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Abstract—Context processing in Body Area Networks (BANs)
faces unique challenges due to the user and node mobility, the
need of real-time adaptation to the dynamic topological and
contextual changes, and heterogeneous processing capabilities
and energy constraints present on the available devices. This
paper proposes a service-oriented framework for the execution
of context recognition algorithms. We describe and theoretically
analyze the performance of the main framework components,
including the sensor network organization, service discovery,
service graph construction, service distribution and mapping.
The theoretical results are followed by the simulation of the
proposed framework as a whole, showing the overall cost of
using dynamically distributed applications on the network.
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I. INTRODUCTION

BODY AREA NETWORKS (BANs) are composed of

wireless nodes, ranging from hand-held devices such

as mobile-phones, over smart objects in the environment to

miniaturized sensor nodes integrated into garments. These

devices form a heterogeneous collection of network nodes with

varying capabilities in terms of sensors, actuators, processing

power, memory, and available energy. The number and type

of devices in a BAN change over time, as a result of the

interaction with other BANs, e.g. people exchanging objects,

or between the BAN and the environment, e.g. clothes or

objects taken from chairs.

A user-interface to such a system must hide the complexities

involved in handling all the devices involved in the process [1].

One way of achieving this is to make the system context-

aware, such as to infer the user state from a set of body-

worn sensors [2]. Another type of context is the activity of

the user, for which the Context Recognition Network (CRN)

toolbox [3] provides a modular composition of algorithms for

fast prototyping. Miniaturized and low-profile sensor nodes

with limited processing power are capable of running complex

classification tasks, as has been shown e.g. for the recognition

of sound [4].

In this paper, we focus on the organization of activity

recognition on dynamic and resource-constrained BANs. We
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propose a flexible service-oriented framework, which provides

the core-components for real-time adaptation to network mo-

bility and heterogeneity. Network mobility is handled through

dynamic, context-aware clustering and service discovery. The

activity recognition is structured as a service graph, where

the various services represent sensors, actuators, and mis-

cellaneous data processing functions. The service graph is

dynamically mapped to appropriate nodes in the BAN to

execute the recognition algorithm. We model our approach

for cluster stability, service graph executability and execution

cost.

The paper continues with an analysis of the special prop-

erties of BANs and presents the characteristics distinguishing

BANs from traditional networks in section II. We present a

framework for the distributed execution of applications using

the service-oriented approach in section III. To provide a stable

processing environment, where nodes stay interconnected, the

network is clustered as described in section IV. A model

of service distributions is introduced in section V to get an

estimation on how many services need to be available on

sensor nodes such that applications can be expected to be

executable. Section VI introduces a cost model for applications

mapped onto the network. This cost is then evaluated using

simulations in section VII, showing the behavior and require-

ments on devices for successful deployment of applications

in the BAN environment. The findings in the whole chain

from network organization to application execution cost are

discussed in VIII, whereupon the paper is concluded.

II. CHARACTERISTICS OF CONTEXT-AWARE BAN

APPLICATIONS

We give two examples of wearable smart assistants, in

order to pinpoint the recurring characteristics of BANs and the

challenges to distributed context processing. The first example

is a generic personal sports trainer, while the second example

is an assistant for industrial workers.

A. Personal sports trainer

In many sports, the effectiveness of the athlete can be

improved by optimizing the course of movement. A BAN

system can act as a personal trainer by monitoring the move-

ments using sensors attached to different limbs of the body. It

can suggest improvements or training sets to enhance agility

or strength. Using actuators such as vibrators or sound, the

system can also give feedback, helping the athlete to improve

his motions.
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As an example, we consider running tracks through forests,

which are interrupted by stops with equipment, such as bars

for pull-ups, or wooden dumbbells. The runners wear clothing

with integrated motion sensors, sensing their whole body

motion. When the runners reach a stop, they perform one of

several activities available at this location, depending on their

training targets: strength, agility, or endurance.

The BAN is able to automatically detect the sensors attached

to the clothing and the ones the athlete interacts with. De-

pending on the activities to be performed at a certain stop, the

BAN downloads the corresponding service graph to monitor

the runner’s motion. The system must be able to distinguish

among multiple runners and the various activities they are

performing. For this application, a wide range of body-worn

devices and accessories may be worn by athletes, requiring

service graphs to be adaptable to many device types and

configurations.

B. Worker training and support

A second scenario is the recognition of user activities at

work [5]; workers in assembly manufacturing are supported

with just-in-time context-aware information on the activities

they are doing. Sensors in their clothing and tools measure

movements to determine the activity currently performed. The

BAN system can thus monitor whether all necessary steps were

performed. If a mistake was made, the system may alert the

worker in a suitable way.

Consider the example of two workers mounting the engine

of a car. When the engine is suspended into the engine

compartment, the BAN checks if one worker does not move

the engine in such a way as to trap the other worker’s hand.

When they pick up the automatic screwdrivers, the tools

are automatically checked for the correct settings, such as

rotating speed or torque for the screws. The suspension system

holding the engine cannot be released before both workers

have completed screwing and stepped back from the car.

In this scenario, the BANs are dynamically adapted to in-

corporate the tools the workers are using. The system needs to

distinguish among the nodes attached to different workers by

correctly associating the tools with the corresponding BANs.

The collaboration among workers becomes also a collaboration

among BANs, which may connect to the company database

and register completed process steps or issue emergency

alarms.

C. Characteristics of a context-processing framework for

BANs

From the two scenarios presented above, we derive the

specific requirements of BANs, distinguishing them from

typical Wireless Sensor Networks (WSN), and the resulting

challenges for executing algorithms in these environments:

• Heterogeneous devices – BANs consist of devices with

highly varying sensing, processing, and communication

capabilities. This contrasts to the mostly application-

specific and homogeneous networks generally considered

for WSN research. As a consequence, a programming

abstraction needs to be found which hides the details of

the implementation and enables a programmer to write

applications executable on a wide range of devices.

• Dynamic topology – As people move in the environment,

BANs constantly connect and disconnect to other BANs,

static devices or wireless networks. A first challenge lies

in identifying clusters of nodes which retain communi-

cation for an extended amount of time. For achieving a

stable distributed processing, a selection of nodes that can

be expected to remain accessible with a high confidence

is necessary.

• In-network processing – dynamic BANs require real-

time in-network processing, delivering just-in-time feed-

back to the user. Sensor data is processed where it is

sensed, and only the resulting events and alarms are trans-

mitted for further context inference, therefore reducing

the network load and at the same time enabling quick

response times.

• Continuous operation – The timescale of events that

need to be sensed on the body and its immediate sur-

rounding is much shorter than that of the more common

WSN deployed e.g. for crop field monitoring or building

automation. Therefore, higher sample rates are needed

(typically of the order of 10-100 Hz for human activity

recognition from motion sensors). As a consequence, only

limited time is available for duty cycling or entering sleep

modes between data acquisition.

• Energy resources – Handheld devices and sensors in-

tegrated into clothes are in most applications removed

from the body at night, which gives the opportunity to

recharge devices during this time, e.g. using coat hangers

in the wardrobe [6]. Energy resources must thus sustain

a runtime of a few days rather than months or years.

A context processing framework designed for BANs must take

into consideration these characteristics. Failure to do so is

likely to result in poor or unpredictable performance in this

environment.

III. SERVICE-ORIENTED CONTEXT PROCESSING

FRAMEWORK

The last section highlighted points for efficient context

processing in BANs, which we address in a service-oriented

approach. In previous work, we have implemented the Titan

framework for the execution of context recognition algorithms

in BANs [7]. Applications within Titan are described using

services and their dataflow interconnections. Services describe

sensors, actuators, or data processing functions offered by

members of the BANs. They are considered black boxes

offering input and output ports, which can be interconnected

to form a service graph, representing the application to be run.

A service graph description includes parameters passed to the

services and attributes constraining the assignment of services

to network nodes.

Service graphs typically describe the dataflow from sensor

readings to data processing result, such as shown in figure 1

for the recognition of motion activity. The service graph im-

plements the algorithms used for the worker support example

presented in [5]. The top row of services consist of motion
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Fig. 1. Typical service graph for an activity recognition algorithm. The data
flows from sensor services at the top through different data processing services
to classify the activity observed by the sensors on the body of the user and
the tools he uses.
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Fig. 2. Framework for the execution of service graphs. Each node can
contribute to the distributed processing with the services in its service pool.
The Network Manager assigns a part of the service graph to each node in the
cluster to run the application.

sensors located on the body of a worker and on the tools

he uses. The sensors produce input to the algorithm, while

the next levels introduce the services selected for feature

extraction and first local classification of the activity, which is

then fused in the network for an overall result.

Each node in the network provides a set of services in

a service pool, from which they can be instantiated when

needed. An unused service does not consume RAM nor CPU

cycles, such that the content of the service pool depends on

program memory only, which is usually available in larger

quantity than RAM. Devices with more resources may provide

a larger number of services, and devices with different types of

sensors may provide different sets of services in their service

pools.

The distributed processing is organized as depicted in

figure 2. Each network cluster contains a Network Manager

responsible for the execution of applications, which are stored

in their service graph representation in a Service Graph

Database. On a request for execution, the Network Manager

retrieves the corresponding service graph from the database

and passes it to the Network Mapper. The Network Mapper

partitions the service graph in subsets and assigns them to net-

work nodes for processing. Therefore it uses the information

in the Service Directory, which maintains a database of node

capabilities and service pools available on the cluster nodes.

On the individual nodes, Node Managers are responsible of

instantiating and executing the services of the service graph

subset assigned to them.

Upon changes in the cluster, such as new nodes appearing

or nodes going lost, the Network Manager is notified by

the service directory, and reevaluates the mapping of the

application service graph. Different error types are reported

to the Network Manager as well and are forwarded to the

initiator of the application execution request.

IV. CLUSTERING ALGORITHM

To evaluate the behavior of the Titan framework in BANs,

we first need a clustering algorithm, which organizes the

network, in which Titan is run. The Network Mapper prefers

instantiating services in the local cluster as it assumes those

nodes will remain available with higher confidence than others.

Thus the cluster should include all and only the nodes carried

on the body of the user, which will be referred to as the correct

state. We measure the stability pS by the percentage of time

the cluster is in the correct state.

To provide a stable cluster, network nodes are dynamically

clustered according to a mutually shared contextual state using

the Tandem algorithm [8]. Here, the shared contextual state

is whether nodes are located on the same person, which can

only be determined with a certain accuracy [9]. Due to this

non-perfect accuracy, the perceived shared context may vary

in time and lead to cluster instability. In order to analyze the

influence of this instability on the service graph mapping, we

evaluate the behavior of Tandem using the following mobility

model for the BAN.

The BANs of individual persons are modeled by groups of

sensor nodes moving around an area using a Random Point

Group Mobility (RPGM) model [10]. When groups come

into communication range of each other, they choose with

probability pm to move together to the next waypoint and

to wait there for a random time. After the waiting period,

they choose whether or not to continue with each other. This

mobility model follows considerations of [11] to produce

interconnectivity patterns resembling the social behavior of

people.

We assume that the moments when the nodes start to cluster

and when the clustering structure is freezed are triggered by

a contextual change or a change in the environment. As an

example, we use the moment when a person starts and stops

walking or running, which can be reliably detected [12]. When

the person is walking or running, Tandem permanently evalu-

ates the shared context among the nodes wirelessly connected

and distributively clusters the person’s devices. Clusters may

change depending on the perceived context (whether nodes are

part of the same BAN) or as a result of topological changes

(people meet or separate). At each time step, every node

chooses itself or a neighboring node with which it shares a

common context as clusterhead. Tandem tries to achieve stable

clusters by keeping the same clusterhead as long as possible

and by having each node make decisions based on the status of

its neighbors with which it shares a common context. When the
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person stops walking, Tandem ceases to run and the clusters

remain as they are.

As soon as a clusterhead is elected, it becomes the Network

Manager and receives the service descriptions from each node

in its cluster and stores it into its service directory. The

Network Mapper can then query the service directory for

services it needs to instantiate. In case services are not found

locally, the queries are forwarded to service directories in

adjacent clusters. Using service directories allows a quick

assessment of the capabilities of a cluster and speeds up the

mapping process.

V. SERVICE DISTRIBUTION MODEL

As the next step, we model the distribution of services in

the network. This distribution determines what services are

available in each cluster and provide the solution space for

the Network Mapper.

Titan relies on the services available in the service pools of

the individual nodes in the cluster. This allows fast reconfigu-

ration and quick adaptation, but raises the question of whether

applications can be mapped to the network at all. Therefore we

introduce a system model which allows deriving a probability

of a service graph being executable in a cluster. Every sensor

node has a subset Sa of all known services S available in its

service pool. For the analysis we describe the probability of

each service s ∈ S to be available on an arbitrary node with

probability p(s) = Pr[s ∈ Sa], with p(s) being referred to as

the service distribution. The availability, or the probability that

a service is available on at least one node in a homogeneous

network with n nodes, is:

a(s, n) = 1 − (1 − p(s))
n

(1)

Using equation 1, we can derive a general expression for

whether a given service graph is executable in a network of

with n nodes. A service graph A = (T, I) is described by a

set of services T and their interconnections I = (ti, tj). Note

that services s ∈ S may be contained multiple times in T . We

thus further introduce the set of different service TD ∈ T the

service graph requires. The product of the service availabilities

indicates whether all required services are available:

pexec(n, TD) =
∏

s∈TD

a(s, n) =
∏

s∈TD

(1 − (1 − p(s))
n
) (2)

The execution probability pexec indicates whether a network

with n nodes can provide all the different services TD required

to execute a service graph. It assumes that services can

be instantiated multiple times at each sensor node and that

the probability of a service being available is the same on

every node. The execution probability can be adapted to

heterogeneous networks as will be shown below.

The number of possible mapping solutions of service graphs

to the network can be derived by calculating the expected

number of nodes providing a service. As each of the nodes

independently implements the service with probability p(s),
the expected number of nodes is following a binomial dis-

tribution having an expected value of np(s). Titan allows

to instantiate a service multiple times on every nodes, such

that every service can be distributed independently on np(s)
devices. The number of possible mappings for a service graph

is thus:

R(T, n) =
∏

s∈T

np(s) = n|T |
∏

s∈T

p(s) (3)

Services added to the service graph as well as the number of

network nodes thus exponentially enlarge the number mapping

solutions.

In order to further analyze the executability of service

graphs on BANs and to show how the model can be adapted

to a less abstract case, we analyze the special case where

we assume no knowledge about what kinds of application

service graphs should be run. We therefore distribute all

services with uniform probability. However, we distinguish

between powerful devices, such as PDAs or mobile phones,

and limited devices, which are integrated into clothing and

due to their minimal size can provide only limited processing

power. Further we distinguish two classes of services, a set

of simple ones Se ⊂ S, which are available with probability

pel on limited devices, and with a probability pep ≥ pel on

powerful devices. The second set of complex services Si ⊂ S,

Si ∪ Se = S, can only be implemented on powerful devices

with probability pip.

Using the availability equation 1 and having a fraction r of

limited devices in the network, we can derive the expected total

number of different services Stot(n) ≤ |Se|+ |Si| available in

a network with n nodes:

Stot(n) = |Se|(1 − (1 − rpel − (1 − r)pep)
n)+ (4)

|Si|(1 − (1 − (1 − r)pip)
n) (5)

During development, Stot may serve as an indication of how

large a service directory should be to accommodate all services

available in the cluster. Stot also allows to give a general

probability for the executability for a service graph requiring

|TD| different services, by considering the ratio of all possible

combinations of service graphs from the available services to

the number of service graphs combinations from all existing

services:

p′exec(n, |TD|) =

(

Stot(n)
|TD|

)

(

|Se|+|Si|
|TD|

)
(6)

p′exec indicates whether the network can be expected to

provide all the services required for execution. Figure 3 shows

how p′exec changes with the number of nodes and the size of

the service graph. The factorials in the binomial coefficient

are approximated for the continuous Stot using the gamma

function. A low number of different services improves the

probability considerably. Adapting the service distribution to

service usage statistics of service graphs intended to be run in

the network can thus considerably improve p′exec for service

graphs following the statistic. It will however decrease the

range of different service graphs being executable.

The service distribution model delivers an executability

measure for a service graph can serve as a guideline when

designing the application service graph. However, during run-

time more knowledge knowledge of the current state of the
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Fig. 3. Execution probability p′exec of number of nodes accessible n vs.
number of service types |TD| in the service task graph (for pep = 0.8,
pip = 0.4, pel = 0.4, Si = 5, and Se = 40). The execution probability
increases with the number of available nodes n and decreases with the number
of required service types |TD|

network is available. The actual cost in terms of resources

required for execution can then be determined by the Network

Mapper.

VI. MAPPING SERVICES TO NETWORK NODES

At runtime, the actual network configuration is known and

the real cost for executing a given service graph can be

computed. This section introduces the cost model used.

The Network Mapper assigns each service of a service

graph to a node in the network and therefore needs to

consider the availability of each service on the nodes as well

as their resource constraints. Neither the processing nor the

communication capabilities should exceeded on any of the

nodes. Additionally, it is favorable to find the implementation

keeping resource usage as low as possible.

The task of the Network Mapper is formally described as

to map a service graph A = (T, I) onto a network graph

G = (V,E). The network graph is described by a set of nodes

V and communication links E = (vi, vj), vi, vj ∈ V . The

Network Mapper’s goal lies in finding a mapping M : T → V ,

such that a given cost function C(M) is minimized.

Various cost functions targeting different trade-offs have

been proposed for this task, such as the minimization of

transmission cost, total energy consumed, or the maximization

network lifetime [13]. In this paper we use a metric targeting

minimization of the total energy used in the network. The

cost function makes use of a model of the sensor node using

values stemming from benchmarking the Titan implementation

on real sensor nodes [7] with a TI MSP430 microcontroller

and a CC2420 transceiver. The metric used for the evaluation

relies on three main cost functions:

• Processing cost Cp(t, v) – the cost of processing all

services assigned to a node. This cost results into a

measure for whether enough CPU cycles are available

to execute all services of the subset assigned to the

given node. To achieve an energy value, the time for

processing on the nodes’ microcontroller is determined

and multiplied by the power consumption difference from

active to standby mode.

• Sensor cost Cs(t, v) – the cost of using sensors to collect

data for the algorithm. As sensors can usually be turned

off when not sampling, this cost value describes the

additional energy dissipated on the node while sampling,

and includes possible duty cycling.

• Communication cost Cc(i, v, e) – the cost of com-

municating data from one service to another for the

node v. The communication cost is zero for two ser-

vices communicating within the same node. For external

communication, it prioritizes intra-cluster communication

and introduces penalties for cross-cluster communication.

The cost is determined per message and includes energy

dissipated at the sending and receiving part.

The mapping is constrained by the maximum processing

power Cp,max(v) and communication rate Cc,max(v) a node

can support. These limits ensure the executability of the tasks

on the nodes and guarantee that the maximum transmission

capacity is not exceeded without modeling node load and

scheduling overhead explicitely. Consequently, there is no

guarantee on whether latency requirements on the algorithm

can be met. The constraints are given for the service graph

subset (Tv, Iv,e) assigned to a node v ∈ V :
∑

t∈Tv

Cp(t, v) ≤ Cp,max(v) (7)

∑

i∈Iv,e

Cc(i, v, e) ≤ Cc,max(v) (8)

Each interconnection i is mapped to an edge e and added to

two sets (i, e) ∈ Iv,e as outgoing and incoming connections.

Failure in meeting the constraints results in the service graph

not being implementable. In such a case the execution cost

will be set to infinity.

The total execution cost of the network is achieved by

summing up all costs incurring at nodes participating in the

execution:

Ctotal(M(A, G)) =
∑

Tv∈T

∑

t∈Tv

Cp(t, v) + Cs(t, v)+ (9)

∑

Ie,v∈I

∑

i∈Ie

Cc(i, v, e) (10)

The costs introduce above depend on the device type to which

they apply. The parameters for the device model are sent to the

service directory along with the node address. The Network

Mapper further uses a model of the services to derive the

service output data rate given a certain input data rate and

the service parameters in the service graph description. When

determining execution cost, the Network Mapper first derives

an estimation of the data communicated from service to service

by propagating the data rates generated from each service to

each successor. The individual cost functions make use of

the service models and device models to produce the total

mapping cost.

The contributions of the individual cost components vary

with the application that is executed and the network it is

running on. Typically, communication costs dominate, as for
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the energy of sending 1 bit over the air, a microcontroller

can perform roughly 1000 instructions [14] for the same

energy. Sensor costs on the other hand are usually constant

as long as the actually used sensors have similar energy

consumption per sample. The mapping thus tries to keep

communication intensive connections between services on a

single node. In most application, this means to draw as much

processing as possible to the data source, as processing in

most cases reduces the communication rate. In the case of

activity recognition algorithms, this means that the processing

up to the feature extraction is preferably run on the sensing

node.

In this work we are interested in finding the absolute mini-

mum mapping cost of the system. We do not have an algorithm

to find an optimal service graph mapping with minimal cost in

the current implementation of Titan. Also, an exhaustive search

is intractable for service graphs and networks of reasonable

size, as the search space grows with O(n|T |) (see equation 3).

Therefore we use a Genetic Algorithm (GA) to optimize the

mapping, as GAs are known to provide robust optimization

tools for complex search spaces [15]. The GA parameters are

selected in order to favor convergence to the global maxi-

mum by selecting a large population size, avoiding premature

convergence, and by performing several runs. The resulting

performance is the maximum of the performance obtained in

each runs.

The service graph is encoded for the GA as chromosome

with |T | genes, one for every service in the service graph.

Each gene contains the set of nodes in the network providing

the corresponding service. Mutations are applied by moving

services from one node to another. Crossovers arbitrarily select

two chromosomes, randomly pick a gene and swap the gene

and all its successors between the two chromosomes, which are

then added to the population. The fitness of the chromosomes

is evaluated using the cost metric given above.

Once the implementation of the service graph with the

lowest cost has been found, the service graph subsets can be

sent to the individual nodes for execution. We stop our analysis

at this level and do not further model the exact firing rules

and scheduling problems on the individual nodes. In the next

section, we simulate the whole chain of algorithms presented

to this point and analyze their interactions.

VII. SIMULATION RESULTS

The interplay of the clustering algorithm, the service dis-

tribution, and the mapping are evaluated using the mobility

model introduced in section IV. Simulations are run for 10’000

virtual seconds with 2 to 10 groups fixed to a size of 10

nodes moving within 5 units around the group center with

probabilities pm ∈ 0.3, 0.5, 0.7, 0.9 of groups joining each

other for the next waypoint. The simulation provides an area

of 100x100 units and a communication range of 5 units. The

next group waypoints are chosen evenly distributed over the

simulation area, while the group speed is randomly chosen

from the range [0.3, 7.0] units per second and waiting times

from [5, 10] virtual seconds. The accuracy of the shared-

context recognition is modeled after experimental results that
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Fig. 4. Cluster stability pS depending on the number of sensor groups nS

available in the simulation and the probability pm of joint movement

analyzed whether devices are located on the same person by

correlating sensed motion patterns [9]. Figure 4 shows the

stability pS of the clusters depending on the number of groups

nS and the joint movement probability pm. A higher value of

pm results in longer connections among clusters, introducing

more opportunity for wrong shared context associations and

hence lower stability. In a similar way, increasing the number

of groups adds more confusion due to the higher number of

possible clusters nodes can associate with.

Services are assigned to nodes in each simulation run

following a uniform distribution as described in section V,

with two device and service classes. The model parameters

are set to pel ∈ [0.3, 0.4, 0.5], pep = 0.7, pip = 0.3, Se = 40,

Si = 20, and r = 0.8. We repeat each service distribution

100 times for each simulation run. This allows a statistical

investigation of the execution cost of a given service graph

according to the effective service distribution on individual

nodes.

The execution costs are determined for a service graph

resembling figure 1, with 10 instances of 6 different services,

and costs requiring at least 3 nodes. The GA finds an optimal

solution for each cluster configuration found in the simulation

runs and each service distribution. The GA parameters consti-

tute a population size of 150, a rank selection of the 90 best

individuals, 6.7% mutation rate, and 50% crossover rate.

Figure 5 shows the average execution cost Ctotal, with its

variance as shading, and the number of cluster nodes over

time for the sink in group 1. Where the execution cost line

is interrupted, no executable mapping could be found for any

service distribution, indicating that the sink node receiving the

result of the service graph execution is not in the cluster any

more. Peaks in the variance result from powerful nodes having

left the cluster, such that multiple low-profile nodes need to

pick up the processing, leading to higher execution costs.

In figure 6 we represent the average execution cost of

a service graph as function of pel and r. In this case, we

simulate two clusters, one of 6 and one external cluster

of 20 nodes. We deliberately selected a cluster, whose size

allows to illustrate the influence on the cost of pel and the

consequences of recruiting additional nodes external to that
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Fig. 6. Execution cost Ctotal for a service graph with |TD| = 10 on a
6 node cluster connected to a 20 node cluster. With increasing r, more low-
profile nodes are in the cluster, requiring higher cost. With increasing pel more
services are available on all nodes, allowing a cheaper mapping. High variance
indicates large cost differences for different service distributions. Application-
specific service distributions can improve cost especially in regions with high
variance.

cluster. The variance in the cost is shown in figure 6b. With

increasing pel, the local cluster is able to support a larger

part of the service graph, thereby reducing the cost due to the

higher availability of powerful devices. A similar effect can

be observed for decreasing r, which increases the number of

powerful nodes and reduces the execution cost. The variances

show the dependency of the cost from the actual service

distribution. A high variance indicates that the cost can be

substantially reduced for certain service distributions. The

mean difference between maximum and minimum of the mean

cost for different service distributions is 32%. This implies

that there is a strong benefit for using statistical knowledge

about the service graphs that might be issued onto the network.

By assuring a higher availability for often used services,

the execution cost of these selected service graphs may be

substantially reduced.

We validate our execution model by comparing the model-

derived p′exec to the experimental results observed in our

simulation. We illustrate this in figure 7 by comparing p′exec

derived from the model and simulation for r = 0.4, pep = 0.7
and two values for pel. Results do not match for low sensor

number values, which is a result of the service graph not

being executable on less than 3 nodes. For higher numbers of

nodes (n > 5), however, the effect is reduced and the model

closely matches simulation results. Therefore we conclude that

our model can indeed be used as an indication of whether a

service graph is executable on a network with uniform service

distribution.

VIII. DISCUSSION

Within this work we have identified the main character-

istics for distributed context processing in BANs and have

evaluated a service-oriented approach for its suitability to this

environment. Several solutions for service-oriented processing

in Wireless Sensor Networks (WSN) have been presented

before, such as DFuse [13], which provides service-oriented

processing with more options and is targeted to PDA-class

networks, TinySOA [16], which splits queries into service

invocations and distributively solves them, or Tenet [17],

which allows to task individual sensor nodes, but allows only

communication in a vertical hierarchy. Those frameworks have

been designed with different objectives and do not completely
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Fig. 7. Assessment of the model validity for the execution probability p′exec

for a range of nodes for a service graph using |TD| = 6 service types, r = 0.4

and pep = 0.7. The model does not include execution costs, which result in
the simulation values not reaching the model prediction for a low number of
nodes, where costs invalidate most of the possible solutions.

fit the requirements imposed by the applications we have

presented.

The Titan framework is specifically designed for in-network

processing of activity recognition algorithms. The challenge of

heterogeneity encountered in BANs is addressed by a service-

oriented approach. Each service is defined by a standard

functionality, expected input, and output produced. Hence, it

can be implemented in native machine code for the individual

devices and can still allow seamless (re-)programming, even in

heterogeneous environments. Our framework allows choosing

a subset of all services for implementation on participating

devices, such that the service pool can be adapted to available

processing resources.

Dynamic topologies are organized by our clustering al-

gorithm to allow for stable execution despite unpredictable

dynamical changes in network topology. Therefore we make

use of shared-context algorithms, which provide a more robust

approach in comparison to simple monitoring of connectivity

patterns. The clusterheads maintain service directories for

quick access to their clusters’ services from foreign clusters.

The minimization of resource usage for continuous opera-

tion is achieved by an appropriate cost model, which is used by

the Network Mapper to assign services to nodes for execution.

The ability to reprogram nodes allows saving energy at times

when sensors and devices are not needed.

The general advantages of the service-oriented approach

are e.g. the ease of programming. A programmer has just to

interconnect services to create applications. No code has to

be written and new services may be debugged individually,

thus removing potential error sources from the development

process. A compact service graph representation allows fast

reprogramming of the heterogeneous network while native

machine code implementations of services ensure efficient

processing. Therefore the approach combines the advantages

of virtual machines and code update mechanisms to provide an

optimal solution for stream processing in sensor networks [7].

The results of this paper may be used by a context

recognition algorithm designer to assess the requirements on

service distributions and execution costs incurring in a BAN

when developing his algorithm. Additional techniques, such as

service composition [18], might allow adaptation of service

graphs to the actual network configurations encountered at

runtime. The system model developed here might serve as an

opportunistic selection criterion for candidate service graphs.

Therefore it needs to consider only a low number of network

parameters, i.e. p(s), S, and n, instead of requiring complete

knowledge about available sensor nodes and services.

Titan and consequently also the model do not include the

ability to migrate the execution of services from one node

to another, such as e.g. DFuse allows it. By migrating the

service state, i.e. its main variables, to a node providing

the same service, nodes could locally improve the service

mapping and thus optimize an initial mapping in a decen-

tralized fashion [13]. This however would require some form

of standardized service state import/export format supported

by all service implementations.

Another point not included in the model is the energy

consumption over time. Techniques such as clustering sensors

according to required classification accuracy and taking into

account the energy consumed by the sensor nodes might

prolong network lifetime by turning off unneeded sensor

nodes [19].

The results of the simulations involving the whole chain

from mobility model to service graph execution cost validate

the model we have derived. The influence of the model

parameters on the execution cost are shown for the special

case of uniformly distributed services. This corresponds to

the worst-case scenario for which there is no a-priori knowl-

edge about the service graphs intended to be mapped onto

the network. The results might lead to the conclusion that

with a sufficient count of services on every node, service

graphs are always executable and technological advancement

in processing power density would give any kind of node the

ability to hold enough services. With BANs however, it is more

interesting to take advantage of this development by further

reducing the size of the devices and by further integrating

peripheral components. This would allow more unobtrusive

ways of embedding devices into clothing, thus making the

technology disappear.

IX. CONCLUSION

The detection of the context of a user enables the devel-

opment of proactive and unobtrusive interfaces to complex

networks composed of sensor and actuators integrated into

clothing, hand-held devices, and smart objects in the envi-

ronment. We have evaluated the characteristics of a service-

oriented context processing framework for such dynamic Body

Area Networks with respect to the distinctive challenges

encountered in this type of network. Its capability of adapting

to node mobility, topology changes, and heterogeneous pro-

cessing resources provides a stable processing environment for

applications in form of service graphs. The theoretical model

and the simulation results allow to configure a BAN system

in such a way as to optimize the probability of application

executability on a given service distribution.
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The results allow designers of context recognition algo-

rithms to estimate the requirements imposed by theirs algo-

rithms on network size and configuration early in the design

process. The model further provides a basis for heuristical

optimization of service distributions for networks as well as

service graphs.
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“Activity recognition from on-body sensors: accuracy-power trade-off
by dynamic sensor selection,” in Proc. 5th European Conference on

Wireless Sensor Networks (EWSN), 2008, pp. 17–33.

Clemens Lombriser received his MSc ETH in
information technology and electrical engineering in
2005. He is now pursuing his PhD at the Wearable
Computing Lab of ETH Zurich, where he works on
dynamic adaption of context recognition algorithms
for wireless sensor nodes worn on the body and
integrated into smart objects. With his work, he
has contributed to the European research projects
e-SENSE and SENSEI.

Raluca Marin-Perianu received her engineer de-
gree in computer science in 2002. She is currently a
PhD student in the Pervasive Systems Group, Uni-
versity of Twente, the Netherlands. Her research in-
terest are in the fields of wireless sensor and actuator
networks, movement sensors, clustering algorithms
and service discovery protocols. Raluca has been
involved in Smart Surroundings and Featherlight
Dutch projects, and e-Sense European project.

Dr. Daniel Roggen is a senior research fellow at the
Electronics Laboratory at ETH Zurich. His research
interest include context aware systems and pervasive
and wearable computing, and bio-inspired systems,
with emphasis on adaptive context-recognition algo-
rithms and opportunistic use of sensor networks for
context awareness. He received a master’s degree
in micro-engineering (2001) and a Ph.D. (2005)
from the Swiss Institute of Technology in Lausanne,
Lausanne, Switzerland and is now working at the
Wearable Computing Laboratory at ETH Zurich.

Dr. Paul J.M. Havinga is associate professor in the
Computer Science department at the University of
Twente in the Netherlands, and founder and CTO of
Ambient Systems, in Enschede, the Netherlands. His
research themes have focussed on: wireless sensor
networks, ambient intelligence, distributed systems,
energy-efficient wireless communication, and mobile
computing. The common theme in these areas is on
the development of large-scale, heterogeneous, wire-
less, distributed systems. Research questions cover
architectures, protocols, programming paradigms, al-

gorithms, and applications.
He is project manager of several large international projects, he is involved

as program committee chair, member, and reviewer for many conferences
and workshops, and he regularly serves as independent expert for reviewing
and evaluation of international research projects for the EU, the US, and
international government.
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