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Abstract Requirements traceability is the ability to
relate requirements back to stakeholders and forward to
corresponding design artifacts, code, and test cases. Although
considerable research has been devoted to relating require-
ments in both forward and backward directions, less attention
has been paid to relating requirements with other require-
ments. Relations between requirements influence a number
of activities during software development such as consistency
checking and change management. In most approaches and
tools, there is a lack of precise definition of requirements rela-
tions. In this respect, deficient results may be produced. In
this paper, we aim at formal definitions of the relation types in
order to enable reasoning about requirements relations. We
give a requirements metamodel with commonly used rela-
tion types. The semantics of the relations is provided with a
formalization in first-order logic. We use the formalization
for consistency checking of relations and for inferring new
relations. A tool has been built to support both reasoning
activities. We illustrate our approach in an example which
shows that the formal semantics of relation types enables
new relations to be inferred and contradicting relations in
requirements documents to be determined. The application of
requirements reasoning based on formal semantics resolves

Communicated by Prof. Richard Paige.

A. Goknil (B) · I. Kurtev · K. van den Berg · J.-W. Veldhuis
Software Engineering Group, University of Twente,
7500 AE Enschede, The Netherlands
e-mail: goknila@ewi.utwente.nl

I. Kurtev
e-mail: kurtev@ewi.utwente.nl

K. van den Berg
e-mail: k.g.vandenberg@ewi.utwente.nl

J.-W. Veldhuis
e-mail: j.w.veldhuis@student.utwente.nl

many of the deficiencies observed in other approaches. Our
tool supports better understanding of dependencies between
requirements.
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1 Introduction

Software development has different phases (requirement
analysis, architectural design, detailed design, implemen-
tation, and testing) which result in several artifacts (e.g.,
requirements documents, design documents). Traceability is
considered crucial for establishing and maintaining consis-
tency between these artifacts. Requirements traceability is
the ability to link requirements back to stakeholders’ ratio-
nales and forward to corresponding design artifacts, code,
and test cases [19]. The benefits of requirements traceabil-
ity are widely acknowledged today and there are tools to
record and manage trace information. Therefore, there has
been a growing interest in requirements traceability in the
software engineering community and industry. Despite many
advances, requirements traceability remains a widely
reported problem area in industry [19]. Some requirements
traceability approaches aim at generating trace information
automatically [12,13]. Ramesh and Jarke [39] propose that
traces need to be organized according to a modeling frame-
work. From their empirical study, they synthesized reference
models comprising the most important kinds of traceability
links for various development tasks. Von Knethen et al. [53]
provide a survey of traceability approaches and a taxonomy
of the main traceability concepts. We use their terminology
to describe the scope of our research.
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Fig. 1 Requirements model
and architectural model showing
within-model and
between-model trace relations

1.1 Scope

Our primary interest is post-requirements traceability, in
particular between requirements models and architectural
models (see Fig. 1).

Our traceability goal is change impact analysis, for exam-
ple, determining which model elements are impacted by a
change of requirements. Therefore we need within-model
traces and between-model traces. For example in Fig. 1, a
change in requirement R3 has a direct impact on architec-
tural component C4, and an indirect impact on component
C6 through the relation of R3 and Rn . In this paper, we focus
on relations between requirements in the requirements model
(within-model requirements traceability). Any relation
between requirements, between architectural components,
and between requirements and architectural components
can play a role in traceability analysis. Current approaches
show serious deficiencies which hinder proper change impact
analysis.

1.2 Deficiencies of current approaches

Considerable research has been devoted to relating require-
ments in both forward and backward directions. Less
attention has been paid to relating requirements with other
requirements. Requirements documents are considered
mostly as textual artifacts with structure often not explicitly
specified. In most tools and approaches, there is a lack of pre-
cise definition of requirements relations. For instance, IBM
Rational RequisitePro [25] provides only two relation types
between requirements: traceFrom and traceTo. In SysML
[38], there are different types of requirements relations such
as contain, copy, and derive. However, there are only infor-
mal definitions of these relations in SysML specification.

Requirements relations influence a number of development
activities and decisions made during software development,
for example release planning, requirements validation,
change impact analysis, testing, and requirements reuse [8].
In this respect, these activities may produce deficient results.
For instance, change impact analysis may find impacts on
nearly all requirements when a requirement is changed.
A requirements engineer may have to analyze all require-
ments in the requirements document for a single change. This
may result in neglecting the actual impact of a change. Con-
sequently, the cost of implementing a change may become
several times higher than expected. A study has shown that
most requirements are related to or influence other require-
ments [5], and thus it is not possible to plan system releases
based on only the high priority requirements without consid-
ering the relations between requirements.

1.3 Contributions

In this paper, we focus on requirements and requirements
relations in requirements documents from a traceability per-
spective. We aim at improving requirements relations by
assigning relation types and defining their semantics. Within
the context of model driven engineering (MDE), we construct
metamodels and models for all artifacts in software develop-
ment. Therefore, we give a requirements metamodel with for-
mal relation types. The semantics of these relations is based
on first-order logic (FOL). We use this formalization for con-
sistency checking of relations and inferencing. Here, infer-
encing is the activity of deducing new relations based solely
on the relations which the requirements engineer has already
specified. Consistency checking is the activity of identifying
the relations whose existence causes a contradiction. We pro-
vide tool support for consistency checking and inferencing
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based on the semantics of relations for requirements. The
main features of the tool are managing requirements and
relations (add, update, delete), displaying consistency check-
ing and inferencing, and explaining the results of reasoning.

1.4 Structure

The paper is structured as follows. Section 2 describes the
approach. Section 3 presents the requirements metamod-
el and definitions of the requirements relations. Section 4
provides the formalization of the relations. In Sect. 5, we
describe the use of the formalization for consistency check-
ing and inferencing. Section 6 gives details about the tool
support. Section 7 illustrates the approach by an example.
Section 8 describes the related work, and Sect. 9 concludes
the paper.

2 Approach

We aim at providing requirements relations with formal
semantics. In order to achieve this, we successively take the
following steps:

• Requirements metamodel. To provide an explicit structure
to requirements documents, we present a requirements
metamodel. This metamodel includes mostly commonly
found entities in the literature. The most important ele-
ments of the requirements metamodel are requirements
relations and their types (Sect. 3).

• Semantics of relations. Since we aim at providing
requirements relations with well-defined semantics, we
formalize the requirements relations in the requirements
metamodel by using FOL (Sect. 4).

• Consistency checking and inferencing. We use the formal-
ization for consistency checking of relations and inferring
new relations (Sect. 5).

• Tool support. We describe the design and implementation
of a prototype tool for managing requirements, display-
ing consistency checking and inferencing, and explaining
results of reasoning (Sect. 6).

• Running example. We illustrate the approach with an
example (Sect. 7). The example is about requirements
for a course management system (CMS). This system
provides a lecturer with a set of tools that allows the cre-
ation of online course content and the subsequent teach-
ing and management of that course including interactions
with students taking the course. A CMS requirements
document was put together for illustration in this paper
as a running example. Part of this document is given in
Appendix C.

3 Requirements metamodel

Our requirements metamodel contains common entities iden-
tified in the literature for requirements models. There are
several commonly used approaches to define and represent
requirements: goal-oriented [34,50], aspect-driven [40],
variability management [33], use-case [7], domain-specific
[30,38], and reuse-driven techniques [31]. Goal-oriented
requirements engineering [34,50] defines a model for decom-
posing a system goal into requirements with goal trees, and
offers some decision methods based on this decomposition.
The aspect-oriented approach [40] gives a requirements
model for the separation of crosscutting functional and non-
functional properties in the requirements analysis phase.
The System Modeling Language (SysML) [38] is a domain-
specific modeling language for system engineering. It
provides modeling constructs to represent text-based req-
uirements and relate them to other modeling elements with
stereotypes. The variability management approach [33] deals
with producing requirements that can be considered as a core
asset in a product line.

Since we aim at using requirements relations as trace rela-
tions, we focused in our survey on the requirement entity
with its attributes and relations between requirements. We
left out other entities such as goals, stakeholders, and test
cases. Figure 2 gives the requirements metamodel used in
our approach.

In the requirements metamodel, requirements are captured
in a requirements model. A requirements model contains
requirements and their relationships. Based on Ref. [20], we
define a requirement as follows.

Definition 1 Requirement: A requirement is a description of
a system property or properties which need to be fulfilled.

A requirement has a unique identifier (ID), name, textual
description, priority, rationale, and status. A system prop-
erty can be a certain functionality or any quality attribute. In
this respect, our requirements relation types and their formal-
ization are applicable to both functional and non-functional
requirements.

We identified five types of relations: requires, refines, par-
tially refines, contains, and conflicts. In the literature, these
relations are informally defined as follows.

Definition 2 Requires relation: A requirement R1 requires
a requirement R2 if R1 is fulfilled only when R2 is fulfilled.

The required requirement can be seen as a pre-condition for
the requiring requirement [52].

Definition 3 Refines relation: A requirement R1 refines a
requirement R2 if R1 is derived from R2 by adding more
details to its properties.
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Fig. 2 Requirements
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The refined requirement can be seen as an abstraction of the
detailed requirements [8,50].

Definition 4 Partially refines relation: A requirement R1

partially refines a requirement R2 if R1 is derived from R2

by adding more details to properties of R2 and excluding the
unrefined properties of R2.

Our assumption here is that R2 can be decomposed into
other requirements and that R1 refines a subset of these
decomposed requirements. This relation can be described
as a special combination of decomposition and refinement.
It is mainly drawn from the decomposition of goals in goal-
oriented requirements engineering [50].

Definition 5 Contains relation: A requirement R1 contains
requirements R2, . . . , Rn if R2, . . . , Rn are parts of the whole
R1 (part-whole hierarchy).

This relationship enables a complex requirement to be
decomposed into parts [38]. A composite requirement may
state that the system shall do A and B and C, which can be
decomposed into the requirements that the system shall do
A, the system shall do B, and the system shall do C. For this
relation, all parts are required in order to fulfill the composing
requirement.

Definition 6 Conflicts relation: A requirement R1 conflicts
with a requirement R2 if the fulfillment of R1 excludes the
fulfillment of R2 and vice versa.

The conflicts relation addresses a contradiction between
requirements. This relation may be modeled explicitly by

the requirements engineer. In this paper, we consider con-
flicts as a binary relation [49]. Our approach can be extended
to n-ary conflicts relations, that is, conflicts among multiple
requirements.

The conflicts relation should be distinguished from incon-
sistencies in requirements relations. In our terminology, an
inconsistency is a situation where the co-existence of certain
relations among requirements causes a contradiction in the
context of the semantics given in this paper. When we use
the term consistency checking, we refer to finding inconsis-
tencies among requirements relations.

There are other classifications of inconsistencies between
requirements. For example, Van Lamsweerde et al. [49] dis-
tinguish conflicts (excluding the simultaneous fulfillment of
requirements), divergence (boundary cases make require-
ments contradict—a weaker form of conflict), competition
(a particular case of divergence), obstruction (a borderline
case of divergence), and terminology clash (using different
syntactic names for a single real-world concept).

The definitions given above are informal (and sometimes
ambiguous). Since we aim at precise semantics, we formalize
requirements and requirements relations in FOL.

4 Formalization of requirements and relations

In this section we provide our formalization of requirements
and relation types. The definitions are given in intensional
and extensional terms. An intensional definition gives the
meaning of a term by relating it to other terms. An extensional
definition gives the set of objects that fulfill the definition.
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Section 4.1 gives the formalization of requirements.
Section 4.2 presents the formalization of requirements rela-
tions. In Sect. 4.3, we discuss the chosen formalization.

4.1 Formalization of requirements

We chose a formalization of requirements in FOL. In Sect.
4.3, we discuss this choice.

We assume the general notion of requirement being “a
property which must be exhibited by a system”. We define
a requirement R as a tuple 〈P, S〉 where P is the property
(or properties) and S is the set of systems that satisfy P , that
is, ∀s ∈ S : P(s). Here, P refers to an intensional definition
and S refers to the extensional definition of a requirement. We
formalize P as a formula and system s as a modelM accord-
ing to the model-theoretic semantics of FOL. A modelM is
the pair (F,P) where F is a set of function symbols and P is
a set of predicate symbols [24]. The definition of a model in
FOL is summarized in Appendix A. A satisfaction relation
between the system s (captured as modelM) and the property
P holds:

s |� l P (1)

where the property P computes to True in the system s with
respect to the environment l (i.e., a look-up table for all vari-
ables in P). P can be represented in a conjunctive normal
form (CNF) in the following way:

P = (p1 ∧ · · · ∧ pn) (2)

where n ≥ 1 and pn is disjunction of literals.
A literal is an atomic formula (atom) or its negation. An

atomic formula is a predicate symbol applied over terms.
From now on we assume that all formulas are in CNF.

In the rest of the paper we use the notation (p1 · · · pn) for
(p1 ∧ · · · ∧ pn).

Example Interpretation of a Requirement

Although the interpretation of requirements as formulas in
FOL is not within the scope of our work, we give an intuition
of how to map requirements in natural text to our formaliza-
tion in FOL. Assume that we have the following requirement:
“The system shall provide security facilities for logging”.

We can represent the requirement as a formula
provide(x , logging) where x is a variable ranging over pos-
sible security solutions (since security can be supported in
different ways, e.g., SSL certification) and logging is a con-
stant. An example system s for this requirement supports
SSL certification for users to log in. In the universe of con-
crete values, we have the value ssl_certification. We define
the system s as a modelM which is a pair (F,P) where:

• the non-empty set A (the universe of concrete values)
contains ssl_certification and logging.

• P def {provide} where the concrete relation provideM is
binary.

• provideM def {(ssl_certification, logging)}.

We have the following satisfaction relation between the sys-
tem and the formula stated in the requirement:

s |� l provide(x, logging) (3)

where l maps the variable x to the value ssl_certification in
the set A and logging is the constant.

4.2 Formalization of requirements relations

We formalize the informal definitions of the requirements
relations in the requirements metamodel.

4.2.1 Formalization of requires

Let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 be requirements.

R1 requires R2 iff ∀s ∈ S1 : s ∈ S2 and ∃s ∈ S2 : s /∈ S1

From this definition we conclude that S1 ⊂ S2. The subset
relation between sets S1 and S2 defines the requires relation
as non-reflexive, non-symmetric, and transitive. We disallow
equality between S1 and S2 because the requirements engi-
neer could put R1 and R2 to the same requirement when these
two requirements require each other. This also excludes the
reflexive property for the requires relation. A requirement
which is a precondition for itself does not make sense in
reality.

Example Requires Relation

We explain the requires relation with the following
two requirements from the CMS requirements document
explained in Sect. 7.

R24: The system shall notify students about events (new
messages posted, etc.).

R7: The system shall provide a messaging facility.

In order to notify students about events like new messages
posted and scheduled exams, the system needs a messaging
facility. Therefore, we conclude that R24 requires R7 to be
fulfilled. Please note that we consider a proper subset rela-
tion between sets of systems for these two requirements. We
assume that there will always be a system which provides a
messaging facility but does not provide notification to stu-
dents about events.
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4.2.2 Formalization of refines

Let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 be requirements. P1

and P2 are formulas and the CNF of P2 is:

P2 = (p1 · · · pn) ∧ (q1 · · · qm); n ≥ 1, m ≥ 0 (4)

Let p′
1, p′

2, . . . , p′
n−1, p′

n be disjunction of literals such that
p′

j → p j for j ∈ 1 · · · n

R1 refines R2 iff P1 is derived from P2 by replacing
every p j in P2 with p′

j for j ∈ 1 · · · n such that the
following two statements hold:

P1 = (p′
1 · · · p′

n) ∧ (q1 · · · qm); n ≥ 1, m ≥ 0 (5)

∃s ∈ S2 : s /∈ S1 (6)

From the definition we conclude that if P1 holds for a given
system s then P2 also holds for s (∀s ∈ S1 : s ∈ S2). On the
basis of ∃s ∈ S2 : s /∈ S1 and ∀s ∈ S1 : s ∈ S2, we conclude
that (S1 ⊂ S2). Similarly to the previous relation we have
the properties non-reflexive, non-symmetric, and transitive
for the refines relation. Obviously, if R1 refines R2 then R1

requires R2.

Example Refines Relation

We explain the refines relation with the following two
requirements.

R7: The system shall provide a messaging facility.
R16: The system shall allow messages to be sent to individ-

uals, teams, or all course participants at once.

We formalize the requirements R7 = 〈P7, S7〉 and R16 =
〈P16, S16〉 as follows:

P7 = provide_msg(x) (7)

P16 = course_msg(x) (8)

where x is a variable over the constants individual_msg,
team_msg, participant_msg, and lecturer_msg.

Let:

• P def {provide_msg, course_msg} where the concrete
relations provide_msgM course_msgM are unary.

• provide_msgM def {individual_msg, team_msg, partici-
pant_msg, lecturer_msg}.

• course_msgM def {individual_msg, team_msg, partici-
pant_msg}.

Then we have the following:

course_msg(x) → provide_msg(x) (9)

S16 ⊂ S7 (10)

R7 states only the need for a messaging property in the
system. However, R16 explains the details of the messaging
property: the messaging shall allow messages to be sent to
individuals, teams, or all course participants at once, exclud-
ing lecturers. Therefore, we conclude that R16 refines R7. It
is also noted that R16 requires R7 to be fulfilled.

4.2.3 Formalization of partially refines

Let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 be requirements. P1

and P2 are formulas and the CNF of P2 is:

P2 = (p1 · · · pn) ∧ (q1 · · · qm); m, n ≥ 1 (11)

Let q ′
1, q ′

2, . . . , q ′
m−1, q ′

m be disjunction of literals such
that q ′

i → qi for i ∈ 1 · · · m.

R1 partially refines R2 iff P1 is derived from P2 by
replacing every qi in P2 with q ′

i for i ∈ 1 · · · m and
excluding others (pi for i ∈ 1 · · · n) such that the
following two statements hold:

P1 = (q ′
1 · · · q ′

m) (12)

∃s ∈ S2 : s /∈ S1, ∃s ∈ S1 : s /∈ S2, and ∃s ∈ (S1 ∩ S2)

(13)

The partially refines relation is non-reflexive, non-
symmetric, and transitive.

Example Partially Refines Relation

We explain the partially refines relation with the following
two requirements.

R97: The system shall allow only the administration to
manage courses.

R102: The system shall allow only the administration to
specify the minimum number of students for a
course. If there are too few subscriptions in a semes-
ter, that course will not be given during that semester.

In the glossary of the CMS requirements document in
Appendix C, it is stated that managing courses means cre-
ating, updating, deleting, and reading course information.
We formalize R97 = 〈P97, S97〉 and R102 = 〈P102, S102〉 as
follows:

P97 =create(x, y)∧delete(x, y)∧update(x, y)∧read(x, y)

(14)

P102 = specify(x, y, z) (15)

where x is a variable for the courses, y is the variable for
the number of students registered to the course, and z is the
variable for the minimum number of students that should be
registered to the course.
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• P def {create, delete, update, read, specify} where the
concrete relations createM, deleteM, updateM, readM take
two arguments and specifyM takes three arguments.

• createM def {(x, y)| x ∈ Courses, y ∈ N+},
where Courses is the set of courses.

• deleteM def {(x, y)| x ∈ Courses, y ∈ N+}.
• updateM def {(x, y)| x ∈ Courses, y ∈ N+}.
• readM def {(x, y)| x ∈ Courses, y ∈ N+}.
• specifyM def {(x, y, z)| x ∈ Courses, y and z ∈ N+,

y ≥ z}.

We interpret P102 as assigning the minimum number of
students, and the actual number of students for a given course.
Then we have the following:

specify(x, y, z) → create(x, y) (16)

In this way P102 satisfies condition (12). For brevity we
will not show any concrete modelM. Furthermore, it is easy
to provide other interpretations of course creation so that
∃s ∈ S97 : s /∈ S102. Similarly, P102 may be satisfied by sys-
tems that do not contain, for example, the concept of course
deletion and thus do not fulfill P97. Therefore ∃s ∈ S102 :
s /∈ S97. In the same manner we may construct a model of a
system that satisfies both requirements, that is, the intersec-
tion of S97 and S102 is not empty. This reasoning satisfies the
conditions of the partially refines relation.

4.2.4 Formalization of contains

Let R1 = 〈P1, S1〉, R2 = 〈P2, S2〉, . . . , Rk = 〈Pk, Sk〉 be
requirements where k ≥ 2. P2, P3, . . . , Pk are formulas in
CNF as follows:

Pi = (pi
1 · · · pi

mi ); mi ≥ 1, i ∈ 2 · · · k (17)

R1 contains R2, . . . , Rk iff P1 is derived from P2,

P3, . . . , Pk as follows:
P1 = P2 ∧ P3 ∧ · · · ∧ Pk ∧ P ′
where P ′ denotes properties that are not captured in
P2, P3, . . . , Pk .

In the definition, we do not assume completeness of the
decomposition [50]. From the definition we conclude that if
P1 holds then P2, P3, . . . , Pk also hold, and if P2, P3, . . . , Pk

hold then P1 does not have to hold. Therefore, S1 ⊂ S2, S1 ⊂
S3, . . ., and S1 ⊂ Sk . Obviously, the contains relation is non-
reflexive, non-symmetric, and transitive.

Example Contains Relation

We explain the contains relation with the following two
requirements.

R61: The system shall allow lecturers to specify enrolment
policies based on grade, first-come first-serve (fcfs),
and department.

R62: The system shall allow lecturers to specify enrolment
policies based on grade.

We formalize R61 = 〈P61, S61〉 and R62 = 〈P62, S62〉 as
follows

P61 = allow(grade_enrl_policy) ∧ allow(fcfs_enrl_policy)

∧ allow(department_enrl_policy) (18)

P62 = allow(grade_enrl_policy) (19)

where grade_enrl_policy, fcfs_enrl_policy, and department_
enrl_policy are constants. We have the following:

P61 = P62 ∧ allow(fcfs_enrl_policy)

∧ allow(department_enrl_policy) (20)

R61 states that the system shall allow lecturers to spec-
ify three different enrollment policies. The requirement can
be interpreted as three different properties for the system,
like specifying enrollment policies based on grade, specifying
enrollment policies based on first come first serve, and spec-
ifying enrollment policies based on department. R62 states
only one of these properties, which is specifying enrollment
policies based on grade. Therefore, we conclude that R62 is
one of the decomposed requirements of R61 (R61 contains
R62). It is also noted that R61 requires R62 to be fulfilled.

4.2.5 Formalization of conflicts

Let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 be requirements.

R1 conflicts with R2 iff
¬∃s : (s ∈ S1 ∧ s ∈ S2 : P1(s) ∧ P2(s))

The binary conflicts relation is symmetric, non-reflexive,
and non-transitive.

Example Conflicts Relation

We explain the conflicts relation with the following two
requirements.

R60: The system shall allow lecturers to limit the number
of students subscribing to a course.

R103: The system shall have no maximum limit on the num-
ber of course participants ever.

The satisfaction of R60 excludes the satisfaction of R103 and
vice versa. The limit on the number of students and absence
of a maximum limit on the number of course participants
cannot exist at the same time. Therefore, we conclude that
R60 conflicts with R103.
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It should be noted that the definitions of requires and
conflicts are given in extensional terms by specifying con-
ditions on the corresponding sets of systems. The definitions
of refines, partially refines, and contains are in intensional
terms, that is, they take into account the form of the require-
ment specification as predicates. Our interpretation of the
refines relation is that the refining requirement puts addi-
tional information about the same system property in the
refined requirement in order to narrow down the possible
solutions to the system property. The notion of adding more
information about a system property is formalized by explic-
itly stating that p′

n implies pn and S1 is a subset of S2 (see
the formalization of refines where R1 refines R2). The inten-
sional part of the definition states that the predicate with more
information implies the predicate with less information thus
resulting in a subset relation between the solutions. The sub-
setting captures the fact that the refining requirement limits
the set of possible solutions. If only the extensional defini-
tions were considered then we would conclude that refines
and requires are equivalent, both being interpreted as a subset
between the sets of systems.

4.3 Discussion of the chosen formalization

We chose a formalization of requirements and their rela-
tions in FOL. There are other formalizations of requirements,
for example, in modal logic and deontic logic [32]. The
formalization in FOL allows the expression of commonly
occurring requirement descriptions, including for example
real-time or performance requirements. However, there are
limitations of the expressivity of FOL. For instance, imper-
fect requirements can be modeled by fuzzy sets [36]. Dealing
with imperfection is out of scope of our formalization. We
also do not cover modalities in requirements like possibil-
ity, probability, and necessity or logic operators like “in the
next state” and “some time in the future” which can be used
to describe the evolution of requirements. Our formalization
should be extended with temporal logic, modal logic or fuzzy
sets in order to cover these types of requirements. Under
these limitations, the expressiveness of FOL is sufficient for
inferencing and consistency checking since the focus of our
approach is on the commonly occurring requirements.

As we stated in Sect. 4.1, the interpretation of require-
ments as formulas in FOL is not within the scope of our
approach. The modeling of requirements and their relations is
carried out by requirements engineers. However, the require-
ments engineer does not need to know the details of the
formalization. He/she can be guided by tutorials [18] that
provide an informal explanation of the relations. The req-
uirements model is used to obtain new knowledge about
the requirements relations by automated reasoning, for
example, inferred relations and/or inconsistencies. These
results—supported by the visualization—are presented

to the requirements engineer, who should give his own
interpretation. Since the requirements engineer may make
mistakes in the modeling, the approach may produce
improper results. However, by interpreting the results, the
requirements engineer may improve his initial requirements
model.

5 Inferencing and consistency checking

Inferencing and consistency checking aim at deriving new
relations based on given relations and determining contradic-
tions among relations. We provide inferencing and consis-
tency checking that are implemented in a reasoner supporting
a form of logic programming based on facts and rules.
Requirements relations are represented as facts derived from
their definitions. The first type of facts concerns relations
among sets, and the second encodes relations between formu-
las. The formula relations are defined for formulas in CNF.
These relations, such as all-in-whole and some-implies-in,
are described in Appendix B. For example, for some-implies-
in (P1, P2) at least one formula in the CNF of P1 implies one
formula in the CNF of P2.

For example, let R1 = 〈P1, S1〉 and R2 = 〈P2, S2〉 be
requirements and (R1 refines R2). Then, we have the follow-
ing rules for the refines relation.

(S1 ⊂ S2) if (R1refinesR2) (21)

all-in-whole(P1, P2) ∧ some-implies-in(P1, P2) iff

(R1refinesR2) (22)

The subset relation and the formula relations all-in-whole
and some-implies-in are derived from the refines relation.

New requirements relations are derived if inferred facts are
sufficient conditions for the requirements relation. Accord-
ing to (21) and (22), the refines relation is inferred if and only
if the all-in-whole and some-implies-in relations are derived
from the given facts.

Inferencing and consistency checking derive new facts and
determine contradicting facts by using rules. The rules are
generally known for set theory. We use mainly the transi-
tive property of subset relation. The details of all formula
relations and their properties can be found in Appendix B.
Since the rules of set theory and formula relations can be
directly mapped to Web Ontology Language (OWL) [9], we
use an OWL reasoner in our implementation. The details of
the tool support with OWL for inferencing and consistency
checking are given in Sect. 6. In the following, we illustrate
how to use the rules of set theory and formula relations in
order to derive new relations and determine contradicting
relations.
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5.1 Inferencing

This is the activity of deriving new relations based solely on
relations which the requirements engineer has already speci-
fied. The following is a proof of the inferencing that uses the
set relations and their properties.

Inference: (R1 refines R2) ∧ (R2 contains R3) →
(R1 requires R3)

Proof Let (R1 refines R2) ∧ (R2 contains R3)

= {By mapping from the refines and contains

relations to the subset relation}
(S1 ⊂ S2) ∧ (S2 ⊂ S3)

= {By using the transitivity of the subset relation}
(S1 ⊂ S3)

= {By applying the mappings from the subset

relation to the requires relation}
(R1 requires R3)

Therefore, we have (R1 refines R2)∧(R2 contains R3) →
(R1 requires R3).

The reasoner is capable of automatically inferring new
facts. In the implementation of inferencing, there is no need
for manual proof like the one given above.

5.2 Consistency checking

This is the activity of identifying relations whose existence
causes a contradiction. The following is a proof of one of the
consistency checks that uses the formula relations.

Inconsistency: (R1 refines R2) ∧ (R1 contains R2)

Proof Let R1 refines R2.

= {By mapping the refines relation to

all-in-whole and some-implies-in relations}
(P1 all-in-wholeP2) ∧ (P1 some-implies-inP2) (a)

Let R1 contains R2.

= {By mapping the contains relation to part-of and

not-imply relations}
(P2 all-in-partP1) ∧ (P2 all-equals-inP1) (b)

The all-in-whole relation in (a) and all-in-part relation in
(b) are disjoint. They cannot exist between the same formulas
together. The all-equals-in relation is symmetric and it con-
tradicts the some-implies-in relation for the same formulas.
Therefore, (R1 refines R2) and (R1 contains R2) contradict
one another.

The reasoner is capable of automatically identifying con-
tradicting facts. In the implementation of consistency check-
ing, there is no need for manual proof like the one given
above.

6 Tool support

We built a tool named Tool for Requirements Inferencing
and Consistency checking (TRIC) for automatic inferencing
and consistency checking [47,51]. In this section, we give
the details of the tool. In Sect. 6.1, we depict the usage of the
tool in the context of a modeling process. Section 6.2 gives
the architecture of the tool. Section 6.3 describes the main
features of the tool with some screenshots.

6.1 The modeling process

We depict the usage of the tool in a modeling process with
inferencing and consistency checking. This process is based
on the analysis of activities during modeling of requirements
and their relations. Figure 3 gives a UML activity diagram
of the process.

The process consists of the following activities.

6.1.1 Modeling

This activity takes the requirements document as input and
produces the requirements model which is an instance of
the requirements metamodel. The requirements model con-
tains requirements and their relations. The definitions given
in Sect. 3 are used to identify the requirements relations.

6.1.2 Inferencing and consistency checking

The modeling process is forked into two activities: consis-
tency checking and inferencing. These two activities are pro-
cessed in parallel. The requirements model is updated with
inferred relations. Inconsistent parts of the model are deter-
mined, if there are any. Inferencing and consistency checking
enrich the set of requirements relations in the requirements
model. These two activities are in parallel because the consis-
tency checking uses the machinery for inferencing and also
checks the inconsistencies among inferred relations as well
as among given relations.

6.1.3 Iterating

The process given in Fig. 3 is iterative: the requirements
engineer may return to the modeling activity in order to fix
inconsistencies and/or input new requirements and relations.
If there is no need to update the model, the process is termi-
nated.

6.2 Architecture

The tool is composed of three layers (see Fig. 4): (a) the User
Interface (UI) layer, (b) the Application Layer, and (c) the
Data Layer.
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Fig. 3 Modeling process with
consistency checking and
inferencing

Fig. 4 Layered architecture of
the tool TRIC – Layered Architecture
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6.2.1 User interface (UI) layer

This layer supports the modeling activity. The user interface
is implemented by using the Eclipse Rich Client Platform
(RCP) [11]. The output of the consistency checking and in-
ferencing is represented in a table form. The JGraph library

[28] is used for the graphical visualization of this output. The
layer provides the following:

• A form-based editor to enter and modify requirements
• An editor to enter and modify relations between require-

ments
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• A matrix view of requirements in the model
• The control of the services provided by the application

layer

6.2.2 Application layer

This layer performs the main activities given in Fig. 3:
consistency checking and inferencing. It contains the com-
ponents Modeling Environment, Inferencing Engine, Con-
sistency Checking Engine, and Visualization Engine. The
components provide the following functionalities:

• Modeling Environment: allows the creation, storage, and
retrieval of requirements models, and bridging the User
Interface layer with the Data layer.

• Inferencing Engine: infers all implicit relations between
requirements, and keeps track of given and inferred rela-
tions.

• Consistency Checking Engine: allows checking consis-
tency of relations.

• Visualization Engine: accesses the Data layer in order to
get requirements and relations to be visualized in dia-
grams. The visualization is done by JGraph in the User
Interface layer.

The Inferencing Engine component also implements the map-
pings between requirements relations and their definitions in
the formalization given in Appendix B. These mappings are
required to implement consistency checking and inferencing.

6.2.3 Data layer

The entered requirements and their relations are stored as an
OWL ontology [9] which consists of the requirements meta-
model and its instance model in the same file. Therefore, we
can use the existing reasoners developed for the semantic web
environment. The OWL is a family of knowledge represen-
tation languages for specifying ontologies. OWL ontologies
are serialized using RDF/XML syntax. Our formalization is
directly mapped to the language features of OWL like tran-
sitivity and symmetry of properties. Reasoning on require-
ments models is done on OWL ontologies. We used Jena [29],
a programmatic environment for processing OWL data, with
a rule-based inference engine. The engine performs consis-
tency checking and inferencing. One of the advantages of
Jena is that it provides derivation trace analysis. The analy-
sis is used in one of the main facilities of the tool: explaining
results of inferencing and consistency checking. We reason
on copies of the given ontology in order to prevent the pol-
lution of the given requirements ontology with inferred rela-
tions and inconsistencies. The Data Access Objects (DAO)

component is responsible for reading and manipulating mod-
els without any dependency on data format.

6.3 Features

We describe the most important features of the tool: man-
aging requirements (add, update, delete requirements and
relations), displaying inconsistencies and inferred relations,
and explaining the results of reasoning.

6.3.1 Managing requirements

We can add new requirements and update or delete existing
requirements. Figure 5 gives the GUI for managing require-
ments which supports the modeling activity in Fig. 3.

The left-hand side of the window lists the entered require-
ments. The right-hand side of the window shows details of
the selected requirement (R18). The tool gives a warning if a
deleted given relation is inferred by the inferencing engine.
The Relate requirements window opened by the Add new
relation(s) button is used to select related requirements and
relation types.

The tool provides a matrix view in order to represent and
manage requirements and relations. Such a view is also avail-
able in commercial requirements management tools, such as
RequisitePro. Figure 6 illustrates the matrix view feature of
our tool.

The arrows with direction in the cells denote the exis-
tence of requirements relations with their directions. Since
there might be multiple relations between two requirements,
the tool provides the Relate requirements window, which is
similar to the window in Fig. 5.

The matrix view is less usable for large models. We pro-
vide a visual editor (see Fig. 7) in order to improve the usabil-
ity of the tool for large models. The requirements engineer
can select a smaller set of requirements to be shown in a
graph.

6.3.2 Displaying inconsistencies and inferred relations

The highlighted relations (conflicts and requires) in the right-
hand side of the window in Fig. 5 are the inferred relations
for the requirement R18. The tool detects contradictions in
the model. Figure 8 gives the screenshot of output of the
consistency checking activity.

The left part of the window gives descriptions of the incon-
sistencies; the right part gives the contradicting relations.

6.3.3 Explaining results of reasoning

The requirements engineer may need further explanation
of the result from the reasoning in order to update the
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Fig. 5 GUI for managing
requirements and relations

Fig. 6 Matrix view for
managing requirements and
relations

requirements model. The tool visualizes how inferred rela-
tions are derived (see Fig. 9).

In Fig. 9, the derivation of the conflicts relation between
requirements R8 and R59 (dashed arrow) is visualized. Note
that this conflicts relation is not an inconsistency itself. The
solid arrows indicate the given relations used in the deriva-
tion.

The tool also provides an explanation of contradicting
relations. This explanation is similar to the window in Fig. 9.

Since the set of contradicting relations may contain inferred
relations, the visualization for the derivation of inferred
relations helps the requirements engineer to resolve con-
tradictions by identifying all given relations causing the
inconsistency.

Another visualization option provided by the tool is to
visualize the requirements related to a selected requirement
at a given depth. Depth is the maximum number of relations
between the requirement and its related requirements in the
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Fig. 7 Visual editor for
managing requirements and
relations

Fig. 8 Output of the
consistency checking activity

shortest path. The visualization is similar to the window given
in Fig. 7. This visualization option allows showing only a part
of the requirements model. It is useful for large models where
the matrix view does not scale well.

7 Example: course management system

In this section, we illustrate our approach and tool support
with the CMS example. The CMS requirements document
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Fig. 9 Explanation of the
inferred conflicts relation
between R8 and R59

was prepared as a result of a discussion by QuadREAD pro-
ject members who took the role of stakeholders. No particular
inconsistencies and conflicts were inserted intentionally. We
aimed at detecting inconsistencies and conflicts as a result
of the modeling process. All requirements used in this paper
can be found in Appendix C. We performed two iterations of
the modeling process for the example.

• In the first iteration, we modeled the textual require-
ments and their relations according to the semantics of
relation types. We analyzed given and inferred relations
and inconsistencies by using the outputs of the tool. The
requirements engineer identifies which relations are valid
or invalid based on his or her knowledge of the applica-
tion domain and the semantics of the relations. He or she
decides how to correct invalid given relations by using
the feature for explaining the output of reasoning.

• In the second iteration, we updated the model in order to
correct the invalid relations. The validity of relations in
the model was checked according to the semantics of the
relation types. This checking is dependent on the require-
ments engineer’s interpretation of the semantics of the
relations.

It should be noted that the conclusions from the example can-
not be generalized for our approach, since we still need to
apply the approach to a number of industrial and academic
case studies with empirical results. The example illustrates
potential benefits and limitations of the approach for larger
case studies. Section 7.1 presents the overall results of the
two iterations. Section 7.2 gives some inferred relations in the
example. In Sect. 7.3, we show some inconsistencies detected
in the example requirements model.

7.1 Modeling the requirements

The requirements in the document are grouped by their stake-
holders, which are Student, Lecturer, System Maintainer, and
Administration. The functional and non-functional require-
ments are separated in the requirements document. There
are 122 requirements (94 functional and 28 non-functional
requirements). In the document, relations between require-
ments are not stated explicitly.

In the first iteration, we modeled the document accord-
ing to our relation types by interpreting the requirements in
the document. The execution of the inference engine inferred
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Table 1 Number of relations
and inconsistencies in the
example

Number of relations
per relation type

Number of
inconsistencies

Refines Partially refines Requires Contains Conflicts Total

First iteration
Given 41 9 42 14 17 123 32

Inferred 3 10 122 0 103 238

Second iteration
Given 40 10 37 14 17 118 0

Inferred 3 10 86 0 13 112

new relations based on the given relations. As a second
step, we run the consistency checker for the requirements
model.

The tool reported 32 inconsistent parts in the requirements
model. An inconsistent part is a set of relations whose exis-
tence causes a contradiction. For example, the conflicts and
requires relations between R29 and R97 cause a contradic-
tion. The output for one of the inconsistent parts is given
below:

[Inconsistency]
Description: “Both conflicts and requires relations”
Contradicting relations:

R29 requires R97 (inferred relation)
R29 conflicts R97 (inferred relation)

In the second iteration, we used the tool feature for explain-
ing the results of reasoning. The feature provides derivation
trace analysis of inconsistent parts of the model. Based on
this information, we discovered that there are five invalid
given requires relations, one refines relation is actually a
contains relation, and one contains relation is actually a par-
tially refines relation in the example. Deleting and updating
these relations results in a consistent requirements model.
The number of inferred relations is reduced. Table 1 gives
the number of given and inferred relations, and the number
of inconsistencies in the first and second iteration for the
CMS example.

In the first iteration there are 225 conflicts and requires
relations of 238 inferred relations. Updating the model in the
second iteration in order to fix the inconsistencies eliminates
the inferred invalid conflicts and requires relations.

In the second iteration, reasoning on the requirements
model resulted in 112 inferred relations from 118 given rela-
tions. There are 86 requires relations of 112 inferred rela-
tions. From the formalization of relation types, we know that
the contains and refines relations imply the requires relation
in the requirements model. Therefore, we were expecting
that the number of inferred requires relations would be more
than the total number of given contains and refines relations.
Fifty-four of these 86 inferred requires relations are inferred

from the given contains and refines relations. Other requires
relations are inferred by using the transitive property of the
requires relation and the combination of the requires relation
with contains and refines relations.

As a result of reasoning, we have 13 inferred conflicts
relations from 17 given conflicts relations. All these conflicts
relations are inferred because of the combination of the con-
flicts relation with the requires and contains relations.

In the requirements document, the containment hierarchy
has only one level. Since the transitive property of the con-
tains relation is the only way to infer the contains relation
according to its semantics, the tool does not infer any new
contains relations. We have only three inferred refines rela-
tions from 40 given refines relations by using the transitive
property of the refines relation. On the other hand, 10 par-
tially refines relations are inferred from 10 given partially
refines relations.

7.2 Inferring requirements relations

In this section, we describe some inferred relations in the
example. The example in Fig. 10 illustrates the inferencing
for the following requirements:

R5: The system shall be able to store dynamic course
information.

R6: The system shall be able to represent dynamic course
information.

Fig. 10 Example with inferred requires relation
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Fig. 11 Analysis of the
inferred relation to identify
invalid given relations

R26: The system shall allow students to view course grade
statistics per semester.

In the glossary of the requirements document (see Appen-
dix C), dynamic course information is expressed as informa-
tion (news messages, archived files, and roster) about a course
which changes while a course is given. In the requirements
model, the following relations are given: (R26 refines R6) and
(R6 requires R5). When we run our tool over the requirements
model, the relation (R26 requires R5) is inferred (dashed line
in Fig. 10).

Grade statistics are dynamic course information. The sys-
tem needs to store dynamic course information in order to
allow students to view course grade statistics per semester.
Therefore, we confirm that the inferred relation (R26 requires
R5) is a valid relation in the model.

The interpretation of requirements depends on the require-
ments engineer. In the example, we discovered some invalid
given relations. The tool feature for explaining the inferenc-
ing results supports our analysis of (in)valid given relations
based on inferred relations. Figure 11 depicts the analysis of
one inferred relation to identify invalid given relations.

Although there is an inferred conflicts relation between
requirements R8 and R59, these two requirements are not in
conflict. These requirements are the following:

R8: The system shall enable students to retrieve contact
information of students and lecturers of subscribed
courses.

R59: The system shall allow lecturers to manage static
course information.

When we analyzed the given relations used to infer conflicts
relations in Fig. 11, we concluded that the given relation (R11
requires R97) is not a valid relation. These two requirements
are the following:

R11: The system shall enable students to subscribe to and
unsubscribe from courses.

R97: The system shall allow only the administration to
manage courses.

R11 does not require R97 to be fulfilled. The invalid input
causes the invalid output of the inferencing. The tool helps
to identify candidate invalid given relations in the example.

Fig. 12 Inconsistent part in the example model

Fig. 13 Analysis of the inferred relation in the inconsistent part of the
model

7.3 Checking consistency

In the previous section we treated conflicts relations,
which are modeled by the requirements engineer. Here, we
discuss inconsistencies, that is, contradictions among rela-
tions which are detected by our tool. We will depict how we
fix an inconsistent part by using the output of our tool. The
example in Fig. 12 illustrates this part. The requirements are:

R11: The system shall enable students to subscribe to and
unsubscribe from courses.

R48: The system shall allow lecturers to create courses.

The consistency checking engine reports that conflicts and
requires relations between R11 and R48 cause a contradic-
tion. The relation (R11 requires R48) is a given relation.
When we re-analyzed requirements R11 and R48, we con-
cluded that this requires relation is an invalid relation. Since
there might be hard coded courses in the system, the students
can subscribe to and unsubscribe from these courses without
any need to create courses.

Since the relation (R11 conflicts R48) is an inferred rela-
tion, we need derivation trace analysis for this relation.
Figure 13 gives the analysis of the inferred relation in the
inconsistent part of the model.

When we checked the given relations in Fig. 13, we found
that the given relation (R11 requires R97) is an invalid rela-
tion, modeled incorrectly in the first iteration. This is the
same relation we identify in the analysis of the inferred rela-
tion in Fig. 11. We removed the requires relations between
R11 and R97, and between R11 and R48 to fix the incon-
sistent part in Fig. 12. This example illustrates how the tool
helps localizing invalid relations.
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8 Related work

We classify the related work in four categories: Requirements
Relations, Requirements Metamodeling, Requirements Rea-
soning, and Tool Support.

8.1 Requirements relations

We studied literature about requirements relation types and
their semantics. Dahlstedt and Persson [8] address require-
ments relations (they call a relation an “interdependency”)
from a traceability perspective. They give an overview of
requirements relations research and present a model of fun-
damental relation types. There is a classification (structural,
constrain, and cost/value interdependencies) of fundamental
interdependency types which includes some of the relations
(refines, requires, and conflicts) we also use in our approach.
The need to understand the nature of requirements relations
and their influence on software development activities such
as change management are stated. However, there is no for-
mal semantics for the relations. Carlshamre et al. [5] run an
industrial survey of requirements in software product release
planning. Their aim is to learn about the nature of interdepen-
dencies in general, to be able to classify them, and to assess
the relative frequency of different classes. The results show
that roughly 20% of the requirements are responsible for
75% of the interdependencies and only a few requirements
are singular. It is expected to find conflicting requirements
in the survey, since this relation is common in the literature.
However, no such dependencies are identified. Apparently
conflicts had already been eliminated in the documents.

Although the two studies mentioned above motivate the
need for requirements relations, no much attention is paid
for how to give formal semantics of the relations. Aizenbud-
Reshef et al. [1] state the need for semantics of traceabil-
ity links in general. They present an approach to defining
operational semantics for traceability in UML which cap-
tures more precisely the intended meaning of various types
of traceability. The main goal is achieving automated con-
sistency management of UML models. A specific type of
operational semantics for traceability in UML is described.
The semantic property of a traceability relationship is a trip-
let (event, condition, and actions). This triplet is very much
dependent on change impact analysis. For instance, an event
indicates a change in a model. Conditions help to differ-
entiate between events. Actions describe what should and
should not be done when a specific event has occurred. There-
fore, it is hard to use the semantics in [1] for other purposes
like inferencing and consistency checking of trace relations.
On the other hand, the semantics formalized with FOL in
our paper can be considered as more general and suitable
for different purposes. In [16,17], we use our semantics for

inferencing, consistency checking, and change impact anal-
ysis in requirements models.

The survey in [42] introduces Requirements Interaction
Management (RIM), which is concerned with the analysis
and management of dependencies among the requirements.
One of the activities in RIM, is reasoning on requirements
interactions. Conflict detection methods for reasoning are
introduced in five categories: domain model, theorem model,
scenario analysis, modeling checking and executing monitor-
ing methods. We consider our work in the scope of the domain
model method. The domain model method is summarized
in the survey that a domain model of system requirements
interactions is used to identify interactions at the require-
ment level. We consider that our requirements metamodel
is our domain model of requirements relations which stand
for requirements interactions to identify relations between
requirements.

8.2 Requirements metamodeling

A number of approaches in MDE address modeling require-
ments and their relations from a traceability perspective.
Vicente-Chicote et al. [52] describe a requirements metamod-
el and a modeling environment. The environment supports:
graphical requirements models, their validation against the
metamodel and against a set of constraints written in Object
Constraint Language (OCL), and automatic generation of
a navigable Software Requirements Specification document
(SRS). In the requirements metamodel, there are three types
of trace links between requirements: DependenceTrace,
InfluenceTrace, and ParentChildTrace. The relations are
defined informally.

Baudry et al. [2] introduce a metamodel for requirements
and present how they use it on top of a constrained natural
language for requirements definitions. The requirements
metamodel captures functional requirements as use cases
with pre-conditions and post-conditions that constrain the
activation of use cases. Operations are added in the meta-
model in order to simulate requirements models. The goal
of the simulation is to instantiate the use cases, replacing
the formal parameters with actual values defined in an ini-
tial configuration. The metamodel does not capture the static
part of requirements. It does not have the notion of require-
ments relations. On the other hand, our approach covers
the static aspects of requirements including non-functional
requirements and reasoning on requirements relations. In
[3], a model-driven mechanism is proposed to merge dif-
ferent requirement specifications and reveal inconsistencies
between them by using a requirements metamodel. The
requirements metamodel is mainly used to produce a require-
ments model from a given requirements document. Require-
ments relations are not typed and lack semantics. Consistency
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checking and inferencing for requirements relations are not
supported.

Some authors [21,45] use the UML profiling mechanism
in a goal-oriented requirements engineering approach.
Heaven et al. [21] introduce a profile that allows the KAOS
model [50] to be represented in UML. They also provide an
integration of requirements models with lower level design
models. Supakkul et al. [45] use the UML profiling mecha-
nism to provide an integrated modeling language for func-
tional and non-functional requirements that are mostly
specified by using different notations. These two works aim
at a metamodel for goal-oriented requirements engineering
rather than reasoning over requirements.

SysML [38,44] uses the UML profiling mechanism to
provide modeling constructs that represent text-based
requirements and relate them to other modeling elements.
The relation types for requirements in SysML are derive,
copy, and contain. SysML also provides a stereotype mech-
anism that allows the requirements engineer to specify their
own relation types. The main goal of SysML requirements
diagrams is to represent the requirements and their relations.
Formal semantics of relation types is not considered. The def-
initions of the relations tend to be ambiguous. No reasoning
facility for requirements is provided.

Navarro et al. [35] propose a customization approach for
requirements metamodels. They propose a core requirements
metamodel which is generic and considers only Artifact and
Dependency as core entities. The metamodel does not con-
tain concrete types for requirements relations. This disallows
the application of inference rules for the core relations to
customized entities. The Requirements Interchange Format
(RIF) [41] structures requirements and their attributes, types,
access permissions, and relationships. It is defined as an XML
schema. Its data model has generic entities and relations like
Information Type, Association, and Generalization. These
entities can be formalized to reason about requirements and
their relations. Ramesh et al. [39] propose reference models
for requirements traceability. The models include basic enti-
ties like Stakeholder, Object, and Source. Relations between
different software artifacts and requirements are captured.

Some papers address domain-specific requirements
models. Koch et al. [30] propose a requirements metamod-
el specialized for Web systems. They identify the general
structure of Web systems in order to define the requirements
metamodel. Moon et al. [33] propose a methodology for pro-
ducing requirements that can be considered as a core asset in
the product line. Ceron et al. [6] discuss requirements model-
ing in the context of product lines. They propose a metamodel
for requirements that contains both the common and variable
parts. Lopez et al. [31] propose a metamodel for require-
ments reuse as a conceptual schema to integrate semiformal
requirement diagrams into a reuse strategy. The requirements
metamodel is used to integrate different abstraction levels for

requirements definitions. All these domain-specific approa-
ches aim at providing a structure for representing require-
ments and their relations. Some of them do not contain types
of requirements relations and most of them only provide
informal definitions of their relations.

8.3 Requirements reasoning

A number of approaches describe reasoning about require-
ments. Giorgini et al. [15] propose a formal framework for
reasoning with goal models. A precise semantics is given
for all goal relationships in a qualitative and numerical form.
Label propagation algorithms that are shown to be sound and
complete with respect to the axiomatization are introduced.
Two main limitations are stated. One concerns the definition
of contribution links and the labels assignment; the second
is that the conflicts relation is not resolved. In general, the
idea in [15] is similar to our approach. However, the pre-
sented reasoning framework is very specific to goal models.
No reasoning facility and tool support is introduced.

Zowghi et al. [54,55] propose a logical framework for
modeling and reasoning about the evolution of requirements.
They characterize the properties correctness, completeness,
and consistency of requirements in an evolutionary frame-
work. The interaction of consistency and completeness with
correctness during requirements evolution is discussed.
Duffy et al. [10] propose a logic-based framework for rea-
soning about requirements specifications based on goal-tree
structures. The framework is based on goal decomposition
supported by automated reasoning. Rodrigues et al. [43] pro-
pose a framework for the analysis of evolving specifications
that enables reasoning in the presence of inconsistency. The
work is complementary to our formalization since a tool that
translates requirements given in the form of “if then else”
rules into the disjunctive normal form for classical logic rea-
soning and cluster prioritization is provided.

Heitmeyer et al. [22] propose consistency checking in
requirements specifications for automatic detection of errors,
such as type errors, non-determinism, missing cases, and cir-
cular definitions. The technique is based on requirements
specifications expressed in the SCR (Software Cost Reduc-
tion) tabular notation. A formal requirements model that rep-
resents the system to be built as a finite-state automaton is
provided. It defines a system state in terms of entities, a con-
dition as a predicate on the system state, and an input event as
a change which triggers a new system state. There are some
consistency checks derived from the formal requirements
model such as type correctness. Contrary to our approach,
the formal requirements model requires modeling require-
ments in a very formal way in order to detect inconsisten-
cies. The main focus is determining inconsistencies among
requirements instead of inconsistencies among requirements
relations.
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Finkelstein et al. [14,37] describe a technique for inconsis-
tency handling in requirements documents developed using
multiple methods and notations for the same system. They
combine the ViewPoints framework for perspective develop-
ment and a logic-based approach to inconsistency handling.
Partial specification knowledge in each ViewPoint is trans-
lated into FOL. Logical inconsistencies are identified. Then,
some temporal logic rules are combined with the identified
inconsistencies to specify inconsistency handling actions.
Hunter et al. [23] present an adaptation of classical logic,
which they term quasi-classical (QC) logic that allows rea-
soning in the presence of inconsistency. This facilitates an
analysis of inconsistent information. In our approach, incon-
sistencies are explained based on the derivation trace of rela-
tions.

8.4 Tool support

Some requirements management tools support multiple
requirements relation types. The INCOSE management tool
survey [27] evaluates these tools according to the criterion
traceability analysis, that is, what kinds of trace links the
tools provide and what kinds of analyses are performed by
the tools. According to the responses of tool vendors in the
survey, current industrial tools mostly do not support reason-
ing about requirements relations.

IBM Rational RequisitePro [25] provides only two rela-
tion types between requirements: traceFrom and traceTo.
Since these two relations indicate only the direction, they are
very generic relations. In IBM Telelogic Doors [26], there is
no predefined requirements relation. The requirements engi-
neer can specify his or her own relation type. However, it
is not possible to assign semantics to relation types created
by the requirements engineer. The tool provides basic sup-
port for change impact analysis. It shows suspected relations
when a requirement is updated. Borland Caliber [4] provides
only one generic relation type for requirements. This type
can be used for different purposes such as part-whole and
refinement. The reasoning facilities of the tools IBM Ratio-
nal RequisitePro, IBM Telelogic Doors, and Borland Caliber
are based only on the transitivity property of the relations.
These tools do not support consistency checking of the rela-
tions.

In TopTeam Analyst [48], there are four relation types.
Three of these relations (traces into, impact, used in) are
directed and one of the relations (trace) is undirected. This
undirected relation is considered as a generic relation type
for the other relation types. None of these relation types have
formal semantics. The tool does not support any reasoning.

We may conclude that some common industrial require-
ments tools do not support reasoning about relations between
requirements or provide formal semantics for relation types.

9 Conclusions and future work

There has recently been a growing interest in requirements
traceability in the software engineering community and
industry. Although considerable research has been devoted
to linking requirements in both forward and backward direc-
tions, less attention has been paid to linking requirements
with other requirements. In this paper, we focused on require-
ments and requirements relations from a traceability perspec-
tive. A requirements metamodel including relation types with
formal semantics was proposed. Existing requirements engi-
neering approaches were surveyed in order to extract the
metamodel. We provided semantics of trace relations with
formalization in FOL. The formalization of relations was
used in tool support for inferencing and consistency check-
ing. We illustrated the approach and tool support in the CMS
requirements document.

The usage of the formal semantics of relation types enables
new relations to be inferred and contradicting relations to be
determined in requirements documents. It overcomes many
of the deficiencies of other approaches. Our tool supports a
better understanding of dependencies among requirements.

There are still open issues. In some cases, relations do not
cause any contradiction but violate some of the constraints
in the requirements engineering domain such as “every non-
functional requirement should be related with at least one
functional requirement”. These constraints may be valid only
for a specific requirements engineering approach like goal-
oriented requirements engineering. We plan to use OCL in
order to specify these kinds of constraints in the require-
ments metamodel. However, we need further research to
specify these constraints. Apart from specifying constraints,
there might be updates in the requirements metamodel. In
the formalization of relations, we stated that the refines and
contains relations imply the requires relation. This might be
interpreted as a specialization relation between the requires,
refines, and contains relations.

Our approach uses the semantic web technologies OWL
and Jena instead of MDE technologies such as model trans-
formation languages and engines. OWL and Jena directly
support inferencing by using basic properties like symme-
try and transitivity. However, in model transformation lan-
guages, we have to encode all basic properties and the logic
behind them in order to have the same inferencing capabil-
ity.

Our current support is for textual requirements. We do
not have any support for other requirements artifacts like use
case or activity diagrams. We improved the usability of the
tool for large models with the visual editor which enables
selecting requirements to be shown. However, there is still
a need to test the tool in large requirements documents. We
plan to conduct an experiment and do a case study as a future
work.
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In our previous work [16], we presented an approach to
formalizing requirements relations and reusing the formal-
ization for customization of the requirements metamodel.
The main focus of the previous work is to customize the
core requirements metamodel and to apply the inference
rules written for the core relations to the customized rela-
tions. We showed how we could benefit from this approach
by applying it to current requirements modeling approaches
like SysML. Our tool needs to be extended for this custom-
ization.

The requirements attributes like priority and status can be
included in our reasoning engine. For instance, we may define
the constraint that a requirement cannot require another
requirement whose priority is lower.

In [17,46], we presented an approach for using require-
ments relations and their semantics for change impact
analysis. There is still the need for further research and tool
support in order to apply semantics of relations in change
impact analysis. For the evolution of requirements, we want
to analyze the impact of requirements changes on architec-
tural and detailed design. The next step is to define trace
relations and their semantics in order to link requirements
models to design models with a similar approach presented
in the paper.
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Appendix A: Definition of a model in FOL

In this appendix, we recapture the terminology for defining a
model in FOL [24]. A modelM is a pair (F,P) where F is a
set of function symbols and P is a set of predicate symbols.
It consists of the following set of data:

• a non-empty set A, the universe of concrete values
• for each f ∈ F with n arguments, a concrete function

fM is defined

fM : An → A

from An , the set of n-tuples over A, to A
• for each P ∈ P with n arguments, a subset PM ⊆ An of

n-tuples over A.

The condensed definition of formula in FOL using Backus
Naur Form (BNF) is the following:

φ :: = K (t1, t2, . . . , tn) |(¬φ) |(φ ∧ φ) |(φ ∨ φ) |
(φ → φ) |(∀xφ) |(∃xφ) (23)

In Eq. (23), K is a predicate of arity n, ti are terms, and x
is a variable. Each occurrence of φ on the right-hand side
of the ::= stands for any formula. A formula is in CNF if
it is a conjunction of formulas, where these formulas are
atomic formulas or disjunctions of other formulas (clauses).
An atomic formula is a formula with no deeper structure, that
is, a formula that contains no logical connectives and has no
sub-formulas. The satisfaction relation between a model and
a formula is the following:

M |� lφ, for each logical formula φ over the pair(F,P).

(24)

This denotation says that φ computes to True in the model
M with respect to the environment l , a look-up table which
associates with every variable x a value l (x) of the model
(l : var → A).

Appendix B: Mapping requirements relations
to extensional and intensional definitions

Based on the extensional definitions of the relations, we can
map the requirements relations (requires, refines, contains,
and conflicts) to the set theoretic relations for the set of sys-
tems.

Let R1 and R2 be requirements such that R1 = 〈P1, S1〉
and R2 = 〈P2, S2〉.

• (S1 ⊂ S2) iff (R1 requires R2)

• (S1 ⊂ S2) if (R1 refines R2)

• (S1 ⊂ S2) if (R1 contains R2)

• ((S1 ∩ S2) = ∅) iff (R1 conflicts R2)

To map the partially refines relation to the set theoretic
relations for a set of systems, we decompose this relation to
the combination of contains and refines relations.

Therefore, we define a temporary requirement named
RT 12 which is a tuple 〈PT 12, ST 12〉 to decompose the partially
refines relation between R1and R2 into refines and contains
relations. We decompose the partially refines relation into
contains and refines relations in two different combinations:

• contains(R2, RT 12)∧ refines(R1, RT 12) iff
partially refines(R1, R2)

• refines(RT 12, R2)∧contains(RT 12, R1) iff
partially refines(R1, R2)

The combinations given above can exist at the same time.
Based on the intensional definitions of the relations, we can
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map the requirements relations (contains, refines, and par-
tially refines) to the relations between the properties (P) satis-
fied by the system. First we define the relations (all-in-part,
all-in-whole, some-implies-in, all-implies-in, all-equals-in)
between properties. We define a model M in order to have
the relations between properties.

Let F be a set of function symbols and P a set of predi-
cate symbols, each symbol having a fixed number of required
arguments. F def {||, set, f } and P def {eval, implies, related,
all-in-part, all-in-whole, some-implies-in, all-implies-in, all-
equals-in, =, <}. Our modelM is the pair (F,P) with a non-
empty set A (the universe of concrete values). For the model
M the following holds:

• The set A is the set of all formulas in FOL and real num-
bers.

• The functions ||M, setM take one formula in A as argu-
ment and return the number of clauses and the set of
clauses in the CNF of the formula, respectively.

• The predicates impliesM, relatedM, all-in-partM, all-in-
wholeM, some-implies-inM, all-implies-inM, all-equals-
inM take two formulas in A as argument and model the
relations implies, related, all-in-part, all-in-whole, some-
implies-in, all-implies-in, all-equals-in between these two
formulas in FOL, respectively.

• The predicates =M and <M take two real numbers as argu-
ments and model the relations equal to and strictly less
than, respectively.

• The predicate evalM takes one formula fm in A as argu-
ment and holds for fm iff fm is evaluated as true in the
model under consideration in FOL.

• Let xs and ys be formulas in CNF from A, and f is a
function f : set(xs) → set(ys)

implies(xs, ys) =def eval(xs) → eval(ys) (25)

related(x, y) =def implies(x, y) ∨ equals(x, y)

(see footnote1) (26)

all-in-part(xs, ys) =def (∀x ∈ set(xs) : related(x, f (x)))

∧ (|xs| < |ys|), f is injective (27)

all-in-whole(xs, ys) =def (∀x ∈ set(xs) : related(x, f (x)))

∧ (|xs| = |ys|), f is bijective (28)

some-implies-in(xs, ys) =def ∃x ∈ set(xs) : implies(x, f (x))

∧ ¬equals(x, f (x)) (29)

all-implies-in(xs, ys) =def ∀x ∈ set(xs) : implies(x, f (x))

∧ ¬equals(x, f (x)) (30)

all-equals-in(xs, ys) =def ∀x ∈ set(xs): equals(x, f(x)) (31)

1 If two formulas have the same predicate symbols and arguments, these
two formulas are equal.

Then, we have the following mappings:

• all-in-whole(P1, P2)∧ some-implies-in(P1, P2) iff
R1 refines R2

• all-in-part(P1, P2)∧ all-implies-in(P1, P2) iff
R1 partially-refines R2

• all-in-part(P2, P1)∧ all-equals-in(P2, P1) iff
R1 contains R2

We have the following properties for these relations between
formulas:

• all-in-whole, all-in-part, all-implies-in, and some-
implies-in relations are transitive

• all-in-part and all-in-whole relations are disjoint
• all-equals-in and some-implies-in are disjoint
• all-equals-in and all-implies-in are disjoint

We have the following inferences for the relations between
formulas:

• (P1 all-in-part P2)∧ (P2 all-in-whole P3) →
(P1 all-in-part P3)

• (P1 all-in-whole P2)∧ (P2 all-in-part P3) →
(P1 all-in-part P3)

• (P1 some-implies-in P2)∧ (P2 all-implies-in P3) →
(P1 all-implies-in P3)

• (P1 all-implies-in P2)∧ (P2 some-implies-in P3) →
(P1 all-implies-in P3)

• (P1 some-implies-in P2)∧ (P2 all-equals-in P3) →
(P1 some-implies-in P3)

• (P1 all-implies-in P2)∧ (P2 all-equals-in P3) →
(P1 all-implies-in P3)

• (P1 all-equals-in P2)∧ (P2 all-implies-in P3) →
(P1 all-implies-in P3)

Based on the mappings, we note that we always have some-
implies-in, all-implies-in, and all-equals-in relations with
all-in-part and all-in-whole relations in the mapping. For
instance, from the mapping, it can be seen that the some-
implies-in relation occurs with all-in-whole. With inferences
of these relations, it can be inferred that the some-implies-in
relation occurs with all-in-part but some-implies-in and all-
in-part relations together are not mapped to any requirements
relation. Therefore, the some-implies-in relation always
occurs with all-in-part or all-in-whole relations.

Appendix C: Part of the CMS requirements document

In this appendix, we give an overview of the requirements
of the CMS as used in this paper. The full requirements
document is available at http://wwwhome.cs.utwente.nl/
~goknila/sosym/.
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Requirements (partial)

Stakeholder general
R5: The system shall be able to store dynamic

course information
R6: The system shall be able to represent dynamic

course information
R7: The system shall provide a messaging facility

Stakeholder students
R8: The system shall enable students to retrieve

contact information of students and lecturers
of subscribed courses

R11: The system shall enable students to subscribe
to and unsubscribe from courses

R16: The system shall allow messages to be sent to
individuals, teams, or all course participants
at once

R24: The system shall notify students about events
(new messages posted, etc.)

R26: The system shall allow students to view
course grade statistics per semester

R29: The system shall provide a user-customizable
visibility policy for the personal information

Stakeholder lecturers
R48: The system shall allow lecturers to create

courses
R49: The system shall allow lecturers to create

entirely new courses
R59: The system shall allow lecturers to manage

static course information
R60: The system shall allow lecturers to limit the

number of students subscribing to a course
R61: The system shall allow lecturers to specify

enrolment policies based on grade, first-come
first-serve (fcfs), and department

R62: The system shall allow lecturers to specify
enrolment policies based on grade

Stakeholder administration
R97: The system shall allow only the administra-

tion to manage courses
R98: The system shall allow only the administra-

tion to create new courses
R100: The system shall allow only the

administration to update static course
information

R102: The system shall allow only the
administration to specify the minimum
number of students for a course. If there
are too few subscriptions in a semester, that
course will not be given during that semester

R103: The system shall have no maximum limit on
the number of course participants ever

Glossary (partial)

Static course information: Information about a course which
does not change while a course is given but does change
between semesters. This includes the lecturer, number of
ECTS credits, and study material
Dynamic course information: Information about a course
which changes while a course is given. This includes news
messages, archived files, and roster
Manage courses: Managing courses involves the creation,
reading, updating, and deleting of courses
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