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5

The accuracy of large-eddy simulations is limited, among others, by the quality of the subgrid pa-
rameterisation and the numerical contamination of the smaller retained flow structures. We review
the effects of discretisation and modelling errors from two different perspectives. We first show that
spatial discretisation induces its own filter and compare the dynamic importance of this numerical
filter to the basic large-eddy filter. The spatial discretisation modifies the large-eddy closure problem
as is expressed by the difference between the discrete ‘numerical stress tensor’ and the continuous
‘turbulent stress tensor’. This difference consists of a high-pass contribution associated with the spe-
cific numerical filter. Several central differencing methods are analysed and the importance of the
subgrid resolution is established. Second, we review a database approach to assess the total simulation
error and its numerical and modelling contributions. The interaction between the different sources of
error is shown to lead to their partial cancellation. From this analysis one may identify an ‘optimal
refinement strategy’ for a given subgrid model, discretisation method and flow conditions, leading to
minimal total simulation error at a given computational cost. We provide full detail for homogeneous
decaying turbulence in a ‘Smagorinsky fluid’. The optimal refinement strategy is compared with the
error reduction that arises from grid refinement of the dynamic eddy-viscosity model. The main trends
of the optimal refinement strategy as a function of resolution and Reynolds number are found to be
adequately followed by the dynamic model. This yields significant error reduction upon grid refine-
ment although at coarse resolutions significant error levels remain. To address this deficiency, a new
successive inverse polynomial interpolation procedure is proposed with which the optimal Smagorin-
sky constant may be efficiently approximated at a given resolution. The computational overhead of
this optimisation procedure is shown to be well justified in view of the achieved reduction of the error
level relative to the ‘no-model’ and dynamic model predictions.
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1. Introduction

Direct numerical simulation and large-eddy simulation are two important strategies for the
numerical investigation of turbulent flows. Within the constraints of present-day computing
infrastructure, the direct simulation approach is adopted for full resolution of flow problems35
of modest complexity, e.g., to under-pin theoretical and modelling studies. Instead, the focus
in large-eddy simulation is on a computationally more accessible coarsened flow description

This paper is associated with the focus-issue Quality assessment of unsteady methods for turbulent combustion
prediction and validation.
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which is obtained by low-pass spatial filtering. This allows an external control over the required
spatial resolution. However, low-pass filtering gives rise to the well-known closure problem
for the turbulent stress which represents the dynamic effects of the filtered-out small-scale 40
turbulence on the retained flow structures. Viewed entirely from the PDE level corresponding
to the spatially filtered Navier–Stokes equations, the remaining task is to close the system
of equations by modelling these small-scale dynamic effects in terms of the resolved flow.
Considerable effort has been put into construction, testing and tuning of such so-called subgrid
models over the past few years [1–4]. In such testing procedures, one, frequently compares 45
predictions from large-eddy simulations to filtered data from direct numerical simulation
and/or experimental observations (see also, e.g., [5–7]).

The above sketch of direct and large-eddy simulation is incomplete in at least one important
respect as it does not contain the unavoidable subsequent discretisation step. In fact, since
the numerical representation is typically associated with only marginal subgrid resolution, a 50
significant alteration of the resolved scales’ dynamics may be introduced in the computational
model [8–11]. It is the purpose of this paper to review and quantify the numerical error
dynamics explicitly for a number of characteristic, well-known discretisation methods. Next to
the filter width�, the specification of the numerical method implies the introduction of a second
length scale h which characterises the (local) computational grid spacing. Correspondingly, 55
the discretisation step induces a second element of possible flow filtering. The difficulty hence
resides in assessing the modelling and discretisation errors and their dynamic interaction in
order to arrive at a specification of simulation and modelling parameters which are optimal, i.e.
yield minimal total simulation error in the quantities of interest, at a given computational cost.
In this paper we review consequences of the interactions that occur between discretisation 60
and subgrid modelling errors. Moreover, we propose a simple optimisation procedure to
approximate optimal simulation parameters.

The relative importance of the turbulent stresses compared to the numerically induced
contributions depends strongly on the sub-filter resolution r = �/h [12, 13]. If r is sufficiently
large, the grid-independent large-eddy solution consistent with the assumed value of � may 65
be accurately approximated. However, large-eddy simulation of applications with a realistic
complexity is typically associated with only a marginal resolution corresponding to r = 1–
2. In that case, the numerically induced effects are comparable to or even larger than the
turbulent stresses for typical discretisation methods such as central or upwind finite difference
or finite volume methods. Thereby, the computational large-eddy closure typically contains 70
an important contribution which is sensitive to the adopted spatial discretisation.

Central to a framework for assessing the error behaviour associated with an actual large-
eddy implementation is the evaluation of the total simulation error and its decomposition into
numerical and modelling components. By appropriately comparing large-eddy and direct sim-
ulation predictions, the total simulation error can be quantified [10, 14]. Recently, a database 75
of both direct and large-eddy simulations of decaying homogeneous, isotropic turbulence was
analysed at two different Reynolds numbers [11]. In particular, for the Smagorinsky eddy-
viscosity model combined with second-order finite volume discretisation, the dependence
of modelling and numerical errors on simulation parameters was discussed. The interaction
between these two basic sources of error was shown to lead to their partial cancellation for 80
several flow properties. The effects of numerical errors in wall-bounded turbulent flows were
investigated recently in [15] and the use of explicit filtering to externally control the error
dynamics was studied in [16, 17].

In this paper we review the interacting error dynamics in terms of a so-called error landscape
which provides a concise visualisation of the induced errors [11]. The ‘optimal refinement 85
strategy’ that yields a minimal total simulation error at a given computational effort may be
identified from this error landscape. Compared to the optimal refinement strategy, the error
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induced by the dynamic eddy-viscosity model [18] at different resolutions is about a factor 2
larger. However, the rate by which the error reduces with increased resolution was shown to be
quite strong, particularly at high resolutions [19]. To compensate for the remaining high error90
levels at coarse resolutions, a new successive inverse polynomial interpolation (SIPI) procedure
is proposed to efficiently approximate the optimal Smagorinsky constant at a given resolution.
As a point of reference, we start from predictions using either no-subgrid model at all or the
dynamic eddy-viscosity model at a given spatial resolution. The proposed iterative procedure
rapidly converges towards the optimal model parameter. The computational overhead of this95
procedure is shown to be well justified by the increased accuracy.

The organisation of this paper is as follows. In section 2 we introduce the governing equa-
tions and consider the filter that is induced by the spatial discretisation. Attention is focussed
on the modification of the large-eddy closure problem, particularly at comparably large filter
widths and coarse subgrid resolutions. Section 3 is devoted to a database analysis of large-100
eddy simulation of homogeneous decaying turbulence in a ‘Smagorinsky fluid’. An exhaustive
database approach is rather expensive, but allows us to identify the optimal refinement strategy.
To achieve more practical error-reduction approaches, the degree of optimality of the dynamic
procedure is discussed. Further improvements in accuracy may be achieved by directly ap-
proximating the optimal model parameters at a given resolution. A new iterative procedure is105
suggested and discussed in section 3. Concluding remarks are collected in section 4.

2. Governing equations, spatial discretisation and induced filter

In this section we introduce the governing equations and identify the errors associated with
their spatial discretisation and subgrid closure. Moreover, we discuss the properties of the
spatial filter that is induced by spatial discretisation and establish its dynamic importance in110
terms of the subgrid resolution r = �/h.

Filtering the Navier–Stokes equations requires a low-pass spatial filter L . Often, a convo-
lution filter is adopted which in one spatial dimension associates the filtered velocity u with
the unfiltered velocity u through

u = L(u) =
∫ ∞

−∞
g(x − s, λ)u(s) ds (1)

with normalised filter kernel g(z, λ). The filter kernel g is characterised by an externally115
specified length scale λ which directly determines the effective filter width � [20] through

1

�
=

∫ ∞

−∞
g2(z, λ) dz. (2)

This definition applies to all kernels that are square integrable [1]. Other definitions proposed
in the literature (see [4] for an overview) are more restricted in their applicability to different
filters.

For incompressible fluids, the application of the filter L to the continuity and Navier–Stokes120
equations leads to

∂ j u j = 0, ∂t ui + ∂ j (u j ui ) + ∂i p − 1

Re
∂ j j ui = −∂ j (ui u j − u j ui ) = −∂ jτi j . (3)

Here, ∂t (respectively ∂ j ) denotes partial differentiation with respect to time t (respectively
spatial coordinate x j ). Summation over repeated indices is implied. The component of the
filtered velocity in the x j direction is u j , and p is the filtered pressure. Finally, Re denotes
the Reynolds number of the flow. In this formulation, the closure problem on the PDE level125
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is expressed by the divergence of the turbulent stress tensor τi j = ui u j − u j ui . To close the
filtered equations, it is quite common in literature to approximate τi j by a subgrid model
that can be evaluated in terms of operations on the filtered velocity field only. Next to such
deterministic subgrid models, other approaches incorporate a stochastic element to represent
the dynamic consequences of τi j [21–23]. 130

To illustrate the spatial discretisation and subgrid modelling, we follow the numerical
treatment of the modelled convective term:

∂ j (ui u j ) + ∂i p = [δ j (ui u j ) + δi p + Di ] + ∂ jτi j

= [δ j (ui u j ) + δi p + Di ] + [∂ j mi j + Ri ]

= δ j (ui u j ) + δi p + δ j mi j + [
Di + Ri + D(m)

i

]
, (4)

where we introduced Di = [∂ j (ui u j ) − δ j (ui u j )]+[∂i p − δi p] to measure the discretisation
error arising from the discretisation method δ j , Ri = ∂ j (τi j − mi j ) to represent the total
‘model residue’ and D(m)

i to quantify discretisation errors when treating the model mi j . The 135
latter type of errors obviously depends on the subgrid model that is used and may include
contributions due to the coarse grid implementation of explicit filtering or the evaluation of
the velocity-gradient tensor. The total simulation error in any large-eddy simulation arises
from the different error contributions Di , Ri and D(m)

i and their interactions. This forms the
focus of this paper. 140

To provide a specific class of computational large-eddy formulations we consider as a basic
subgrid model the classical Smagorinsky [24] model mS

i j to approximately represent τi j . In
particular, this implies

τi j → mS
i j = −2(CS�)2|S|Si j = −2�2

S|S|Si j , (5)

where |S| = (2Si j Si j )1/2 is the magnitude of the filtered rate of the strain tensor Si j = ∂i u j +
∂ j ui , and we introduced the Smagorinsky length �S = CS� for later convenience. We will not 145
adopt a specific value for CS or �, but rather consider the product �S = CS� as the relevant
parameter [25].

Next to the standard Smagorinsky model, we will also consider the dynamic procedure
in which the eddy-viscosity coefficient is determined self-consistently [26, 27]. To introduce
the dynamic model, we require next to the basic large-eddy filter (·) an explicit test filter (̃·). 150
Associated with these two filters, two different turbulent stress tensors arise, i.e. τi j = ui u j −
ui u j corresponding to the large-eddy filter and Ti j = ũi u j − ũi ũ j based on the composition of
the test filter and the basic large-eddy filter. The central identity obeyed by these stress tensors
may be expressed as [26]

Ti j − τ̃i j = Li j , Li j = ũi u j − ũi ũ j . (6)

Here, we introduced the resolved stress tensor Li j which is available during a large-eddy 155
simulation.

The standard dynamic procedure proceeds by assuming that τi j and Ti j can be approximated
with the same model, i.e. τi j → mi j (u) and Ti j → mi j (̃u). In line with the basic Smagorinsky
eddy-viscosity model, we put mi j (u) = −2�2

d |S|Si j and introduce the filter ratio α = �̃/�

and the dynamic length scale �d = �
√

Cd . Within the usual least-squares approach [27], one 160
obtains

�2
d = Cd�

2 = 1

2

〈Li j Mi j 〉
〈Mi j Mi j 〉 , Mi j = ˜|S|Si j − α2 |̃S |̃Si j . (7)

In (7) we denote averaging over the flow domain by 〈·〉. We consider the top-hat filter as a test
filter with �̃ = αh and use α = 2 [28]. The dependence on α was discussed in [11].



styleb.cls TFJI053B4-01-179596 May 29, 2006 17:28

Interacting errors in large-eddy simulation 5

The governing equations are discretised using the so-called method of lines. The time-
stepping method which we adopt is an explicit four-stage compact-storage Runge–Kutta165
method [1]. We will use a second order finite volume method for the convective, viscous
and subgrid fluxes [14].

The discretisation of the governing equations introduces a separate source of approximation
in a large-eddy simulation. Therefore, the numerical method should be fully included in the
analysis [29]. We start from the discrete convective flux δx (u2) that is directly available in170
the computational model and group the remainder into the closure problem. We recall that
the discrete derivative operator can be expressed as δx f = ∂x f̂ where f̂ is used here to denote
a numerically filtered variable [8]. Restricting ourselves to this representation, we have for the
model of the 1D Burgers equation

∂t u + 1

2
∂x (u2) = ∂t u + 1

2
δx (u2) + 1

2

[
∂x (u2) − δx (u2)

]
= ∂t u + 1

2
∂x (û2) + 1

2
∂x (�) = 0, (8)

in which we introduced the numerical turbulent stress tensor175

� = u2 − û2 = (u2 − u2) + (u2 − û2) = τ + (u2 − û2) = τ + H(̂)(u2), (9)

where H(̂)( f ) = f − f̂ denotes a high-pass filter associated with (̂·). We observe that the
difference between � and τ may be written in terms of a high-pass filter applied to u2.
Consistent with this decomposition, subgrid modelling of � would hence involve modelling
of τ by a subgrid model m(u) and evaluation of the numerical high-pass filter acting on u2.

The difference between � for a given discretisation method and τ depends on the subgrid180
resolution r = �/h, which characterises the strength of the numerical filtering. If the subgrid
resolution r is sufficiently large, the numerical filter operator (̂·) approaches the identity
operator for all length scales relevant to τ . Hence, as follows from (9) this implies that � → τ ,
and consequently (8) reduces to the filtered inviscid Burgers equation. In practical situations,
the grid spacing is chosen such that r assumes quite modest values, and the numerical filter185
component in the full closure problem needs to be explicitly accounted for. The influence
of the spatial discretisation is often referred to as ‘implicit filtering’ in the literature (e.g.,
[30–34]).

For central finite difference schemes, denoted by δ(n), the induced filter may readily be
inferred in the following form:190

δ(n)
x f (x) =

n∑
j=1

d j

2 jh
( f (x + jh) − f (x − jh)) = ∂x (L(n)( f )), (10)

where L(n) denotes the induced filter and {d j } are the differencing weights. For convenience
we restrict ourselves to uniform grids. The filter L(n) may be expressed in terms of a weighted
average involving the top-hat filter. This is well known in numerical literature and is directly
related to Richardson extrapolation, which may be used to formulate higher-order methods in
terms of a judicious combination of lower-order methods. As an example, for the second-order195
central discretisation, we have

δ(1)
x f (x) = 1

2h
( f (x + h) − f (x − h)), (11)

which corresponds to n = 1 and d1 = 1. Hence, we find

δ(1)
x f (x) = ∂x

( ∫ x+h

x−h

f (s)

2h
ds

)
= ∂x (�( f, x : −h, h)) = ∂x (L(1)( f )). (12)
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The induced filter L(1)( f ) = �( f, x : −h, h) in terms of the local top-hat filter

u = �(u, x : a, b) =
∫ x+b

x+a

u(s)

b − a
ds (13)

for which � = b − a. Hence, we observe that the second-order central differencing method
induces a spatial top-hat filter with filter width equal to twice the grid spacing h. The fourth- 200
order accurate central differencing method corresponds to n = 2 and may be written as

δ(2)
x f (x) = 1

12h
(− f (x + 2h) + 8 f (x + h) − 8 f (x − h) + f (x − 2h))

= 4

3

(
f (x + h) − f (x − h)

2h

)
− 1

3

(
f (x + 2h) − f (x − 2h)

4h

)
, (14)

from which we infer that d1 = 4/3 and d2 = −1/3. Hence, the induced filter L(2) correspond-
ing to δ(2)

x f (x) may be written as

δ(2)
x f (x) = ∂x

(
4

3
�( f, x : −h, h) − 1

3
�( f, x : −2h, 2h)

)
= ∂x (L(2)( f )). (15)

A less well-known example in this sequence is the sixth-order discretisation scheme. This
corresponds to n = 3 and may be written as

δ(3)
x f (x) = 1

60h
( f (x + 3h) − 9 f (x + 2h) + 45 f (x + h) − 45 f (x − h) + 9 f (x − 2h)

− f (x − 3h))

= 3

2

(
f (x + h) − f (x − h)

2h

)
− 3

5

(
f (x + 2h) − f (x − 2h)

4h

)

+ 1

10

(
f (x + 3h) − f (x − 3h)

6h

)

= ∂x

(
3

2
�( f, x : −h, h) − 3

5
�( f, x : −2h, 2h) + 1

10
�( f, x : −3h, 3h)

)
, (16)

from which we infer that d1 = 3/2, d2 = −3/5 and d3 = 1/10.
To characterise the numerically induced filter kernels, we may evaluate their effective filter 205

widths [20]. The corresponding effective filter widths are found to be �(1)/h = 2, �(2)/h =
36/25 = 1.44 and �(3)/h = 300/239 ≈ 1.2552 . . ., respectively. We observe that an increase
in the order of the finite differencing scheme implies a decrease in the effective filter width
of the induced filter. For comparably large flow structures relative to the filter width �(n), this
implies that the induced filtering effect will be uniformly diminished with increasing order of 210
the discretisation method. The effect on small-scale structures cannot be fully characterised
by �(n) alone. Instead, the behaviour of the Fourier transform of the induced filter kernels is
required, to which we turn next.

The effect of the induced numerical filter may be concisely illustrated through its operation
on u = sin (kx). Specifically we may write L(n)(u) = G(n)(kh)u. For the second-, fourth- and 215
sixth-order finite differencing methods, we find

G(1)(kh) = 	(kh) (17)

G(2)(kh) = 4

3
	(kh) − 1

3
	(2kh) (18)

G(3)(kh) = 3

2
	(kh) − 3

5
	(2kh) + 1

10
	(3kh), (19)
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Figure 1. The Fourier transform G(n) of 2nth-order central discretisation with n = 1 (solid), n = 2 (dashed) and
n = 3 (dash–dotted).

where 	(z) = sin (z)/z is the Fourier transform of the kernel of the top-hat filter. These
functions are plotted in figure 1 as a function of kh. We note that the filter corresponding
to a higher-order spatial discretisation is itself a higher-order filter; with increasing order the
Fourier transform of the kernel is seen to stay closer to the identity operator for a wider range220
of wavenumbers [20, 35, 36]. Each discretisation method gives rise to a particular damping of
the amplitude of individual modes, which induces a specific dynamic contribution in an actual
large-eddy simulation based on this method. The role of the total filter is discussed further in,
e.g., [35, 36].

To quantify the dynamic effects of the induced filter in more detail, we compare the high-225
pass filter contribution with the explicit closure term in (9). For a large-eddy top-hat filter with
filter width �, we obtain for u = sin (kx)

∂xτ = −k(	2(k�/2) − 	(k�)) sin (2kx) = −Aτ sin (2kx) (20)

∂x (H(̂ )(u2)) = k	2(k�/2)

(
1 − G(n)

(
2k

�

r

))
sin (2kx) = AH sin (2kx), (21)

where we used the sub-filter resolution r = �/h to express the amplitudes entirely as functions
of k�. The dynamic importance of these terms is represented most directly by considering their
amplitudes as a function of k� in figure 2. The magnitudes of these terms depend strongly on230
the subgrid resolution. As r = 1 we note that for a wide range of wavenumbers the amplitude
of the high-pass filtered contribution is larger than that of the flux due to the turbulent stress.
If the subgrid resolution is increased to r = 2, the numerical high-pass filtered terms decrease
considerably and become about equal to or smaller than the turbulent stress flux. Only if we
increase to r = 4, we note that the high-pass filtered contribution is considerably smaller than235
the turbulent stress flux. This corresponds to an approximately grid-independent large-eddy
simulation and the value r = 4 is consistent with the simulation findings reported in [10, 11].
The explicit incorporation of the numerical filter effect into the subgrid modelling is the subject
of ongoing research and will be published in due course.
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Figure 2. The product of the filter width � and the amplitude of the fluxes due to the turbulent stress tensor τ (solid)
and the high-pass filtered H(̂)(u2) for r = 1 (dashed), r = 2 (dash–dotted) and r = 4 (◦) and second-order (thin
lines) or fourth-order (thick lines) spatial discretisation.

In the next section we investigate in some detail the total simulation error arising in ac- 240
tual large-eddy simulations and propose a new iterative procedure with which an optimal
Smagorinsky constant at a given spatial resolution h may be approximated.

3. Interacting errors and iterative model optimisation

In this section we first review the database approach in subsection 3.1. This framework for
presenting an overview of the total simulation errors was recently adopted to assess simulation 245
errors in homogeneous turbulence [11]. We illustrate the effect of partial error cancellation.
To characterise the interacting errors, we introduce the error landscape associated with the
Smagorinsky model and identify the optimal refinement strategy. The optimal refinement
strategy also allows as to interpret the degree of optimality of the popular dynamic eddy-
viscosity model. This subgrid model is shown to display too high levels of eddy-viscosity and 250
yields significant errors at coarse resolutions. Then, in subsection 3.2, we propose a practical
iterative procedure to further improve the eddy-viscosity predictions at such coarse resolutions.
The new iterative method is based on determining the minimum of the total simulation error.
This procedure allows us to efficiently approximate the optimal Smagorinsky constant at
a particular resolution and leads to a significant error reduction compared to the dynamic 255
eddy-viscosity predictions.

3.1 Database approach to interacting errors

The database approach provides an ‘experimental’ quantification of the errors that arise in a
large-eddy simulation. In particular, it allows a detailed decomposition of the total error in a
numerical and a subgrid modelling contribution. This clarifies which effects form the dominant 260
limitations for the overall accuracy of large-eddy simulations, and under what computational
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settings and flow conditions this identification applies. An extensive database of homogeneous
decaying turbulence was generated at a variety of resolutions and filter widths using grids with
N 3 grid cells where N ≤ 128. Initial conditions at Taylor Reynolds numbers Reλ = 50 and
100 were adopted. For the direct simulation up to 3843 grid cells were used and the level of265
convergence for various flow quantities was established [11].

In terms of an explicit filter, it is straightforward to define the different error contributions
in a large-eddy simulation [14]. We restrict ourselves to the resolved kinetic energy E(t) =
〈ui ui 〉/2 corresponding to a fixed filter width � and the top-hat filter. The total error in E
resulting from a ‘Smagorinsky fluid’ with parameter �S and grid spacing h = 1/N is defined270
as

etot(�S, N , t) = EDNS(t) − ELES(�S, N , t). (22)

We denoted the kinetic energy obtained from filtering the reference direct numerical simulation
by EDNS. In the following we introduce the central parameter ξS = �S/h to represent the
resolution of the Smagorinsky length scale. The error etot can be further decomposed into a
contribution due to the discretisation and the subgrid modelling [14], i.e. etot = ed + em. To275
quantify these measures for the simulation error, a DNS and several LES at different �S and
spatial resolutions are required, which is at the heart of the database approach. Specifically,
we introduce modelling and discretisation errors through

em = EDNS(t) − ELES(�S, ∞, t) (23)

ed = ELES(�S, ∞, t) − ELES(�S, N , t). (24)

In these expressions ELES(�S, ∞, t) denotes the grid-independent prediction of the decay of
resolved kinetic energy obtained with the Smagorinsky model at a fixed Smagorinsky length280
�S = CS� and infinite spatial resolution. This grid-independent LES prediction provides a
central point of reference in the error decomposition, next to the reference DNS data. It is well
approximated at resolutions where �/h = 4–6. The total error in (22) is time dependent. In
order to arrive at a single number to characterise the error in any specific large-eddy simulation,
we introduce [10]285

δE(ξS, N ) = ‖etot‖
‖EDNS‖

; ‖ f ‖2 = 1

T

∫ T

0
f 2(s) ds (25)

with T the total simulation time. A similar procedure may be followed to arrive at δm
E and δd

E
for measuring the modelling and discretisation errors. In particular, etot in (25) needs to be
replaced by em or ed, respectively.

We describe the error behaviour in terms of the ‘error landscape’ that was introduced in
[11]. For the Smagorinsky fluid, the error landscape can be expressed using the resolution290
of the Smagorinsky length ξS = �S/h and the spatial resolution N as basic parameters. The
error landscape is formed by contours of δE and arises from systematic variation of (ξS, N ). It
provides the ‘optimal refinement strategy’ ξ̂S(N ) which identifies the optimal value of �S that
leads to the smallest total error at a particular resolution.

The reference direct simulation data and the grid-independent large-eddy predictions allow295
us to fully separate the modelling and discretisation contributions to the total error. In figure 3,
an error decomposition is collected in which we consider simulations at constant �S = CS�

and various resolutions. In this case we observe, quite paradoxically, that a higher spatial
resolution yields results with a larger total error. In fact, the discretisation error effect decreases
with increasing resolution and the total error approaches the modelling error. However, this300
modelling error is by itself larger than the total error on coarser grids. This arises because on
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Figure 3. Error decomposition at �S = 6.25 × 10−3 for 323 (no symbol) and 643 (o) displaying total error δE (−),
modelling error δm

E (−−), and discretisation error δd
E (−·).

coarse grids the comparably large discretisation error effects partially cancel the modelling
error effects.

Collecting the total errors as they arise at various (ξS, N ) produces an overview as shown
in the error landscape in figure 4. Contour plots of δE(ξS, N ) constitute the error landscape at 305
Reλ = 100, from which the ‘optimal refinement strategy’ ξ̂S(N ) can be determined straight-
forwardly. At coarse resolutions, we observe a fairly sharp increase in the total simulation
error in case the Smagorinsky parameter is below the optimal trajectory, while a slightly more
gradual increase is observed in case �S is larger than optimal.

Figure 4. Error landscape based on δE for Reλ = 100. The label on the contours refers to δE in per cent. The thick
dashed line corresponds to the optimal refinement strategy.
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Optimality of the dynamic procedure. The errors associated with the dynamic procedure310
may readily be interpreted in relation to the error landscape; the dynamic procedure gives rise
to a self-induced length scale �d(N ), which is readily translated into a ‘dynamic refinement
trajectory’ ξd(N ) = �d(N )/h on the ξS–N plane. Of particular importance is how this ‘dynamic
trajectory’ ξd(N ) relates to the ‘optimal refinement strategy’ ξ̂S(N ), i.e. does the dynamic
procedure approximate the optimal error line? The general trend in the dynamic length scale315
resolution ξd was found to be similar to ξ̂S, although ξd is considerably larger than the optimal
value ξ̂S [19]. In fact, the errors along the dynamic refinement trajectories are about twice as
large as the errors along the optimal refinement trajectory. An effective error reduction arises
from grid refinement. Particularly at higher resolutions, a high rate of error reduction with
increased resolution is observed (further details may be found in [19]). Conversely, at coarse320
resolutions the errors are still quite considerable and further improvement would be desired.

3.2 Iterative approximation of the optimal Smagorinsky constant

The total simulation error at optimal model parameters can be considerably lower than that
which may be obtained with the self-contained dynamic eddy-viscosity model. Especially at
low resolution the induced error associated with the dynamic procedure is still quite large. This325
motivates an alternative optimisation of the Smagorinsky constant at a given spatial resolution,
which we introduce in this subsection.

To approximate the lowest total simulation error for the Smagorinsky fluid at a given spatial
resolution N 3, we may adapt the Smagorinsky constant iteratively. The first task is to obtain
an interval [a, c] which contains the optimal value for ξS. Subsequently, this interval will330
iteratively be reduced in size until an acceptable approximation of the minimal simulation
error is achieved. As points of reference, we start from the ‘no-model’ simulation which
corresponds to ξS = 0 = a. This is the first simulation that is required in our iterative approach
and characterises the effects of the discretisation error only. A second point of reference
is obtained at fairly large ξS. A ‘practical upper bound’ for ξS may be obtained by taking335
ξS = c = ξd (N ). This requires a second large-eddy simulation, now based on the dynamic
eddy-viscosity model. Note that the dynamic eddy-viscosity model is used only to provide an
upper-bound estimate; all other simulations employ the Smagorinsky model. The optimum is
now bracketed by [a, c].

In order to start the process of successive approximation of the optimal value for ξS at the340
given resolution N 3, we evaluate the total error at an interior point of [a, c]. For this, we
may select the mid-point ξS = b = (a + c)/2 = c/2. The simulation at ξS = b is the third
large-eddy simulation in our iterative approach. The total simulation error δE(ξS) is now such
that δE(a) ≥ δE(b) and δE(b) ≤ δE(c) (note that here and in the following we drop the explicit
dependence on N from the notation for convenience, as this parameter is kept constant in the345
iterations).

Further improvements in ξS may be obtained iteratively. In view of the high computational
effort that is required to evaluate the ‘cost function’ δE(ξS), only minimisation algorithms that
do not rely on the explicit use of derivatives of δE will be considered [37]. Locally around
its minimum we assume that the cost function may be approximated by a parabola. This350
motivates the use of SIPI to obtain a next estimate for ξS. Referring to figure 5, we start
by constructing an interpolating parabola through the original bracketing triplet, (a, δE(a)),
(b, δE(b)) and (c, δE(c)). The location of the minimum of this parabola is at

d = b − 1

2

(b − a)2[δE(b) − δE(c)] − (b − c)2[δE(b) − δE(a)]

(b − a)[δE(b) − δE(c)] − (b − c)[δE(b) − δE(a)]
, (26)
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Figure 5. Illustration of successive inverse parabolic interpolation (SIPI) to approximate the optimal resolution of
the Smagorinsky length scale ξS = (CS�)/h. The initial triplet (a, b, c) defines an interpolating polynomial (dashed),
whose minimum yields a next approximation d at which a new large-eddy simulation should be performed.

provided the three points are not collinear. Subsequently, the total simulation error is evaluated 355
at ξS = d. From this information, a new bracketing triplet may be identified which defines a
new interpolating polynomial, and the process may be continued. Successive inverse parabolic
interpolation and evaluation of δE leads to a sequence of bracketing triplets which quite rapidly
converges to the optimum. If δE has a continuous second derivative which is positive at the
minimum, then the convergence is super-linear. 360

The application of this method to the Smagorinsky fluid at Re = 100 and a spatial resolution
of N = 323 or N = 483 is illustrated in figure 6. In these cases the combination of a ‘no-model

Figure 6. Application of SIPI to the total simulation error at Reλ = 100 and N = 32 (solid) and N = 48 (dashed).
The initial triplet is indicated with ◦, the first iterand with ∗, the second with 
 and the third with �.
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Table 1. Iterands approximating the optimal simulation setting corresponding
to Reλ = 100 at N = 323 and N = 483. The values ξS = 0.213 and ξS = 0.1988

correspond to ξd obtained with the dynamic procedure at these resolutions.

ξS δE at N = 323 (%) ξS δE at N = 483 (%)

0 15.77 0 5.249
0.213 9.24 0.1988 7.015
0.1065 4.12 0.0944 0.971
0.1272 1.56 0.09084 1.100
0.1477 2.14
0.1336 1.21

simulation’, a ‘dynamic eddy-viscosity simulation’ and a Smagorinsky simulation with ξS =
ξd/2 already yields about a factor of 4 reduction of the error relative to the no-model case.
The subsequent application of SIPI yields a rapid, albeit non-uniform, convergence as may365
be inferred from table 1. After about four to six properly selected large-eddy simulations, the
optimum is quite well approximated and a relative error of about 1–2% remains.

The computational overhead of the additional large-eddy simulations required for the iter-
ations is well justified. This may be quantified by incorporating the scaling of CPU time with
resolution, i.e. ∼N 4. In fact, compared to the costs at N = 323, a simulation at N = 483 is370
about (48/32)4 = 5.0625 times more expensive and using N = 643 requires 24 = 16 times
more effort [10]. In this case, the approximate optimisation of ξS at N = 323 was seen to
require about four large-eddy simulations, which can be completed within the cost of one ad-
ditional simulation at N = 483. The difference in computational costs compared to the higher
resolution cases is even more striking. Hence, the iterative improvement of ξS at N = 323 com-375
pares very favourably with the non-optimised dynamic eddy-viscosity simulations at higher
resolutions. This may readily be inferred from the error levels along the dynamic refinement
trajectories which yield about 7% and 4.5% for N = 483 and N = 643, respectively [19].
However, the accuracy at N = 323 can never be better than the optimum of about 1%. If
higher accuracy is needed, then one should resort to higher resolutions.380

The optimisation procedure described here provides a very simple illustration of the conse-
quences of interacting errors. The error reduction relies specifically on the observed structure
of the error landscape. Although the search procedure for an optimum adds significantly to
the total computational cost, the reduction in the error well justifies this overhead. Further
developments are required to render this approach suitable for more complex applications.385

Central to an optimisation procedure is the formulation of the ‘cost function’ to quantify
the errors that occur. Here, we compared LES to available DNS data, this constitutes a rather
academic setting. Moreover, we only considered deviations with respect to one flow property.
In general, one frequently encounters situations in which the accurate prediction of a collection
of ‘monitoring quantities’ is desired. This requires simultaneous accuracy for each of these390
quantities and implies an appropriate weighing of individual errors as part of the total error
measure. The total cost function may also incorporate possibly available experimental data or
theoretical predictions to express the degree of error in a specific simulation. The extension of
the SIPI optimisation procedure to spatially inhomogeneous turbulent flows is another matter
of interest. Depending on the particular application, a zonal approach might be considered in395
which one optimises an error measure that is composed of contributions from various regions
in the flow domain. Once a cost function has been defined, model parameters may be iteratively
adapted following SIPI. The solution can be systematically improved, relative to the adopted
cost function. Of course, the optimum that is obtained is intimately related to this cost function;
this may be application specific and requires further attention.400
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4. Concluding remarks

In this paper we considered the modifications of the large-eddy closure problem arising from
the spatial discretisation at coarse subgrid resolutions. Moreover, a new iterative method for
approximating the optimal Smagorinsky constant at low resolutions was proposed and applied
to homogeneous, decaying turbulence. 405

In case the sub-filter resolution r = �/h is low, the particular discretisation scheme that
is adopted in the computational model was shown to have a large dynamic effect relative to
the flux due to the turbulent stress. The difference between the actual computational stress
tensor � and the turbulent stress tensor τ may be expressed most directly in terms of the
modified equation. An additional flux arises in the modified equation which incorporates 410
the numerical high-pass filter applied to u2. The analysis suggests that considerable im-
provements of practical large-eddy simulation may be achieved in case the closure of the
modified equation is made to explicitly account for the coarseness as well as the type of
discretisation.

The induced numerical filter corresponding to central finite differencing was explicitly 415
calculated. It was shown that higher-order discretisation schemes induce higher-order filters
that may be expressed as linear combinations of the top-hat filter. The dynamic importance of
the high-pass filter contributions relative to the turbulent stress tensor depends considerably on
the sub-filter resolution. For values as low as r = 1–2, the induced high-pass filter contribution
is comparable to or even larger than the term that requires closure in a large-eddy simulation. 420
This was observed earlier in a posteriori analysis of turbulent mixing [14]. In case r ≥ 4, it
appears that the dynamic consequences of the high-pass filter term can safely be neglected.
The reduction of the numerical influences with increasing r is stronger in case the order
of accuracy of the spatial discretisation is higher. This underlines and further quantifies the
observations reported in [10, 11]. 425

For an explicit time-stepping method and a uniform computational grid, every doubling of
the sub-filter resolution r at fixed filter width � corresponds to about a factor of 16 increase in
a computational effort [38]. This makes the near-grid-independence requirement r ≥ 4 quite
unattainable in practical applications of large-eddy simulation. To investigate the error dy-
namics at coarser resolutions, a database approach may be followed. This was first considered 430
for homogeneous decaying turbulence in [11]. This method provides a detailed view of the
intricate error interactions in large-eddy simulation.

The basic modelling and discretisation errors were found to counteract. This leads to
an intriguing paradox related to possible strategies that should be followed to further im-
prove large-eddy predictions compared to some reference simulation. While it is tempt- 435
ing to think that a higher resolution, a better numerical method or a more precise subgrid
model would always lead to an improved accuracy of the predictions, the counteracting prop-
erty of the errors and their specific reverse dependence on filter width can completely dis-
tort this impression. Rather, the total error arises from a balance between modelling and
discretisation errors and it is not an easy matter to predict a priori whether these errors 440
will or will not counteract and what the magnitude of the individual error contributions
is.

The optimal working conditions for large-eddy simulations may be inferred from an error
landscape. The use of optimal refinement strategies [11] as a point of reference for the evalua-
tion of the dynamic procedure was reviewed. The dynamic procedure was found to provide a 445
build-in ‘dynamic trajectory’, which follows the main Reynolds number and resolution trends
seen in the ‘optimal refinement strategy’ relatively well. However, an over-prediction of the
optimal resolution of the Smagorinsky length scale is obtained, which was found to lead to
errors about twice as high as the optimal errors.
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To improve upon these shortcomings of the popular dynamic eddy-viscosity model, a new450
iterative optimisation procedure for the Smagorinsky constant was proposed. This procedure
is based on successive inverse polynomial interpolation (SIPI) and yields strongly improved
accuracy compared to predictions based on the dynamic eddy-viscosity model. Initially, this
method requires a bracketing interval for which simulations without a subgrid model and with
the dynamic eddy-viscosity model were adopted. About two to four additional large-eddy455
simulations were found to yield a near-optimal value of ξS for the case N = 323 at a Taylor
Reynolds number Reλ = 100. The large computational overhead associated with this iterative
procedure is well justified in view of the increased accuracy compared to the dynamic eddy-
viscosity model. Without the optimisation, such an error level would require much higher
resolutions and computational costs. Further analysis of this new iterative procedure is the460
subject of ongoing research.
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