Steps Towards a Method for the Formal Modeling of Dynamic
Objects

Roel Wieringa

Department of Mathematics and Computer Science
Vrije Universiteit
De Boelelaan 1081A
1081 HV Amsterdam

uucp: roelw@cs.vu.nl

ABSTRACT

Fragments of a method to formally specify object-oriented models of a
universe of discourse are presented. The task of finding such models is divided into
three subtasks, object classification, event specification, and the specification of the
life cycle of an object. Each of these subtasks is further subdivided, and for each of
the subtasks heuristics are given that can aid the analyst in deciding how to represent
a particular aspect of the real world. The main sources of inspiration are Jackson
System Development, algebraic specification of data- and object types, and alge-
braic specification of processes.
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1. Introduction

1.1. The problem

Conceptual modeling is the process of finding an explicit model of a universe of discourse (UoD).
Other terms used for ‘‘conceptual modeling’ are ‘‘information analysis’ and ‘‘business area
analysis’’. The result of this is a conceptual model (CM) of the current or of desired versions of the
UoD. If the desired versions contain automated systems, the CM of that version of the UoD serves as
an input to the DB design process, in which, among others, a DB schema is defined.

In this paper, we discuss object-oriented conceptual modeling. The defining characteristic of
this kind of modeling is that it produces object-oriented CM’s of a UoD, just as entity-relationship
modeling [17] produces ER models of a UoD and NIAM [48] produces NIAM models of a UoD. In
particular, we discuss the following questions.

1. What is the common core of object-oriented CM’s?
2. How should object-oriented CM’s be specified formally?
3. Which development method is best suited to object-oriented CM’s?

We briefly discuss each of these questions in turn.

First, object-oriented DB research has started as a set of techniques to combine the advantages of
object-oriented languages with database techniques [70]. This has resulted in a number of experi-
mental object-oriented DB systems [6, 21, 29, 40]. Only recently, there are attempts to define a com-
mon core to object-oriented DB’s [2, 70], which converge on concepts like object identifier and the
encapsulation of a local state in an object. These characterizations are not yet formal and many of



their features are not yet generally accepted. Also, they are about object-oriented databases rather
than object-oriented conceptual models. | will give my view on what the common core of object-
oriented CM’s is in section 2 below, and contrast it briefly with object-orientation in the areas of
DB’s.

With regard to the second question, how object-oriented CM’s should be specified formally, the
matter is even more open. The current approaches to formalizing object-oriented models can be clas-
sified as logic-based [7, 36, 69] and algebra-based [20, 23, 24,52,53]. In this paper, | follow the alge-
braic route, based on work done in the past few years [59]. This combines process algebra [8,9, 10]
with the algebraic specification of abstract data types in order to specify dynamic abstract objects.
The CM specification language resulting from this combination is called CMSL. The first version of
CMSL is described in [60]. The second version is described in [64] and will be used for illustrative
purposes in this paper.

The third question concerns the development method best suited for object-oriented CM’s.
Research into this question still has to get off the ground, and it is the main aim of this paper to
develop elements of an object-oriented conceptual modeling method. We use the modeling stage of
Jackson System Development (JSD) to give us clues on tasks and heuristics to be executed during
object-oriented conceptual modeling. However, the representation techniques of JSD are found to be
inadequate, so we use our own techniques, introduced in [59]. In addition, JSD is primarily process-
oriented and has no means to model static structures like generalization and aggregation, and we add
these as elements to the modeling method as well. Integration of these structures in a single CM is
formally defined in [59]. In this way, we hope to make a significant step in the direction of an
object-oriented conceptual modeling method, without claiming to present a final product.

In the next subsection, we give a very brief introduction to JSD, to make plausible that is is a
reasonable starting point for an object-oriented method. It should also be clear that it is a starting
point, not the final answer. Next, section 2 defines our view of object-orientation in the field of con-
ceptual modeling. Sections 4, 5 and 6 then each discuss one aspect of object-oriented conceptual
modeling. In section 7 we make a short remark on the way the different tasks in a modeling method
can be ordered, and section 8 summarizes the paper and discusses topics of current research.

Throughout the paper, we highlight important principles by placing them in boxes. These are
either definitions of concepts, or axioms that limit the kinds of CM we consider, or consequences of
the definitions or axioms previously stated as principles. The definitions and axioms are motivated
by reference to existing CM structures or by logical analysis of the kinds of UoD we want to con-
sider. The reason for calling them principles rather than axioms, definitions or consequences is, first,
that the treatment is not so rigorous that they deserve these names, and second, that they can all be
used to help resolve decisions about what to include in a particular CM and what to exclude from it.

1.2. Jackson system development

JSD divides system development into three major tasks, called the modeling, network and implemen-
tation stage, each of which is divided into a number of steps [15, 32, 54].

1.  The goal of the modeling stage is to build a model of the UoD. Steps to achieve this goal
include finding the entities to be modeled, the actions suffered or performed by these entities,
their possible communications, and their possible life cycles.

2. The goal of the network stage is to define the functions of the IS to be implemented. Where the
modeling stage describes the current UoD, the network stage concentrates on the desired func-
tions of an IS. Steps towards reaching this goal include connecting the model to the UoD and
specifying the reports that the IS is to make to the user, the input the IS requires from the UoD,
and feedback loops from the IS to itself that will automate some of the tasks currently done in
the UoD.

3. The goal of the implementation stage is to produce an implemented system. Steps towards this
goal include mapping of the potentially infinite number of process on a finite number of proces-
sors (usually one), specifying a scheduler to monitor these processes, defining files that will
contain the state vectors of parallel processes, and specifying detailed operations.



This method is object-oriented in a weak sense because it specifies a UoD-oriented model in the
modeling stage. In a stronger sense, it is object-oriented because it builds a model around the concept
of an object (“‘entity’” in JSD), which encapsulates behavior. However, the static entity structures in
JSD are rather weak, and as said before, the representation techniques have certain inadequacies. In
what follows we will therefore take JSD as our starting point, but will pick and choose from it what
we need and combine it with whatever other material that seems suitable.

2. Object-oriented conceptual models

2.1. UoD-orientation

We define the UoD as the set of all actual and possible entities of interest, and a CM of the UoD as
an abstract representation of the UoD. The thing to be noted about this is that

\ CM’s are UoD-oriented. \

Principle 1.

This distinguishes them from data models, which are computer-oriented (albeit at an
implementation-independent level), because they are about data in a computer.

We distinguish two kinds of entities, objects and masses. An object is anything that can be put
in a set. Because we can talk meaningfully about a set of (actual or possible) people, projects, com-
panies, and trees, these entities are objects. Another way of putting this is that objects can be
counted. This does not mean that a set into which an object is put is countable, but simply that it has
a cardinality. This property of objects is important, for counting is an important DB application.

By contrast, an entity e is a mass iff it cannot be counted, i.e. iff it cannot be put into set.
Water, profit, money deposits, weight, gold, and air are all examples of masses. Of masses we can
ask how much of it there is, whereas by contrast, of objects we can ask how many of them there are.

Masses are never represented in DB’s or CM’s. Instead, for every kind of mass about which we
want to represent information, we define a measure, which is a function from masses to discrete
objects [56]. For example, profit is measured in terms of a money unit, weight in a weight unit, etc.
We then represent how many units go into a certain mass, i.e. we represent an abstract object which
represents how much of the mass there is.

2.2. Object-orientation
Because we only represent objects in a CM, we conclude that

all CM’s are object-oriented in the general sense.

Principle 2.

By this we mean that all CM’s represent possible objects and not possible masses. This holds for
hierarchic, network, relational, and semantic models, so the question arises what is distinctive about
the type of model currently called object-oriented. We explain this by using an old philosophical
controversy, concerning the relation between an object and its properties. The common starting point
of this controversy is the fact that objects have properties. The difference of opinion is about whether
there is something, often called a bare particular, which underlies the properties of an object, or
whether an object is just a bundle of properties [38]. A bare particular is not a property, but that to
which a property is attached. Bare particulars can explain that objects may have identical properties
but yet be "numerically different"”, i.e. be counted as different. This is important, because, as we saw,
objects are characterized by the fact that they can be counted. The philosopher Loux [38] argues that
the view of objects as just bundles of properties cannot account for the fact that objects may be indis-
tinguishable (have the same properties) but yet be numerically different. The only way the bundle
theorist could account for this is by assuming that the two object differ in at least one property. But
that would contradict the assumption that the objects are indistinguishable, for indistinguishability
implies identity of properties.



We are not interested in the metaphysical truth of either position, but in the usefulness of each
position for conceptual modeling. Relational models represent objects as bundles of properties, and
so cannot represent the difference of objects which have all their properties identical. Object-
oriented models, in my view, are characterized by the fact that they use globally unique object iden-
tifiers to distinguish numerically different objects. ldentifiers are globally unique, because they must
account for numerical difference of any pair of different objects. They thus function as bare particu-
lars. This is useful for conceptual modeling, because a CM usually abstracts many details of the
UoD. In this abstraction, the difference between the properties of objects may be lost, so that we will
need object identifiers to keep indistinguishable objects apart.

A CM is object-oriented in the strict sense?® iff every object has a globally unique
object identifier.

Principle 3.

Obiject identifiers are not only an old idea from philosophical logic, they are also an old idea in data
modeling. Hall et al. [25] introduced the concept of a surrogate in 1976 and Codd [18] used in is the
system RM/T. Khoshafian and Copeland [35] coined the term “‘object identity’” and summarized the
arguments for it. Since then, the concept is listed as one of the essential elements of object-
orientation [2], but is it sometimes also called ‘‘object identifier.”” We follow this latter practice,
because object identity is a relation between objects and is therefore a less suitable concept.

2.3. Object identifiers

Suppose an object has a proper name n, and that it has the same proper name in all possible states of
the UoD. In technical terms, nis a rigid designator for the object it names [37]. Because the object
has by definition the same identifier in all possible states of the UoD, we can also view n as the name
of the object identifier. However, there is a difference between the two, because the identifier is
defined to be an ingredient of the object, and n is a part of speech that refers to the identifier.

Now additionally assume that all different possible objects have different proper names. Then
there is a 1-1 correspondence between proper names and object identifiers. This creates an even
closer connection between object identifiers and proper names.

Finally, we abstract from the physical nature of the UoD and go to the abstract CM. At that
level of abstraction, we may just as well identify object identifiers and their proper names. So in the
CM, the proper name of an object is an ingredient of the abstract objects living in the CM. This
brings us to Herbrand models and quotient-term algebras as natural candidates for formalization of
the CM. In both kinds of formal models, we use constants (i.e. proper names) as the material out of
which the model is built. Because object identifiers must account for identity and difference of
objects, the concept of equality is all-important in object-oriented CM’s, and we use the algebraic
quotient-term construction in [59].

Obiject identifiers not only account for the numerical difference of objects, they also account for
their persistence through change of properties. It makes sense, in an object-oriented CM, to say that |
am the same person as | was 30 years ago, because | have the same identifier as 30 years ago, though
I may have none of the properties | had back then.

A third property of identifiers is that they have a type. If | want to count objects, | count identif-
iers, but this presupposes that they have a type. For example, a set of three passengers of a bus may
be a set of 1 person, if that person entered the bus three times. With each type come criteria of iden-
tity, which determine when instances of the type are the same or different. Put differently, a query
how many passengers have been on the bus should not answer “*50°’, but *“50 persons’’, or ‘*50
passengers’’, or in general “*50 t*“ for some type t. So every identifier is an instance of at least one

type.

1. We omit this qualification from now on. So ‘‘object-oriented’” without further qualification means “‘object-
oriented in the strict sense’’.



Finally, identifiers may be structured. For example, a set of three person identifiers is itself the
identifier of a higher-order object with properties like average age, maximum age, etc. When a
fourth person identifier is added to this set, a different higher-order object ensues, identified by a set
of 4 identifiers which differs (by set-equality) from the previous one. We make no decision at this
point on the kinds of composition allowed, but we will at least allow that object identifiers can be
composed of other object identifiers.

To sum up, object identifiers have the following tasks.

1. Objects are numerically different iff they have different identifiers.
2. ldentifiers persist through change of properties.

3. An identifier is an instance of at least one type.

4. ldentifiers may be composed of other identifiers.

Principle 4.

Note that at this level of abstraction, object identifiers are not an implementation concept like surro-
gates or Codasyl global database keys. Availability of object identifiers in the specification language
is therefore not an availability of an implementation element in the specification. We will make
object identifiers available in the specification language only subject to the logic of identifiers, sum-
marized in principle 4 below and formalized in the specification language we use for illustration,
CMSL.

It is interesting to compare this with the use of identifiers in programming languages. In pro-
gramming languages, identifiers are names of variables, constants, procedure and function names,
etc. Looking at the use of identifiers as names of variables, we can treat the value of a variable as the
property of an identifier. Following the list of characteristics of identifiers in principle 4, identifiers
in programming languages serve 1. to keep indistinguishable values numerically apart, 2. to preserve
the identity of variables through change of value, 3. are always declared as having a type, and 4. can
be constructed from more primitive identifiers. These are thus fundamental properties of all identif-
iers, in programming languages as well as in CM’s. The important difference between the use of
identifiers in programming languages and in CM’s is that they are usually part of the specification in
the first, but part of the model in the second. By making identifiers semantic, it is possible to gen-
erate infinitely many possible identifiers in the CM, as opposed to a programmer declaring finitely
many identifiers in a program. In this respect, there is a close relationship between pointers in pro-
gramming languages and identifiers in object-oriented CM’s. Pointers generated by a program func-
tion much like identifiers generated in an object-oriented model.

So far, an object has been analyzed to consist of an identifier and a set of properties. We will
not define what properties are in this paper. They include at least attributes like age and name, but
will also include events like move and increase of age and roles like employee and student. In gen-
eral, objects found in the real world are dynamic, and so our CM should be able to represent object
dynamics. That the real world changes is so obvious that it should hardly need to be mentioned.
Because a CM is UoD-oriented, it should also be obvious that objects in a CM should be dynamic.

Many abstract objects, like numbers, strings and Booleans, are not dynamic but live eternally
and unchanging in an abstract world. This, too, should be represented by the CM.

An important principle implicit in the above account of object-orientation is that objects encap-
sulate a state and behavior. This is so to the extent that real-world objects have a state, execute
events, and go through a life-cycle of events independently of other objects. To the extent that there
is a connection between the state and behavior of different objects, encapsulation is transgressed.
The aim of object-oriented modeling is to define precise and limited interfaces of objects through
which they can communicate with other objects.



3. Object-oriented conceptual modeling

After discussing the nature of object-oriented conceptual models, we turn to the process of object-
oriented conceptual modeling. This is an exercise in methodology, construed as the study of
methods. Before we dive deeper into this, we make a few remarks on how to describe methods.

Any CM is an abstraction of a UoD, and we consider only CM’s that are specified linguistically
by a CM schema (CMS, see figure 1).

CMS CM UoD

Figure 1.

We require the CMS to have a formally defined relation to the CM. For example, the CMS may be a
theory in a formal language with the CM as a model, or it may be a formula in a language denoting a
particular element of a model. This is indicated by the black arrow. The dashed line indicates that
the CM is an abstraction of the UoD.

Any development method offers some specification language for the CMS, some set of struc-
tures which can be represented by the CM, and some practical advice about how to proceed from the
initial knowledge of a UoD to a specification of a CM. So we have

(1) method = specification language + model structures + practical advice.

By ’practical advice‘* we mean a set of tasks to be executed, a preferred order of executing these
tasks, and a set of heuristics which give guidelines on how to make decisions when executing these
tasks. Thus,

(2) practical advice = tasks + ordering of tasks + heuristics.

The task ordering is often presented as a linear, total ordering. A task is usually presented as a series
of steps or subtasks, aimed at achieving a certain goal:

(3) task = goal + subtasks.

The breakdown of tasks can be continued down to the level of detail one wants. An important part of
the goal of a task is whether it concerns the current state of the UoD or some possible desired state.

This way of describing methods contains already one important characteristic of object-
orientation, UoD-orientation. Part of what object-oriented methods should contain in addition to this
has already been stated: the CM produced by such a method should contain discrete objects with glo-
bally unique object identifiers. All other properties of objects (attributes, events, constraints, life
cycles) should be specified as properties attached to an object identifier. Only where the UoD itself
has no modular structure, should a CM of the UoD lack a modular structure.

Apart from UoD-orientation and a modular structure organized around object identifiers, there
is a third characteristic of object-oriented development. This is that our specification of objects pre-
cedes the specification of the functions of the information system that will be implemented. As
Booch [12] rightly remarks, functional decomposition of a problem emphasizes algorithmic abstrac-
tions and is silent about the agents that suffer or perform the actions specified in the algorithms.
Moreover, | would add that functional decomposition is oriented towards implementation, which is
where the algorithms will be made to live, rather than towards the UoD, which is where the objects
live. Even where there is an overlap between the UoD and the implementation, such as in the imple-
mentation of a clock in a UoD, the difference between implementation-orientation and UoD-
orientation remains, and remains important.



If these are the characteristics of object-oriented modeling, what are the reasons why one should
follow such a method (assuming such a method has been specified)? Each of the three characteristics
contains reasons for choosing an object-oriented method. First, UoD-orientation allows the analyst
to get sufficient knowledge of the UoD to avoid serious errors in a later stage of development. This
is received wisdom from structured analysis methods [19]. Second, object-orientation in the strict
sense allows one to represent indistinguishable objects, object dynamics, object classification, and
complex and higher-order objects in a natural way. (See principle 4 and [59] for an elaboration of
these points.) Moreover, as Booch remarks, concentrating on the objects underlying the processes in
the UoD provides one with a natural principle of modularization of the software to be implemented.
Third, putting model specification before function specification results in a more stable IS. This is
one of the main motivations behind Jackson System Development (JSD) [14,32]. The functions of
an IS change as fast as the requirements or even the desires of its users, and are therefore not a solid
base on which to build an IS. A model of the UoD, on the other hand, is as stable as it should be and,
if it represents all the relevant facts about the UoD, can serve as a basis upon which to implement a
variety of functions not thought of during modeling. This does not mean that the UoD never changes,
but it does mean that we assume that the UoD changes less frequently than the functions of the infor-
mation system.

In the following three sections, we use the modeling stage of JSD to define fragments of an
object-oriented modeling method. The JSD modeling stage is subdivided into a number of steps, in
which the relevant actions in the UoD are specified, the entities suffering or performing these actions
are specified, and the actions of an entity are composed into the life cycle of the entity. We call these
steps object classification, event specification, and process specification. Each of these is discussed
in a section. At the end of each section, we summarize the semantic structures specified in the step,
give an example of a specification of these structures in CMSL, and summarize the tasks and heuris-
tics required to produce this specification.

4. Object classification

4.1. Objects

We already encountered two principles that can guide one in deciding which objects there are in the
UoD. The first principle is that the world is partitioned into two kinds of entities, masses and objects.
These can be distinguished in two ways, viz.

1. objects are discrete, and
2. splitting or merging a mass yields a mass of the same type.

Principle 5.

We simply assume here that these two criteria are equivalent. “*Splitability’” implies non-
discreteness, and non-discreteness implies “‘splitability.”” This is a simplifying assumption, and in
the future we plan to look closer into this matter.

The second principle we already encountered is that

all objects have a globally unique identifier. \

Principle 6.

These principles are used in JSD to decide what are the JSD entities (i.e. objects) in the UoD. Jack-
son [32, p. 66] says that a JSD entity must be capable of being regarded as an individual, and, if there
is more than one entity of a type, of being uniquely named.

4.2. Types

To distinguish objects in the UoD is to distinguish classes of objects. To point at an object (which is
what an object identifier does) is to point at an instance of one or more classes of objects, e.g. an
employee, car, chair, bank account, etc. We start by fixing some terminology concerning classes, and
we do this by borrowing some distinctions made in philosophy. The distinction between classes and



instances has kept philosophers busy since Aristotle [16, 39, 38,68]. This has led to a different termi-
nology than we are used in computer science, but the distinctions can be immediately applied to con-
ceptual modeling. What is called a type in computer science is called a universal in philosophy, and
what is called an object in this paper, comes close to what is called a particular in philosophy.
(Object identifiers correspond to bare particulars.) Universals or types have the following two
characteristics [68, p. 65].

1. First, a type is distinguished from a particular by the fact that it can be predicated of things.
For example, red is a type because we can say (truly or falsely) of something that it is red.
Anything of which a type t can be predicated is called an instance or exemplar or example or
case of 1. A type may be an instance of another type. For example, red is an instance of
color. The characteristic of types is that they have instances, i.e. can be predicated of things.
The characteristic of particulars is that they have no instances, i.e. cannot be predicated of any-
thing. For example, Amsterdam cannot be predicated of anything; it is just itself.
Apparently, instantiation is a hierarchy, in which at each level, a type can be instantiated as
lower-level types, and in which the bottom level consists of particulars.

2. Second, a type can be predicated of many things. S0 being Amsterdam is not a type,
because it can be predicated of only one thing, Amsterdam. A type should represent what is
common to many cases, not what is peculiar to only one particular.

We transfer this to the context of conceptual modeling by reading ‘‘object’ for “‘particular’”. So
objects are the bottom-level of the instantiation hierarchy. We furthermore assume that each object is
an instance of at least one type. Because there is a 1-1 correspondence between objects and object
identifiers, this means that each object identifier is an instance of at least one type, as was already
stated in principle 4. Assuming the instantiation relation as an unexplained primitive, we have that

object identifiers are distinguished from types in that they have no instances.

Principle 7.

On the other hand, types themselves may be instances of higher-order types. A type which is an
instance of a higher-order type is called a generic entity in JSD [32, p. 72]. For example, in an inven-
tory database we may represent the number of widgets in store as a generic entity WIDGET with an
attribute number. We may run into problems if we want to integrate this database with a quality
control application, which represents particular widgets with attribute serial-number (cf. [34, p.
2-3]). The problem is that WIDGET is really a type in one database and an instance in the other, and
that no means has been provided to treat a type as an instance of a higher-order type.

The concept of a type is intensional, because it concerns the common features of a large set of
cases. We define a class to be the extension of a type, which is the set of all possible instances of a
type, whether or not they exist. The set of instances existing in a particular state of the UoD is called
the existence set of a type in that UoD state.

4.3. Structured identifiers

Principle 4 mentions one more task of identifiers, that of representing structural relations between
objects. As a matter of fact, WIDGET is an example of an identifier composed of other identifiers
through the instance-of relation. Another example is the set of employees in a department. Let
p1, ..., Pn be the object identifiers of employees in a department, then the set {p4, ..., pn} identifies,
is the identifier of, the object consisting of these employees. This higher-order object may have attri-
butes average-age, max-salary, and dept. (Since all elements of the set by definition
have the same department, this is a collective attribute.) In JSD, such an entity is called a collective
entity [32, p. 72]. In CMSL, this is generalized to the concept of structured identifier, which is an
identifier related to component identifiers of another type through any valid data type constructor
(e.g. a set constructor, or a tuple or string constructor, etc.). An object with a structured identifier is
also called a higher-order object.

Usually, one would want to require that the components of the identifier of an existing higher-
order object themselves exist. We will not go into the topic of existence constraints here, because



that would require a paper in itself.

Structured and unstructured identifiers can both be used as attribute values. An employees
attribute of departments, whose value holds the identifiers of the employees currently in the depart-
ment, has a structured identifier as value. An object with a structured identifier as possible attribute
values is called a complex object in CMSL.

4.4. Natural kinds and roles

All instances of a type share a common structure. This common structure is laid down, for example,
in the definition of the type, as the set of applicable attributes or events or as the set of constraints
applicable to these attributes or events. In this way, we deal with the infinite by finite means. The
set of possible objects is usually infinite, and the set of all possible properties of each object is usually
infinite as well. The only way the human mind can deal with this is to state finite generalizations
about these infinite sets.?

There are three important properties of classifications. First, each class should be natural. This
is often expressed by saying that a (natural) class should "divide at the joints", or that the chance of
finding generalizations that are true of all and only the instances of a natural class is large [45, pp.
465 ff.]. We express this by saying that

a natural class is the largest set of instances about which a set of empirical generaliza-
tions are true.

Principle 8.

For example the set of persons, in a particular CM of a UoD, may be the largest set of instances that
have a name and have an age under 120. That this is a natural class appears from the fact that a lot of
other generalizations are also true of this class. For example, they are also the largest set of instances
with an address, a birthplace, a country of origin and a nationality, and there is a systematic relation
between the birthplace and the country of origin.

The second important property of natural classes is that they exist in ““nature’” as the informa-
tion analyst finds it, i.e. in the UoD. They are not invented by the information analyst, and he or she
can be wrong about the definition of a natural class. This is so even if the classes are artificial, like
the class of vehicles, cars, buildings or companies. As far as the information analyst is concerned, it
is a fact of nature that these classes exist in the UoD.3

The third and final property of natural classes is that they are either essential or contingent. By
saying that a natural class is essential we mean that an object that is an instance of the class, is an
instance of the class in all possible states of the UoD. This means that the common structure associ-
ated with the class is an essential feature of instances of the class. An object that is an instance of the
class cannot exist without displaying those features. For example, a person cannot exist without
being a person, so the class of persons is essential. Other examples of essential classes are the class
of houses, cars, vehicles, etc.

By saying that a natural class is contingent we mean that an object that is an instance of the
class, may, in other states of the UoD, fail to be an instance of that class. So an object that is an
instance of such a class can exist without being an instance of that class. For example, a student may
exist without being a student, so the class of students is contingent. Other examples are employees,
OWnNErs, SPouses, etc.

Essential natural classes are called natural kinds in the philosophical literature [49,51], and we

2. This is in general the reason for classifying the objects in a UoD. For example, of the six different purposes of
biological classification listed by Warburton [55], the specification of classes about which we can make empirical
generalizations is the primary one. In biology, the situation is compounded by the fact that classes are also used
as units of evolution, and that as such their elements need not share a common structure. Instead, they behave as
a unit reproductively. See for example [22, 27, 30, 31].

3. This contrasts with Schwartz [50], who calls artificial classes nominal kinds. He takes the standpoint of a sub-
ject living in the UoD, not of a supposedly objective analyst outside the UoD.



will use that term here as well. So

an instance of a natural kind cannot exist without being an instance of that kind.

Principle 9.

Because any object has at least one type, we conclude that any object has at least one natural kind
which it is an instance of.

We will call contingent classes roles, and an instance of a role is said to play the role. So we
have that

a role instance can exist without playing that role.

Principle 10.

For each role there should be events which cause an object to start playing the role and/or to stop
playing it. This shows also that each object playing a role should be of a natural kind, for otherwise it
could not exist without playing that role. Remember that any object that possibly exists is an instance
of at least one natural kind. This means that each role must be a subclass of at least one natural kind,
which is the kind of objects able to play that role. For example, the student role is a subclass of the
natural kind of persons. Furthermore, a natural kind cannot be a subclass of a role. Otherwise, an
instance of the role could not exist without being an instance of the role, contradicting principle 10.
For example, it would be contradictory for the natural kind PERSON to be subclass of the class
SPOUSE, for then all persons could not exist without being spouses.

1. A role must be a subclass of at least one natural kind.
2. No natural kind is a subclass of a role.

Principle 11.

A detailed discussion of the constraints on the relations between natural kinds and roles is given in
[59]. The formalization of natural kinds and roles given there is briefly summarized in section 5.5.
below.

The concept of a role has surfaced several times in data modeling research, but often with
meanings unrelated to the one in which we use it here. The closest comes the role concept of Bach-
man & Daya [3], who define a role as a behavior pattern that may be assumed by entities of different
kinds. They define essential roles as we defined natural Kinds, i.e. an entity of such a type cannot
exist without being of that type [3, p. 466]. They also allow roles that have more than one natural
kind as supertype. Unfortunately, their treatment takes place in the context of Codasyl-like data-
bases, and therefore uses a number of structures, like segments and records, that do not belong in
CM’s.

Cameron [15, p. 226] uses the concept of role in the loose sense that any object executing
several processes in parallel is thereby executing several roles. This is not the way we use *’role*
here. Jackson [32, p. 71] mentions the concept of role in roughly the sense we use it here, and
excludes it from JSD. So if objects of natural kind person can play the role of reader (of the Daily
Racket newspaper), then we must model either readers or persons as "natural kind". If a person can
play the role of student first and of teacher later, then we must model this in JSD as two objects of
two different natural kinds. This means that in JSD we lose information concerning the identity of
the person who first is a student and later a teacher.

45, Attributes

Just as the classes that an object has at a particular moment are either essential or contingent, the
structures that the object has at any moment are either essential or contingent. An object has a struc-
ture essentially if it cannot exist without having that structure, otherwise it has the structure con-
tingently.

All essential structure of an object is expressed by means of its object identifier. For example,



the structured identifier {p1, ..., po} is an essential structure; it cannot exist and be composed dif-
ferently than it is. In any state of the UoD, {p1, ..., pn} has elements p4, ..., pn, and a similar truth
holds for structured identifiers composed in other ways than by the set constructor.

Contingent structures may differ in different states of the UoD, and are represented by attribute
values. For example, the set of employees in a department, the age of a person, the contents of an
order, etc. are represented by attribute values. This is most naturally formalized by attributes as func-
tions. Thus, we could have

emps : DEPT -> PERSONS
age : PERSON -> NAT
max-age : PERSONS -> NAT,

where DEPT is the type of department identifiers, PERSON the type of person identifiers, PER-
SONS the type of finite sets of person identifiers, and NAT the type of natural numbers.

4.6. Specification language and semantic structures

We now summarize the results of this section by showing how the semantic structures discussed so
far can be specified in CMSL and how these specifications can be given a formal semantics. The
version of CMSL we use is defined in [59]. As an example, we give a fragment of a CMSL specifi-
cation of Jackson’s Daily Racket example of [32].

object spec PersonAttributes
import
PersonlIds, Names, Addresses
identifier sorts

PERSON

attributes
name : PERSON -> NAME
address : PERSON -> ADDRESS

end spec PersonAttributes

object spec ReaderAttributes
import
Persons, Booleans, SetsOfSubscriptions
roles
READER < PERSON
attributes
subscriptions : READER -> SUBSCRIPTIONS
end spec Readers

Before going into syntactic and semantic details, we represent the semantic structures specified in the
example by the graph in figure 2. The top part of figure 2 forms a very simple aggregation hierarchy,
in which persons are represented as an aggregation of names and addresses. In general, the aggrega-
tion graph is bigger. For example, in the full specification, ADDRESS is the type of identifiers of
address objects, with attributes like zip-code and city. The aggregation "hierarchy" may be
any directed graph and can contain cycles.

The unlabeled arrow in figure 2 represents the identity function. It says, in effect, that readers
form a subclass of persons. The unlabeled arrows and their endpoints jointly form a taxonomic
hierarchy, which is a directed graph containing no cycles. The graph of the taxonomic hierarchy may
be separated from the aggregation hierarchy to enhance readability.

Finally, roles are always drawn as dashed boxes, to emphasize their ephemeral nature. To
increase the information content of the diagram, one can introduce more special edges. For example,
the type SUBSCRIPTION would be added in some stage, and have a special edge connecting it with
SUBSCRIPTIONS which represented the special element-of relationship with it. We do not
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pursue this further here, because in general there will be semantic information that cannot be
represented in a graph but must be represented linguistically (such as the constraint that a reader
should have an age above 18). We now briefly summarize some syntactic and semantic points about
PersonAttributes specification.

In PersonAttributes, we import three specifications supposed to have been made else-
where. PersonIds specifies the type PERSON of person identifiers

p0, pl, p2, p3,
It also defines a function
eq : PERSON x PERSON -> BOOL

which tests for equality of two person identifiers. PersonIds and Names specify the abstract
data types of person identifiers and letter strings. Addresses specifies an abstract object type,
just as PersonAttributes does. Among other things, Addresses declares ADDRESS to be
the type of address identifiers.

In PersonAttributes, the type PERSON is declared to supply the identifiers for persons.
Each person has two attributes, name and address.

A simple way to think of the formal semantics of PersonAttributes is to think of each
person as having a set of possible states, such as

(p1l, (name: "John", address: als)).

We call this a version of the person identified by p1. In this version of p1, the person is called
"John" and has the address which is identified by a15. The set of all versions identified by p1 is
called the object identified by p1, and the set of all objects identified by identifiers of type PER-
SON is the class of person objects. Thus, each person object is identified by a globally unique iden-
tifier (principle 6). This class is a natural kind, for if an object is a person, it is necessarily (in all
states of the UoD) a person (principle 9) and it is subject to all generalizations applicable to persons
(principle 8). The only generalization specified in PersonAttributes is that all persons have a
name and address attribute. CMSL admits the specification of local and global integrity con-
straints as well, which limit the allowable versions of a single object or a set of objects, respectively.
These constraints are also generalizations that are true of all instances of a class.

Readers declares the role READER for persons and declares the set of subscriptions held by
the reader. Each subscription is assumed to be modeled as an object with an identifier of type SUB-
SCRIPTION, and SUBSCRIPTIONS is the type of finite sets of subscription identifiers. The nota-
tion



READER < PERSON

means that the class of readers is at all times contained in the class of persons, but it allows for states
in which there is an empty class of readers. READER is a role, and the name is introduced in the
roles section of an object specification.

The formal semantics of the Readers specification can be viewed as an extension of the
PersonAttributes semantics. In addition to the class PERSON, we have the class READER
with elements like

(p1, (name: "John", address: al5, subscriptions:
{s1, ..., sn}),
where s1, ..., sn are subscription identifiers.

As said before, we will not go into the subject of existence and existence constraints, because
this tends to be quite complex. Suffice it to say that there is a mechanism for representing existence
in CMSL, and for expressing existence constraints.

4.7. Tasksand heuristics in the object classification step

Table 1 lists the tasks discernible in the object classification step, independently from the conceptual
modeling language used.

Task Heuristics
1. Find the natural kinds of object identif- | Decisions to be made are the distinction of
iers. objects from masses (principle 5), finding

the objects that themselves have no in-
stances (principle 7), and distinguishing na-
tural kinds from roles (principles 8 and 9).

2. Find the roles that objects can play. Decisions to be made are whether an object
can exist without playing a role (principle
10) and which kind of object can play that
role (principle 11).

3. Find the attributes of natural kind- and | No heuristics have been given for this.

role instances.

4. Find structural relations between object | No heuristics have been given for this.
identifiers.
5. Find integrity constraints for natural | Not treated in this paper.
kinds and roles.

Table 1. Tasks and heuristics for the object classification step.

Task 5 includes finding the taxonomic relations between the natural kinds and roles discovered in
tasks 1 and 2. The order of tasks given in the table is not necessarily the order in which they should
be executed. It is hard to give any other heuristic on this than “‘start with the easiest, continue to the
complex, and finish when ready’’. Which task in the object classification step is actually the easiest
in a given UoD for a particular analyst, and therefore the best one to start with, depends upon the
UoD as well as the analyst (and possibly on the people he or she talks with as well). We return to
task ordering briefly in section 7.

5. Event specification

The classification of the UoD in natural kinds, the internal structure of object identifiers, the attri-
butes defined for natural kinds, the constraints defined for natural kinds, and the taxonomic structure
of natural kinds and roles are not subject to change. On the other hand, the classification of the UoD
into roles currently played by an object, and the attribute values it currently has, depend on the state
of the UoD and are subject to change. We need events to model these changes. In general, there are
two kinds of events, change of role (including starting or stopping to play a role) and change of



attribute value. We will specify events formally, using results from research in process algebra
[8,9,10,46,47]. In all these algebras, as well as in JSD, we abstract from the initiative of an event.
Thus, when we say an object executes an event, we mean that it performs or suffers the event. For
example, depositing an amount of money may be modeled as an event in the life of a bank account,
even though it does not take the initiative to the event. The concept of initiative has not yet been for-
malized in process theory, but initial studies [44, 61] show that there are interesting connection with
concepts like invisible actions in process algebra and responsibility in deontic logic.

Abstracting from initiative, there are two important conceptual issues to be resolved, the locali-
zation of an event in conceptual “‘space’’ filled by all possible objects and the atomicity of an event
in time.

5.1. Locality and the frame assumption

Events are executed by objects, and objects are identified by identifiers. We must therefore localize
an event execution by tying it to an object identifier. Because events are coupled to state changes, we
will first elaborate a bit on the state of an object.

The concept of a state has been extensively studied in the references on process algebra men-
tioned above, and turns out to be closely related to the concept of an observation. By an observation
of object 0, by object 0, we mean an interaction between the two objects. We abstract from the
asymmetry in observations and consider it to be a symmetric event, i.e. each observation is mutual.

Now, any property that an object currently has, which makes no difference at all for any current
or possible future observation of the object, is apparently not relevant for its current or future observ-
able behavior. If it were relevant, then it would make a difference for current or future possible
observations. The concept of state in process algebra is based on this idea. The state of an object is,
roughly, the set of all possible current and future observations that can be made of the object. So to
ask which state an object is in, is equivalent, in a sense formalized in process algebra, to asking
which observations can be made of the object in the future by any other object.

Formal details of this can be found in the literature listed above, especially [46]. Here, we
assume that the role(s) an object is playing are observable, and its attribute values as well. This
means that these are part of the state of an object. It does not mean that the attribute values and
role(s) of an object are visible to all objects. But it does mean that there is at least one object that
could possibly observe these things. The user of a database system is usually one such object, and
there may be more, that reside in the database system.

Now, when we observe an object, we observe an object identified by a unique identifier. Since
states are defined in terms of observations, the first general principle to be gleaned from this is that
states are local:

the state of an object is tied to an object identifier. \

Principle 12.

An event may change the state of an object, but it should go without saying that it cannot change the
identity of the object executing it. This was already formulated in principle 4, where it is stated that
an identifier persists unchanged through all changes. It is because of this principle that we can talk of
““the object executing the event’’.

If an event changes the state of an object, it may do so nondeterministically. That is, execution
of the event may lead to any one out of a set of possible next states. We limit nondeterminism to the
extent that we require events to be functions on the attribute values of an object, leaving nondeter-
minism to processes in section 6 below. So when event e is executed by an object with attribute a,
then after this execution a will have a definite value, and not a set of possible values. So

each event is a function on attribute values.

Principle 13.
There is a connection between state changes and events, which runs as follows. Obviously, when an



object changes its state, it executes an event. (We abstract from the initiative of the event.) The con-
verse is not necessarily true: when an object executes an event, then it may remain in the same state.
However, if the event executed by the object is observed by another object, then the observer will
change its state, so that we can still say that something happened. In general, each event occurrence
will cause a state change somewhere in the universe, either in the object executing the event, or else-
where in an observer. When there is no state change anywhere in the UoD, then we will say that
there is no event occurrence anywhere in the UoD.

Because states are local (principle 12), state changes are local. Because any state change is an
event execution, this means that event executions are local.

\ An event execution by a single object is local.

Principle 14.
This parallels locality of object state.

Saying that a state is localized by object identifier p implies nothing about the state of other
objects in the universe. Similarly, saying that p executes e and thereby changes its state, says nothing
about the rest of the universe. However, to determine the effect of an event, we must convert this in a
positive statement, viz. that execution of a local event implies that there is no change in the rest of the
universe. This consequence is so important that we state it as a separate principle, called the global
frame assumption.

A local event changes no state in the universe except the local state of the object execut-
ing the event.

Principle 15.

Having tied event executions to objects, we can tie the events themselves to object classes. For
example, if inc-age (p) is executed by person p, then inc-age is declared to be applicable to
all possible persons. By doing this, we assume a great measure of regularity in the universe.
Theoretically, it is possible that each object has a repertoire of possible events that differs from the
repertoire of events of any other object, including other instances of the same class. If we look
around us we see that this is, in fact, not the case and this justifies the the assumption that that

each local event is declared for a natural class and can be executed by all instances of
the class for which it is declared.

Principle 16.
This is again an example of how to use classification to describe the infinite by finite means.

5.2. Atomicity of events

An important heuristic given by JSD for finding events is that they must occur in the UoD, not in the
system to be implemented [32, p. 65]. This follows from our Principle 1. The only other heuristic
given in JSD is that an event is atomic, by which two things are meant,

1.  events do not persist over a period of time and
2. events are not composed of subevents.

Atomicity of events with respect to time is a feature shared with process algebra. If a duration should
be modeled, we should model the start and end of the duration as two distinct, atomic events. Atomi-
city with respect to other events however, cannot be maintained, for global events will be modeled
below as a composition of local events. We can improve on the notion of atomicity as given by Jack-
son by noting, with Borgers [13], that what is meant is really that an event is a unit of integrity
preservation. At one place, Cameron [15 p. 227-278] does this too. This means that an event is sim-
ply a function on the admissible states of the CM, where an admissible state is one that satisfies the
integrity constraints. For technical reasons, and because we largely ignore integrity constraints in this
paper, we will refer to possible CM states rather than admissible CM states. The principle of event



atomicity then becomes that

an event execution has no intermediary states.

Principle 17.

This implies that an event is atomic in time, as said before, and that even if an event is composed of
subevents, this composite event should still have no intermediary states. In the next section, we dis-
cuss global events, which are composed of different local events performed or suffered by different
objects, and which realize communication between objects. Even though a global event consists of
subevents, it still is atomic in the above sense.

5.3. Communication

Communication between objects is modeled in JSD as the execution of common actions by two
objects. For example, in Jackson’s Widget warehouse example [32], placing an order is an event
shared by a customer and an order object, and this is indicated in JSD by specifying the place
event to occur in the life of an ORDER as well as in the life of a CUSTOMER. In other words, com-
munication in JSD is synchronous and is specified by event-sharing, as in CSP [28]. We look at each
of these two points in turn.

First, synchronous communication is the joint execution of an event by two or more processes.
The JSD representation of communication is inconsistent in this respect, for it requires a datastream
between communicating processes, as illustrated in figure 3.

CUSTOMER @ ORDER

Figure 3.

A datastream is a buffer connected to two processes, a reader and a writer, and transmits the data it
receives from the writer to the reader in the order it has received them. In other words, it represents
asynchronous communication. This not only contradicts synchronicity, it also runs counter to the
idea of communication through shared atomic actions. All events, including communication events,
should be atomic. When the processes participating in a communication execute their part of the
communication at different times, then the system may be in an inconsistent state when part of the
communication is executed, but not all of it [cf. 13]. We will therefore model the communication
network in a different way, that respects synchronicity, by modeling datastreams as explicit objects,
which communicate with other processes synchronously.

Before we do that, we look at the specification of communication. Instead of specifying this by
event-sharing, as is done in JSD, we will specify it by encapsulation and a communication function.
JSD follows CSP [28] in using event-sharing, and we follow ACP [5, 8,9, 10] instead, which itself is
a generalization of the way communication is specified in CCS [46,47]. Briefly, the idea is that if
event e; must communicate with e,, then we specify that

e, | e, =eg,

meaning that ez is an event consisting of the synchronous execution of e; and e,. ej is still atomic,
because it has no intermediate states. | is called the communication function in ACP.

Next to specifying the communication function, we encapsulate e; and e, by renaming them to
the deadlock event. This means that any attempt to execute either of them without the other will
deadlock. (‘“Encapsulation’” here means “‘shielding from the environment, preventing it from occur-
ring except as part of a communication.”” This differs from the usual meaning of “‘encapsulation’” in
object-oriented specification, where it means “*locality of states and events.””)

This way of specifying communication has the advantage over CSP that we can be selective in
the communication partners, and it has the advantage over CCS that we can specify communication



between events that are not all encapsulated. In CSP, any set of processes that share the event e must
synchronize on that event, and this may not always be what we want. In CCS, all participating events
in a communication are encapsulated, and this may be too strong a demand as well. For example, an
inc-salary event executed by an employee may or may not synchronize with a inc-rank
event executed by the same employee, but the inc-rank event, if it occurs, must synchronize with
inc-salary. Inthatcase, inc-rank isencapsulated but inc-salary is not, and we have

inc-rank | inc-salary = promote

We will call encapsulated events messages. Both encapsulation and communication take place at two
levels, local (in the process executed by a single object) and global (in the process executed by the
CM). A local message is an event that cannot occur, except when executed synchronously with
another event by the same object. A global message is an event that cannot occur, except when exe-
cuted synchronously with another event by a different object. Similarly, a communication is called
local if it consists of events all executed by the same object, and it is called global if it consists of
events all executed by different objects. A communication is either local or global, but we allow glo-
bal communications in which participating events are themselves local communications.

We assume the following three principles for communications. First, we assume that events
executed by a single object cannot synchronize, except when explicitly specified:

by default, the events executed by a single object are mutually exclusive.

Principle 18.

This means that all local communications must be explicitly specified, and that any local synchroni-
zation not specified cannot occur. Across different objects, this principle is reversed:

By default, any set of non-message events executed by a different objects can synchron-
ize.

Principle 19.

This means that only global communications for global messages need to be specified. All other syn-
chronous occurrence can occur anyway, by principle 19. Finally, we assume that the effect of a com-
munication on the object(s) executing it, is a direct sum of the effects of its participating events.

The effect of a communication, executed by different objects, on the object(s) executing
it is equal to the effect of the participating events on those object(s).

Principle 19.

For a global communication, this combines neatly with the modularity of objects, because the events
executed by the different objects are local and therefore do not interfere. In the case of a local com-
munication, we must be more careful, because the events participating in the communication may
very well specify mutually inconsistent updates to the same attributes.

5.4. Specification language and semantic structures

We can extend the example of section 4.6 with events as follows. An informal explanation follows
the example.

object spec PersonEvents
import
PersonAttributes
events
change-address : PERSON x ADDRESS -> PERSON
variables
p : PERSON
a : ADDRESS



local event constraints
[LEC1] address(change-address(p, a)) = a
end spec PersonEvents

object spec ReaderEvents
import
ReaderAttributes
events
subscribe : PERSON x SUBSCRIPTION -> READER global message
superscribe : READER x SUBSCRIPTION -> READER global message

enter : READER x SUBSCRIPTION -> READER global message
win : READER -> READER global message
variables

p : PERSON
s : SUBSCRIPTION
local event constraints
[LEC1] subscriptions (subscribe(p, s)) = {s}
[LEC2] subscriptions (superscribe(p, s)) = subscriptions(p) + {s}
end spec ReaderEvents

conceptual model spec DailyRacket

import

ReaderEvents, Panels, Mailboxes
variables

pp : PANEL

p : PERSON

S : SUBSCRIPTION

m : MAILBOX

global communications
[GC1] create-SUBSCRIPTION (db) | subscribe (p, s)
[GC2] create-SUBSCRIPTION (db) | superscribe(p, s)
[GC3] award(pp, s) | win(p)
[Gc4] enter(p, s) | receive(m, s)
end spec DailyRacket

PersonEvents declares one event for persons, whose effect on the attribute values of the person
executing it is constrained by equation [LEC1]. The event constraints must be supplemented by
the local frame assumption that attributes about which nothing can be inferred are not changed by the
event. In the formal semantics, we view change-address (p, a) as a function on person ver-
sions with the following effect:

(p, (name: n, address: a’)) — (p, {(name: n, address: a)).

In ReaderEvents, we see that each person can subscribe to the Daily Racket, and thereby starts
playing the role of READER. A person may enter as many subscriptions as he or she wants, so there
is also a reader event we call superscribe, that increases the set of subscriptions the readers
already has. Each reader may submit an entry for a competition, which he or she can win. Entry is
per subscription, so readers with multiple subscriptions may submit multiple entries, one per sub-
scription.

In the conceptual model specification DailyRacket, we import the relevant object specifi-
cations and add global information, such as global communication specification. In the example, we
do not care to give a name to the specified global communications. To give a name to the global
communication [GC4], we would add the event declaration

send : READER x MAILBOX x SUBSCRIPTION -> READER x MAILBOX



and replace [GC4] by
[GC4’] enter(p, s) | receive(m, s) = send(p, m, s)

The communication structure of the CM can be represented by a communication diagram, as illus-
trated in figure 4.

p : PERSON win (p) award (pp, S) pp : PANEL

Figure 4.

A communication diagram is a labeled undirected graph with two kinds of nodes, circles and boxes.
The boxes in a communication diagram represent particular objects of a natural kind or playing a
role. The circles represent n-ary communication events, where n is the number of incident edges on
the circle as well as the number of participating events. Each edge is labeled by the name of the
event participating in the communication. If the communication has a hame, we can expand the cir-
cle and write the name in it.

Note the difference of communication diagrams with datastream diagrams. Datastream
diagrams are directed graphs, and the circles represent buffers, not events. By contrast, communica-
tion diagrams are undirected graphs, and the circles represent communication events. If the commun-
ication represented in figure 4 should be asynchronous, then a mailbox object should be introduced
with which persons and panels communicate synchronously.

5.5. Tasks and heuristics

Most of the principles for modeling events have been built into CMSL, so that it is impossible to
violate them when specifying CM’s in CMSL. Others can be useful as heuristics for finding a model,
as indicated in the following table. There are some heuristics we have not discussed. First, natural
classes form a taxonomic structure, in which attributes as well as events are inherited from superc-
lasses to subclasses. We do not discuss taxonomies and inheritance in this paper. (They are treated
in detail in [59].) Suffice it to say that attributes and events are both required to have globally unique
names, and are inherited by all sub—classes of a class. There is one exception to this, role changes
are not inherited at all. If e is the event in which a person starts playing the role of a student, then it
makes no sense to make this event applicable to all subclasses of persons. For example, the class of
students is a subclass of the class of persons, and does not inherit e. At the moment, we have not yet
been able to formulate a general rule for role-change inheritance that cannot be violated by a valid
counterexample. We therefore provisionally use the rule that role changes are not inherited at all.

Secondly, having formally specified communications, we may be able to prove freedom of
deadlock for particular specifications. For examples of such proofs, we refer to the literature on pro-
cess algebra [e.g. 4]. This can lead to improvements of the process specification. Deadlock elimina-
tion is the formal pendant of the elimination of ordering clashes in JSD, in which a conflict in the
sequence of events in communicating processes is eliminated [cf.32, p. 231].

Thirdly, event preconditions are not discussed in this paper. These are sets of equations which
specify when an event can be executed. If the equations are false, then the event cannot be executed.
They may be defined for local as well as global events, and can be used to preserve local and global
integrity constraints. CMSL provides a logic for proving constraint invariance under event precondi-
tions.

Jackson [32] and Sutcliffe [54] give a number of more pragmatic heuristics to discover actions.
One may for example look for verbs (“‘borrow’’, ““cancel’”) and nouns (‘‘cancellation’’, “‘delivery’”)
in UoD descriptions. Synonyms must be reduced to one verb or noun, and system output events, or
events required to execute a function of the system, must be eliminated again. All of this follows

from principle 1 and the language we use. Since the language we use is a contingent matter, we did



Task Heuristics

1. Define local events for each natural class. | Events take place in the UoD (principle 1),
are atomic (principle 17), take place when
the local state of an object is changed (prin-
ciples 12, 15), and are declared for all in-
stances of a natural class (principle 16).

2. Define role changes. Each role must be playable. There must
thus be an event which causes an object to
play a role.

3. Define the effect of each event on the | A local event is a function on the possible

state of its subject. states of its object (principle 13). The effect

of a communication event is equal to that of
its participating events (principle 20).

4. Define the messages. A local message cannot occur, except when
synchronized with another event executed
by the same object. A global message can-
not occur, except when synchronized with
another event executed by a different object.
5. Specify communications. A local communication is equal to a set of
local events executed by the same object, a
global communication is equal to a set of lo-
cal events, each executed by a different ob-

ject.
6. Check for possibility of deadlock. Not treated in this paper.
7. Specify event preconditions. Not treated in this paper.

Table 2. Tasks and heuristics for the event specification step.

not bother to elevate considerations related to it to heuristic principles. (In Chinese, for example, the
distinction between nouns and verbs is not so clear-cut as in English. But information systems are
developed in China.)

6. Process specification

So far, we have specified objects and their attributes, and the events which may change the attribute
values of an object. We now come to the heartland of JSD, the specification of the life-cycle an
object goes through from birth to death. We immediately go to the specification and semantic struc-
tures of object life cycles, and formulate principles afterwards.

6.1. Specification and semantic structures

To specify the life cycle of the persons and readers of our example in CMSL, we extend
ReaderEvents as follows.

object spec PersonAndReaderProcess

import
ReaderEvents, ProcessAlgebra

process
[P1] PERSON = CHANGE-ADDRESS || subscribe
[P2] CHANGE-ADDRESS = change-address . CHANGE-ADDRESS
[P3] READER = CHANGE-ADDRESS || ENTER || SUPERSCRIBE || win
[P4] ENTER = enter . ENTER
[P5] SUPERSCRIBE = (superscribe . ENTER ) || _SUPERSCRIBE

end spec PersonAndReaderProcess



This specification imports a specification ProcessAlgebra, that declares the events of persons
and readers as constants of type EVENT. Thus, we must customize the ProcessAlgebra specif-
ication to the repertoire of events of the objects whose life cycle we want to specify. Proces-
sAlgebra also specifies operators to combine events into processes. Some of these operators are
+ for choice, . for sequential composition, and | | for parallel composition. EVENT is a subtype
of PROCESS, and all operators are defined for processes and yield processes. So

change-address + subscribe
is the process which has the choice between change-address and subscribe, andin
(change-address + subscribe) || win

this is executed in parallel with the win event.

The specification ProcessAlgebra has a model, which consists of all processes satisfying
the axioms. We use the graph model, in which each process can be represented by a rooted directed
graph. We refer to the work by Bergstra & Klop for a precise definition of the process operators and
the graph model [5, 8, 9, 10].

The equations in the process section specify a process for each natural class. The constants in
these equations are events written in lower-case letters. The variables range over processes and are
written in upper-case letters. The variables need not be declared, for they are all of type PROCESS.
For each natural class, there should be a variable with the same name as the class, called a main vari-
able of the process specification. In the example, there are actually two process specifications,
[P1-2] with main variable PERSON, and [P2-5] with main variable READER. The process
equations are solved for the main variables in the process model and should be guarded, which
means roughly that the equations can be written in such a form that each variable in a sequence is
preceded by a constant. It can be shown that the equations then have precisely one solution.

[P1-2] describe the life of a person as a simple iteration of address changes in parallel with
one execution of subscribe. One effect of the last event is that the person becomes a reader, and
so starts executing a life as a reader. This is not visible in the process specification, because we
adhere to the principle that the process executed by instances of a more specialized class, like
READER, should be invisible when we look at the process executed by instances of a more general
class, like PERSON. However, the declaration of subscribe shows that the person executing it
starts playing the role of a reader. Figure 5 illustrates the person process.

PERSON

O =—

% READER

T
|
|
|
|
|
|
|
|
¢-address | subscribe
|
|
|
|
|
|
|
|
|

Figure5.

A parallel composition of process graphs is roughly the Cartesian product of the graphs, and we use
Harel’s higraphs to represent this [26]. The graphs of the Cartesian product are displayed in a box
separated by a dashed line. Each graph is a rooted directed graph, with the root indicated by a small
arrow. We show the effect of subscribing on the role a person is playing next to the result state of
subscribe.



Figure 6 shows the higraph for the reader process. A reader executes a parallel composition of
an iteration over change-address, entering a competition, adding more subscriptions to his
or her collection, and winning. A reader may enter a competition for each subscription he or she has.
This constraint is not expressed in the process specification, but must be specified as a precondition
on the enter events. A hidden rule of the game is that each reader can win only once, regardless
how many subscriptions he or she has. This is expressed in the single occurrence of the win event
inthe READER process.

READER
I I I
| | |
| | |
¢ | ¢ . SUPERSCRIBE ¢

O | O | |
| | |
| | |

! ! ! win
| | |
| | |

changer- :
addtess Tt i
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
| | |
1 1 1
Figure 6.
The binary operator || in [P5] is called left-merge, and is a parallel composition in which

the first event is required to be executed by the left-hand argument. We show this in the higraph by
extending the arrow at the start node so that it enters the box from the outside (figure 7).

| SUPERSCRIBE
v l
|
l
superscribe :
1 |
} o)
1 SUPERSCRIBE
er l
|
|
|
|
1
Figure 7.

Figure 7 also shows a recursive higraph: the initial state of the right-hand box is the complete
SUPERSCRIBE box. A state in a higraph can be identified with a box shown elsewhere in the
diagram. Thus, figure 7 shows that, in order to execute the process in the right-hand side box, we
execute the start event in the SUPERSCRIBE box. To sum up, [P5] expresses the fact that after
each subscription, a reader has the right to start an ENTER process, and may continue to gain more
subscriptions.



Note that the reader process includes the person process except for the role change event sub-
scribe. In general, we require the life cycle of a subclass to include the life cycle of each of its
superclasses. This is possible, because events declared for a class are inherited by all subclasses.
The only exception on this in CMSL is that role changes are not inherited (see section 5.5). So sub-
scribe does not re-appear in the READER process.

6.2. Tasksand heuristics
The first important principle in process specification is that, just like for events,

each process is defined for a natural class.

Principle 21.

This is analogous to principle 16 for events. In CMSL, we adopt the convention that if no process is
specified for a class x, then it simply inherits the processes of its superclasses, to which is added an
unstructured iteration over the events declared specifically for c. We briefly return to the topic of
process inheritance below.

Not just any process observed in the UoD can be elevated to the life cycle of an object. A pro-
cess specification for instances of a natural class is a universal statement about these instances, which
holds for these instances without exception. We can classify universal statements in two ways
[43,57,58]. One way is to divide them into static and dynamic statements. Universal statements of
the static kind state something about the set of possible states of the UoD, while those of the dynamic
kind state something about the state changes of the UoD. The process specification tied to a natural
class is a universal statement of the dynamic kind. The other way to classify universal statements is
orthogonal to this, and divides them into analytical, empirical, and normative statements. Analyti-
cally true statements are true because of the meaning of the words occurring in it, and empirically
true statements are true because the world happens to behave in the way specified by the statement.
Normative statements are not true or false, they are obeyed or violated by the world.

It turns out that in the UoD’s of most information systems, there are hardly any dynamic univer-
sal statements that are also empirical. The process specifications are either analytically true or they
are prescriptions for the behavior of objects in the UoD. For example, it is an analytical truth that an
employee cannot be fired before she is hired. This could result in the specification the process
hire . fire for employees. This process is followed by all possible employees, without excep-
tion, because of the meaning of “‘hire’” and “‘fire’’. As an example of a normative universal state-
ment, a book borrowed from a library must be returned afterwards, without exception. This
motivates a process like borrow . return for library members. In addition to eliminating the
logical impossibility that a book is returned before it is borrowed, it enforces the behavior that a
book, as a matter of fact, is returned after being borrowed.

The criterion for allowing these processes to be attached to a natural class is that all instances of
the class, without exception, follow these processes. Observations like ‘‘most of the time, students
follow course A before they follow course B’” may be empirically valid, but are no good as process
specifications form a natural class. To be elevated to that status, the statement must have the force of
a necessary truth, like “*all students follow A before they do B”’.

Most of the time, only a weaker kind of statement can be made, such as “‘all students must fol-
low A before they do B’’. These statements are of a normative nature. If we want to model these as
object life cycles, then they must be norms that allow no exceptions, i.e. they must be totalitarian
norms. In general, processes follow an inexorable logic which either follows from the logic of the
terms used in it or follows from the totalitarian nature of the norms it expresses.

The process executed by instances of a natural class allows no exceptions.

Principle 22.

This principle is also stated in [32, pp. 100 ff.], [33], and [54, p. 37]. For example, of any event ord-
ering not allowed by the process specification, we should be able to say ““it doesn’t happen’’.



An important concept in JSD life-cycle modeling is that of a marsupial entity [32, pp. 100 ff.],
[54, p. 37]. The adjective “*‘marsupial’’ does not indicate anything special about the entity itself, but
about the way we discover its existence: we discover it as part of another entity which should be
modeled as an independent entity. There are two elements in this. First, we may discover that an
object executes two or more processes in parallel. For example, a car may execute a process contain-
ing changes in its physical nature (painting, tuning, repairing) in parallel with a process containing
changes in its legal status (buying, selling). Neither of these processes constitutes a marsupial in the
JSD sense, for they are both processes executed by a single object. Second, we may discover that
one of the processes executed by the object is really a role played by the object, or is really a process
executed by a different object. For example, the buying and selling process of a car may be defined
as the process belonging to the role PROPERTY, playable by cars and possibly by other kinds of
objects as well. Or we may discover that the customer process we specified is really an account pro-
cess, where one customer can open many accounts. In JSD, both  PROPERTY and ACCOUNT will
be modeled as marsupials, without taking the difference between roles and natural kinds into account.

The principle that processes be without exceptions can be construed as saying that all excep-
tions should be stated as part of the process specification. In practice, this requires distinguishing a
normal course of life and an abnormal course of life of a natural class of objects. Each abnormal
course can be viewed as a trace of 0 or more events through the process representing the normal
course of life, interrupted by an event introducing the abnormal course, followed by a wind-up pro-
cess dealing with the abnormal case. This may end the life of the object, or it may return to resume
the normal course of life. In JSD, only the first case is considered, which is called premature end
[32, p. 107]. Itis modeled using a kind of interrupt processing technique: we assume that the normal
course of events prevails, until it turns out that the contrary is the case. Then we jump to an appropri-
ate interrupt-handling process, where we deal with the abnormal situation. There is no special con-
struct for this in CMSL, since it can dealt with using the current version of the language. However,
to structure the process specification, it may be desirable to add a facility like Bergstra’s mode
transfer operator [11] later on in the development of the language.

Finally, for all instances of natural kinds, we must be sure that they can be created and/or
deleted, and for all roles we must be sure that they can be played and/or that objects can stop playing
these roles. In JSD terms, we must establish entity boundaries. We will call events that create or
delete an object or that cause an object to start or stop playing a role boundary events.

The tasks and heuristics in the process specification step are shown in table 3. Task 5, checking
the taxonomic structure of processes, is not treated here. Suffice it to note that there is still not a
satisfactory formalization of the concept that the process of a subclass should somehow "contain”, be
more specific as, the processes specified for all of its superclasses. Discussions of this can be found
in [ 20, 59].

7. A note about task ordering

Tables 1-3 summarize the tasks we identified in the modeling process of dynamic objects. They have
been grouped into three sets, object classification, events specification, and process specification, and
within each set, the tasks have been numbered. This does not imply that they should be executed in
this order. For example, it may seem common sense to specify events before we specify processes,
because processes are built from events. However, in many cases, the processes will be business pol-
icies that are formulated in natural language, and are gradually explicated until they are specified for-
mally. It is quite conceivable that only after this, we bother to specify the effect of the events on
attribute values. Again, we may want to start specifying the communication patterns of an organiza-
tion before thinking about other events or about the attributes of objects. To give a sensible advice
about task ordering, we must first gain more experience with object-oriented modeling. In the
absence of this advice, we can just as well start with task 1 of the object classification step, unless
there is some compelling reason to start elsewhere.



Task Heuristics

1. Compose events into process. For each natural class a process is specified
(principle 20).
2. Look for marsupials. Where there are marsupials, there is paral-

lelism. This may indicate parallel process-
ing by a single object o, or a role executed
by a single object, or a process executed by
a different object, mistakenly identified with
0.

3. Check for exceptions. All processes should allow no exceptions.
Most of the time, the processes follow from
the meaning of the words used to describe
the UoD, or they are totalitarian prescrip-
tions for behavior of objects. All possible
exceptions should be explicitly specified.

4. Check for boundary events. Each natural kind should have creation
and/or deletion events, and each role should
have a start and/or stop event.

5. Check the taxonomic structure of | Not treated in this paper.

processes.

Table 3. Tasks and heuristics for the process specification step.
8. Summary and conclusions

We defined a method as a combination of a specification language, CM structures, and pragmatic
advice about the tasks to be executed to specify a CM of a UoD. The specification language used in
this paper is CMSL, described in more detail elsewhere [59, 60, 62, 65]. We concentrated on the task
of finding an object-oriented CM and divided it into three subtasks, object classification, event
specification, and process specification. Each of these tasks have been divided into a number of sub-
tasks, for which heuristics have been given.

Most of the tasks and heuristics have been identified by a logical analysis of object-oriented
CM structures, while some have been translated from JSD into object-oriented terms. What has been
achieved in this way is a first, motivated version of an object-oriented analysis method which can
yield formally specified object-oriented CM’s. This is a beginning of an answer to the question how
object-oriented models should be developed. To continue developing the answer, we should both
expand the method as proposed here, and test it on real-life cases. By applying it to real-life cases,
we hope to identify the weak spots in the current version of CMSL, as well as to find more heuristics
for the tasks we identified, and find suggestions for ordering the tasks in particular cases.

To expand the method, we will look at other methods known to be practical, like Structured
Analysis [19], SADT [41], SSADM [1], and NIAM [48]. Some of this has already been done
[63, 66], other work is still in progress. In addition, we will look at novel ways new kinds of integrity
constraints, such as the normative constraints studied in [42, 58, 67].
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