 32

sity image can be coerced to the widely accepted spatial 33

R format (SpatialGridDataFrame) of the maptools/sp 34

package (Bivand et al., 2008); coercion to this format is 35

important for further geostatistical analysis and export 36

to GIS. 37

The second step is ENFA, which we run using the 38

occurrence-only records. For ENFA, we use the ade- 39

habitat package, which is a collection of tools for the 40

analysis of habitat selection by animals (Hirzel and 41

Guisan, 2002; Calenge, 2006). Third, the resulting Habi- 42

tat Suitability Index map (HSI, see further Fig. 8b and 43

Fig. 11b) are used to generate the pseudo-absence lo- 44

cations. To achieve this, we use the rpoint method of 45

the spatstat package. This method generates a random 46

point pattern with the density of sampling proportional 47

to the values of the weights map derived using Eq.(11). 48

In the fourth step, where possible, the simulated absence 49

locations are reprojected to the Latitude/Longitude 50

WGS84 system, exported to Google Earth (writeOGR 51

method in rgdal package) and validated by an expert 52

e.g. by doing photo-interpretation of high resolution 53

satellite imagery. 54

Once we produce an equal number of occurrence and 55

simulated absence locations, they can be packed together 56

and used to build regression models using the ecologi- 57

cal predictors. The residuals of the regression model are 58

then analyzed for auto-correlation by fitting a variogram 59

(fit.variogram method in gstat). 60

In the last, sixth step, after both the regression 61

model and the variogram parameters have been deter- 62

mined, final predictions are generated using the generic 63

predict.gstat method (Eq.13) as implemented in the 64

gstat package (Pebesma, 2004; Bivand et al., 2008). 65

More details on how to run regression-kriging and in- 66

terpret its outputs can be found in Hengl (2007). 67

For a comparison, we also map the distribution of 68

a species based on the occurrences+absences by fit- 69

ting a binomial GLM. This is possible using the glm 70

method in R, by setting a binomial link function 71

(binomial(link=logit)). By using library mgcv, one 72

can also fit Generalized Additive Models (GAM), us- 73

ing the same type of link function (family=binomial); 74
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Fig. 6. Data processing steps and related R packages used in this paper.

in this paper we focus on fitting linear models only.1

The output of running binomial GLM are probabilities,2

ranging from 0 to 1 (see further Fig. 8c and Fig. 11c).3

The final results of running regression-kriging can4

be evaluated using the leave-one-out cross validation5

method, as implemented in the krige.cv method of6

gstat package (Pebesma, 2004). The algorithm works7

as follows: it visits a data point, predicts the value at8

that location by leaving out the observed value, and9

proceeds with the next data point. This way each indi-10

vidual point is assessed versus the whole data set. The11

results of cross-validation are used to pinpoint the most12

problematic locations, e.g. exceeding the three stan-13

dard deviations of the normalized prediction error, and14

to derive the summary estimate of the map accuracy15

(Bivand et al., 2008, p.222–226).16

We have tested this framework using occurrence-only17

records for two different species: distribution of root vole18

(Microtes oeconomus) in the Netherlands, and distribu-19

tion of nests of white-tailed eagle (Haliaeetus albicilla)20

in Croatia. In both cases, we have jointly run analysis21

and then made the interpretation of the results and dis- 22

cussed strength and limitations of this framework. 23

4 Case studies 24

4.1 Root vole (Microtus oeconomus) in the Netherlands 25

The root vole (Microtus oeconomus) is a widespread, ho- 26

larctic mouse species that inhabits the northern regions 27

of Europe, Asia and Alaska. In Europe six subspecies 28

are described (Mitchell-Jones et al., 2002). One of these 29

subspecies, Microtus oeconomus arenicola is endemic to 30

the Netherlands and listed as a species of conservation 31

concern in the Habitats Directive of the European Union 32

(van Apeldoorn, 2002). Its presence in the Netherlands 33

is seen as a relict from the Ice Age and the Dutch pop- 34

ulation has no contact anymore with other European 35

populations of the root vole. It is a good swimmer and 36

well adapted to wetlands with varying water tables and 37

has a high reproductive power. Therefore, root voles can 38

swiftly recolonize wetlands after flooding. 39

It is thought that the Dutch root vole suffers heavily 40
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from competition with two other Microtus-species: the1

common cole (Microtus arvalis) and the field vole (Mi-2

crotus agrestis) (van Apeldoorn et al., 1992; van Apel-3

doorn, 2002). On the isle of Texel, for example, the root4

vole was until recently the only occurring mouse species,5

which enable it to occupy a wider variety of habitats.6

Root vole populations are known to co-exist with popu-7

lations of the other two Microtus-species on various loca-8

tions in the country. Since these competitive species are9

not good swimmers, islands and large wetlands are the10

core areas of root voles, while smaller habitat patches11

in the vicinity of wetland throughout the country are12

places where the three species co-occur.13

Following this knowledge about the biology of root vole,14

we selected two groups of environmental predictors to15

explain the distribution of root vole in the Netherlands:16

(1) habitat variables (wetland areas): marsh — marsh-17

land areas (0/1), island — island areas (0/1), flooded18

— flooded regions (0/1), freat1 — duration of primary19

drainage in days (obtained from the http://rijks-20

waterstaat.nl), and fgr — map of the Physical Ge-21

ographic Regions (denoting the same characteristics in22

physiography); and (2) biological factors: nofvole —23

indicator variable showing the areas in the north-west24

of the country where field voles are absent, nofvole2525

— 25 km wide band where root and field voles co-occur26

(all variables at 1 km resolution). Since the species are27

not mutually exclusive in most of the country on a land-28

scape and/or local scale, other variables were sought29

fore that relate to the great ability of the root vole30

to recolonize adjacent areas from core areas. Hence, in31

addition to the maps showing locations of marshlands32

(marsh) and islands (island), we also used their density33

for 1 and 2 km search radiuses: (island1km, island2km,34

marsh1km, marsh2km), and flooded2km.35

The occurrence records (562) of root vole were ob-36

tained from the Dutch organization for mammals (VZZ)37

(http://www.vzz.nl/soorten/noordsewoelmuis/).38

The records and environmental maps refer to the 2004–39

2007 period.40

The occurrence records and derived kernel density is41

shown in Fig. 8a. The habitat suitability analysis shows42

that the potential spreading of the species is much larger43

than the actual locations show. The HSI map shown44

in Fig. 8b mainly follows the pattern of the primary45

drainage duration (freat1) and flooding intensity (fgr).46

The target variable (kernel density) is heavily skewed47

toward small values, so we used a log-transform for fur-48

ther modeling. The biplot graph of the principal com-49

Fig. 7. Biplot showing the multicolinearity of the environ-

mental predictors used to map distribution of root vole in the

Netherlands: marsh — marshland areas (0/1), island — is-

land areas (0/1), flooded — flooded regions (0/1), freat1 —

duration of primary drainage in days, island1km, island2km,

marsh1km, marsh2km, and flooded2km — density of marsh-

lands and flooded areas for 1 and 2 km search radiuses.

ponent analysis output (Fig. 7), calculated using the 50

sampling locations, shows four clusters of variables (a) 51

flooded, nofvole and fgr (b) marsh, (c) islands and 52

(d) freat1. Further Principal Component transforma- 53

tion of the original grid maps shows that PC1 explains 54

30% of total variance, PC2 20%, PC3 18%, PC4 10% and 55

PC5 still 8% of the variation. The stepwise regression 56

of PC-transformed variables reduces the number of vari- 57

ables as compared with the original variables from 8 to 9. 58

The most significant predictors are now PC1 (islands) 59

and PC3 (flooded and marsh). The PCA based-model 60

is not statistically different from the model fitted using 61

the original variables. The gstat fitted an exponential 62

variogram model with a zero nugget, sill parameter of 63

0.00625 and a range parameter of 3.7 km to remaining 64

residuals. 65

Regression analysis showed that, if occurrence-only 66

data is used, the tailored predictors explain 71.0% of 67

the variation. After including the simulated absence- 68

observations the explained variation increases to 80.2%. 69

The most significant predictors of root vole density 70

are marsh2km, flooded2km, freat1, islands2km, 71

nofvolebuf25 and water. 72
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Fig. 8. Spatial prediction of root vole in the Netherlands: (a) the kernel density map (stretched to min–max range); (b) the

Habitat Suitability Index and simulated pseudo-occurrence locations; (c) probabilities predicted using the Binomial GLM-based

regression-kriging; and (d) the final predictions of densities produced using regression-kriging.

The final result of regression-kriging of 0/1 values and1

observation densities for root vole is shown in Figs. 8c2

and d. The root mean square prediction error at the3

leave-one-out validation points for model in Fig. 8d4

is 23% of the original variance; the regression-kriging5

model explains 98% of the original variance, which is6

quite high.7

4.2 Nests locations of white-tailed eagle (Haliaeetus al-8

bicilla) in Croatia9

In the second case study we focus on modeling the dis-10

tribution of white-tailed eagle (Haliaeetus albicilla) in11

Croatia. At the beginning of the 1990s, about 80 pairs 12

were recorded in Croatia (Tucker et al., 1994); a decade 13

after, Croatia had 80–90 pairs. Some most recent records 14

by Radović and Mikuska (2009) indicate a continuity of 15

increase in population number in the period 2003–2006. 16

This makes Croatia a country with the second largest 17

population of Haliaeetus albicilla among the neighbor- 18

ing central European countries (Schneider-Jacoby et al., 19

2003; BirdLife International, 2004). 20

Haliaeetus albicilla breeds in various habitats but com- 21

monly needs sea coasts, lake shores, broad rivers, is- 22

land and wetlands with high productivity. It breeds in 23
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different climates ranging from continental to oceanic.1

In Norway and Iceland nests are rarely placed above2

300 m above sea level (Cramp, 2000). Same territories3

and eyries being occupied over many decades. Normally,4

only one or two alternate nests are built in a breeding ter-5

ritory (Helander and Stjernberg, 2002), which makes the6

nests most interesting for population distribution assess-7

ments. Breeding areas of Haliaeetus albicilla in Croatia8

are primarily alluvial wetlands along rivers Sava, Kupa,9

Drava and Mura (Pannonian plain), in Central and East-10

ern part of the country (Radović and Mikuska, 2009).11

Following the habitat characteristics of Haliaeetus albi-12

cilla, we have prepared a total of 13 environmental pre-13

dictors (all at 200 m resolution): dem — a Digital El-14

evation Map showing height of land surface; canh —15

derived as the difference between the topo-map DEM16

and the SRTM DEM, so that it reflects the height of17

canopy; drailroad — distance to rail roads; droads —18

distance to roads; durban — distance to urban areas;19

dwater — distance to water bodies; pcevi1-4 — PCs20

from 12 MODIS Enchanced Vegetion Index (EVI) im-21

ages obtained for the year 2005; slope — slope map de-22

rived using the DEM; solar — incoming solar insola-23

tion derived using the DEM; and wetlands — boolean24

map showing location of the wetlands. The proximity25

maps (drailroad, droads, durban and dwater) were26

derived from the vector features from the 1:100k topo-27

maps. dem and derivatives (canh, slope and solar)28

and EVI components are standard exhaustive predic-29

tors used for geostatistical mapping of environmental30

variables. The wetland habitats distribution map was31

obtained from the Croatian State Institute for Nature32

Protection (http://www.cro-nen.hr/map/). This is a33

boolean map (1/0) showing locations of the wetland ar-34

eas, covered by both forests and swamps.35

The nest positions used in this paper were recorded in the36

period 2003–2006. Altogether, 155 nest locations were37

recorded, out of which 125 locations showed clear signs of38

breeding (Radović and Mikuska, 2009). An additional 1039

presumably active territories were detected but without40

knowing the exact position of the nests. Because of some41

problems during the fieldwork (minefields, flooded areas42

and extreme sensitivity of birds to our presence) the43

exact coordinates were taken for a total of 135 nests. We44

assume that this number represents about 80% of the45

total nests (N=169, BHR=330 km2), but this is hard46

to validate. Grlica (2007) most recently discovered some47

new breeding territories along Drava river coasts, but48

without recording the exact position of the nests.49
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Fig. 9. Correlation plots between the log of nest densities

and ecological predictors: dem — digital elevation model in

meters; droads — distance to roads in meters; dwater —

distance to water in meters; pcevi — the third component

of the MODIS Enhanced Vegetation Index for year 2005.

The nest density estimated using a Gaussian kernel 50

smoother with bandwidth set at 75% of the distance to 51

the nearest neighbors (3.4 km) is shown in Fig. 11a. The 52

areas with nest density close to zero are masked and 53

135 absence points generated using random sampling 54

are shown in Fig. 11b. From these, 11 were found to 55

fall in areas where potentially the species might occur, 56

and were masked out from further analysis. We start 57

by correlating the nest density estimated at observation 58

points with the ecological predictors. If occurrence-only 59

data are used, the ecological predictors explain 69% 60

of variation of the target variable. Merging of the oc- 61

currence and absence observations gives 259 points in 62

total, and the regression model explains 83% of vari- 63

ation. The most significant ecological predictors are 64

droads, wetlands, dem, pcevi3 and dwater (Fig. 9). 65

Adding simulated absence locations was relatively in- 66

expensive as it took only one day to validate simulated 67

135 locations. 68

The ecological predictors are highly inter-correlated and 69

with skewed distributions. The biplot graph (Fig. 10) 70

calculated at sampling locations shows that there are 71

four clusters of predictors: (a) dem is correlated with 72

dwater and slope; (b) droads, durban, pcevi3, canh 73

and with wetlands; (c) solar and pcevi4; and (d) 74
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Fig. 10. Biplot showing the multicolinearity of the environ-

mental predictors used to map distribution of white-tailed

eagle: dem — digital elevation model; canh — height of

canopy; drailroads — distance to rail roads; droads — dis-

tance to roads; durban — distance to urban areas; dwater

— distance to water bodies; pcevi1--4 — four PCs from

12 EVI images for year 2005; slope — slope map; solar

— incoming solar insolation; and wetlands — boolean map

showing location of wetlands.

pcevi.1

The Principal Component transformation of the original2

predictors produces somewhat different picture. In this3

case, PC1 explains 80.1% of total variance and reflects4

mainly pcevi01, PC2 explains 7.9% of variance and re-5

flects the position of wetlands and dem, PC3 explains6

4.5% of variance, PC4 2.0% and PC5% 1.4% etc.7

The step-wise regression shows that the most significant8

predictors of the nest density are PC2 (reflecting posi-9

tion of the wetlands and elevation) and PC1 (reflecting10

distance to roads and urban areas). Step-wise regression11

has much less problems in selecting the significant pre-12

dictors if they are spatially independent. The number13

of significant predictors after the principal component14

transformation was reduced from 9 to 6; the adjusted15

R-square stays unchanged.16

Further analysis of the residuals shows that they are17

spatially auto-correlated. We fitted an exponential var-18

iogram with 0 nugget, 0.263 sill parameter and range19

parameter of 5.2 km. The variogram for binomial GLM20

residuals is noisier than the variogram derived for den- 21

sities. As expected, continuous variables (densities) are 22

easier to model using geostatistics than the binary vari- 23

ables. This is true for both success of fitting a regression 24

model and a for a success of fitting a variogram of resid- 25

uals. 26

The accuracy of the map shown in Fig. 11a evaluated 27

using the leave-one-out cross validation method shows 28

that the map is fairly accurate: the root mean square 29

prediction error at the validation points is only 16% of 30

the original variance, or in other words, the regression- 31

kriging model explains 94% of the original variance. 32

5 Discussion and conclusions 33

The results of the case studies described in this paper 34

demonstrate that more informative and more accurate 35

maps of the actual species’ distribution can be generated 36

by combining kernel smoothing, ENFA and regression- 37

kriging. In order to improve estimation of regression 38

model and final interpolation results, we advocate sim- 39

ulation of pseudo-absence data using inverted HSI and 40

distance maps (Eq.11). This has shown to improve the 41

regression models — the adjusted R-square increased 42

from 0.69 to 0.83 for white-tailed eagle and from 0.71 to 43

0.80 for root vole — while improving the spreading of 44

the points in feature space (see Fig. 12). This confirms 45

the results of Chefaoui and Lobo (2008). 46

We believe that the method proposed in this article, as 47

described in section 2.3, has several advantages over the 48

known species’ distribution modeling methods: 49

• The pseudo-absence locations are generated using a 50

model-based design that spreads the points based on 51

the geographical distance from the occurrence loca- 52

tions and the potential habitat. Compare with the 53

purely heuristic approaches to generate the pseudo- 54

absence by Chefaoui and Lobo (2008) or Jiménez- 55

Valverde et al. (2008a). 56

• Both spatial auto-correlation structure and the trend 57

component of the spatial variation are used to make 58

spatial prediction of species’ distribution. This leads 59

to the Best Linear Unbiased Prediction of the pres- 60

ence/density values. Compare, for example, with the 61

heuristic approach by Bahn and McGill (2007). 62

• Final output map shows distribution of a real phys- 63

ical parameter (number of individuals per grid cell) 64

and can be directly validated using measures such as 65

RMSE and similar. Compare with the often abstract 66
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Fig. 11. Spatial prediction of white-tailed eagle in Croatia: (a) the kernel density map (stretched to min–max range); (b) the

Habitat Suitability Index and simulated pseudo-occurrence locations; (c) probabilities predicted using the Binomial GLM-based

regression-kriging; and (d) densities predicted using regression-kriging.

Fig. 12. Position of the occurrence (+) and the pseudo-absence (◦) locations when displayed in feature space (as defined using

the most significant predictors): for root vole (left) and white-tailed eagle (right). Compare with Figs. 8a and 11b. The plot

was produced using the hist2D function of the R package gplots.

evaluation measures (e.g Kappa, MaxKappa, AUC,1

adjusted D2, AVI, CVI, Boyce index etc.) used in pre-2

dictive habitat mapping (Hirzel et al., 2006).3

• The whole mapping process can be automated in R,4

which is attractive for projects where the maps need5

to be constantly up-dated. The only interventions ex-6

pected from a user is to provide an estimate of the to- 7

tal population of the species (N), the size of the area 8

occupied (the home range area area(BHR)), and a list 9

of environmental predictors. 10

Although we primarily advocate regression-kriging of 11

15



relative densities, we are convinced that a species’ distri-1

bution analyst should aim at producing all three types2

of maps: (1) the ENFA-based HSI map showing the po-3

tential habitat (Fig. 2b); (2) the species’ distribution4

(probability) map (Fig. 2f); and (3) the species’ distri-5

bution (density) map (Fig. 2e). ENFA can help under-6

stand the relationship between species and environmen-7

tal conditions and generate pseudo-absence locations.8

The probability-based species’ distribution map can be9

used to delineate home range areas (probability> 0.5),10

and the actual species’ distribution map (density) quan-11

tifies the spreading of the species and can be used to esti-12

mate the number of individuals per area. Certainly, both13

binomial GLM using indicators and logistic regression-14

kriging using intensities are valid geostatistical tech-15

niques to handle this type of data.16

In addition, visual validation of the simulated absence17

locations using Google EarthTM is fast, convenient and18

leads to more useful geostatistical models. The simulated19

absence points that are hard to validate visually (in the20

case of mapping the white-tailed eagle, any area close21

to wetlands and within natural forests), can be either22

omitted from the analysis or visited on the field. For23

example, in the case of mapping the white-tailed eagle24

in Croatia, only 11 simulated absence points (out of 135)25

were evaluated as unreliable and hence omitted from26

further analysis.27

The proposed technique to generate pseudo-absences28

could be much improved. First, one could also build mod-29

els that slowly increase the size of pseudo-absences until30

the prediction accuracy stabilizes. In this approach, we31

simply use a single number (number of pseudo-absences32

= number of presences), which is somewhat näıve ap-33

proach. More absences can be generated for species that34

have narrow distributions/niche. Second, we ignore the35

fact that our pseudo-absences might be bias, so that our36

fitted model becomes over-optimistic. In the case of nar-37

rowly distributed species in a wide region, the selection38

of absences by our approach will generate absences far39

from the environmental conditions of presences, and pos-40

sibly artificially increase the coefficient of variation. Both41

Chefaoui and Lobo (2008) and VanDerWal et al. (2009)42

clearly demonstrate that the way the pseudo-absence are43

generated has a significant impact on the resulting maps.44

More research is certainly needed to analyze impacts of45

techniques used to derive pseudo-absence, and the im-46

pacts they make on the success of prediction models.47

Although the cross-validation statistics shows that we48

have produced a fairly accurate maps, in the case of map-49

ping the distribution of root vole, it appears that the 50

output map mainly reflects geometry of the points (note 51

that even the buffer-based predictors we selected, also 52

reflect geometry rather than environmental features). To 53

prove this, we have excluded occurrence records from 54

the most densely populated area (Biesbosch), only to 55

see if the model would be able to predict the same pat- 56

tern (extrapolation). The result of this exercise showed 57

that our model is not successful in predicting the area 58

that has been masked out, which finally means that the 59

predictions by regression-kriging will be highly sensitive 60

to how representative is the sample data set considering 61

the whole population of this species. 62

Why does regression modeling performs poorer if only 63

presence data is used? Obviously, the sampling designs 64

are typically extremely biased considering the spreading 65

of points in the feature space (Sutherland, 2006), which 66

makes it very hard to estimate the true relationship be- 67

tween the distribution of a species and the ecological fac- 68

tors. It would be as if we would like to fit a model to esti- 69

mate people’s weight using their height, and then sample 70

only extremely tall people. We illustrate this problem in 71

Fig. 3 and 12, where you can compare spreading of the 72

sampling points with occurrence only and with occur- 73

rence and simulated absence data. This shows that the 74

occurrence only samples for specialized species are heav- 75

ily clustered in the feature space (this is more distinct 76

for the white-tailed eagle than for root vole). After addi- 77

tion of the absence locations, the feature space is much 78

better represented, so that the output prediction maps 79

become more reliable. 80

The geostatistical technique used in this paper could 81

be expanded to accommodate even more complex data: 82

spatio-temporal observations, multiscale predictors, 83

clustered observations, trajectory-type of data, observa- 84

tions of multiple species and similar. In this article, we 85

rely on the state-of-the-art geostatistical mapping tech- 86

niques as implemented in the R package gstat. To run a 87

GLM and then explore the residuals e.g. via variograms, 88

is a routine practice, but it does not always tell the 89

whole story. In the case of multiple regression, covari- 90

ance matrix is used to account for spreading (clustering) 91

of the points in the space. In our example (Fig. 11c), 92

we fit a GLM that completely ignores location of the 93

points, which is obviously not statistically optimal. In 94

comparison, fitting a Generalized Linear Geostatistical 95

Model (GLGM) can be more conclusive since we can 96

model the spatial/regression terms more objectively 97

(Diggle and Ribeiro Jr, 2007). This was, for example, 98

16



the original motivation for the geoRglm and spBayes1

packages (Ribeiro Jr et al., 2003). However, GLGMs are2

not yet operational for geostatistical mapping purposes3

and R code will need to be adapted.4

Automated retrieval and generation of distribution maps5

from biodiversity databases is possible but tricky. The6

biggest problem for such applications will be the qual-7

ity of the occurrence records — especially their spatial8

reference that is extremely variable (from few meters to9

tens of kilometers), but also the sampling bias, and the-10

matic quality of the records (incorrect taxonomic clas-11

sification, incompleteness). Although Jimenez-Valverde12

and Lobo (2006) in general do not see the sampling bias13

as a big problem for the success of spatial prediction,14

in the case of regression-kriging the output maps will15

be heavily controlled by the sampling bias. Hence if you16

are considering implementing this framework, have in17

mind that your input data (point sample) should be a18

good spatial representation of the whole population (it19

is not so much about the size, but about how well are20

all presence locations represented geographically). An-21

other issue is the computational burden of the frame-22

work we propose in Fig. 6 that can easily grow beyond23

the capacities of standard PCs. In fact, we could imagine24

that multiple species (all species in the GBIF database?)25

could be handled at the same time through a co-kriging26

framework, which would result in large quantity of mod-27

els and combinations of models that would need to be28

fitted. The benefits of running the models jointly versus29

isolated modeling are obvious — this is rather a techni-30

cal than conceptual problem. At this moment, we simply31

can not foresee when would such type of analysis become32

a reality.33
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