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It has long been known that the heat equation displays infinite speed of propaga-
tion. This is to say that if the initial data are nonnegative and have nonempty com-
pact support, the solution of an initial-value problem is positive everywhere after
any infinitesimal time. However, since the nineteen-fifties it has also been known
that certain nonlinear diffusion equations of degenerate parabolic type do not dis-
play this phenomenon. For these equations, the (generalized) solution of an initial-
value problem with compactly-supported initial data will have bounded support
with respect to the spatial variable at all times. In this paper the necessary and suf-
ficient criterion for finite speed of propagation for the general nonlinear reaction-
convection-diffusion equation

ut=(a(u))xx+(b(u))x+c(u)

is determined. The assumptions on the coefficients a, b and c are such that the
classification unifies and generalizes previously-known results. The technique
employed is comparision of an arbitrary solution of the equation with suitably-con-
structed travelling-wave solutions and subsolutions. Basically the central conclusion
is that the equation exhibits finite speed of propagation if and only if it admits
a travelling-wave solution with bounded support. Concurrently, the search for a
travelling-wave solution with bounded support can be reduced to the study of a
singular nonlinear integral equation whose solution must satisfy a certain con-
straint. � 1996 Academic Press, Inc.

Introduction

Special solutions play an important role in the study of nonlinear partial
differential equations.

Confronted with a mathematical model in the form of an initial or a
boundary value problem for a partial differential equation or system of
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such equations, the foremost desire of an engineer, physicist or other prac-
titioner is to solve the problem explicitly. If little theory is available and no
explicit solution is readily obtainable, generally the ensuing line of attack
is to identify circumstances under which the complexity of the problem
may be reduced. In this respect, similarity analysis is a pre-eminent tool for
reducing the number of variables involved [4, 5, 14�16, 18, 24].

At first sight, the main goal of identifying self-similar solutions is merely
to reduce the original problem to a set of equations and initial or
boundary conditions which is easier to analyse. Nevertheless, it is currently
recognized that self-similar solutions are important in describing the
intermediate asymptotic behavior of classes of solutions of the original
problem with arbitrary initial and boundary conditions. Furthermore, their
analysis can consequently be of significance for the design of adequate
numerical computational schemes for the problem in hand [4, 5, 14, 15, 17,
18, 143].

Most remarkable is that particular self-similar solutions have proved to
play a vital role in the development of mathematical theories for nonlinear
partial differential equations [3�5, 34, 47, 48, 71, 73, 94, 96, 104, 117�119,
124, 135]. As most noteworthy illustrations, we mention the place of
solitons in the theory of the Korteweg-de Vries equation [45, 46, 67, 106],
the use of travelling-wave solutions for the Fisher and the KPP equations
[8, 12, 44, 52�56, 105, 111], and the role of the instantaneous point-source
solution commonly referred to as the Barenblatt-Pattle solution in the
theory of the porous media equation [10, 11, 36, 88, 94, 95, 123, 138�140,
142].

In the present paper, we reinforce this vital role with respect to travelling
waves. Roughly speaking we are going to show that the occurrence of a
free boundary (front or interface) in solutions of a nonlinear reaction-
convection-diffusion equation is equivalent to the admission of a particular
type of travelling-wave solution.

In the next section we state precisely the question we consider. We
indicate the nonlinear reaction-convection-diffusion processes involved and
the free boundary whose occurrence we shall characterize. Thereafter, we
review the earlier work on the question, and state our main results. The
subsequent section is devoted to the study of a singular nonlinear integral
equation of Volterra type whose solution is tantamount to the admission
of a travelling-wave solution possessing the sought-after interface. Using a
simple regularization technique and the concept of a maximal solution,
difficulties associated with the singularity of this integral equation can
be avoided. The ensuing section discusses the connection between the inte-
gral equation and the travelling waves, and contains the proof of our
main results. In the last section we relate our results to earlier work on
the topic and discuss their application to a number of specific nonlinear

28 gilding and kersner
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diffusion-convection-reaction equations. An announcement of the principal
results under less general conditions than those considered in the present
paper was published in [77].

1. The Central Question and Main Results

1.1. Finite Speed of Propagation

We consider the nonlinear equation

ut=(a(u))xx+(b(u))x+c(u) (1.1)

in which subscripts denote partial differentiation. About the coefficients in
this equation we assume the following.

Hypothesis 1. The functions a(s), b(s) and c(s) are defined and real for
0�s<�. Moreover, a is continuous and strictly increasing on [0, �), b
is continuous on [0, �), c is integrable with respect to a in the sense of
Lebesgue-Stieltjes on every compact subset of [0, �), and

a(0)=b(0)=c(0)=0. (1.2)

Equation (1.1) models heat transfer in a medium where the thermal con-
ductivity, convective transport, and sources or sinks of thermal energy may
depend on the temperature but not on the place or time [4, 5, 38, 109,
113, 146, 147]. The equation also arises in various guises in numerous
other fields [4, 5, 37, 38, 50, 113]��soil physics [19, 33, 74, 128, 137],
population genetics [44, 53, 56, 83, 84, 110, 111, 114], fluid dynamics [25,
28�30], neurology [53, 112, 132], combustion theory [20, 26, 27, 144]
and reaction chemistry [7, 8, 53], to name but a few. In these situations,
the second-order term on the right-hand side of (1.1) describes a diffusive
process, the first-order term corresponds to a convective or advective
process, and the zero-order term is associated with reaction, sorption,
sources or sinks.

Let D denote a domain in R2 of the form

D=('1 , '2)_({1 , {2] (1.3)

with

&��'1<'2�� and &�<{1<{2<�. (1.4)

For any @>0 define

c@(s) :={c(s)
c(0)

for s>@
for s�@.

29travelling waves
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Definition 1. A function u(x, t) is said to be a generalized subsolution
of Eq. (1.1) in D if it is defined, real, nonnegative and continuous in D� , and
given any bounded rectangle of the form

R :=(x1 , x2)_(t1 , t2]�D

and any nonnegative function , # C2, 1(R� ) such that

,(x1 , t)=,(x2 , t)=0 for all t # [t1 , t2] (1.5)

there holds

c@(u) , # L1(R) for all @>0, (1.6)

||
R

c(u) , dx dt :=lim
@ a 0 ||

R
c@(u) , dx dt exists and is finite, (1.7)

and

||
R

[a(u) ,xx&b(u) ,x+c(u) ,+u,t] dx dt

�|
x2

x1

[u(x, t2) ,(x, t2)&u(x, t1) ,(x, t1)] dx

+|
t2

t1

[a(u(x2 , t)) ,x(x2 , t)&a(u(x1 , t)) ,x(x1 , t)] dt. (1.8)

A function u(x, t) is defined to be a generalized solution of Eq. (1.1)
in D if it satisfies the previous requirements with equality in (1.8). Any
generalized subsolution which is not a generalized solution is referred to as
a generalized strict subsolution.

With the above notion of a generalized solution and more restricted
notions of a solution, various existence and uniqueness theorems for the
Cauchy problem, the Cauchy-Dirichlet problem, the Cauchy-Neumann
problem and mixed-type boundary value problems for Eq. (1.1) have been
proven [6, 9, 10, 36, 41, 57, 69, 72, 85, 91, 92, 94, 98, 101, 115, 117�119,
123, 136, 148].

We shall consider a generalized solution u of Eq. (1.1) in the half-strip

H :=(0, �)_(0, T] with 0<T<�

and define

P[t] :=[x # (0, �) : u(x, t)>0] (1.9)

30 gilding and kersner
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and

`(t) :=sup[x # (0, �) : u(x, t)>0] (1.10)

for t # [0, T]. We address the following question. Suppose that the initial
data function u0(x) :=u(x, 0) is such that P[0] is bounded and nonempty,
i.e.,

0<`(0)<�.

Then under what conditions is

sup[`(t) : 0�t�{]<� for some { # (0, T]?

Definition 2 [10, 71, 89, 91, 93, 94, 102, 122, 142]. When conditions
are such that the above question can be answered affirmatively, Eq. (1.1) is
said to display finite speed of propagation of perturbations.

When (1.1) admits finite speed of propagation, ` is a free boundary
demarcating the support of the generalized solution u of (1.1). The
occurrence of such an interface is of considerable interest with regard to the
phenomena modelled by the equation. For instance, when the equation
models the spreading of a biological population such an interface denotes
the extent of migration [53, 83, 84, 110, 111, 114], when the equation
models chemical kinetics it denotes the boundary of the reaction zone
[7, 8, 53], when the equation models thin viscous fluid flow over a plate it
constitutes a leading edge for the fluid flow [25], whilst, when the equation
models unsaturated soil-moisture flow it denotes a wetting-front [19, 74].
In those circumstances in which the question addressed cannot be
answered affirmitively, the equation is said to exhibit infinite velocity of
propagation of disturbances [10, 71, 94, 102, 122, 142].

1.2. Previous Work

In his treatise on the theory of heat published in 1835, Poisson [126]
observed that the heat equation

ut=uxx

propagates disturbances with infinite speed. This he deduced from the
integral formula for solutions of the Cauchy problem which today bears his
name. To quote: ``Supposons que le barre n'a e� te� e� chauffe� e primitivement
que dans une portion limite� e qui s'entendait depuis x=&= jusqu'a� x==,
de sorte qu'en dehors de ces limites sa tempe� rature initiale fx e� tait ze� ro,
comme la tempe� rature exte� rieure..... Cette expression (the Poisson formula)
de u nous montre que la chaleur communique� e a� une portion de la barre

31travelling waves
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se re� pand instantane� ment dans toute sa longueur; car, quelque grande que
soit la distance x, et quelque petit que soit le temps t, il y aura toujours une
valeur de u qui ne sera pas rigoureusement nulle. Ce re� sultat tient a� ce
qu'en formant l'e� quation du mouvement de la chaleur, nous avons suppose�
instantane� s les e� changes de chaleur entre les tranches de la barre comprises
dans l'e� tendue du rayonnement inte� rieur. Or, quelque rapides que soient
ces e� changes, ils ne peuvent avoir lieu dans la nature qu'en des intervalles
de temps de grandeur finie; et si nous avions eu e� gard a� cette circonstance,
la conductibilite� k et par suite la quantite� a (the diffusion coefficient) ne
seraient plus rigoureusement constantes .....''

Considering the general linear parabolic equation

ut=A(x, t) uxx+B(x, t) ux+C(x, t) u,

research carried out between 1905 and 1960 under successively weaker
assumptions on the coefficients A, B and C showed that if these coefficients
are bounded and uniformly Ho� lder continuous and if A(x, t) is bounded
away from zero, then this equation possesses a fundamental solution.
Moreover the fundamental solution is positive [58, 107]. It follows that if
the functions a, b and c in Eq. (1.1) have sufficient regularity to ensure that
A(x, t) :=(a$(u))(x, t), B(x, t) :=(a"(u) ux+b$(u))(x, t) and C(x, t) :=
(c$(u))(x, t) satisfy the aforementioned conditions for any generalized
solution u(x, t) of Eq. (1.1), then the theory of fundamental solutions for
linear parabolic equations implies that (1.1) displays infinite speed of
propagation. Consequently, since the establishment of existence theorems
for classical solutions of equations of the form (1.1) in the 1950s and 1960s
[58, 107, 116], it has been known that when a # C2([0, �)), b # C1([0, �))
& C2(0, �), c # C1([0, �)), a", b" and c$ are locally Ho� lder continuous on
(0, �), and, last but not least, a$(s)>0 for all s�0, Eq. (1.1) has infinite
speed of propagation.

In 1950 though, Zel'dovich and Kompaneets [145] published an explicit
solution of the porous media equation,

ut=(um)xx with m>1,

which indicated that this equation does not display infinite speed of
propagation. Besides exhibiting the aforementioned characteristic, the
solution was also not a classical solution of the equation. It failed to be a
classical solution at precisely those points (`(t), t) on the interface of the
solution. Today this solution corresponding to initial data representing an
instantaneous point-source is commonly referred to as the Barenblatt-
Pattle [13, 120] solution and, as mentioned earlier, has played a funda-
mental role in the study of the porous media equation [10, 11, 36, 88, 94,
95, 123, 138�140, 142].

32 gilding and kersner
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Ostensibly, the finite speed of propagation and associated non-admittance
of classical solutions of the porous media equation results from the property
that a$(0)=0 when the equation is cast in the form (1.1), and, consequently
for u=0 the equation degenerates from parabolic type. Nevertheless, for
equations of the form

ut=(a(u))xx (1.11)

with a # C1([0, �)) & C2(0, �),

a$(s)>0 for all s>0, (1.12)

and a" locally Ho� lder continuous on (0, �), the condition a$(0)=0 is not
the definitive criterion for finite speed of propagation. The true criterion
[89, 115, 121, 122] is whether or not

a$(s)�s # L1(0, $ ) for some $ # (0, �). (1.13)

The theory for nonlinear degenerate parabolic equations of the type (1.1)
was given a permanent basis in 1958 in a now renowned paper by Oleinik
et al. [115]. These authors formulated the concept of a weak solution of
(1.11) (such a solution is a generalized solution in the sense of our defini-
tion), and, under the assumptions that a # C1([0, �)) & C 2(0, �), (1.12)
holds, and a" is locally Ho� lder continuous on (0, �), subsequently estab-
lished existence and uniqueness theorems for diverse boundary-value
problems. Their theory more than adequately covered the instantaneous
point-source solutions of the porous media equation. It showed that in
general weak solution of (1.11) were classical solutions as long as they were
positive, and, thereby that the non-admittance of classical solutions of
(1.11) was intricately bound up with the existence of interfaces like (1.10).
Furthermore, Oleinik et al. were able to show that (1.13) was sufficient for
finite speed of propagation of solutions of (1.11). The necessity of this
condition under the restriction

sa"(s)�#a$(s) for all s>0 and some # # (0, 1�3) (1.14)

was later proved by Kalashnikov [89], and, independently without this
restriction by Peletier [121, 122]. For Eq. (1.1) under the aforestated con-
ditions on a, it follows that a$(0)=0 is a necessary condition for finite
speed of propagation but not a sufficient one.

The theory of Oleinik et al. [115] has since been extended to cover
Eq. (1.1) under increasingly more general conditions on the coefficients in
the equation. See [6, 9, 10, 36, 41, 57, 69, 72, 85, 91, 93, 94, 98, 101, 117,
118, 136, 148] for instance. For equations of the form

ut=(a(u))xx+(b(u))x (1.15)

33travelling waves
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where a, b # C1([0, �)), and of the form

ut=(a(u))xx+c(u) (1.16)

where a, c # C 1([0, �)) and

c(s)�0 for all s>0, (1.17)

it is now more or less clear that if (1.12) holds and the coefficients in these
equations have sufficient additional regularity to justify the existence of
weak solutions in the sense of Oleinik et al., (1.13) is still the necessary and
sufficient criterion for finite speed of propagation [69, 71, 91, 102].

The situation becomes less clear-cut however when the coefficients in
Eq. (1.1) become singular. For instance, Martinson and Pavlov [108]
constructed solutions for the equation

ut=(um)xx+c0 u p (1.18)

with c0<0 and 1> p>0 which show that this equation admits finite speed
of propagation whenever m�1. Whilst, for the equation

ut=(um)xx+b0(un)x (1.19)

with b0{0 and m�1>n>0 it was shown by Diaz and Kersner [40] that
one has finite speed of propagation in terms of the interface defined by
(1.10) if and only if b0>0. In both these instances, the conclusion is valid
irrespective of whether the parameter m>1 or m=1, i.e. irrespective of
whether (1.13) holds or not.

Under the assumptions that a, b # C([0, �)) & C2(0, �), (1.12) holds
and a" and b" are locally Ho� lder continuous on (0, �), which conditions
are used to prove the existence of generalized solutions of Eq. (1.15), it is
now known [71] that this equation admits finite speed of propagation if
and only if there exists a real parameter * such that

*s+b(s)>0 for all s # (0, $ )

and

a$(s)�[*s+b(s)] # L1(0, $ ) for some $ # (0, �).

Plainly, when b#0 this condition is equivalent to (1.13). For the Eq. (1.19)
with m>0 and n>0 the above condition means that when b0<0 the inter-
face ` exists if and only if m>1 and n�1, whilst when b0>0 it exists if and
only if m>min[n, 1].

Under the assumptions a # C([0, �)) & C2(0, �), c # C([0, �)) &

C1(0, �), (1.12) and (1.17) hold, and, a" and c$ are locally Ho� lder continuous

34 gilding and kersner
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on (0, �), which conditions are again used for the existence of generalized
solutions, Kalashnikov [91] has shown that when

a"(s)�0 for all s>0 (1.20)

and

c$(s)<0 for all s>0, (1.21)

Eq. (1.16) has infinite speed of propagation if (1.14) holds,

c(s)a$(s)=O(s) as s a 0 (1.22)

and (1.13) is negated, whereas the equation has finite speed of propagation
if

a$(s)<}|
s

0
c(r)a$(r) dr }

1�2

# L1(0, $ ) for some $ # (0, �). (1.23)

Under the same basic assumptions, (1.20), (1.21), and the hypotheses that
the functions c(s) a$(s)�s, c(s)�s, c$(s) and a$(s)�s are monotonic near s=0,
Kersner [102] later proved that if (1.22) holds then (1.13) is necessary and
sufficient for finite speed of propagation, whilst if

s=O(c(s)a$(s)) as s a 0 (1.24)

then

a$(s)<_|
s

0
|c(r)a$(r)�r| 1�2 dr& # L1(0, $ ) for some $ # (0, �)

is necessary and sufficient. Actually, to be pedantic, Kersner needed some
additional technical restrictions on the coefficients a and c to be able to
prove necessity in both instances. Apparently unaware of Kernser's results,
Chen [31], generalizing Kalashnikov's work, showed that if

c(s)a$(s)=O(min[a(s), s]) as s a 0

even when (1.20) and (1.21) do not hold, (1.13) is necessary for finite speed
of propagation. Recently, assuming that

sa$(s)=O(s) as s a 0, (1.25)

a(s)=O(sa$(s)) as s a 0, (1.26)

|
s

0
c(r)a$(r)dr=O(sc(s)a$(s)) as s a 0, (1.27)

35travelling waves
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sc(s)a$(s)=O \|
s

0
c(r)a$(r) dr+ as s a 0, (1.28)

s=O(a(s)a$(s)) or a(s)a$(s)=O(s) as s a 0, (1.29)

and

c(s)=O(a(s)) or a(s)=O(c(s)) as s a 0, (1.30)

Song [136] has proved that if (1.22) holds then (1.13) is necessary and suf-
ficient for finite speed of propagation, whilst if (1.24) holds then (1.23) is
the necessary and sufficient condition. With the different suppositions
required by each author, these results overlap one other. Nonetheless, in no
two cases do they do this totally. Furthermore, despite the apparent dif-
ferences in the formulation of the conditions for and against finite speed of
propagation, none of the results are contradictory. (We refer the reader to
the last section of this paper for the justification of this remark.) Applied
to Eq. (1.18) with m>0, c0<0 and p>0, the results tell us that these is an
interface of the type (1.10) if and only if m>min[ p, 1].

Under a combination of the underlying assumptions in both of the pre-
vious two paragraphs, Song [136] has also established some necessary and
sufficient conditions for finite speed of propagation of the full Eq. (1.1)
when (1.17) holds. Noting the hypotheses (1.22) or (1.24) and (1.25)�(1.30)
which Song required for Eq. (1.16), these results are only obtained under
a large number of additional analogous hypotheses on the coefficient b.
Nevertheless, the results do give a complete picture for the equation.

ut=(um)xx+b0(un)x+c0 u p (1.31)

with m>0, b0{0, n>0, c0<0 and p>0. For b0<0 and n�1 the interface
(1.10) exists if and only if m>min[ p, 1]. For b0<0 and n<1 this interface
exists if and only if min[m, n]> p. Whilst for b0>0 it exists if and only if
m>min[n, p, 1]. We refer the reader to Section 4 of this paper for a
further discussion of Song's results and naturally to the original reference
[136] for all the particulars.

For Eq. (1.16) with a # C([0, �)) & C 2(0, �), (1.12) holding, c # C(0, �)
and

c(s)>0 for all s>0,

Galaktionov [60] has indicated that when

lim
s a 0

1
s |

s

0

c(r)a$(r)
r

dr exists and is finite
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and (1.13) holds, (1.16) admits finite speed of propagation. Applied to the
Eq. (1.18) with c0>0, these conditions are equivalent to m>1 and
m+ p�2. More recently, de Pablo and Vazquez [117, 118] have shown
that for (1.18) with m>1 and c0>0, the constraint m+ p�2 is necessary
and sufficient for finite speed of propagation.

Lastly, we mention that the property of finite speed of propgation for
Eq. (1.31) with b0{0, c0{0 and with m, n and p arbitrary real numbers
has been investigated by formal methods by Pokrovskii and Taranenko
[127].

1.3. Our Hypotheses and Tools

In this paper we shall establish the necessary and sufficient condition for
the existence of the interface (1.10) for the full Eq. (1.1) with hypotheses on
the coefficients which cover and generalize the previous results.

Our basic hypotheses is Hypothesis 1. We note that condition (1.2)
in this hypothesis does not represent an essential restriction on the
admissibility of the coefficients in (1.1). For a start, the assumption
a(0)=b(0)=0 involves no loss of generality, for in general in (1.1) one can
always replace a(u) by a(u)&a(0) and b(u) by b(u)&b(0) so that a new
equation with coefficients which do conform to this assumption is obtained.
With regard to c(0)=0, we observe that should (1.1) display finite speed
of propagation there must be a nonempty bounded rectangle R :=
(x1 , x2)_(t1 , t2]�H such that

u(x, t)=0 for all (x, t) # R� .

Whence, by the integral identity (1.8) of the definition of a generalized
solution of (1.1), there holds

c(0) ||
R

,(x, t) dx dt=0

for any nonnegative function , # C2, 1(R� ) which satisfies (1.5). From this it
follows that necessarily c(0)=0. So, even setting aside questions of the
existence of solutions, when c(0){0 there is no finite speed of propagation
anyway.

The main tool in our investigation of the phenomenon of finite speed of
propagation is the following comparison principle.

Hypothesis 2 (The Comparison Principle). (i) Given any generalized
solution v(x, t) of Eq. (1.1) in a domain D�H of the form (1.3), (1.4) with
v(x, t)�u(x, t) for all (x, t) # D� "D there holds v(x, t)�u(x, t) for all
(x, t) # D� .

37travelling waves
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(ii) There exists a sequence of functions [ck]�
k=1 such that Hypo-

thesis 1 holds with ck in place of c for each k�1,

|
�

0
max[ck(w)&ck+1(w), 0] da(w)=0 for each k�1,

|
s

0
|ck(w)&c(w)| da(w) � 0 as k � �

for all s # (0, �), and, given any generalized strict subsolution v(x, t) of
Eq. (1.1) with ck in place of c in a domain D�H of the form (1.3), (1.4)
with v(x, t)�u(x, t) for all (x, t) # D� "D there holds v(x, t)�u(x, t) for all
(x, t) # D� .

When a, b # C1([0, �)) & C2(0, �), c # C1([0, �)), (1.12) and (1.17)
hold, and a", b" and c$ are locally Ho� lder continuous on (0, �), in which
case one may take ck#c for all k�1 in this hypothesis, this comparison
principle may be proved by a direct extension [6, 22, 41, 72, 85, 91, 92, 94,
98, 101, 117, 118, 136] of the work of Oleinik et al. [115]. Alternative
generalizations can be found in [1, 2, 9, 22, 36, 117, 118].

The deposition of this comparison principle as a hypothesis may be
viewed from different angles. Purists may look upon it as inferring that we
consider only those solutions of initial and boundary value problems for
equations of the form (1.1) for which it has been proven. We prefer to
accept it as a logical datum. It comprises precisely what is essential for the
obtainment of our results. In taking this approach, we follow Evans and
Knerr [51]. Motivated by a body of recent work on Eq. (1.1) in which the
existence and uniqueness of alternatively-defined solutions has been proven
under extremely weak conditions on the coefficients in (1.1) [2, 21, 23, 43,
130, 134], we anticipate that in the future the conditions under which the
comparison principle will have been established will be relaxed.

N.B. For those equations of the type (1.1) for which initial and bound-
ary value problems are not uniquely solvable [1, 117�119], Hypothesis 2
implicitly means that our theorems concern the minimal solution of the
appropriate problem.

1.4. The Main Results

Two distinct schools of approach can be discerned in those articles which
have previously been concerned with the existence of the interface defined
by (1.10). The first school is composed of authors who sought to establish
criteria for finite speed of propagation using explicitly-constructed
generalized subsolutions and supersolutions of Eq. (1.1). The other school

38 gilding and kersner
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consists of authors who have obtained their results using self-similar solu-
tions. This distinction is reflected in the number of technical assumptions
imposed on the coefficients. As an illustration, we mention the demonstra-
tion of the necessity of (1.13) for finite speed of propagation of (1.11).
Using an explicitly-constructed subsolution Kalashnikov [89] needed
(1.14) to obtain this result, whereas Peletier [121, 122] did not. The latter
proved the necessity of (1.13) using self-similar solutions of (1.11) derived
through application of the well-known Boltzmann transformation [4, 37].
Likewise, in the review in the previous subsection, we may compare the
results which were obtained for Eq. (1.16) with the aid of explicit
generalized subsolutions and supersolutions with those obtained for (1.15)
using self-similar solutions of travelling-wave type. This observation lies at
the foundation of our theory. We turn to the only self-similar solutions of
(1.1) which are available when the equation has arbitrary coefficients��the
travelling waves.

Suppose for arguments sake that in the classical sense (1.1) admits a
travelling-wave solution of the form

U(x, t)= f (!) with !=x&*t.

Suppose, furthermore that this solution possesses an interface of the form
(1.10) via the conditions

f (!)=0 for !�!*, (1.32)

f (!)>0 for !<!* (1.33)

and

f is strictly decreasing on (&�, !*] (1.34)

for some !* # (&�, �). Substituting U in (1.1) one expects

&*f $=(a( f ))"+(b( f ))$+c( f ). (1.35)

Whence, recalling that we are assuming that U is a classical solution of
(1.1), so that (1.32) implies (a( f ))$ (!*)=0, integrating (1.35) yields

&(a( f ))$ (!)=*f (!)+b( f (!))+|
!

!*
c( f (&)) d& (1.36)

for all ! # (&�, �). Now, in view of (1.32)&(1.34) and the hypothesis
that a is strictly increasing on [0, �), we may define a nonnegative func-
tion % in a right neighbourhood of zero by

%( f (!))=&(a( f ))$ (!) for all ! # (&�, !*].

39travelling waves
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In this case though

|
f (!)

0
1�%(s) da(s)=!*&! for ! # (&�, !*)

and by substitution in (1.36), % satisfies the identity

%(s)=*s+b(s)&|
s

0
c(r)�%(r) da(r). (1.37)

Hence, formally, if (1.1) has an appropriate travelling-wave solution with
an interface then the nonlinear Volterra integral Eq. (1.37) must have a
solution on an interval [0, $ ) such that

|
$

0
1�%(s) da(s)<� for some $ # (0, �). (1.38)

Retracing the above argument we also find that should (1.37) have a
continuous nonnegative solution which satisfies (1.38), then we could con-
struct a travelling-wave solution of (1.1) in some subdomain of H with an
interface of the type (1.10). Thus formally in (1.37) and (1.38) we have a
necessary and sufficient criterion for the local existence of a particular
travelling-wave solution of (1.1) with an interface. Our point is that in turn
the existence of such a travelling wave is necessary and sufficient for finite
speed of propagation of Eq. (1.1).

The bulk of this paper is essentially devoted to proving the verity of the
above heuristic observations. Supposing that Hypotheses 1 and 2 and two
additional technical hypotheses which we state later hold, our principal
results are the following. Recall that P[t] is defined by (1.9).

Theorem 1. Suppose that there is a real parameter * for which (1.37)
has a continuous nonnegative solution whose reciprocal is integrable with
respect to a in the sense of Lebesgue�Stieltjes in a right neighbourhood of
zero. Then, if P[0] is bounded, there exists a { # (0, T] such that P[t] is
uniformly bounded for all t # [0, {].

Theorem 2. Suppose that there is no real parameter * for which (1.37)
has a continuous nonnegative solution whose reciprocal is integrable with
respect to a in the sense of Lebesgue�Stieltjes in a right neighbourhood of
zero. Then, if P[0] is not empty, there exists a { # (0, T] such that P[t] is
nonempty, connected and unbounded for all t # (0, {].

From these two theorems we conclude that under the stated hypotheses,
Eq. (1.1) displays finite speed of propagation if and only if there is

40 gilding and kersner
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a real parameter * such that (1.37) has a solution % on an interval [0, $ )
satisfying (1.38).

Remark. If Eq. (1.37) has a continuous nonnegative solution whose
reciprocal is integrable with respect to a in the sense of Lebesgue�Stieltjes
in a right neighbourhood of zero for some parameter value ** then the
same can be said for all *�**.

This remark is justified in the next section.
In Section 3, we explain the exact link between finite speed of propaga-

tion, the travelling-wave solutions and the integral Eq. (1.37). In Section 4
we elaborate on the main conclusions.

2. The Integral Equation

2.1. General Theory

The difficulty with the study of the nonlinear Volterra integral Eq. (1.37)
is connected with its singular kernel. In general this equation admits
neither existence nor uniqueness [75]. Moreover, it is possible that the
equation admits at least two solutions one of which satisfies (1.38) and one
which does not. By way of illustration consider

a(s)=sm,

b(s)=s p+(1+ p�q) sq

and

c(s)= psq&m(s p+sq)�m,

with

0< p<m<q.

It can be checked that with this combination of coefficients and *=0
Eq. (1.37) admits the solution %1(s) :=s p+sq which satisfies (1.38) and
%2(s) :=sq which does not.

To avoid the difficulties associated with the singular kernel in (1.37) we
study this equation as the limit as = a 0 of the regularized equation

%(s)==+*s+b(s)&|
s

0
c(r)�%(r) da(r). (2.1)

Without further repetition, we assume that the functions a, b and c satisfy
Hypothesis 1.

41travelling waves
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Definition 3. A function % is a solution of Eq. (2.1) if it is defined, real,
nonnegative and continuous in a right neighbourhood of zero [0, l ) with
0<l��, setting

I(r, %)={
c(r)�%
�
0
&�

if %>0
if c(r)>0 and %=0
if c(r)=0 and %=0
if c(r)<0 and %=0

the function I(r, %(r)) is integrable with respect to a in the sense of
Lebesgue�Stieltjes on every compact subset of (0, l ),

|
s

0
I(r, %(r)) da(r) :=lim

$ a 0 |
s

$
I(r, %(r)) da(r) exists

and satisfies

%(s)==+*s+b(s)&|
s

0
I(r, %(r)) da(r) for all s # (0, l ).

Equation (2.1) with a(s)#s has been studied in some detail in [75].
Reproducing the arguments there with standard Lebesgue integration
replaced by Lebesgue�Stieltjes integration with respect to a the following
five lemmas can readily be proven.

Lemma 1. (i) For any =>0 Eq. (2.1) has a maximal solution %(s; *, =)
defined on a maximal interval of existence [0, M� (*, =)).

(ii) If 0<=1<=2 there holds M� (*, =1)�M� (*, =2) and %(s; *, =1)�
%(s; *, =2) for all s # [0, M� (*, =1)).

(iii) Setting
N� (*) :=inf[M� (*, =) : =>0], (2.2)

and
%(s; *, 0) :=inf[%(s; *, =) : =>0], (2.3)

the function %(s; *, 0) is continuous on [0, N� (*)).

(iv) Setting

M� (*, 0) :=sup {s # [0, N� (*)) : |
s

$
|c(r)�%(r; *, 0)| da(r)<�

for all $ # (0, s)=

42 gilding and kersner
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with the convention that M� (*, 0)=0 if this supremum is taken over an empty
set, Eq. (1.37) has a solution if and only if M� (*, 0)>0. Moreover, in this
event, %(s; *, 0) defines the maximal solution of (1.37) with [0, M� (*, 0)) its
maximal interval of existence.

Lemma 2. If 0<M� (*, =)<� for some =�0 then %(s; *, =) � 0 as
s A M� (*, =).

Lemma 3. Suppose that

|
l

0
min[c(r), 0] da(r)=0 (2.4)

for some 0<l��. Set

Q(s)= } |
s

0
c(r) da(r) }

1�2

. (2.5)

(i) If *s+b(s)�- 8 Q(s) for all s # [0, l ) then M� (*, 0)�l and
[*s+b(s)]�2�%(s; *, 0)�*s+b(s) for all s # [0, l ).

(ii) If *s+b(s)�- } Q(s) for all s # [0, l ) for some 0�}<8 then
M� (*, 0)>0 only if %(s; *, 0)#0 on [0, $ ) for some $ # (0, min[M� (*, 0), l ]).

(iii) If *s+b(s) is nondecreasing on [0, l ) and *$+b($ )<- 2 Q($ )
for some $ # (0, l ) then M� (*, 0)<$.

Lemma 4. Suppose that

|
l

0
max[c(r), 0] da(r)=0 (2.6)

for some 0<l��. Then Eq. (1.37) has at most one solution on [0, l ).

Lemma 5. Consider Eq. (2.1) with two sets of coefficients a, b(i ) and c(i )

satisfying Hypothesis 1 and parameters =i and *i for i=1, 2. Suppose that
(2.1) with i=1 has a solution %(i ) on an interval [0, l ). Suppose furthermore
that =2�=1 ,

*2 s+b(2)(s)&*1 s&b(1)(s) is nondecreasing on [0, l ),

|
l

0
max[c(2)(s)&c(1)(s), 0] da(s)=0

and

|
l

$
|c(2)(s)�%(1)(s)| da(s)<� for all $ # (0, l ). (2.7)

43travelling waves
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Then (2.1) with i=2 has a solution %(2) on [0, l ) such that %(2)(s)�%(1)(s)
for all s # [0, l ).

Taking b(1)#b(2), c(1)#c(2) and =1==2=0 in this lemma justifies the
remark following the statement of Theorems 1 and 2.

2.2. Additional Theory

Lemma 1 defines the notation of the maximal solution %(s; *, =) of (2.1)
with its maximal interval of existence [0, M� (*, =)) which we shall use
throughout the remainder of this paper. Moreover, invoking Lemma 2 we
may assume that %(s; *, =) # C([0, M� (*, =))) with %(M� (*, =); *, =)=0 if
M� (*, =)<�.

We introduce now some supplementary notation for the study of solu-
tions of (1.37) which satisfy the constraint (1.38). For each * and =�0 we
define

M(*, =) :=sup {s # [0, M� (*, =)) : |
s

0
1�%(r; *, =) da(r)<�= (2.8)

where once more we adopt the convention that the variable assumes the
value zero if the supremum is taken over an empty set. We note that by a
continuity argument

M(*, =)>0 if =>0

and

%(M(*, =); *, =)=0 if M(*, =)<� for any =�0. (2.9)

Furthermore, by Lemma 1(ii) we know M(*, =1)�M(*, =2) for any * and
0<=1<=2 . Whilst Lemma 5 implies M(*1 , =)�M(*2 , =) for any *1�*2

and =�0.
In combination with the above notation the next two lemmas play key

roles in the proofs of Theorems 1 and 2.

Hypothesis 3. There is an L�0 with the following property. Given any
s # (0, �) for which c(s)<0 there exists an s$ # (0, s) and a } # [0, 8) such
that

|
s

s$
max[c(w), 0] da(w)=0

and

b(r)�b(s)+L(s&r)+ }} |
s

r
c(w) da(w)}

1�2

for all r # (s$, s).
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Lemma 6. Suppose that Hypothesis 3 holds. Then if 0<M(*, =)<� for
some *�L and =�0 necessarily c(M(*, =))�0.

Proof. For convenience we drop * and = from the notation of M.
Suppose contrary to the assertion of the lemma that c(M )<0. Then setting
a*(s) :=a(M)&a(M&s), b* :=b(M&s)&b(M ), c*(s) :=&c(s) and
** :=&*, recalling (2.9) it can be verified that %*(s) :=%(M&s; *, =) is a
solution of Eq. (1.37) on [0, M) with a*, b*, c* and ** in lieu of a, b, c and
*. Furthermore, by Hypothesis 3 there exists a $ # (0, M] and a } # [0, 8)
such that

|
$

0
min[c*(r), 0] da*(r)=0

and

**s+b*(s)� }} |
s

0
c*(r) da*(r) }

1�2

for all s # [0, $).

by Lemma 3(ii) though this is only possible if %*#0 on [0, $0) for some
$0 # (0, $ ). Whence %(s; *, =)#0 on (M&$0 , M], and therefore

|
s

0
1�%(r; *, =) da(r)=� for all s # (M&$0 , M ).

However, this contradicts the definition of M. K

Hypothesis 4. For each function ck from Hypothesis 2, Hypothesis 3
holds with ck in place of c with the selfsame value of L. Furthermore,
given any s # (0, �) and decreasing sequence of positive functions
[�k]�

k �C([0, s]) which converges to a function � # C([0, s]) in the limit
k � � and for which

lim
k � � |

s

0
1��k(w) da(w)<� (2.10)

and

lim
k � � |

r2

r1

ck(w)��k(w) da(w) exists and is finite (2.11)

for any 0�r1<r2�s, there holds

|
r2

r1

|c(w)��(w)| da(w)<� (2.12)
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and

|
r2

r1

c(w)��(w) da(w)= lim
k � � |

r2

r1

ck(w)��k(w) da(w) (2.13)

for all 0<r1<r2<s.

Lemma 7. Suppose that Hypothesis 4 holds. For each k�1 and =>0 let
%k(s; *, =) denote the maximal solution of (2.1) with ck in place of c and let
Mk(*, =) denote the corresponding analogue of M(*, =) defined by (2.8). Set

N(*) :=inf[Mk(*, =) : k�1 and =>0]. (2.14)

Then if M(*, 0)=0 and N(*)>0, necessarily

|
+

0
1�%k(s; *, =) da(s) A � as k A � and = a 0

for all + # (0, N(*)).

Proof. We shall prove this lemma by showing that if N(*)>0 and there
exists a + # (0, N(*)) such that

5 :=sup {|
+

0
1�%k(s; *, =) da(s) : k�1 and =>0=<�

then M(*, 0)�+. For this purpose we observe to begin with that under the
aforesaid circumstances Mk(*, =)>+, subsequently

%k(r2 ; *, =)=%k(r1 ; *, =)+*r2+b(r2)&*r1&b(r1)

&|
r2

r1

ck(w)�%k(w; *, =) da(w) (2.15)

for any 0�r1<r2�+, and

|
+

0
1�%k(r; *, =) da(r)<5 (2.16)

for every k�1 and =>0. Furthermore, by Lemma 5 we have

%k1
(s; *, =1)�%k2

(s; *, =2) for all s # [0, +]

and k1�k2�1 and 0<=1<=2 . Thus we can define the nonnegative
function

%*(s) := lim
k � � = � 0

%k(s; *, =)
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on [0, +]. Moreover, adapting the proof of a lemma in [75] it is possible
to show that %* is continuous on [0, +] with %*(0)=0 (cf. Lemma 1(iii)).
Whence, combining (2.15) and (2.16) with Hypothesis 4 there holds

|
r2

r1

|c(w)�%*(w)| da(w)<� for all 0<r1<r2<+,

and we may let k A � and = a 0 in (2.15) to deduce

%*(r2)=%*(r1)+*r2+b(r2)&*r1&b(r1)&|
r2

r1

c(w)�%*(w) da(w)

for any 0<r1<r2<+. Letting r1 a 0 it follows that %* solves (1.37) on
[0, +]. Thus M� (*, 0)�+ and %(s; *, 0)�%*(s) for all s # [0, +). Applying
the Monotone Convergence Theorem to (2.16) subsequently yields

|
+

0
1�%(s; *, 0) da(r)�5.

Thus indeed M(*, 0)�+ K

2.3. Incidental Results

In this subsection we state and prove a number of specific results con-
cerning (1.37) under the constraint (1.38). These are introduced for the
later discussion of applications of Theorems 1 and 2.

Lemma 8. Consider Eq. (1.37) with two different sets of coefficients
a(i ), b (i ) and c(i ) satisfying Hypothesis 1 and parameter *i for i=1, 2. Let _
denote the Lebesgue�Stieltjes measure associated with Lebesgue�Stieltjes
integration with respect to a(2) on (0, �).

(a) Suppose that there exists a 0<l<� and a constant ; such that
a(2)(s)=a (1)(s) on [0, l ), b(2)(s)&b(1)(s)+;s is nondecreasing on [0, l ),
c(2)(s)�c(1)(s) almost everywhere with respect to _ on (0, l ), and that

c(2)(s)�[1+|c(1)(s)|] is essentially bounded (2.17)

with respect to _ in every compact subset of (0, l ).

(b) Suppose that there exists a 0<l<� and constants ; and # such
that a(2)(s)&a(1)(s) is nonincreasing on [0, l ), b(2)(s)+;s�b (1)(s) for all
s # [0, l ), and max[0, c(2)(s)]�c(1)(s)+#s almost everywhere with respect
to _ on (0, l ).

Then in both cases (a) and (b) if (1.37) with i=1 has a solution which
satisfies (1.38) the same can be said of (1.37) with i=2 for *2>*1+;.
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Proof. Case (a) follows from Lemma 5. The only detail which needs
particular attention is the validation of (2.7). The hypothesis (2.17) takes
care of this. We concentrate therefore on the proof of case (b). For this case
we set

: :=(*2&*1&;)�2>0

and use superscripts within brackets to distinguish between the various
quantities associated with the solution of (1.37) for i=1 and for i=2.
For any =>0 and s # [0, min[M� (2)(*2 , =), M� (1)(*1 , 0), l ]) such that
%(2)(r; *2 , =)>% (1)(r; *1 , 0) for all r # [0, s) we compute

|
s

0
c(2)(r)�% (2)(r; *2 , =) da(2)(r)

�|
s

0
[c(1)(r)+#r]�%(2)(r; *2 , =) da(2)(r)

�|
s

0
[c(1)(r)+#r]�%(1)(r; *1 , 0) da(1)(r)

�|
s

0
c(1)(r)�%(1)(r; *1 , 0) da(1)(r)+#s |

s

0
1�%(1)(r; *1 , 0) da(1)(r).

So that

%(2)(s; *2 , =)==+*2 s+b(2)(s)&|
s

0
c(2)(r)�%(2)(r; *2 , =) da(2)(r)

�=+*2 s+b(1)(s)&;s&|
s

0
c(1)(r)�%(1)(r; *1 , 0) da(1)(r)

&#s |
s

0
1�%(1)(r; *1 , 0) da(1)(r)

==+_2:&# |
s

0
1�%(1)(r; *1 , 0) da(1)(r)& s+%(1)(s; *1 , 0).

It follows that if we choose $ # (0, min[M� (1)(*, 0)), l ]) so small that

# |
$

0
1�%(1)(r; *1 , 0) da(1)(r)<:,

there holds M (2)(*, =)�$ and

%(2)(s; *2 , =)�% (1)(s; *1 , 0)+:s>0 for all s # (0, $ )
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and =>0. Subsequently, applying Lemma 1, Eq. (1.37) with i=2 has a
solution %(2)(s; *2 , 0) on an interval [0, M� (2)(*2 , 0)) with M� (2)(*2 , 0)�$.
Moreover

|
$

0
1�%(2)(r; *2 , 0) da (2)(r)�|

$

0
1�%(1)(r; *1 , 0) da(1)(r)<�. K

Lemma 9. Suppose there exists a 0<l<� such that (2.6) holds and
with Q(s) defined by (2.5) that b(s)+KQ(s)+\s is nondecreasing on [0, l )
for some constants K�0 and \. Then for any *>max[0, \+K] there holds
M� (*, 0)�l and there exist positive constants K1 and K2 which depend only
on *, K and \ such that

K1 max[b(s), Q(s), s]�%(s; *, 0)�K2 max[b(s), Q(s), s] (2.18)

for all s # [0, l ).

Proof. It can be easily verified that the function %(1)(s) :=K*Q(s) with
K* :=4�(K+- K 2+8) fulfills Eq. (1.37) on [0, l ) when *=0 and b is
replaced by the function b(1)(s) :=&KQ(s). Subsequently, applying
Lemma 5 we have M� (*, 0)�l and

%(s; *, 0)�%(1)(s)=K*Q(s) (2.19)

for all s # [0, l ) for each *�\.
Now if *�\, from (1.37) and (2.6) we deduce %(s; *, 0)�*s+b(s) for

any s # [0, l ). Whence, if also *�0 we have

%(s; *, 0)�b(s) (2.20)

whilst %(s; *, 0)�*s&KQ(s)&\s for all s # [0, l ). So that

%(s; *, 0)�(*&\&K ) s if Q(s)�s (2.21)

for any s # [0, l ). Combining (2.19), (2.20) and (2.21) leads to the left-
hand inequality in (2.18) for any *>max[0, \+K ] with K1=
min[K*, 1, *&\&K ]. On the other hand, substituting (2.19) directly into
the integral term of (1.37) for *#\ gives

%(s; *, 0)�*s+b(s)+2Q(s)�K*

for any s # [0, l ). This provides the right-hand inequality in (2.18). K
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Lemma 10. Suppose that there exists a 0<l<� such that b(s)�0 for
all s # (0, l ),

|
l

0
|c(s)�b(s)| da(s)<�,

and

b(s)+K |
s

0
c(r)�b(r) da(r)+\s is nondecreasing on [0, l )

for some constants K>0 and \. Let K* :=2�(K+- K 2+4K). Then for any
*�\(1+K*) there holds M� (*, 0)�l and %(s; *, 0)�&K*b(s) for all
s # [0, l ).

Proof. When *=0 and b(s) in Eq. (1.37) is replaced by

b(1)(s) :=&K*b(s)&
1

K* |
s

0

c(r)
b(r)

da(r)

the resulting equation admits the solution %(1)(s) :=&K*b(s) on [0, l ).
This yields the stated result via Lemma 5. K

Lemma 11. Suppose that there exists a 0<l<� such that a and b are
absolutely continuous on [0, l ), (ca$)(s)�0 for almost all s # (0, l ), and
ca$�b$ is continuous and nonnegative on [0, l ).

(a) Suppose furthermore that &(ca$�b$)(s)&Kb(s)+\s is nondecreas-
ing on [0, l ) for some constants K>0 and \. Let

K* :=2�(1+- 1+4K ). (2.22)

Then for any *�\K* there holds M� (*, 0)�l and %(s; *, 0)�K*(ca$�b$)(s)
for all s # [0, l ).

(b) Suppose furthermore that &(ca$�b$)(s)&Kb(s)+\s is nonincreas-
ing on [0, l ) for some constants K>0 and \. Let K* be given by (2.22).
Then for any *�\K* there holds %(s; *, 0)�K*(ca$�b$)(s) for all
s # [0, min[M� (*, 0), l ]).

Proof. We note that when *=0 and b is replaced by the function
b(1)(s) :=b(s)�K*+K*(ca$�b$)(s) Eq. (1.37) admits the solution %(1)(s) :=
K*(ca$�b$)(s). Moreover, by Lemma 4 this function is the only admissible
solution of this integral equation. Lemma 5 subsequently once more
provides the desired result. K
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Lemma 12. Suppose that there exists a 0<l<� such that b#0 on
[0, l ) and (2.4) holds. With Q(s) given by (2.5) set

_=lim sup
s a 0

Q(s)�s.

(a) If *<- 2 _ then M� (*, 0)=0.

(b) If *>- 8 _ then M� (*, 0)>0 and there exists a $ # (0, M� (*, 0))
such that *s�2�%(s; *, 0)�*s for all s # [0, $ ).

Proof. Part (a) represents an application of Lemma (iii). Part (b)
follows from an application of Lemma 3(i). K

Lemma 13. Suppose that a(s)=sm, b(s)=b0 sn and c(s)=c0 s p for some
constants m>0, n>0, p>&m, b0 and c0 . Then there exists a ** such that
M� (**, 0)>0 if and only if the constants satisfy one of the following eight
combinations. Moreover, with the value of q stated in each case, there exists
a ***�** such that for any *>*** there holds

%(s; *, 0)t%0 sq as s a 0

for some %0>0.

(i) c0<0, n�1 or b0=0; with q=min[(m+p)�2, 1].

(ii) c0<0, n<1, b0<0; with q=max[m+ p&n, (m+ p)�2].

(iii) c0<0, n<1, b0>0; with q=min[n, (m+ p)�2].

(iv) c0=0, n�1 or b0=0; with q=1.

(v) c0=0, n<1, b0>0; with q=n.

(vi) c0>0, n�1 or b0=0, m+ p�2; with q=1.

(vii) c0>0, n<1, 0<b0<2 - mc0 �n, m+ p>2n; with q=n.

(viii) c0>0, n<1, b0�2 - mc0 �n, m+ p�2n; with q=n.

For the proof of this and the next lemma, see [75, 78].

Lemma 14. Suppose that a(s)=s |ln s|&m, b(s)=b0 s |ln s|&n and c(s)=
c0 s |ln s| &p for some constants m, n, p, b0 and c0 . Then there exists a **
such that M� (**, 0)>0 if and only if the constants satisfy one of the follow-
ing eight combinations. Moreover, with the value of q stated in each case,
there exists a ***�** such that for any *>** there holds

%(s; *, 0)t%0 s |ln s|&q as s a 0

51travelling waves
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for some %0>0.

(i) c0<0, n�0 or b0=0; with q=min[(m+p)�2, 0].

(ii) c0<0, n<0, b0<0; with q=max[m+ p&n, (m+ p)�2].

(iii) c0<0, n<0, b0>0; with q=min[n, (m+ p)�2].

(iv) c0=0, n�0 or b0=0; with q=0.

(v) c0=0, n<0, b0>0; with q=n.

(vi) c0>0, n�0 or b0=0, m+ p�0; with q=0.

(vii) c0>0, n<0, 0<b0�2 - c0 , m+ p>2n; with q=n.

(viii) c0>0, n<0, b0>2 - c0, m+ p�2n; with q=n.

3. Proof and Discussion of Main Results

3.1. Travelling Waves

The first goal of this section is to show that solutions of the nonlinear
integral equation (1.37) really lead to travelling-wave type solutions of
(1.1). We had done this formally in Subsection 1.4. However, there we
avoided all the difficulties associated with the dearth of regularity in the
coefficients of (1.1) and of the definition of a generalized solution.

We maintain the notation used in the previous section and consider the
maximal solution %(s; *, =) of Eq. (2.1) on [0, M(*, =)) with M(*, =) defined
by (2.8) for every * and =�0. We let

2(*, =) :=|
M(*, =)

0
1�%(r; *, =) da(r).

Next we define the function f by

f (!)=M(*, =) for !�&2(*, =)

|
f (!)

0
1�%(r; *, =) da(r)=&! for &2(*, =)<!<0 (3.1)

and

f (!)=0 for !�0.

Finally, for fixed (x0 , t0) # R2 we define the function v(x, t; x0 , t0 , *, =) by

v(x, t; x0 , t0 , *, =)= f (x&x0&*t+*t0) (3.2)
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and set

0(x0 , t0 , *, =)=[(x, t) # R2 : &2(*, =)<x&x0&*t+*t0<�].

Ignoring the implicit dependence on the parameters x0 , t0 , * and = we
can now formulate the following.

Lemma 15. Suppose that M>0 and let D denote a domain of the form
(1.3), (1.4) such that D� �0.

(i) If ==0 then v is a generalized solution of Eq. (1.1) in D.

(ii) If =>0 then v is a generalized subsolution of Eq. (1.1) in D.
Moreover if '1<x0+*t&*t0<'2 for some t # [{1 , {2] then v is a
generalized strict subsolution of (1.1) in D.

Proof. We introduce the notation

;@(t)=x0+*t&*t0&|
@

0
1�%(r) da(r)

for any t # R and

0@ :=[(x, t) # 0 : x<;@(t)]

for any @ # [0, M). We let A denote the inverse of a on [0, a(M )) and
define the map 9 on [0, a(M )) by

9(z)=|
A(z)

0
1�%(r) da(r)=|

z

0
1�%(A( y)) dy.

Note that for any (x, t) # 0 and @ # [0, M) there holds

v(x, t)>@ if and only if (x, t) # 0@

and for any (x, t) # 00 we have

9(a(v(x, t)))=;0(t)&x.

Plainly v is nonnegative, continuous and strictly bounded above by M in
D� . We assert that for any bounded rectangle R :=(x1 , x2)_(t1 , t2]�D
and nonnegative function , # C2, 1(R� ) satisfying (1.5) there holds:

c(v) # L1(R & 0@) for all @>0, (3.3)

||
R

c(v) , dx dt :=lim
@ a 0 ||

R & 0@

c(v) , dx dt exists (3.4)
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and satisfies

||
R

[a(v) ,xx&b(v) ,x+c(v) ,+v,t] dx dt

=|
x2

x1

[v(x, t2) ,(x, t2)&v(x, t1) ,(x, t1)] dx

+|
t2

t1

[a(v(x2 , t)) ,x(x2 , t)&a(v(x1 , t)) ,x(x1 , t)] dt

+= |
I0

,(;0(t), t) dt, (3.5)

where

I@ :=[t # [t1 , t2]: ;@ (t) # (x1 , x2)].

Proving this suffices to prove the lemma.
By standard Lebesgue integration theory 9 is absolutely continuous on

(0, a(M )) and 9 $(z)=1�%(A(z)) for almost all z # (0, a(M )). Subsequently

|
x+

x&
|c(v(x, t))| dx=&|

a(v(x+, t))

a(v(x&, t))
|c(v(;0(t)&9( y), t))| 9$( y) dy

=|
a(v(x&, t))

a(v(x+, t))
|c(A( y))|�%(A( y)) dy

=|
v(x&, t)

v(x+, t)
|c(r)�%(r)| da(r) (3.6)

for any ;M (t)<x&<x+<;0(t) and t # R. Hence

c(v(x, t)) # L1
loc(;M(t), ;0(t)) for all t # R (3.7)

and defining

& :=sup[v(x, t) : (x, t) # R]

we have the estimate

||
R & 0@

|c(v(x, t))| dx dt�|
t2

t1
|

;@ (t)

;&(t)
|c(v(x, t))| dx dt

=(t2&t1) |
&

@
|c(r)�%(r)| da(r).

This yields (3.3).
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To prove (3.4) we note that for any ;M(t)<x&<x+<;0(t) and t # R
setting

%
�
=inf[%(v(x, t)) : x&�x�x+]

and

%� =sup[%(v(x, t)) : x&�x�x+]

there holds

&%
�
(x+&x&)=%

� |
v(x+, t)

v(x&, t)
1�%(r) da(r)

�a(v(x+, t))&a(v(x&, t))

�%� |
v(x+, t)

v(x&, t)
1�%(r) da(r)

=&%� (x+&x&)

by (3.1), (3.2). Hence (a(v))x exists in 00 ,

(a(v))x (x, t)=&%(v(x, t)) for all (x, t) # 00 (3.8)

and (a(v))x is nonnegative and continuous in 00 . Similarly, one can show
that a(v) is continuously differentiable with respect to t in 00 and

(a(v))t (x, t)=*%(v(x, t)) for all (x, t) # 00 . (3.9)

Because % solves (2.1) on [0, M ) it follows from (3.8) that

((a(v))x+b(v)+*v)(x+, t)&((a(v))x+b(v)+*v)(x&, t)

=|
v(x+, t)

v(x&, t)
c(r)�%(r) da(r)

for any ;M(t)<x&<x+<;0(t) and t # R. However, recalling (3.7) and
repeating the argument in (3.6) without the absolute value signs,

|
v(x+, t)

v(x&, t)
c(r)�%(r) da(r)=&|

x+

x&
c(v(x, t)) dx

for any such x&, x+ and t. Thus, moreover, the function (a(v))x+b(v)+*v
is absolutely continuous with respect to x on (;M (t), ;0(t)) and

((a(v))x+b(v)+*v)x (x, t)+c(v(x, t))=0 (3.10)
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for almost all x # (;M(t), ;0(t)) for every t # R. Multiplying (3.10) by , and
integrating by parts over R & 0@ for @>0 we compute

||
R & 0@

[a(v) ,xx&b(v) ,x&*v,x+c(v) ,] dx dt

=|
t2

t1

[a(v(x2 , t)) ,x(x2 , t)&a(v(x1 , t)) ,x(x1 , t)] dt

+|
I@

[[%(@)&b(@)&*@] ,(;@(t), t)+a(@) ,x(;@(t), t))

&a(v(x2 , t)) ,x(x2 , t)] dt.

So, letting @ a 0 we derive (3.4). In fact, noting that v(x, t)#0 on R"00 , in
the limit @ a 0 we obtain

||
R

[a(v) ,xx&b(v) ,x&*v,x+c(v) ,] dx dt

=|
t2

t1

[a(v(x2 , t)) ,x(x2 , t)&a(v(x1 , t)) ,x(x1 , t)] dt

+= |
I0

,(;0(t), t) dt. (3.11)

As a result of the above analysis, (3.5) is the only component of our
central assertion still awaiting proof. Moreover, in the light of (3.11), to
confirm (3.5) we merely have to show that

||
R

[*v,x+v,t] dx dt=|
x2

x1

[v(x, t2) ,(x, t2)&v(x, t1) ,(x, t1)] dx. (3.12)

To verify this, we refer to (3.8) and (3.9) and note that consequently

(a(v))t (x, t)=&*(a(v))x (x, t) (3.13)

at any point (x, t) # 00 . Trivially though (3.13) is true for all (x, t) # 0"0� 0 .
Hence for any continuously-differentiable function F : [0, a(&)] � [0, �)
we have

&*(F(a(v)))x (x, t)=(F(a(v)))t (x, t) (3.14)
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for all (x, t) # R� such that x{;0(t). Multiplying (3.14) by , and integrating
by parts yields

||
R

[*F(a(v)) ,x+F(a(v)) ,t] dx dt

=|
x

x1

[F(a(v(x, t2))) ,(x, t2)&F(a(v(x, t1))) ,(x, t1)] dx. (3.15)

Consequently, if we replace F in (3.15) by a sequence of functions which
approximate A the inverse of a in the limit, and take this limit, we obtain
(3.12).

This completes the proof of the assertion (3.5) and therewith the proof
of the lemma. K

Lemma 16. Suppose that 0<M<� and c(M )�0 and let D denote a
domain of the form (1.3), (1.4). Then v is a generalized subsolution of
Eq. (1.1) in D. Moreover if =>0 and '1<x0+*t&*t0<'2 for some
t # [{1 , {2] then v is a generalized strict subsolution of (1.1) in D.

Proof. We continue from the proof of Lemma 15. Repeating the
analysis in the proof of this lemma we find that (1.6) and (1.7) hold and
compute

||
R

[a(v) ,xx&b(v) ,x+c(v) ,+v,t] dx dt

=|
x2

x1

[v(x, t2) ,(x, t2)&v(x, t1) ,(x, t1)] dx

+|
t2

t1

[a(v(x2 , t)) ,x(x2 , t)&a(v(x1 , t)) ,x(x1 , t)] dt

+= |
I0

,(;0(t), t) dt+||
R"0

c(M ) , dx dt

for any bounded rectangle R :=(x1 , x2)_(t1 , t2]�D and any nonnegative
function , # C2, 1(R� ) satisfying (1.5). This gives the result. K

Lemma 15 shows that solutions of (1.37) lead to generalized solutions of
(1.1) of travelling-wave type. Moreover, by Lemmas 15 and 16, for any
=>0 and *�L the solution of (2.1) generates a generalized strict subsolution
of (1.1).
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3.2. The Proof of Theorem 1

If (1.37) has a continuous nonnegative solution whose reciprocal is
integrable with respect to a in the sense of Lebesgue�Stieltjes in a right
neighbourhood of zero for some parameter *, then in terms of the theory
developed in the previous section, M(*, 0)>0 for some *. Theorem 1 is
subsequently a corollary of the next result.

Lemma 17. Suppose that M(*, 0)>0 for some *. Then given any
0<$<2(*, 0) there exists a { # (0, T] such that `(t)�`(0)+$+*t for all
t # [0, {].

Proof. Consider the function v(x, t ; `(0)+$, 0, *, 0) defined in the
previous subsection. Note that v(`(0), 0; `(0)+$, 0, *, 0)>0 whilst
u(`(0), 0)=0. Hence, utilizing the continuity of u and v, we can find a
{ # (0, T] so small that when

D :=(`(0), �)_(0, {]

there holds D� �0(`(0)+$, 0, *, 0) and

v(`(0), t; `(0)+$, 0, *, 0)�u(`(0), t) for all t # [0, {].

Besides

v(x, 0; `(0)+$, 0, *, 0)�0=u(x, 0) for all x # [`(0), �).

Now though, by Lemma 15, v is a generalized solution of Eq. (1.1) in D.
Invoking the comparison principle, Hypothesis 2, subsequently tells us that

v(x, t; `(0)+$, 0, *, 0)�u(x, t) for all (x, t) # D� .

This yields u(x, t)=0 for all x�`(0)+$+*t and t # [0, {]. K

3.3. The Proof of Theorem 2

Suppose that P[0] is not empty. Then by the continuity of u there exists
a { # (0, T] such that P[t] is not empty for t # [0, {]. Let t1 # (0, {] and
x0 # P[t1] be arbitrary. Subsequently choose a + and a t0 # [0, t1) such that

u(x0 , t)�+>0 for all t # [t0 , t1].

Assuming Hypotheses 1�4 and defining

D :=(x0 , �)_(t0 , t1]

we shall now show that if M(*, 0)=0 for all * there holds

u(x, t)>0 for all (x, t) # D� with x<x0+*(t&t0) (3.16)
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for every fixed *�L. Because *�L and also x0 and t1 were arbitrary,
showing this suffices to prove the theorem.

We use the fact that a solution of (2.1) for any =>0 yields a generalized
strict subsolution of (1.1). For each k�1 and =>0 we let %k(s; *, =) denote
the maximal solution of (2.1) with ck in place of c, and define Mk(*, =),
vk(x, t; x0 , t0 , *, =) and 0k(x0 , t0 , *, =) as the corresponding analogues of
M(*, =), v(x, t; x0 , t0 , *, =) and 0(x0 , t0 , *, =). Finally, we define N(*) by
(2.14). We distinguish two cases dependent on the magnitude of N(*).

(a) The case N(*)>0.

Without loss of generality, we may assume that +<N(*). By Lemma 7,
we can pick a k�1 so large and an =>0 so small that

|
+

0
1�%k(r; *, =) da(r)>*(t1&t0).

There then holds 0k(x0 , t0 , *, =)$D� and

vk(x0 , t; x0 , t0 , *, =)<+�u(x0 , t) for all t # [t0 , t1].

Whilst,

vk(x, t0 ; x0 , t0 , *, =)=0�u(x, t0) for all x # [x0 , �). (3.17)

So, since vk(x, t; x0 , t0 , *, =) is a generalized strict subsolution of Eq. (1.1)
with ck in lieu of c in D by Lemma 15, we deduce

vk(x, t; x0 , t0 , *, =)�u(x, t) for all (x, t) # D�

via the comparison principle of Hypothesis 2. This gives (3.16).

(b) The case N(*)=0.

In this case we may pick a k�1 so large and an =>0 so small that
Mk(*, =)�+. Although now we do not necessarily have 0k(x0 , t0 , *, =)$D� ,
here Lemma 16 implies that vk(x, t; x0 , t0 , *, =) is a generalized strict sub-
solution of Eq. (1.1) with ck in lieu of c in D. Furthermore,

vk(x0 , t; x0 , t0 , *, =)�Mk(*, =)�u(x0 , t) for all t # [t0 , t1]

whilst (3.17) still holds. Subsequently, applying the comparison principle as
before, we obtain (3.16) again.

3.4. Discussion

It may be noted that we do not actually need Hypotheses 1�4 in full to
prove Theorems 1 and 2. Specifically, all that is required for the proof of
Theorem 1 is Hypothesis 1 and part (i) of Hypothesis 2. Whilst for the
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proof of Theorem 2, Hypothesis 1, part (ii) of Hypothesis 2, Hypothesis 3
and Hypothesis 4 suffice. Moreover, all that we really require from Hypoth-
esis 2 is that it allows us to compare u, the given generalized solution of
Eq. (1.1), with the constructed generalized solutions and strict subsolutions
of (1.1) of travelling-wave type. In other words, we could have formulated
any restricted version of Hypothesis 2 as long as it admitted the application
of our particular comparison functions.

Hypothesis 3 is incidentally also a stronger restriction on the coefficients in
Eq. (1.1) than we require. The formulation given above is more convenient
for checking than the general hypothesis though. At this juncture, we just
indicate that neither Hypothesis 3 nor Hypothesis 4 is a particularly severe
restriction on the admissiblity of the coefficients in (1.1). Taking each mem-
ber of the sequence ck in Hypothesis 2 part (ii) identical to c for instance, we
note that if c#0 then Hypotheses 3 and 4 are satisfied vacuously. Whilst if
b#0 and c does not change sign on (0, �) then Hypotheses 3 and 4 are also
automatically satisfied. Furthermore, if c is upper semi-continuous from the
left and given any s # (0, �) there exists an : # (0, 1] such that

lim inf
r A s

a(s)&a(r)
(s&r)2: =�>lim sup

r A s

b(s)&b(r)
(s&r):

then Hypothesis 3 holds. Moreover if c and the sequence [ck]�
k=1 from

Hypothesis 2 part (ii) are uniformly bounded above or below in every
compact subset of (0, �) then Hypothesis 4 also holds. Thus, for instance,
Hypotheses 3 and 4 are valid if a, b # C([0, �)) & C 1(0, �), c # C(0, �),
c(s)�0 for all s>0 or c(s)�0 for all s>0, and (1.12) holds. Suffice then
to summarize that Hypotheses 3 and 4 are fulfilled by the coefficients of the
equations covered in the earlier work on finite speed of propagation which
was reviewed in Subsection 1.2.

In the light of results in [75] Hypothesis 3 could have been replaced
with the following weaker assumption.

Hypothesis 3$. There is an L�0 with the following property. Given
any s # (0, �) for which c(s)<0 letting

s0 :=inf {r # [0, s]: |
s

r
max[c(w), 0] da(w)=0=

and

%0(r) :=Lr+b(r)&Ls&b(s) for r # [s0 , s],

sj+1 :=inf {r # [sj , s]: %j (w)�0 for all w # [r, s]

and |
s

r
|c(w)�%j (w)| da(w)<�=

60 gilding and kersner
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and

%j+1(r) :=Lr+b(r)&Ls&b(s)+|
s

r
c(w)�%j (w) da(w)

for r # [sj+1 , s] for every j�0,

s� :=sup[sj : 0� j<�]

and

%�(r) :=inf[%j (r) : 0� j<�] for r # [s� , s],

there holds

s�>s0 or |
s

s�

1�%�(r) da(r)=�.

Our final remark on the proofs of Theorems 1 and 2 pertains to each of
the Hypotheses 1, 3 and 4. This is that it is not necessary that the given
properties of the coefficients a, b and c hold on the whole of [0, �). Since
all the arguments used in this paper are local, it is sufficient that the stated
properties be valid in some right neighourhood of zero.

4. Applications

4.1. Equations with Reduced Forms

Here we consider the consequences of Theorems 1 and 2 when Eq. (1.1)
has a number of special forms which arise in various areas of practical
interest [4, 5, 7, 8, 19, 25, 28�30, 33, 37, 38, 53, 56, 109�111, 113, 114]. For
the full Eq. (1.1), Theorems 1 and 2 state that there is finite speed of
propagation if and only if (1.37) has a solution whose reciprocal is
integrable with respect to a in the sense of Lebesgue�Stieltjes in a right
neighbourhood of zero. This criterion can be reformulated in more explicit
terms for the special forms of interest which we consider below.

Theorem 3. The equation

ut=(a(u))xx (4.1)

displays finite speed of propagation if and only if

|
$

0
1�s da(s)<� for some $ # (0, �). (4.2)
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Theorem 4. The equation

ut=(a(u))xx+(b(u))x (4.3)

displays finite speed of propagation if and only if

max[&b(s), 0]=O(s) as s a 0 (4.4)

and

|
$

0
1�max[b(s), s] da(s)<� for some $ # (0, �). (4.5)

Proof of Theorems 3 and 4. When c#0, Eq. (1.37) reduces to the
simple identity %=*s+b(s). Subsequently, setting

_ :=lim sup
s a 0

&b(s)�s,

it is easy to see that (1.37) has no nonnegative solution for any *<_.
Whilst, (1.37) does have such a solution for every *>_. In the latter case
moreover, letting [0, M� (*, 0)) denote the maximal interval of existence of
this solution, for every *�max[0, _+2] and s # [0, M� (_+1)) we can
estimate

(*+1) max[b(s), s]�%(s)=(_+1) s+b(s)+*s&(_+1) s

�max[(_+1) s+b(s), *s]&(_+1) s

=max[b(s), (*&_&1) s]

�max[b(s), s].

It follows that there is a * such that (1.37) admits a nonnegative solution
in a right neighbourhood of zero if and only if _<�, and moreover that
if * is sufficiently large this solution satisfies (1.38) if and only if (4.5)
holds. K

Theorem 5. Suppose that c(s)�0 for all s # (0, �). Then the equation

ut=(a(u))xx+c(u) (4.6)

admits finite speed of propagation if and if

|
$

0
1�max {}|

s

0
c(r) da(r) }

1�2

, s= da(s)<� for some $ # (0, �). (4.7)
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Theorem 6. Suppose that c(s)�0 for all s # (0, �). Then the Eq. (4.6)
admits finite speed of propagation if and only if

|
s

0
c(r) da(r)=O(s2) as s a 0 (4.8)

and (4.2) holds

Proof of Theorems 5 and 6. Let Q(s) be given by (2.5). Then if Q#0
in a right neighbourhood of zero, Eq. (1.37) is equivalent to the simple
identity %=*s. Subsequently Theorem 5 or 6 may be easily deduced from
Theorems 1 and 2. On the other hand, if Q(s)>0 for all s>0, then
Theorems 5 and 6 follow from Lemmas 9 and 12 respectively when these
are combined with Theorems 1 and 2. K

4.2. Relation to Earlier Work

It is clear that Theorem 3 covers the earlier work [89, 115, 121, 122] on
Eq. (4.1).

With regard to Theorem 4, (4.4) holds if and only if there is a *>0 and
a $ # (0, �) such that

*s+b(s)>0 for all s # (0, $ ). (4.9)

Furthermore, in this event, retracing the proof of Theorem 4, it can be
shown that max[b(s), s]�*s+b(s)�(*+1) max[b(s), s] for sufficiently
large * and small s. So (4.4) and (4.5) hold if and only if there is a * which
fulfils (4.9) and

|
$

0
1�[*s+b(s)] da(s)<� for some $ # (0, �). (4.10)

The conditions (4.9) and (4.10) were precisely those previously established
in [71] as being necessary and sufficient for finite speed of propagation of
Eq. (4.3) under additional smoothness assumptions on the coefficients.
Thus, under the relevant circumstances, the present criterion and the earlier
one are equivalent.

To see that Theorem 5 covers the previous results on Eq. (4.6) when
c(s)�0 for all s # (0, �) requires a little more analysis. It is not too dif-
ficult to check that the theorem generalizes the work of Kalashnikov [91],
Chen [31] and Song [136]. For if a # C1(0, �) and

c(s)a$(s)=O(s) as s a 0, (4.11)
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then the theorem implies that (4.2) is necessary and sufficient for finite
speed of propagation. Whilst, if

s=O(c(s)a$(s)) as s a 0 (4.12)

then it implies that

|
$

0
1<}|

s

0
c(r) da(r) }

1�2

da(s)<� for some $ # (0, �)

is the necessary and sufficient criterion. For comparison with Kersner's
results [102] though it is more convenient to consider the next variant of
the theorem.

Theorem 7. Suppose that c is nonincreasing on [0, �). Then Eq. (4.6)
admits finite speed of propagation if and only if

|
$

0
1�max[ |c(s)a(s)|1�2, s] da(s)<� for some $ # (0, �). (4.13)

Proof. In the light of Theorem 5 it is enough to show that (4.13) holds
when (4.7) is true, and vice versa. Let A denote the inverse of a on the
range of a. By the monotonicity of c,

}|
s

0
c(r) da(r) }�|c(s)| |

s

0
da(r)=|c(s)a(s)|

for any s # (0, �). So, (4.7) implies (4.13). On the other hand,

} |
s

0
c(r) da(r) }� } |

s

A(a(s)�2)
c(r) da(r) }

� }|
s

A(a(s)�2)
c(A(a(s)�2)) da(r) }

=|c(A(a(s)�2)) a(s)�2|

for any s # (0, �). Hence

max {}|
s

0
c(r) da(r) }

1�2

, s=�max[ |c(A(a(s)�2)) a(s)�2|1�2, A(a(s)�2)].

Subsequently, applying the change of variables s � A(a(s)�2), we see that
(4.13) also implies (4.7). K
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Corollary. Suppose that a # C1(0, �), a is convex on [0, �), c is non-
increasing on [0, �), and c(s)a$(s)�s is nondecreasing on (0, �). Then
Eq. (4.6) admits finite speed of propagation if and only if

|
$

0
1�max {|

s

0
|c(r) a$(r)�r| 1�2 dr, s= da(s)<� for some $ # (0, �).

Proof. By the convexity of a there holds

a(s)�sa$(s) for all s # (0, �).

Hence, since c(s) is nonincreasing and c(s)a$(s)�s is nondecreasing,

}c(s)a(s)
s2 }� }c(s)a$(s)

s }� }c(r)a$(r)
r }� }c(s)a$(r)

r }� }c(s)(a$(r))2

a(r) }
for any 0<r<s<�. Taking the square root of the first, third and last
expression and integrating with respect to r from 0 to s yields

|c(s)a(s)| 1�2�|
s

0
|c(r)a$(r)�r| 1�2 dr�2 |c(s)a(s)| 1�2

for every s # (0, �). Whence, the corollary follows from Theorem 7. K

This corollary to Theorem 7 delivers the unequivocal generalization of
Kersner's results [102] which we seek, for the hypotheses in this corollary
were all utilized by Kersner. Moreover, (4.11) implies

|
s

0
|c(r)a$(r)�r| 1�2 dr=O(s) as s a 0.

So when (4.11) holds the corollary states that (4.2) is necessary and suf-
ficient for finite speed of propagation. Whilst, should (4.12) be the case
correspondingly

s=O \|
s

0
|c(r)a$(r)�r| 1�2 dr+ as s a 0,

and in this case the corollary delivers

|
$

0
1<\|

s

0
|c(r)a$(r)�r| 1�2 dr+ da(s)<� for some $ # (0, �)

as the necessary and sufficient criterion for finite speed of propagation.
These, disregarding the imposition of additional assumptions on the coef-
ficients in Eq. (4.6), were Kersner's results [102].
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Lastly, we compare Theorem 6 with the earlier work on (4.6) when
a # C1(0, �) and c(s)�0 for all s # (0, �). For this combination Galak-
tionov [60] has indicated that the equation possesses finite speed of
propagation when

lim
s a 0

1
s |

s

0

c(r) a$(r)
r

dr exists and is finite (4.14)

and (4.2) holds. Noting that

|
s

0
c(r) da(r)�s |

s

0

c(r)
r

da(r)=s2 \1
s |

s

0

c(r) a$(r)
r

dr+
for any s # (0, �), (4.14) implies (4.8). So Galaktionov's deduction [60] is
indeed compatible with our own.

The final theorem in this subsection provides a generalization of the
results of Song [136] and serves to illustrate that Theorems 1 and 2 also
cover his criteria for finite speed of propagation for the full Eq. (1.1) when
c is negative.

Theorem 8. Suppose that a and b are absolutely continuous on [0, l )
with a$(s)>0 and c(s)<0 for almost all s # (0, l ) for some 0<l��.

(a) Suppose furthermore that there exists a constant K>0 such that

b(s)+K }|
s

0
c(r) da(r) }

1�2

+Ks is nondecreasing on [0, l ).

Then Eq. (1.1) has finite speed of propagation if and only if

|
$

0
1�max {b(s), } |

s

0
c(r) da(r) }

1�2

, s= da(s)<� for some $ # (0, l).

(b) Suppose furthermore that b(s)�0 for all s # (0, l ),

|
l

0
c(s)�b(s) da(s)<�

and that there exists a constant K>0 such that

b(s)+K |
s

0
c(r)�b(r) da(r)+Ks is nondecreasing on [0, l ).
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Then Eq. (1.1) has finite speed of propagation if

|
$

0
|1�b(s)| da(s)<� for some $ # (0, l ).

(c) Suppose furthermore that ca$�b$ is continuous and nonnegative on
[0, l ) and there exist a constant K>0 such that &(ca$�b$)(s)&Kb(s)+Ks
is nondecreasing on [0, l ). Then Eq. (1.1) has finite speed of propagation if

|
$

0
b$(s)�c(s) ds<� for some $ # (0, l ). (4.15)

(d) Suppose furthermore that ca$�b$ is continuous and nonnegative on
[0, l ) and that there exists a constant K>0 such that &(ca$�b$)(s)&
Kb(s)+\s is nonincreasing in a rightneighbourhood of zero for every \>0.
Then Eq. (1.1) has finite speed of propagation only if (4.15) holds.

Proof. This theorem is a consequence of Theorems 1 and 2 in the light
of Lemmas 9�11. K

The reader may refer to [136] to check that the various hypotheses
imposed by Song lead to one or other of the alternative cases in Theorem 8
and moreover that the ensuing conclusions are consistent with those of
Song.

We feel obliged to point out that our results do differ in one essential
way from some of the earlier work of finite speed of propagation for par-
ticular cases of Eq. (1.1) though. Cf. [71, 89, 121, 122]. Namely, the present
conclusions are purely of a local nature. In general, we cannot and do not
exclude the possibility that there is extinction of the solution in finite time
[32, 51, 91, 93, 103], nor that the interface ` may move off to infinity in
finite time.

4.3. An Alternative Definition of a Generalized Solution

We remark that our analysis may be extended to cover a slightly dif-
ferent definition of a generalized solution and subsolution of Eq. (1.1). The
difference is that instead of requiring (1.6) and (1.7) one requires the
stronger condition

c(u) # L1(R)

for any bounded rectangle R contained in the closure of the domain of
definition. Plainly any generalized solution or subsolution in the sense of this
definition is also one in the sense previously used. The only price we have to
pay for extension to this case is a slight reinforcement of Hypothesis 4.
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For the alternative definition of a generalized solution and subsolution of
Eq. (1.1), the last sentence of Hypothesis 4 should be modified to read as
follows. Furthermore, given any s # (0, �) and decreasing sequence of
positive functions [�k]�

k=1�C([0, s]) which converges to a function
� # C([0, s]) in the limit k � � and for which (2.10) and (2.11) apply,
(2.12) holds for all 0�r1<r2<s and (2.13) as before. Subsequently,
altering the definition of M(*, =) to

M(*, =) :=sup {s # [0, M� (*, =)) : |
s

0
[1+|c(r)|]�%(r; *, =) da(r)<�=

the theory contained in the previous sections can be carried through.
The stricter version of Hypothesis 4 can be seen to be satisfied if each

member of the sequence [ck]�
k=1 in Hypothesis 2 and c do not change sign

in a right neighbourhood of zero. Indeed, it is satisfied if these functions are
uniformly essentially bounded on any compact subset of [0, �) with
respect to the measure associated with Lebesgue�Stieltjes integration with
respect to a. Thus, even with the alternative definition of a generalized solu-
tion of (1.1), our results cover the earlier work on finite speed of propaga-
tion for the equation.

4.4. Comparative Results

Here we give more import to our results by showing how finite speed of
propagation for one equation may be inferred from that for another.

Theorem 9. Consider Eq. (1.1) with two different sets of coefficients a(i ),
b(i ) and c(i ) which satisfy Hypotheses 1, 3 and 4 and are such that
Hypotheses 2 holds for any generalized solution u of the Eq. (1.1) in H for
which 0<sup[x # (0, �) : u(x, 0)>0]<�. Let _ denote the Lebesgue�
Stieltjes measure associated with Lebesgue�Stieltjes integration with respect
to a2 on (0, �).

(a) Suppose that there exists a 0<l�� and constant ; such that

a(2)(s)=a (1)(s) on [0, l ),

b(2)(s)&b (1)(s)+;s is nondecreasing on [0, l ),

c(2)(s)�c(1)(s) almost everywhere in (0, l)

with respect to _, and that c(2)(s)�[1+|c(1)(s)|] is essentially bounded with
respect to _ on every compact subset of (0, l).
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(b) Suppose that there exists a 0<l�� and constants ; and # such
that

a(2)(s)&a (1)(s) is nonincreasing on [0, l ),

b(2)(s)+;s�b(1)(s) for all s # [0, l ),

and
max[c(2)(s), 0]�c(1)(s)+#s almost everywhere in (0, l)

with respect to _.

Then in both cases, if Eq. (1.1) with i=1 possesses finite speed of propaga-
tion the same can be said of the equation with i=2.

Proof. This theorem follows from Theorems 1 and 2 upon mobilizing
Lemma 8. K

With the less roomy definition of a generalized solution of Eq. (1.1) dis-
cussed in the previous subsection, the only modification which has to be
made to the above theorem is to replace the last assumption in part (a) by
the assumption that c(2)(s)�[1+|c(1)(s)|] is essentially bounded with
respect to _ on every compact subset of [0, l ).

An interesting corollary of Theorem 9 is that when the function c in the
full Eq. (1.1) is Lipschitz continous at s=0, Eq. (1.1) displays finite speed
of propagation if and only if the Eq. (4.3) without the reaction terms does.
Likewise, when the function b is Lipschitz continuous at s=0, Eq. (1.1)
displays finite speed of propagation if and only if the corresponding
Eq. (4.6) without the convection term does. Whilst should b and c both the
Lipschitz continuous at s=0, then (1.1) displays finite speed of propaga-
tion if and only if the reduced Eq. (4.1) does. These last conclusions are
borne out by the earlier work on finite speed of propagation [69, 71, 91,
102, 136].

4.5. Specific Examples

In this final subsection we discuss the implication of our results for four
very specific equations.

The first example is Eq. (1.1) where the reaction term corresponds to a
sink given by the Heaviside function

H(u)={1
0

for u>0
for u=0

and the remaining coefficients a and b conform appropriately to
Hypotheses 1 and 3. Hypotheses 4 holds automatically when one can take
ck identical to c in Hypotheses 2 for each k�1. (In the light of the remarks
in Subsection 3.4 it is actually enough that Hypotheses 1 and 3$ hold.)
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When a(s)#s and b(s)#0 the Eq. (1.1) with c(s)#&H(s) has been
derived as a model for the diffusion of oxygen in absorbing tissue
[35, 38, 39, 50]. This particular equation can also be obtained under
suitable conditions by a transformation of the classical Stefan problem. In
this case the interface (1.10) corresponds with the usual free boundary in
the Stefan problem [38, 49, 50, 131].

Theorem 10. The equation

ut=(a(u))xx+(b(u))x&H(u)

displays finite speed of propagation irrespective of the coefficients a and b.

Proof. As previously, for fixed * and =>0 let %(s; *, =) denote the
maximal continuous nonnegative solution of (2.1) and M(*, =) the variable
defined by (2.8). Let L denote the value in Hypothesis 3 (or 3$). By
Lemma 6 we have M� (*, =)�M(*, =)=� for all =>0 and *�L. Sub-
sequently

|
s

0
1�%(r; *, =) da(r)==+*s+b(s)&%(s; *, =)

for any s # (0, �) and *�L. Hence defining N� (*) by (2.2) and %(s; *, 0) by
(2.3), we have N� (*)=� and

|
s

0
1�%(r; *, 0) da(r)�*s+b(s) for any s # (0, �) (4.16)

and *�L. Lemma 1 subsequently implies that M� (*, 0)=� and by (4.16)
there holds M(*, 0)>0 for any *�L. Therefore Eq. (1.37) has a solution
such that the conditions of Theorem 1 are met. K

Confronted with Theorem 10 one may naturally ask if the converse is
true; that is to say, should the reaction term in (1.1) correspond to a source
term described by the Heaviside function is it true that there is no finite
speed of propagation whatever the coefficients a and b. The next theorem
illustrates that this is not so.

Theorem 11. The equation

ut=(a(u))xx+H(u) (4.17)

displays finite speed of propagation if and only if

a(s)=O(s2) as s a 0. (4.18)
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Proof. By Theorem 6, Eq. (4.17) possesses finite speed of propagation if
and only if (4.18) and (4.2) hold. To obtain the present result it subse-
quently suffices to show that (4.18) implies (4.2). Suppose therefore that
(4.18) holds. Then by definition there exists an :>0 and a 0<$<� such
that

a(s)�:s2 for all s # (0, $ ).

Whence

|
$

0
1�s da(s)�|

$

0
|:�a(s)| 1�2 da(s)=2 |:a($ )| 1�2.

So (4.18) does indeed infer (4.2). K

The following theorem also provided examples to illustrate that the con-
verse to Theorem 10 is not true. This theorem concerns a special case of
Eq. (1.1) which has been the subject of considerable study in recent years.
See for instance [1, 3, 10, 11, 32, 34, 36, 40, 42, 47, 57, 59, 61�66, 68, 70,
73, 76, 79�82, 85�95, 97, 99, 100, 115, 117�119, 123, 125, 129, 133, 136,
138�142] and the references cited therein. The equation has been and still
is of paramount interest as a tangible proptotype for the general Eq. (1.1).

Theorem 12. The equation

ut=(um)xx+b0(un)x+{c0 u p

0
for u>0
for u=0

(4.19)

with real parameters m>0, n>0, p>&m, b0 and c0 admits finite speed of
propagation if and only if one of the following hold.

(i) c0<0, n�1 or b00=0, and m>min[ p, 1].

(ii) c0<0, n<1, b0<0 and p<min[m, n].

(iii) c0<0, n<1, b0>0 and m>min[n, p].

(iv) c0=0, n�1 or b0=0, and m>1.

(v) c0=0, n<1, b0>0 and m>n.

(vi) c0>0, n�1 or b0=0, m>1 and m+ p�2.

(vii) c0>0, n<1, 0<b0<2 - mc0 �n, m>n and m+ p>2n.

(viii) c0>0, n<1, b0�2 - mc0 �n, m>n and m+ p�2n.

This theorem is a corollary of Theorems 1 and 2 and Lemma 13.
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To close we summarize the character of finite speed of propagation for
an equation which represents a weaker perturbation of the linear equation
ut=uxx+b0 ux+c0 u than (4.19).

Theorem 13. The equation

ut=(u |ln u|&m)xx+b0(u |ln u| &n)x+c0 u |ln u|&p

with real parameters m, n, p, b0 and c0 admits finite speed of propagation if
and only if one of the following hold.

(i) c0<0, n�0 or b0=0, and m>min[ p+2, 1].

(ii) c0<0, n<0, b0<0 and p+2<min[m, n+1].

(iii) c0<0, n<0, b0>0 and m>min[n+1, p+2].

(iv) c0=0, n�0, or b0=0 and m>1.

(v) c0=0, n<0, b0>0 and m>n+1.

(vi) c0>0, n�0 or b0=0, m>1 and m+ p�0.

(vii) c0>0, n<0, 0<b0�2 - c0 , m>n+1 and m+ p>2n.

(viii) c0>0, n<0, b0>2 - c0 , m>n+1 and m+ p�2n.

This theorem follows from Theorems 1 and 2 and Lemma 14.
Note the similarity in structure between the results in Theorems 12 and

13. With one exception, if we replace n by n+1, p by p+2 and - mc0 �n
by - c0 in the conclusions of Theorem 12 we obtain those of Theorem 13.
The one exception is the marginal case c0>0, n<1, b0=2 - mc0 �n, m>n
and m+ p=2n.
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