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Abstract. This paper presents a new probabilistic model
of information retrieval. The most important modeling
assumption made is that documents and queries are de-
fined by an ordered sequence of single terms. This as-
sumption is not made in well-known existing models of
information retrieval, but is essential in the field of sta-
tistical natural language processing. Advances already
made in statistical natural language processing will be
used in this paper to formulate a probabilistic justifica-
tion for using tf×idf term weighting. The paper shows
that the new probabilistic interpretation of tf×idf term
weighting might lead to better understanding of statisti-
cal ranking mechanisms, for example by explaining how
they relate to coordination level ranking. A pilot experi-
ment on the TREC collection shows that the linguis-
tically motivated weighting algorithm outperforms the
popular BM25 weighting algorithm.

Key words: Information retrieval theory – Statistical
information retrieval – Statistical natural language pro-
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1 Introduction

There are three basic processes an information retrieval
system has to support: the representation of documents,
the representation of a user request, and the compar-
ison of these two representations. In text retrieval the
documents and the user request are expressed in natu-
ral language. Although text retrieval has had by far the
most attention in the information retrieval community, so
far the success of natural language processing techniques
has been limited. Most of the effort in the field of text
retrieval has been put in the development of statistical
retrieval models like the vector space model (proposed

by Salton et al. [16]), the classical probabilistic model
(proposed by Robertson and Spark Jones [12]) and more
recently the inference network model (proposed by Croft
and Turtle [3]).
The application of natural language processing tech-

niques in combination with these models has solid but
limited impact on the performance of text retrieval1 [19].
The research does however provide little insight to the
question how to use natural language processing. Natu-
ral language processingmodules are usually considered as
preprocessing steps, that is, they are not included in the
model itself. This paper attempts to formulate a model
that captures statistical information retrieval and statis-
tical natural language processing into one unifying frame-
work, an approach that others are also beginning to inves-
tigate [9, 11]. It is the model itself that explicitly defines
how documents and queries should be analysed. This
seems a rather trivial requirement, but we claim that this
is not the general idea behind the existing models for in-
formation retrieval. The (implicit) assumption made by
these retrieval models is that some procedure, either man-
ual or automatic, is used to assign index terms to docu-
ments. It is the result of this procedure that can be re-
flected by the model, not the procedure itself.
This paper is organised as follows. In Sect. 2 the basics

of the linguistically motivated retrieval model are pre-
sented. Section 3 gives a new probabilistic interpretation
of tf×idf term weighting by using estimation procedures
developed in the field of statistical natural language pro-
cessing. Section 4 presents a number of experiments, one
pilot experiment on the relatively outdated Cranfield col-
lection and two additional experiments on the TREC ad
hoc and TREC-CLIR collection. Finally, Sect. 5 presents

1 Retrieval performance is usually measured in terms of precision
(the fraction of the retrieved documents that is actually relevant)
and recall (the fraction of the relevant documents that is actually
retrieved).
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conclusions and plans for future work. These plans in-
clude the development of a model for phrases and the
development of a model for cross-language information
retrieval. An early version of this paper was presented
at the Second European Conference on Digital Libraries
(ECDL) [5].

2 The basic retrieval model

This paper defines a linguistically motivated model of full
text information retrieval. The most important modeling
assumption we make is that documents and queries are
defined by an ordered sequence of words or terms.2 This
assumption is usually not made in information retrieval.
In the models mentioned in the introduction, documents
and queries are modeled as unordered collections of terms
or concepts. In the field of statistical natural language
processing the word order assumption is essential for
many applications, for instance part-of-speech tagging,
speech recognition and parsing. By making the ‘ordered
sequence of terms assumption’ we will be able to use ad-
vances already made in statistical natural language pro-
cessing. In this section we will define the framework that
will be used in the subsequent sections to give a proba-
bilistic interpretation of tf×idf term weighting.

2.1 An informal description: drawing query terms
from a document

Before we describe the new retrieval model mathemat-
ically, this section gives an informal description of the
underlying ideas.
The main goal of an information retrieval system is to

find those documents in a document collection that are
relevant to a query. A full text retrieval system compares
the words in the query with the words in each document
to rank the documents. Documents that are likely to be
relevant should be ranked at the top and documents that
are unlikely to be relevant should be ranked at the bottom
of the ranked list. A mathematical model of information
retrieval formally defines how the system should perform
this ranking, usually based on intuitions or metaphors
from some well-understood branch of mathematics. For
example Salton’s vector space model is based on intu-
itions from geometry: documents and queries are vectors
in a high-dimensional space and documents are ranked by
the cosine of the angle that separates the document vec-
tor and the query vector. The Robertson/Sparck-Jones
probabilistic model is based on the intuition that a sys-
tem can learn from the distribution of terms over relevant
and non-relevant documents which documents are prob-
ably relevant to a query.

2 In the linguistically motivated model terms and words are
equivalent, both expressions will be used in this paper. A classi-
cal index term that consists of more than one word will be called
a phrase.

We will use probability theory in a different way here
by using a metaphor that is very similar to the “sampling
coloured balls from urns” examples that are often used
in introductory statistics courses [10]. Instead of drawing
balls at random with replacement from an urn, we will
consider the process of drawing words at random with
replacement from a document. Suppose someone selects
one document in the document collection; draws at ran-
dom, one at a time, with replacement ten words from this
document and hands those ten words (the query terms)
over to the system. The system now can make an ed-
ucated guess as from which document the words came
from, by calculating for each document the probability
that the ten words were sampled from it and by ranking
the documents accordingly. This metaphor for informa-
tion retrieval was introduced by Ponte and Croft [11]. The
intuition behind it is that users have a reasonable idea of
which terms are likely to occur in documents of interest
and will choose query terms accordingly.
The metaphor is a very powerful one as it can be ex-

tended in various ways. Because of the sequential nature
of the sampling process, it can be extended to model
phrases as done by Miller, Leek and Schwartz [9]. It can
be extended to Boolean queries by treating the sampling
process as an AND-query and allowing that each draw
is specified by a disjunction of more than one term. For
example, the probability of first drawing the term infor-
mation and then drawing either the term retrieval or the
term filtering from a document can be calculated by the
model introduced in this paper without any additional
modeling assumptions. Furthermore, it can be extended
with additional statistical processes to model differences
between the vocabulary of the query and the vocabulary
of the documents. For instance, for cross-language re-
trieval, statistical translation can be added to the process
of sampling terms from a document: e.g., first an En-
glish word is sampled from the document, and then this
word is translated to Dutch with some probability that
can be estimated from a parallel corpus. Evaluations of
Boolean queries and statistical translation are described
in [6, 7]. In this paper we will focus on the basics of the
new retrieval model by defining it mathematically and by
stating how it relates to existing tf×idf term weighting al-
gorithms. We will deal with the mathematical details of
the extensions of the model in future publications.

2.2 The sample space

We assume that a collection consists of a finite number of
textual documents. The documents are written in a lan-
guage that exists of a finite number of words or terms.

Definition 1. Let P be a probability function on the
joint sample space ΩD×ΩT . Let ΩD be a discrete sample
space that contains a finite number of points d such that
each d refers to an actual document in the document col-
lection. Let D be discrete random variable over ΩD. Let
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ΩT be a discrete sample space that contains a finite num-
ber of points t such that each t refers to an actual term
that is used to represent the documents. Let T be a dis-
crete random variable over ΩT .

In other words, the random variable D refers to a docu-
ment id and the random variable T refers to an index
term.

2.3 Modeling documents and queries

Queries will be modeled as compound events. A com-
pound event is an event that consists of two or more sin-
gle events, as when a die is tossed twice or three cards
are drawn one at a time from a deck [10]. The single
events that define the compound event are the query
terms. In general the probability of a compound event
does depend on the order of the single events. For example
a query of length n is modeled by an ordered sequence
on n single terms T1, T2, · · · , Tn. Given a document id
D the probability of the ordered sequence will be de-
fined by P (T1, T2, · · · , Tn|D). Most practical models for
information retrieval assume independence between in-
dex terms. Assuming conditional independence of terms
given a document id leads to the following model.

P (T1, T2, · · · , Tn|D) =
n∏

i=1

P (Ti|D) (1)

Note that the assumption of independence between que-
ry terms does not contradict the assumption that terms
in queries have a particular order. The independence as-
sumption merely states that every possible order of terms
has the same probability. It is made to illustrate that
a simple version of the linguistically motivated model is
very similar to existing information retrieval models.

2.4 The matching process

Equation (1) can be used directly to rank documents
given a query T1, T2, · · · , Tn. It might however be inter-
esting to rewrite (1) to a probability measure that explic-
itly ranks documents given a query: P (D|T1, T2, · · · , Tn).
This measure can be related to (1) by applying Bayes’
rule.

P (D|T1, T2, · · · , Tn) = P (D)
P (T1, T2, · · · , Tn|D)

P (T1, T2, · · · , Tn)
(2)

= P (D)

∏n
i=1 P (Ti|D)

P (T1, T2, · · · , Tn)
(3)

Equation (2) is the direct result of applying Bayes’ rule.
Filling in the independence assumption of (1) leads to (3).
It seems tempting to make the assumption that terms are
also independent if they are not conditioned on a docu-
ment D. This will however lead to an inconsistency of

the model (e.g., see Cooper’s paper on modeling assump-
tions for the classical probabilistic retrieval model [2]).
Since

∑
d P (D = d|T1, T2, · · · , Tn) = 1 we can scale the

formula using a constant C such that 1
C =

∑
d P (D =

d∩T1, T2, · · · , Tn).

P (D|T1, T2, · · · , Tn) = C P (D)
n∏

i=1

P (Ti|D) (4)

Equation (4) defines the ranking formula of the linguistic
motivated probabilistic retrieval model if we assume term
independence.

3 Estimating the probabilities

The process of probability estimation defines how proba-
bilities should be estimated from the frequency of terms
in the actual document collection.We will look at the esti-
mating process by drawing a parallel to statistical natural
language processing and corpus linguistics.

3.1 Viewing documents as language samples

The general idea is the following. Each document con-
tains a small sample of natural language. For each docu-
ment the retrieval system should build a little statistical
language model P (T |D) where T is a single event. Such
a language model might indicate that the author of that
document used a certain word 5 out of 1000 times; it
might indicate that the author used a certain syntactic
construction like a phrase 5 out of 1000 times; or ulti-
mately indicate that the author used a certain logical
semantic structure 5 out of 1000 times.
One of the main problems in statistical natural lan-

guage processing and corpus linguistics is the problem of
sparse data. If the sample that is used to estimate the pa-
rameters of a languagemodel is small, then many possible
language events never take place in the actual data. Sup-
pose for example that an author wrote a document about
information retrieval without using the words keyword
and crocodile. The reason that the author did not mention
the word keyword is probably different from the reason for
not mentioning the word crocodile. If we were able to ask
an expert in the field of information retrieval to estimate
probabilities for the terms keyword and crocodile he/she
might for example indicate that the chance that the term
keyword occurred is one in a thousand terms and the
chance that the term crocodile occurred is much lower:
one in a million. If we however base the probabilities
on the frequency of terms in the actual document then
the probability estimates of low frequent and medium
frequent terms will be unreliable. A full text informa-
tion retrieval system based on these frequencies cannot
make a difference between words that were not used ‘by
chance’, like the word keyword, and words that were not
used because they are ‘not part of the vocabulary of the



134 D. Hiemstra: A probabilistic justification for using tf×idf term weighting in information retrieval

subject’, like the word crocodile. Furthermore there is al-
ways a small chance that completely off the subject words
occur like the word crocodile in this paper.
We believe that the sparse data problem is exactly the

reason that it is hard for information retrieval systems
to obtain high recall values without degrading values for
precision. Many solutions to the sparse data problem
were proposed in the field of statistical natural language
processing ( e.g., see [8] for an overview). We will use the
combination of estimators by linear interpolation to esti-
mate parameters of the probability measure P (T |D).

3.2 Estimating probabilities from sparse data

Perhaps the most straightforward way to estimate prob-
abilities from frequency information is maximum like-
lihood estimation [10]. A maximum likelihood estimate
makes the probability of observed events as high as pos-
sible and assigns zero probability to unseen events. This
makes the maximum likelihood estimate unsuitable for
directly estimating P (T |D). One way of removing the
zero probabilities is to mix the maximum likelihood mo-
del of P (T |D) with a model that suffers less from sparse-
ness like the marginal P (T ). It is possible to make a linear
combination of both probability estimates so that the re-
sult is another probability function. This method is called
linear interpolation:

Pli(T |D) = α1Pmle(T )+α2Pmle(T |D) ,

(0< α1, α2 < 1 and α1+α2 = 1) (5)

The weights α1 and α2 might be set by hand, in
which case we would choose them in such a way that
α1Pmle(T = t) is smaller than α2Pmle(T = t|D) for each
term t. This will give terms that did not appear in the
document a much smaller probability than terms that did
appear in the document. In general one wants to find the
combination of weights that works the best, for example
by optimising them on a test collection consisting of docu-
ments, queries and corresponding relevance judgements.
Table 1 lists the frequencies that are used to estimate

the probabilities of the model. Two frequencies are partic-
ularly important, the term frequency and the document
frequency. The term frequency of a term is defined by
the number of times a term appears in a document and
can be viewed at as local or document specific informa-
tion. Given a specific document many terms will have
a frequency of zero, so the term frequency suffers from
sparseness. The document frequency of a term is defined
by the number of documents in which a term appears and
can be viewed as global information. (Sometimes docu-
ment frequency is referred to as collection frequency.) The
document frequency of a term will never be zero, because
by definition 1, terms that do not appear in any docu-
ment will not be included in the model. The sparseness
problem can be avoided by estimating P (T |D) as a linear
combination of a probability model based on document

Table 1. Frequency information

N the number of documents in the
collection

tf(t, d)term frequency: the number of times the
term t appears in the document d.

df(t) document frequency: the number of
documents in which the term t appears.

frequency and a probability model based on term fre-
quency as in (7):

P (D = d) =
1

N
(6)

P (Ti = ti|D = d) = α1
df(ti)∑
t df(t)

+α2
tf(ti, d)∑
t tf(t, d)

(7)

Note that term frequency and document frequency
are not derived from the same distribution. Although the
term frequency can also be used to compute global in-
formation of a term by summing over all possible docu-
ments, this information will usually not be the same
as the document frequency of a term, more formally:
df(t) �=

∑
d tf(t, d).

Equations (4) and (7) define the ranking algorithm.
The formula bears some resemblance with the ranking
formula used by Miller, Leek and Schwartz [9]. They
showed that the model can be interpreted as a two-state
hidden Markov model in which α1 and α2 define the state
transitions.

3.3 Relation to tf×idf

The use of term frequency and document frequency to
rank documents was extensively studied, especially by
Salton et al., for the vector space model [15]. Follow-
ing considerations of the term discrimination model [17],
they argued that terms appearing in documents should
be weighted proportional to the term frequency and in-
versely proportional to the document frequency. Weight-
ing schemes that follow this approach are called tf×idf
(term frequency × inverse document frequency) weight-
ing schemes. The combination of tf×idf weights and docu-
ment length normalisation gave the best retrieval results
on several test collections, but they were not able to
justify their approach by probability theory (which is
not a prerequisite for using it in the vector space model
anyway):

. . . The term discrimination model has been crit-
icised because it does not exhibit well substanti-
ated theoretical properties. This in contrast with the
probabilistic model of information retrieval . . .

The lack of theoretical justification of tf×idf weights did
not keep developers of the probabilistic model and the
inference network model from using them. Robertson
et al. [13] justified the use of term frequency in the proba-
bilistic model by approximating a ranking formula that is



D. Hiemstra: A probabilistic justification for using tf×idf term weighting in information retrieval 135

based on the combination of the probabilistic model and
the 2-Poisson model. There is however a more plausible
probabilistic justification of tf×idf weighting which can
be justified by the linear interpolation estimator of (7).
This can be shown by rewriting. Multiplying the ranking
formula defined by (4), (6) and (7) with values that are
the same for each document will not affect the final rank-
ing, so we can multiply the ranking formula by df(t) and
α1 as follows:

P (D = d|T1 = t1, · · · , Tn = tn) ∝

∝
n∏

i=1

(α1
df(ti)∑
t df(t)

+α2
tf(ti, d)∑
t tf(t, d)

) [by (4),(6) and (7)]

∝
n∏

i=1

(α1+α2
tf(ti, d)

∑
t df(t)∑

t tf(t, d) ·df(ti)
) [×

∏n
i=1

∑
t df(t)

df(ti)
]

∝
n∏

i=1

(1+
tf(ti, d)

df(ti)
·

1∑
t tf(t, d)

·
α2
∑
t df(t)

α1
) [×
∏n
i=1

1
α1
]

The resulting formula can directly be interpreted as
a tf×idf weighting algorithm with document length nor-
malisation, because:

α2
∑
t df(t)

α1
is constant for any document d and term t

tf(ti, d)

df(ti)

is the tf×idf weight of the term ti in the
document d

1∑
t tf(t, d)

is the inverse length of the document d

Any monotonic transformation of the document ranking
function will produce the same ranking of the documents.
Instead of the product of weights we could therefore also
rank the documents by the sum of logarithmic weights.

∝
n∑

i=1

log(1+
tf(ti, d)

df(ti)
·

1∑
t tf(t, d)

·
α2
∑
t df(t)

α1
)[log. tr.]

Robertson and Sparck-Jones [12] call the resulting for-
mula a presence weighting scheme (as opposed to a pres-
ence/absence weighting scheme) because the formula as-
signs a zero weight to terms that are not present in
a document. Presence weighting schemes can be imple-
mented using the vector product formula as introduced
by Salton et al. [15]. The query weights of the vector
product formula can be used to account for multiple oc-
currences of the same term in the query. The resulting
vector product version of the ranking formula is displayed
in Table 2.
On first glance the constant α2

∑
t df(t)/α1 seems to

have little impact on the final ranking. But in fact, dif-
ferent values of α1 and α2 will lead to different document
rankings. In Sect. 3.5 we will show some effects of different
values of α1 and α2 on the ranking of documents, espe-
cially for short queries.
As said above, the weighting algorithm can, by the

definition of Salton et al., be interpreted as a tf×idf

Table 2. Vector product version of weighting algorithm

similarity(Q,D) =
l∑

k=1

wqk ·wdk

wqk = tf(tk, q)

wdk = log(1+
tf(tk, d)

df(tk)
∑
t tf(t, d)

·
α2
∑
t df(t)

α1
)

weight with document length normalisation. However,
the
∑
t tf(t, d) (that is: the document length) in the de-

nominator of the document term weight in Table 2 is the
result of the requirement that probabilities have to sum
up to one and not the results of document length normal-
isation. Document length normalisation is assumed by
(6). In fact we might assume that longer documents are
more likely to be relevant by using the prior probability
of (8).

P (D = d) =

∑
t tf(t, d)∑

t

∑
d tf(t, d)

(8)

This results in a weighting algorithm that cannot be
rewritten into the vector product normal form. It can
however be implemented fairly easily by initialising simi-
larities to log(

∑
t tf(t, d)) instead of to zero when process-

ing the query. This version of the weighting algorithmwas
used in the experiments of Sect. 4.

3.4 A new informal definition of tf×idf weighting

Equation (7) gives rise to a new informal definition of
tf×idf weighting. Giving an informal definition after the
formal definition seems a bit useless, but we believe that
it will help to understand what exactly makes tf×idf
weighting successful. The classical definition of tf×idf
weighting can be formulated as follows:

Definition 2. The weight of a term that appears in
a document should increase with the term frequency of
the term in the document and decrease with the docu-
ment frequency of the term. Terms that do not appear
in a document should all get the same weights (zero
weights).

An alternative definition is based on (7). If we as-
sume that α1 df(ti)/

∑
t df(t) is much smaller than

α2 tf(ti, d)/
∑
t tf(t, d) then it can be formulated as

follows:

Definition 3. The weight of a term that appears in
a document should increase with the term frequency of
the term in the document. The weight of a term that does
not appear in a document should increase with the docu-
ment frequency of the term.

An example may clarify the implications of both def-
initions. Suppose the user formulates the query informa-
tion retrieval and there is no document in the collection
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in which the terms information and retrieval both ap-
pear. Furthermore, suppose that the term information
is much more common, i.e., has a higher document fre-
quency than the term retrieval. Now the system will rank
documents containing k occurrences of the term retrieval
above documents containing k occurrences of the term in-
formation. The classical explanation would be as follows:

Explanation 1. The query term retrieval matches bet-
ter with documents containing retrieval than the query
term informationmatches with documents containing in-
formation, because retrieval has a higher inverse docu-
ment frequency than information.

The alternative explanation would be that:

Explanation 2. The query term information matches
better with documents not containing information than
the query term retrieval matches documents not contain-
ing retrieval because information has a higher document
frequency than retrieval.

There is no a priori reason to prefer one explanation
above the other. However, the idea of definition 3, that
global information is only used to weight terms of which
there is no local information, might lead to better under-
standing of probabilistic term weighting in text retrieval.

3.5 The problem of non-coordination level ranking

There is a well-known problem with statistical informa-
tion retrieval systems that use tf×idf weighting: some-
times documents containing n query terms are ranked
higher than documents containing n+1 query terms. We
will call this problem the problem of non-coordination
level ranking in which the coordination level refers to
the number of distinct query terms contained in a docu-
ment. A coordination level ranking procedure will al-
ways rank documents containing n+1 query terms above
documents containing n query terms even if the top docu-
ments have little evidence for the presence of n+1 query
terms and lower-ranked documents have a lot of evidence
for the presence of n terms.
According to studies of user preferences and evalua-

tions on test collections the problem of non-coordination
level ranking becomes particularly apparent if short que-
ries are used [14]. In a lot of practical situations short
queries are the rule rather than the exception, especially
in situations where there is no or little user training
like with Web-based search engines. For some research
groups, the importance of coordination level is the reason
for developing ranking methods that are based on the lex-
ical distance of search terms in documents instead of on
document frequency of terms [1, 4]. However, as pointed
out by experiments of Wilkinson et al. [21], some tf×idf
measures (e.g., like the measure proposed by Robert-
son et al. [13]) are more like coordination level ranking
than others (e.g., like the measure proposed by Salton

et al. [15]). Wilkinson et al., showed that weighting mea-
sures that are more like coordination level ranking per-
form better on the TREC collection, especially if short
queries are used.
Following the results of Wilkinson et al., it might

be useful to investigate what exactly makes a weighting
measure “like” coordination level ranking. The following
example may provide some insight. First of all, suppose
we use the following ranking formula which can be de-
rived from the probability ranking function in a similar
way as is shown in Sect. 3.3.

P (D = d|T1 = t1, · · · , Tn = tn)

∝
n∏

i=1

(
α1

α2
∑
t df(t)

+
tf(ti, d)

df(ti)
·

1∑
t tf(t, d)

) (9)

Now suppose the user enters a small query of only two
terms a and b. As in the previous example a might be the
term information and b might be the term retrieval. Fur-
thermore, suppose that the document d1 contains a lot of
evidence for term a and no evidence for the term b; and
that document d2 contains little evidence of both terms.
It can be shown that document d1 will have a lot of evi-
dence for a and none for b if tf(a, d1) is high, tf(b, d1) = 0
and the length of d1 is short. Document d2 contains lit-
tle evidence of a and b if tf(a, d2) = tf(b, d2) = 1 and if
d2 is a long document. Now the following equation de-
fines the requirement for coordination level ranking, that
is, the similarity of document d1 to the query a b should
be smaller than the similarity of document d2 to the
query. The left hand side of the equation contains the sim-
ilarity of the query compared to document d1 and the
right hand side contains the similarity of the query to
document d2. We will use short notations of the docu-
ment length and the constant of (9): l(d) =

∑
t tf(t, d)

and c= α1/α2
∑
t df(t).

(c+
tf(a, d1)

df(a)l(d1)
)(c+0) < (c+

1

df(a)l(d2)
)(c+

1

df(b)l(d2)
)

c2+
c tf(a, d1)

df(a)l(d1)
< c2+

c

df(a)l(d2)
+

c

df(b)l(d2)

+
1

df(a)df(b)l(d2)2

c tf(a, d1)

df(a)l(d1)
−

c

df(a)l(d2)
−

c

df(b)l(d2)
<

1

df(a)df(b)l(d2)2

...

c <
l(d1)

l(d2)(tf(a, d1)df(b)l(d2)−df(b)l(d1)−df(a)l(d1))
(10)

Equation (10) shows that we can rewrite the requirement
for coordination level ranking as a requirement for the
constant c. If c is small enough then the problem of non-
coordination level ranking will never occur. By changing
the value of c the ranking formula can be adapted to
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different applications. If we are developing a Web-based
search engine we might choose a relatively small value for
c, but if we are developing a search engine for evaluation
in TREC [20] we might choose a higher value of c. For the
Web-based search engine we might define a collection spe-
cific lower bound of c by keeping track of the collection
extrema like maximum term frequency and document fre-
quency (maxtf andmaxdf) and maximum and minimum
document lengths (maxl and minl). If we fill in these
extrema and the definition c = α1/α2

∑
t df(t) in ((10))

then the lower bound will be defined as follows on the
ratio between α1 and α2.

α1

α2
<

minl ·
∑
t df(t)

maxl·(maxtf ·maxdf ·maxl−maxdf ·minl−minl)
(11)

Equation (11) defines a ranking formula that always pro-
duces coordination level ranking for queries of two words.
For longer queries the bound will be lower and for queries
with unrestricted length only α1 = 0 will guarantee coor-
dination level ranking.

3.6 A plausible explanation of non-coordination level
ranking

The arguments in the previous section showed the follow-
ing. The smaller the value of the constant c, the more the
ranking formula will behave like coordination level rank-
ing. It is good to note that most tf×idf measures defined
for the existing models of information retrieval include
constants for which the arguments introduced above also
hold (for instance the “+0.5” in the Robertson/Sparck
Jones formula [12, 13]). However, the classical definition
of tf× idf weighting (definition 2) does not give a plausi-
ble explanation of why and when non-coordination level
ranking does happen. Using the new definition 3 and the
fact that c is defined by the ratio α1/α2 we can give the
following explanation of non-coordination level ranking
when tf×idf weights are used.

Explanation 3. Non-coordination level ranking occurs
if query terms that do not appear in a document are
weighted too high compared to query terms that do ap-
pear in a document.

According to definition 3 terms that do not appear in
a document are weighted proportional to the document
frequency. If we choose a relatively high value for the con-
stant α1 then query terms that do not appear in a docu-
ment will be weighted too high, possibly causing non-
coordination level ranking.

4 Experimental results

This section briefly describes the results of a number
of experiments with the linguistically motivated term

weighting algorithm. A pilot experiment uses the rela-
tively outdated Cranfield collection as reported earlier
in [5]. Additional experiments using the TREC collection
indicate that the new weighting algorithm outperforms
the popular Cornell version of BM25.

4.1 The Cranfield collection

The Cranfield collection is a small collection (1398 docu-
ments) with a relatively large number of queries (255
queries). In the experiment we implemented a linguisti-
cally motivated probabilistic retrieval engine and a stan-
dard vector engine. Both engines used the same tokeni-
sation and stemming of the words in the documents. As
a test collection we used the Cranfield collection which
was also used extensively in early experiments with the
vector space model [15]. Table 3 lists the non-interpolated
average precision averaged over 225 queries of the Cran-
field collection for different values of α1 and α2.

Table 3. Experimental results on the Cranfield collection

weight avg. precision
α1 = 0.05 α2 = 0.95 0.3832
α1 = 0.2 α2 = 0.8 0.4076
α1 = 0.35 α2 = 0.65 0.4198
α1 = 0.5 α2 = 0.5 0.4257
α1 = 0.65 α2 = 0.35 0.4305
α1 = 0.8 α2 = 0.2 0.4357
α1 = 0.95 α2 = 0.05 0.4247

To evaluate how our weighting scheme performs rela-
tive to other tf× idf weighting schemes with document
length normalisation we implemented the vector space
model with tfc.nfx weighting as proposed by Salton and
Buckley [15]. The non-interpolated average precision av-
eraged over 225 queries of this system was 0.4032 on the
Cranfield collection.3 The linguistically motivated system
performs better for quite a wide range of different values
of α1 and α2. The best performance in terms of average
precision is approximately at α1 = 0.85.

4.2 Coordination level ranking

Cranfield has the following collection extrema: The smal-
lest document is 18 words long, the longest 354 words.
The maximum term frequency is 28 and the maximum
document frequency 729. Following the arguments of
Sect. 3.5 it is possible to calculate a lower bound on
the ratio between α1 and α2 that will define coordina-
tion level ranking given a query of length 2. This leads

3 Salton and Buckley [15] report a 3-point interpolated average
precision of 0.3841. Our version of their system reaches a 3-point
interpolated average precision of 0.4204 which is probably due to
the use of a stemmer.
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to a lower bound of 0.000525 on the ratio between α1
and α2 which corresponds roughly to α1 = 0.0005 and
α2 = 0.9995. Although correct, the lower bound intro-
duced by (11) is obviously not very useful for identifying
proper values for α1 and α2. There are several reasons
that might explain why the system performs optimally for
much higher values of α1:

1. Coordination level ranking does not lead to good aver-
age precision on the Cranfield collection.

2. The system does produce coordination level ranking,
but the bound on the ratio between α1 and α2 is too
low to be of any use.

3. The system does produce coordination level ranking,
but the bound is not useful because the collection does
not have very small queries (the average query length
is about 9.5 words).

Additional experiments have to point out which rea-
son or reasons actually explain the experimental results
the best.

4.3 The TREC collection

Since the existence of the TExt Retrieval Conference
(TREC), experiments have resulted in weighting algo-
rithms that perform much better than tfc.nfx weighting.
According to Voorhees and Harman [20], todays most
popular weighting algorithm is the Cornell implementa-
tion of the Okapi BM25 algorithm [13, 18].
Table 4 displays the version of the BM25 weighting al-

gorithm that was used for comparison. Table 5 lists the
evaluation results in terms of average precision of the
new weighting algorithm compared to the results of the
Cornell/BM25 algorithm. We used two modern test col-
lections provided by NIST via TREC. One is the ad hoc
collection consisting of articles from the LA Times, the
Financial Times, the Federal Register and Foreign Broad-
cast Information Service.4 The other collection uses the
English documents and English topics 1-24 of the TREC
Cross-Language Information Retrieval (CLIR) collection
consisting of AP Newswire articles. On both collections
we used α1 = 0.85.

Table 4. Cornell version of BM25 weighting algorithm

similarity(Q,D) =
l∑

k=1

wqk ·wdk

wqk = tf(tk, q)

wdk =
tf(tk, d) · log(

N−df(tk)+0.5
df(tk)+0.5

)

2 · (0.25+0.75
∑
t tf(t,d)∑

t,d tf(t,d)/N
)+ tf(tk, d)

Both weighting algorithms perform approximately
equally well on Cranfield, but on the collections of more

4 We left out the Congressional Records because NIST decided
not to include this subcollection in TREC-7.

realistic size the linguistically motivated weighting al-
gorithm outperforms the Cornell/BM25 weighting al-
gorithm. The performance gain of 17% on the ad hoc
collection is spectacular. Experiments using the ad hoc
topics 351–400 show a significant, though less spectacu-
lar, improvement [7].

Table 5. Performance on three test collections

average precision
collection BM25 new algorithm % diff.
Cranfield 0.4386 0.4374 −0.3
TREC CLIR 0.3652 0.3723 +1.9
TREC ad-hoc 0.2508 0.2925 +16.6

Maybe more important than the results in terms of
average precision is the the fact that the best value of
the unknown parameter α1 of the linguistically motivated
weighting algorithm is stable across different test collec-
tions. On all three collections the best performance of
the linguistically motivated weighting algorithm lies at
approximately α1 = 0.85. For α1 = 0.8 and α1 = 0.9 the
average precision on the English CLIR collection is re-
spectively 0.3653 and 0.3714 and on the ad hoc collection
respectively 0.2920 and 0.2884.

5 Conclusion and future plans

This paper has presented the linguistically motivated
probabilistic model of information retrieval. Using es-
timation by linear interpolation which is often used
in the field of statistical natural language processing
we have been able to present a probabilistic interpre-
tation of tf×idf term weighting. We have shown that
this new interpretation leads to better understanding of
the behaviour of tf×idf ranking. Experiments with the
TREC collection show that a retrieval system that uses
the new model outperforms the same system using the
Cornell/BM25 weighting algorithm.
This paper has not presented the linguistically moti-

vated model of information retrieval in its full strength.
Although we claim that the most important modeling as-
sumption of the model is that documents and queries are
defined by an ordered sequence of terms, the assump-
tion is not essential for the claims made in this paper. In
future papers we will investigate two major information
retrieval issues that require natural language processing
techniques. The first issue is the use of phrases in in-
formation retrieval. The second issue is the problem of
cross-language information retrieval.
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