Department of Applied Mathematics P.O. Box 217

Faculty of EEMCS 7500 AE Enschede
The Netherlands

r‘ Phone: +31-53-4893400

L‘J Fax: +31-53-4893114

University of Twente Email: memo@math.utwente.nl
The Netherlands www.math.utwente.nl/publications

Memorandum No. 1786

A class of nonsymmetric preconditioners

for saddle point problems

M.A. BorcHEV AND G.H. GorLus!

December, 2005

ISSN 0169-2690

IScientific Computing and Computational Mathematics Program, Stanford University, Stanford, CA 94305-9025,
USA



A CLASS OF NONSYMMETRIC PRECONDITIONERS FOR
SADDLE POINT PROBLEMS

DEDICATED TO HENK A. VAN DER VORST ON OCCASION OF HIS 60TH BIRTHDAY

MIKE A. BOTCHEV* AND GENE H. GOLUB'

Abstract. For the iterative solution of saddle point problems, a nonsymmetric preconditioner
is studied which, with respect to the upper-left block of the system matrix, can be seen as a variant
of SSOR. An idealized situation where SSOR is taken with respect to the skew-symmetric part plus
the diagonal part of the upper-left block is analyzed in detail. Since action of the preconditioner
involves solution of a Schur complement system, an inexact form of the preconditioner can be of
interest. This results in an inner-outer iterative process. Numerical experiments with solution of
linearized Navier-Stokes equations demonstrate the efficiency of the new preconditioner, especially
when the left-upper block is far from symmetric.
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We are dedicating this paper to Henk van der Vorst who has made so many seminal
contributions and who has been so supportive to his colleagues and our community.

1. Introduction. We consider a nonsymmetric preconditioner for the iterative
solution of the linear system

I A | R AT

where A # AT € R™", B ¢ R™*" (O = CT € R™*™ and m < n (often m < n).
We assume that the matrix A+ A7 is positive definite (i.e. A is a positive real matrix)
and C is positive semidefinite.

Linear systems of the form (1.1) arise in a number of applications including mixed
finite element solution of the Navier-Stokes and the Maxwell equations and constraint
optimization [24, 10, 42, 43]. In many cases A, B and C are large sparse matrices
and iterative techniques are preferable for solving (1.1), especially in connection with
the discretization of partial differential equations in three dimensions. Since A is
indefinite and often ill-conditioned, preconditioning is in most cases indispensable for
iterative solution of (1.1).

Let H and S be symmetric (Hermitian) and skew-symmetric (skew-Hermitian)
parts of A respectively:

1 1
To solve (1.1), Golub and Wathen [30] considered a basic iteration of the form
Pultt = (P — A)u* +b (1.2)
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2 M. A. BOTCHEV AND G. H. GOLUB

with symmetric (P = PT) indefinite preconditioner

P:{g Bg]. (1.3)

When A is not far from a symmetric matrix (i.e. ||S||/||H]|| is a small number), an
efficient preconditioner can be obtained by taking P to be the symmetric part of
A [30]. In the context of the systems stemming from the Navier-Stokes equations,
P corresponds to a discretization of the Stokes operator and, to compute P~ tu for
a given vector u, a number of robust direct and iterative techniques exists. Other
choices of P = PT can also be useful [30].

However, as can be expected, performance of these symmetric preconditioners
deteriorates when A is essentially nonsymmetric (||S||/||H|| ~ 1 or larger). A need
for a good nonsymmetric preconditioner and, in particular, a possibility to extend the
approach of [30] to a nonsymmetric case, motivated our research.

A variety of preconditioning methods to solve (1.1) iteratively have been sig-
nificantly extended within the last decade [5]. Following one possible classification
[27, 4, 5], we mention block and approximate Schur complement preconditioners
[18, 19, 16, 20, 17, 44, 45, 37, 38|, preconditioners based on the Uzawa algorithm
[25, 26, 8, 9, 59], preconditioners stemming from the classical splitting iterative
schemes (where our approach may fall into) [14, 30, 31, 4], preconditioners inspired by
analysis of the underlying continuous partial differential operators [35], sparse direct
and approximate factorization preconditioners [13, 23, 46], the so-called null-space pre-
conditioners [48, 1, 32], multigrid preconditioners [51], and other approaches. A few of
these approaches work well in the nonsymmetric case, among them [18, 16, 44, 35, 4].
Preconditioners for systems (1.1) stemming from the Navier-Stokes equations are sub-
ject of a recent book [21].

We note that preconditioners of the form (1.3) are studied in [30, 36, 32, 11, 12, 49]
and sometimes called constraint preconditioners.

For simplicity, without loss of generality, here and throughout the paper we as-
sume that A has ones on its main diagonal, i.e.

Diag(A) =1,

with Diag(A) and I being respectively the diagonal part of matrix A and the identity
matrix. This usually can be achieved by a diagonal prescaling. In certain applications,
however, one may want to avoid diagonal prescaling due to ill-conditioning of A.

In this paper we consider a nonsymmetric preconditioner which, with respect to
A, can be seen as a variant of SSOR. Namely, we take P in (1.3) as

P:=Peo=—(I+wl)I+wU), L+U=A-1I, (1.4)

1
w
where L and U are strictly lower and upper triangular parts of A, respectively. We
are not able to provide any rigorous analysis for preconditioner (1.4) and analyze an
idealized situation where we take

P := Pyew = —(I + wLs)(I + wUs), Ls+Us=S, (1.5)

1
w
i.e. Lg and Ug are respectively lower and upper triangular parts of the skew-symmetric
part of A. FEvidently, when the skew-symmetric part S is large compared to the
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symmetric part H, Psew appears to be a good approximation to Pssor. Preconditioner
(1.5) is thus relevant for understanding the behavior of preconditioner (1.4) when A
is strongly nonsymmetric. In our analysis we use a technique similar to [39, 40, 6].

Preconditioners (1.4) and (1.5) coincide when A is a sum of the identity and a
skew-symmetric matrix. The idea to consider this special situation to gain under-
standing in the iterative solution of nonsymmetric problems is not new [28].

Since in (1.3) the preconditioner P is not a product of (block) triangular matri-
ces, an important question is how to implement action of the preconditioner, i.e. how
to find P~'u when u is given. Unlike for the symmetric Stokes preconditioner, for
the preconditioners (1.4), (1.5) there are no standard solvers available. However, the
system with the matrix P in our case can easily be solved and, following a straight-
forward approach, to compute P~'u one needs to solve a system with the matrix
BP71BT + C (the negative of the Schur complement matrix). This is an m x m
matrix and in many cases, especially when m < n, solution by a direct solver would
be feasible. An alternative is to apply an inexact form of the preconditioner where, for
example, GMRES iteration [47] can be applied to solve the system with BP~*BT +C.
We analyze this inexact form of our preconditioning method. Furthermore, our (lim-
ited) experience shows that this inexact preconditioner works well, leading to only a
moderate increase in the number of the outer iterations as compared with the exact
form.

As our numerical experiments suggest, the SSOR preconditioner (1.4) compares
favorably with other preconditioning techniques, for a wide range of ||S||/|| H]||, i-e. for
matrices close to symmetric as well as for strongly nonsymmetric matrices.

The paper is organized as follows. In Section 2.1 analysis for the “idealized” skew
preconditioner (1.3), (1.5) is given. First, we obtain general conditions to have conver-
gence in iteration (1.2). (Convergence means that matrix P !4 has its eigenvalues on
the complex plane inside the unit circle centered at the point 1+ 0i (i = —1).) Then
in Section 2.2 we provide bounds for w that guarantee convergence and further discuss
a possible way to optimize convergence by a suitable choice of w. However, this opti-
mization is usually not efficient in practice since it is based on an estimate which is not
sharp. Therefore, in Section 2.3 we discuss simple ways to choose w which work well
in practice. This and subsequent sections deal both with the preconditioners (1.3),
(1.4) and (1.3), (1.5). A simple model problem for which the eigenvalues of P~1A
can be computed analytically gives an insight into the effect of the preconditioners
in Section 2.4. Inexact form of the preconditioners, where at each “outer” iteration
the system with BP~'BT 4 C is solved by an “inner” iterative process, is studied
in Section 2.5. Section 2.6 addresses implementation issues and provides estimates of
the computational costs. In Section 3 we present results of numerical tests. Finally,
we make conclusions and give an outlook to future research in the last section.

2. Analysis of the preconditioner.

2.1. Convergence. In this section we analyze the skew preconditioner (1.3),
(1.5). Throughout this and the next subsection it is assumed that P = Pgkew. Follow-
ing [30], we first rewrite the iteration matrix

G=P P - A (2.1)
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of the scheme (1.2) as
[ X(P-4) 0
- ¥hod o] (22)
R™" 5 X = p~1 — p=1BT (BP~'BT + C) "' BP!,

Z 2.3
R™*" 3Y = (BP~'BT +C)”' BP!. (23)

Assume now that P is a positive real matrix. As we will see, for the skew precon-
ditioner (1.5) this will be guaranteed by choosing parameter w. To get a sufficient
condition for convergence, we estimate the spectral radius of G as

p(G) = p(X (P — A)) < [ X (P = A)|.. (2.4)

It is convenient here to define the norm || - ||« as the Euclidean matrix norm with
respect to the symmetric part of P:

_ 1
IX(P = Al = | P2 X(P - 0P| . Pa=5(P+PY).

2

With this choice of the norm, (2.4) leads to
1/2 ¢ pl/2 —1/2 —1/2
p(9) <IX(P = D). <||P°x P2 ||t 2 —apg' | @)

where P — A and, hence, Pgl/Q(P — A)Pgl/2 are symmetric. This is achieved by
choosing P in such a way that its skew-symmetric part is that of A. (Nonsymmetric
preconditioners with the property P — PT = A — AT were introduced in [39]). The
following result holds:

LEMMA 2.1. Let X be defined by (2.3), with positive semidefinite matriz C, and
Py (the symmetric part of P) be positive definite. Then

HP}/QXP}/QH <1, (2.6)
2
so that (2.5) leads to

p(9) < | PP — APy (2.7)

Proof. We first consider the case C' is positive definite and rewrite matrix X in the
form

X=pP'[P-B"(BP'B"+C)'B] P!
=pt-p'BTcYBP'BTC ' +1)"'BPL.
The Sherman-Morrison-Woodbury formula [29] reduces the last expression to
X =(P+B'C'B),

so that, with Pg = %(P — PT) being the skew-symmetric part of P,

PPxpPl? =
—1/2 —1/2 —1/2\T r—1 —172,\ ! . (2.8)
:(I+PH PsPLY? + (BP; YT (BP;, )) = (I +M)™,
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where the underlined expression is denoted by M. Since C ! is positive definite, the

matrix (BPy;"/*)TC~(BP;;"/?) is positive semidefinite. Furthermore, Py, "/* Ps P '/
is skew-symmetric and, therefore, the matrix M is nonnegative real, i.e. (Mz,x) >0
for any x € R™. Hence, ||(I + M)~ |2 < 1, and the statement is proven.

In the case C has zero eigenvalues, we write

C=UAUT,
(0)

%

where columns of U are orthonormal eigenvectors of C' and A = Diag()\gc)), with A
being the eigenvalues of C. We introduce, for € > 0, matrices

Ac=A+el, X.=P'—pP'BT(BP'BT +UAUT) BP 1.

Denoting
B=UTBP,'?  Ps=pr;"?PspP;?,  A7' =Diag (%) (e >0),
)\ic + €

and using (2.8), we get

- 1 e - -
PY*X P = (I+ Ps+ “BTA'B)T (e>0),

1
1/2 1/2
HPH/ XGPH/ H% = [hax D 1RTA-LR D 1BTA-IR
leli=t (I + Ps + =BTAc " B)x, (I + Ps + =BTAc " B)x)
< 1
h P 1 : ST i—17 Losri—1p.2
1+2 thm (Psz,z) + = - thln (B* A7 Bzx,x) + —||B" A" Bz
z||=1 € z||=1 €
— ! — <1,
1+ QHHhin (Psxz,xz)+ -0
z||=1 €

because the matrix BTA;1§ has at least m — m zero eigenvalues. We have

1
1P x.PY|3 < — <1
142 ”nhm (Psx,x)
x||l=1

Letting € — 0 in the last estimate yields
1P X Py || = lim || Py * X Pr/? 2 < 1.

O

We further proceed similarly to [39, 40, 6] and estimate the norm in (2.7). Recall
that the matrix P — A is symmetric, so that P — A = Py — H and

—1/2 —1/2 —1/2 —-1/2 —-1/2 —1/2
HPH 2p - Ayp,Y H2 - HIfPH 2ap;Y H2 = o(I - P;PHP;Y?),  (2.9)

Representing the eigenvalues of I — Py, Vg P;l/ % as Rayleigh quotients, it is easy to
see that they are inside the interval (—1,1) if and only if

(0<) (Hz,z) <2(Pgz,x) VzxeR" x#0. (2.10)
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We summarize this section with the following result:
THEOREM 2.2. Let G be the iteration matriz of (1.2), (1.3), where P is a positive
real matriz and P — PT = A — AT. Then we have that (see Lemma 2.1 and (2.7))

p(9) < || PP - )Py
where Py is the symmetric part of P. Moreover,
P 2P = )Py | <
2

if and only if inequality (2.10) holds true.

2.2. Choice of w. In this section we adopt, with some minor changes, the results
from [39, 40, 6] on how the parameter w should be chosen. So far we have not used
the particular form (1.5) of P. It is easy to check that the symmetric part of P is
given by

1 1
Py=~-T+wLsUs=—I—wLsL¥. (2.11)
w w

Here and elsewhere in this paper we assume that w > 0. The following obvious lemma
follows:

LEMMA 2.3. The extremal eigenvalues of the symmetric part Py of preconditioner
(1.5) are given by

. 1
Amin(Prr) = min (Pyz,z) = — — wl||Ls||3,
[lz||=1 w (2.12)
1 )
Amax(Prr) = max (Pgz,z) = —.
(P) = i (P 2) =
Thus, P is positive real, i.e. Amin(Prr) > 0, if and only if

w< (2.13)

sz

Taking into account (2.10), we could get conditions on w (cf. [39, 40, 6]) which
would be sufficient for convergence of the iteration (1.2), (1.3), (1.5) provided that
(estimates for) the extremum eigenvalues of H and S are known. A similar tech-
nique for the classical SSOR, also based on the extremum eigenvalue estimates, has
been used in [58, 2] where in particular the norm ||Lg||2 appears to be an important
parameter, too. Indeed, let

Amin = min (Hz,z) =7, Amax = max (Hz,x) = 72, |Ls|l2 = 7s-
[lzll2=1 lz|l2=1

Note that p(S) < 2v3. Then, requiring that the maximum of the left-hand side
in (2.10) is smaller than the minimum of the right-hand side yields the following
condition

1
72 <2(- - W), (2.10)
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which is sufficient for (2.10) and can easily be solved in w. Moreover, using the value
of 1, by a simple field-of-value technique one can minimize an upper bound for the
norm in the right-hand side of (2.7) with respect to w [39, 40, 6]:

p(G) < IT = P PHPG
— max {|1 — Amin (P 2HPZY?)] 1 - AmaX(P,;l/QHP;/Qﬂ}

— min.
w

It is not difficult to see that the minimum is attained when w satisfies

(2.14)

Yow

2(/.)2

gmax{|1’ylw|,‘17
1—n

2 — (71 +72)w — 27v3w® + M173w® = 0,

and it is the only real root of this polynomial in the interval 0 < w < (/73 + 1673 —
v2)/(4743). However, this “optimal” value of w is typically useless in practice since it
essentially optimizes an upper bound of p(G) which is not sharp (sharpness is lost in
(2.107) and (2.14)).

2.3. Choice of w in practice. There are simpler ways to choose w that usually
work well in practice. Let

we = 1/ max{|[Ls]loo, [|Us|loo }- (2.15)

It is easy to check that for w < w, the symmetric part Py of the matrix P has
diagonal dominance and hence P is positive real. This is necessary for the iteration
(1.2), (1.3), (1.5) to converge (Theorem 2.2). Another, slightly sharper computable
bound on w (under which P is positive real) is

w < [VITslwUsllw] = [VIEslw sl -

Indeed, this last condition implies (2.13) because ||Lg|l2 < /|| Ls|loo || Ls]|1-

As numerical experiments suggest, fastest in terms of iteration number conver-
gence is typically observed for values of w usually =~ 10 % larger than w,. This con-
clusion is made in [6] for linear systems Az = f stemming from convection-diffusion
problems solved by the Richardson and the GMRES methods preconditioned with P
from (1.5). For our problem (1.1) we observe the same dependence of convergence on
w for the GMRES method preconditioned by P with both the SSOR and the skew
blocks P (cf. (1.3), (1.4), (1.5)). The typically observed dependence of the number of
iterations (to achieve certain residual reduction) on w is plotted in Figure 2.1.

Figure 2.2 shows how choice of w usually influences the eigenvalues of the precon-
ditioned matrix P~1A. Taking w slightly larger than w, typically leads to a conden-
sation of eigenvalues around point 1 + 07 in the complex plane and to a separation
of several larger eigenvalues on the real axis. Since clustering is generally beneficial
for convergence [55, 56], it is natural to expect a faster convergence for this case.
Yet further increasing w results in the eigenvalues with a negative real part and poor
convergence.

We emphasize that the preconditioners (1.3),(1.4) and (1.3),(1.5) usually exhibit
very robust convergence behavior with respect to perturbations in w, especially when
applied in combination with a modern Krylov subspace method. Taking w in the
neighborhood of w, is normally a very good choice in practice. In the numerical
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# iterations

Wy ~ l.lw,

Fic. 2.1. Typical dependence on w of the iteration number to achieve a certain residual norm
reduction for the skew- and SSOR-preconditioned iterative methods (1.2) observed when solving the
test problems described in Section 3. Similar dependence is observed in [6] for central finite difference
discretizations of convection-diffusion problems.

0.5 ‘
<
E O 1
-0.5 :
0 1.5 2
0.5
+
<
E O .
-0.5 :
0 1.5 2
0.5
< )
§ Or om Oo B
_05 1 1 1
0 0.5 1 1.5 2

FIG. 2.2. Eigenvalues of the skew-preconditioned matric P~1 A in the complex plane, for w =
0.8ws (top), w = wsx (Mmiddle), w = 1.2w« (bottom), w« is given by (2.15). Eigenvalue clustering
and faster convergence are observed for w > wx«. A is a diagonally scaled discretized Navier-Stokes
operator obtained by the stable (Q1-iso-Q2)-Po discretization (see Section 3) on a 16 x 16 mesh
(n =578, m = 64), viscosity v = 0.01.

experiments presented in Section 3 with the preconditioners (1.3), (1.4) and (1.3),

(1.5), w was chosen as

(0.9 max{||Ls||so, [|Usloes 1.0} 7", if P = Puew,

09 A o (2.16)
(0.9 max{[|L]loc, [[Ulloc, 1.0}] ", if P = Pecor,

where a care is taken that w does not get too large.
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2.4. Preconditioning for a model problem. Here we inspect the precondi-
tioning effect for a simple situation where the eigenvalues of the preconditioned matrix
P~LA (cf. (1.3), (1.4)) can be computed analytically. More specifically, we make the
following assumption:

ASSUMPTION 1. A is similar to a block-diagonal matriz with 3 x 3 diagonal blocks

1 o; 51,1

—0; 1 bi,g . (2'17)
bi1 bi2 —c¢

When applied to matrix A in the transformed block-diagonal form with blocks
(2.17), preconditioning (1.3) results in matrix P~!.A of the same block-diagonal struc-
ture, so that the effect of the preconditioning can be traced for each of the blocks
separately. Note that for block-diagonal matrices with blocks (2.17) the SSOR and
skew preconditioners coincide (cf. (1.4) and (1.5)).

The following lemma shows that Assumption 1 holds true for a class of matrices
A if B has a special sparsity structure and C' is diagonal.

LEMMA 2.4. Let

T A R v

where the orthogonal matrices U and V define the singular value decomposition of G =
USVT. Then there exists a permutation matriz P such that the matriz (RP)T ARP
is block-diagonal with 2 X 2 diagonal blocks

[ 1 "] (2.18)

—0; 1

with o; being the singular values of G. Moreover, Assumption 1 holds true if, in
addition, C is diagonal and B is such that the matric BRP has nonzero entries only
at the positions (1,1), (1,2), (2,3), (2,4), ..., (m,2m — 1), (m,2m).

Proof. The proof is straightforward and shows how, under the assumptions of the
Lemma, reduction of A to the block-diagonal form with blocks (2.17) can be made.
First, we note that

R 0
0 I

RTAR (BR)T

T —
RAR—[ BR  —C

| o |

}, RTAR:[I E}.

- I

It is not difficult to see that a permutation matrix P exists such that P(RTAR)P =
(RP)T ARP is block-diagonal with diagonal blocks (2.18). Then

(RP,)TARP, — {(RP)TARP (BRP)T} P [P o} .

BRP —C 0 I

Define now another permutation matrix Py € R(n+m)x(n+m) with columns being
those of the identity matrix written in the order

1,2,n+1,3,4n+2,....n—1,n,n+m.

Matrix (RP1P2)T ARP;P, has the required block-diagonal structure with diagonal
blocks (2.17). O
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Tr= = 7 T 1 \,
e NN I ' f 1
. AN o : ! S ' h
N A o= ' N ' ]
08 o~ ~ L |1 o8 % ! /
. o) Cats i | . NN i
N G= RS 1 1 AR ! I
N S R ' AN H i
* ! / RN !
=0.6} N oot ' 1 =06 s ;
3 o=, N |3 Vo ;
A N 7\ A a ' ; N i
= . ; 1 = g ;
S ) i\ ! S \ S !
50.4r ‘.\ i \\' ,' 1 &0.4 \ T ‘,\ 7
kY ! \ 1 v . !
\ i \ ' ' . K
\ i v 1 B s K
\ . v L . /
0.2 — o 1 02 o . .
Y L 1 . K
' g
Y VY =10 \o=3 v =1
vy Vi \
\ A v \ <
o i ol L i 0 L LI L ol L
0 0.5 1 0 0.2 0.4 0.6 0.8 1
o (o)

FiG. 2.3. Model problem, ¢ = v = 0. Left plot: Analytically computed p(X(P — A)) versus
a = wo for different values of o. If o is large enough then the fastest convergence (p(X(P—A)) =~ 0)
takes place for oo > 1 (for w > wx ). Right plot: the same values against w. Here wsx = 1/0max = 0.1.

From (2.2), we see that m eigenvalues of P~1A are equal to one and the other n
are of the form 1 — \; with \; being the eigenvalues of the matrix X (P — A). For the
blocks (2.17), computations in Maple show that (we omit the subindices ¢ in (2.17))

1
X(P-A) =+ —
b202wd — (b2 + b)w — ¢ (2.19)
(w—1)(=b2w + ¢(02w? — 1)) —w(02w? — 1+ w)(oc+ biby) '
w(w — Dw(=b1ba + oc) (0?w? =1+ w)(biw +¢)
Without loss of generality we assume that ¢ > 0. Since we are mainly interested in

the situations for which the skew-symmetric component S is large in norm, we can
expect values of o to be relatively large too, in fact, they are proportional to a norm

of S.
For simplicity we consider the case b1 = by = b. It is reasonable to choose o as a
characteristic scale and express w, b and c¢ in terms of ¢ as
1 A
w=a|—|, b = o, c=no,
o
where o« = 1 corresponds to the important choice w = w, = 1/0 (cf. (2.15)). Note

that a > 0, v > 0.
In the case ¢ = v = 0, the eigenvalues of (2.19) take an elegant form

2cr
M=14+4 —— Ao =0 2.20
1 + O'(Oé2 — 2) ) 2 ) ( )
delivering, for the following two interesting choices of «,
(2.21)

2
M=1——, ifa=1(wv=uw),
(o
2 .
)\1:1+m, 1fa=o(w:1).

Note that b has no influence on A; at all. Requirement |A;| < 1 is equivalent to

1\* 1
0 = 4[2 — ) - =
sasa Jr<20> 20’
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where & increases monotonically with o, and lim, 0+ @ = 0, limy_,oo @ = V2. Fig-
ure 2.3 shows the dependence of p(X (P — A)) = |A\1| on a and w. Here, we recognize
the familiar dependence of convergence rate on w (cf. Figure 2.1). The right plot in
Figure 2.3 shows the influence of different blocks (2.17) on the spectral radius: choos-
ing the block with the largest 0 = omax and setting w := w. = 1/0max will result for
the other blocks in

20 /0 max
((U/UmaX)2 - 2)

For further analysis, where we inspect the effect of the 8 and - on the eigenvalues
of P71 A, see Appendix.

a =

= pX(P-A)=|M|=|1+ > <1 (2.22)

Umax

2.5. Inexact preconditioning. In this section we analyze an inexact form of
the preconditioned basic iteration (1.2), (1.3). To compute v := P~lu (note that we
do not compute the matrix P! explicitly), an m x m linear system of the form

(BP™'B" 4+ C)yz2 = 1, (2.23)

has to be solved for a given vector y;. The inexact method we consider is of interest
when solution of (2.23) by a direct method is not feasible and an iterative method is
used. This leads to an inner-outer iterative procedure. A proper stopping criterion for
the inner iteration should be chosen, for which, on the one hand, the outer iteration
convergence is not corrupted too much and, on the other hand, not too many inner
iterations are done. The inner-outer iterations have been studied in the context of
different problems (see e.g. [28, 26, 22, 3, 57, 52] and references therein). In particular,
it is known that if the residual norm tolerance used in the inner iteration converges to
zero then usually the convergence rate of the exact method is asymptotically recovered
[28, 22, 3]. We will show that this is true for the inexact iteration (1.2).

We first adopt some of the known results on the inner-outer iteration to the outer
iteration (1.2) written as

uFtl = oF Pk rF = b — Au”. (2.24)

The following simple result provides one possible choice of the inner iteration tolerance
for which the convergence rate of the exact method is asymptotically recovered (cf.
Theorem 3.3 in [3]):

LEMMA 2.5. Assume that iteration (2.24) converges, p(G) <1, G =P~ YP—A),
and let || - ||« be such a norm such that |G|« < 1. Assume that at each step of
iteration (2.24) linear system P(ufT! — uF) = r* is solved inevactly, with a residual

pF =r* — P(ukTt —uk), so that the inevact iteration reads

Wkt — kb plpk _pelpk, (2.25)

Then the inexact iteration (2.24) converges to the exact solution 4 of (1.1) in the
norm || - ||« provided that

195 |1+ < enllr™]|, k=0,1,... and

S+ emaxo < 17 €max = Hl]?X €k,

where s = [|G|l« < 1 and 0 = [|[P~Y|. - || All«. If, furthermore, the inner iteration
tolerance €y, satisfies

€ <0, (2.26)
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where ¢ 2 0 and § € (0,1) are constants and 7, > 1 is a nondecreasing sequence such
that limg_ o, T, = 00, then the convergence rate is asymptotically the same as for the
exact iteration (2.24):

: [ut+t — .
1 — <. 2.27
T (2.27)
Proof. Existence of the norm || - ||« follows from the fact that for any € > 0 there

exists at least one matrix norm such that ||G||. < p(G) + ¢ (see e.g. Lemma 5.6.10 in
[34]). Subtracting the equality @ = Git + P~1b from (2.25) we arrive at

uF Tt — = G(uh —a) — PTIpk,

so that
[u**t —all. <G[llu® = all + 1Pl
<GNlla® =@l + 1Pl verllr* ]l
Since ||r*||. = || A2 — Au¥||. < ||Al|«||u® — 4« we obtain

[t =l < (¢ + exd)Ju® — .,

which shows convergence provided ¢ 4 €max8 < 1. If ¢, satisfies (2.26) then
k+1 _ o
™ = alle 4 cmvo.
[[u? — all.
Letting k — oo leads to (2.27). Note that for both the inexact and exact iteration the
value of the upper limit in (2.27) depends on the initial guess vector u° and belongs
to the interval [p(G),s]. If G is nonsingular then the value of the limit is exactly ¢ (see
[33], Exercise 3.2.12). O

We now consider a specific form of the inexact preconditioner (1.2), (1.3) where
the system (2.23) is solved approximately. Direct computations show that

., [pr—p1BTW-1Bp-t p-1BTW-!
P = w-1lBp-! —w-t

] , W =BP'BT +C.

Let v = (P — A)u” + b be partitioned as vT = (27, yT) with = consisting of the first
n components of v. In (1.2), (1.3) we have

—1 —1pTyy—1 —1

k+1 _ p—1. =1 [T _ Px—P 'B'W (BP ZC—y)

u —P ’U*P |:y:| = |: Wﬁl(Bpilx—y) 5 (2.28)

where to compute the action of W~! the linear system (2.23) with the right-hand

side y; = BP~'z — y is solved. In our inexact version of (1.2), (1.3) we allow for an
approximate solution of this system with residual ¢* = BP~'z — y — Wy, so that

yo =W L BP oz —y) - W l¢F =~ W L(BP 1z —y).
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In this inexact iteration we essentially work with an approximate preconditioner Pr ~

P:
P (P At 41

_p1T| Pl — P7IBT [W=(BP 'z —y) - W~ 1¢"]

SRy W-YBP 'z —y) - Wlg

_[PTta = PTBTW N (BP e —y)] | [PTIBTW (2.29)
- W-YBP 1z —y) —W-1gk

— Py P! {q%] .

Substituting v = (P — A)u* + b into the last expression, we obtain the following
formula for the inexact iteration (1.2), (1.3):

ubtt = ok 4 Pk 4 pt |:q0k:| : (2.30)
Comparing this last expression with the general inexact form of the Richardson
method (2.25), we arrive at

THEOREM 2.6. Assume that iteration (1.2), (1.3) converges, p(G) < 1, G =
P~YP — A), and let || - ||« be such a norm that ||G||. < 1. Then the inexact form
(2.29), (2.30) of iteration (1.2), (1.3) where at step k the system (2.23) is solved
approzimately with residual q* converges to the evact solution @ of (1.1) in norm
| - ||« provided that

Ig" [« < exllr*l.,  k=0,1,... and

S+ Gmaxe < 17 €max = m]?,x €k,

where s = ||G||« and 0 = [|P~Y|. - || All«. If, furthermore, the inner iteration tolerance
€ satisfies (2.26) then the convergence rate of the inexact iteration (2.29), (2.30)
is asymptotically the same as for the exact iteration (1.2), (1.3) and relation (2.27)
holds.

Proof. Note that (2.30) is a particular case of (2.25) with p¥ = — [qok] and apply

Lemma 2.5. Since G is singular (see (2.2)), the actual convergence rate depends on
the initial guess u” and can be smaller than ¢ ([33], Exercise 3.2.12). O

By choosing tolerance in the inner stopping criterion carefully one could also aim
at minimizing the overall computational work in the inner-outer iteration rather than
at preserving the outer convergence rate [22, 28]. Adopting these strategies to the
inexact SSOR iteration is left for future work. We emphasize that another approach,
aiming at maintaining convergence through the outer iteration process, has recently
been developed [52, 53, 54]. This approach is valid for a more general situation of in-
exact matrix-vector products [53] and explains a heuristical inner iteration relaxation
strategy reported in [7].

2.6. Implementation and costs. The iterative scheme considered in Section 2.1
is in fact a stationary Richardson method applied to the left-preconditioned system
P~ Au = P~1b. When applying preconditioner (1.3) in combination with this or any
other iterative method, one needs to repeatedly compute a result of the action of the
matrix P~1 on a given vector. In this section we explain how this can be done. In
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(a) compute v := P~ tu (b) compute w := P~ Au

. T . x
foragwenu[}: foraglvenu{}:
Y Y

rp =P (P — Az,
Y1 = B'Ila
y1 = (BP7'BT + O) "y,

Iy = P_IZE,

[\

(1)
(2)  y1:=Bxi —y,

(3) y1:=BP'BT+C) 'y,
(4)  xo:= P 1BTy, xo := P 1By,
(5)

Tl ‘= X1 — T2, Il = T1 — T2,
v = . w = — .
Y1 Y Y1

Fic. 2.4. Algorithms for preconditioned matriz-vector products.

/_\A/_\,_\/_\
w
D D ~—

addition, implementation of the matrix-vector multiplication P~ Au is considered.
As it turns out, it can be organized in such a way that, as compared to computing
of P~lu, it requires only little extra work. We therefore emphasize that in most
cases one should not separate steps v := Au, w := P~1v but rather combine them in
w =P~ Au.

Consider first the matrix-vector multiplication v := P~ tu. In view of (2.28), for
u partitioned as u? = (2T,yT), x € R", we can write

Yy

Pz — P 'BTW Y BP 'r —y)
W-YBP tr —vy)

with W = BP~!BT + C. This leads to the algorithm shown in Figure 2.4(a).
To work out computation of w := P~1 Au, we use (2.1) and (2.2):

Pl Au=u—Gu= B] - Ef((}]; - ﬁ));j |

Substituting X and Y from (2.3), we get

X(P-Ax=P Y (P-Axz—-P 'BTY(P- A
=[I-P'BY"(BP'B" +C)"'B] P7!(P - A)z,

so that, computing X (P — A)z, we get Y(P — A)z as a by-product. The resulting
procedure to compute v := P~ Au is outlined in Figure 2.4(b).

Note that in both algorithms from Figure 2.4 the inverse matrices at steps (1),
(3), and (4) do not have to be computed, instead, one solves linear systems. Steps (1)
and (4) in both algorithms can be done efficiently since P is a product of triangular
matrices. The most expensive part is step (3). One possible way here is to use a direct
linear solver, computing the LU factorization of the m x m Schur complement once
and then reusing it at every step (3). The costs of the preconditioner for this case
are given in Table 2.1. If these costs are not feasible, solution in step (3) can be done
iteratively. This leads to the inner-outer iterative procedure analyzed in Section 2.5.
We further discuss implementation issues for this method in Section 3.1.
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TABLE 2.1
Estimates for the costs of the algorithms for preconditioned matriz-vector products (Figure 2.4).
The notation is: L and U have respectively at most | and u nonzero entries per row, B has no more
than r nonzero entries in each row or column. The matriz (BP~1BT +C) is computed and factorized
once. It is assumed that operations 1 := P~ YAz and z1 := P~ 'z have roughly the same costs (as
is the case when e.g. the Eisenstat’s trick is applied [15]). Terms O(m) and O(n) are omitted.

initialization costs:

computation of (BP~1BT + O) 2n(l + u +m) + 2m?r
LU factorization of (BP~'BT +C) | 2m?
total: 2m® +2m?r + 2n(l 4+ u + m)

costs per matrix-vector product v := P~ 1u or w := P~ Au:

step (see Figure 2.4) costs

(1) 2n(l+ u)

(2),(3) 2m? +2m(r — 1)

(4) 2n(l+u+r)

() n

total: 2m? + 2n[2(1 + u) + r] + 2mr

(terms O(m) and O(n) are neglected)

Compared with other known preconditioners used for systems (1.1), our precon-
ditioning is not too expensive. For example, one matrix-vector product with the
BF BT preconditioning [16] involves solving a linear system with the matrix A. In
addition, solving the eigenvalue problem for BBT (to rearrange the unknowns) may
be necessary. In Table 2.2, the costs of the BFBT preconditioner are given for the
case when the matrix A has bandwidth /n, the system with A is solved by a band
LU direct solver and the eigenvalue problem for BB is solved. Comparing the costs
of the SSOR and BF BT preconditioners (Tables 2.1 and 2.2), we see that applica-
tion of the preconditioner matrix v := P~!u for BFBT is approximately three times
more expensive than for SSOR, even if one neglects the costs of the matrix A solve in
BFBT. Indeed, these costs can often be reduced by using an (inner) iterative solver.
We emphasize that the costs in BFBT can be reduced by making it inexact [16], just
as can be done for the SSOR preconditioner presented in this paper.

Another, block-triangular preconditioner (see [18] and Section 3.3) requires, for
the matrix A having bandwidth \/n, about 2n? operations at its initialization stage
for the band LU factorization of A and about 4n+/n+ 2nr operations at each iteration
for w := P~1v (Table 2.3). Thus, this preconditioner is much cheaper than either
BFBT or SSOR when m is large (cf. Tables 2.1, 2.2).

In Section 3.3 we also demonstrate the performance of a simple constraint pre-
conditioner (1.3) with P taken to be the identity matrix, which is the diagonal of A
if the diagonal prescaling is applied. The costs of this preconditioner are significantly
reduced as compared to general constraint preconditioners (Table 2.1) because of a
simpler structure of the matrix BP~!BT + C' = BBT + C. If this matrix is a sparse
band matrix with bandwidth y/n (as is the case in Section 3.3) the initialization costs
are approximately 4mn operations and every matrix-vector multiplication requires
about 4m+/n + 2(m + n)r operations (cf. Tables 2.1, 2.2).

In the symmetric preconditioners [30], one needs to solve a linear system with a
symmetric n X n matrix at each preconditioned matrix vector multiplication, this can
often be done with fast direct solvers.
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TABLE 2.2
Estimates for the costs of the exact BF BT preconditioner matriz-vector products. It is assumed
that the matriz A has bandwidth \/n as is the case for linearized Navier-Stokes problem of Section 3.
The notation is the same as in Table 2.1 and s is the mazimal number of nonzero entries per row
in C. Terms O(m) and O(n) are omitted.

initialization costs:

LU band factorization of A ~ 2n\/ny/n = 2n?
computation of BBT 2m?(2r — 1)

solving eigenproblem for BBT %ms
total: Sm? +2m?(2r — 1) 4 2n?
costs per matrix-vector product:
operation costs
v:=Au 2n(l+u+7r)+2mr+s—1)
w:=P 6m? +2n(l +u +2r) + 2m(r — 1) + 2m — 3 + 4n/n
total for w := P~ 1 Au 6m? + 2n[2(1 + u) + 3r] + 2m(2r + s) + 4n\/n
(terms O(m) and O(n) are neglected)
TABLE 2.3

Estimates for the costs of the exact block-triangular preconditioner matriz-vector products. For
notation and assumptions see caption of Table 2.2.

initialization costs:

LU band factorization of A | ~ 2ny/ny/n = 2n°

costs per matrix-vector product:

operation costs
v:=Au 2n(l+u+7r)+2m(r+s—1)
w:=P 2nr + 4ny/n
total for w := P~ 1 Au 2n(l+u+2r)+ 2m(r + s) + 4ny/n
(terms O(m) and O(n) are neglected)

3. Numerical experiments. We have carried out numerical experiments for
systems (1.1) coming from the finite-element discretization of the two-dimensional
linearized Navier-Stokes equations (the Oseen equations, see e.g. [21, 19, 20, 17]):

—vAu+ (v-V)u+Vp=Ff,
V-u=0,

where velocity w is the unknown, v is the known velocity from the previous (Picard)
iteration, p is pressure, v > 0 is viscosity. We have chosen this problem for numerical
experiments because it is a widely known and well understood test problem. We
emphasize that there are a lot of powerful preconditioners which work very well for the
systems steming from the Navier-Stokes equations [21, 35, 17, 20], see also the recent
survey [5]. Our aim here is to show that our preconditioning approach based on purely
algebraic considerations, though apparently not being the best possible choice for this
particular problem, may be competetive with other well known preconditioners.

The test problem is the leaky-lid driven cavity problem, as generated by the
MATLAB software of David Sivester and Howard Elman [50], with the wind field
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mesh 64 x 64 v=0.002

mesh 64 x 64 v=0.002 (
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# outer iterations # outer iterations

Fic. 3.1. Convergence plots for preconditioned GMRES with three different Schur complement
solvers: direct solver with LU factorization (solid line), inner iteration with the strict stopping
criterion ||g*||l2 < 1079||q%||2 (dashed line), and inner iteration with stopping criterion (3.1) (dash-
dotted line). Left plot: the stable (Qi-iso-Q2)-Po discretization. Right plot: the stabilized Q1-Po
discretization. In both cases v = 0.002 and 64 x 64 mesh is used. For the stable discretization,
accuracy of the inner solver has almost no influence on the outer iteration convergence.

v = (v1,v2) chosen as
Ul(l‘7y):2y(1—$(}2), ’Ug(y):—2$(1—y2), -1 <$7y< 1.

The software can produce two types of discretizations: the stable (Q1-iso-Q2)-Pg
discretization and the stabilized Q-Pg discretization (in the former case C' = 0) (see
e.g. [19, 51, 35] and references therein). The stabilization parameter for the stabilized
Q1-Pg discretization was 3 = 0.25.

Throughout this section, w in preconditioners (1.3),(1.4) and (1.3),(1.5) was cho-
sen according to (2.16). For the SSOR, skew and Stokes preconditioners, the two-sided
diagonal prescaling was used to get Diag(A) = I. We used full GMRES [47] as the
(outer) iterative solver. All the runs were done on a PC with a 2.5 GHz processor
and 2 Gb memory.

3.1. Implementation of the inexact iteration. Analysis of Section 2.5 gives
convergence conditions for the Richardson iteration (1.2) when action of the Schur
complement inverse is computed approximately by another, inner iterative process.
Since the obtained conditions (Theorem 2.6) are based on the norm estimates that are
not sharp, we expect them to be too strict in practice. These conditions should also be
relaxed when a modern Krylov subspace method, instead of the simplest Richardson
method, is employed in the outer iteration. Therefore, we interpret Theorem 2.6 qual-
itatively rather than quantitatively: the residual norm in the inner iteration should
be proportional to the outer iteration residual norm.

In our numerical experiments, we have used the following stopping criterion for
the inner iterations:

1076, if [|r*]]2 > 0.01,

3.1
712, otherwise, (3.1)

llg*]l2 <

¢* and r* are inner and outer residuals, respectively. Here, the strict tolerance on
llg*||2 for large outer residual norm is not caused by the convergence requirements but
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mesh 64 x 64 v=0.002 mesh 64 x 64 v=0.0005

10 ‘ 10 :
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) --- skew --- skew
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Fic. 3.2. Convergence plots for GMRES preconditioned with the skew and SSOR precondi-
tioners. Left plot: 64 x 64 mesh, v = 0.002, right plot: 64 X 64 mesh, v = 0.0005. The stable
(Q1-150-Q2)-Po discretization is used.

rather by accuracy requirements of this specific test problem. Without this condition,
convergence of the outer process is not corrupted. However, the obtained solution is
much less accurate, as compared to the known exact solution. We do not have an
exact explanation for this. For the inner iterative solver full GMRES was taken with
the incomplete LU factorization of the matrix BBT + C as the preconditioner. Note
that in case BBT + C is guaranteed to be positive definite the incomplete Cholesky
factorization could be used as a preconditioner. The ILU preconditioner is useful but
by no means crucial for the overall performance. The maximum number of iterations
was taken 15 and 50 respectively for the stable (Q1-iso-Q2)-Po and for the stabilized
Q1-Py discretizations. A lower value of the maximum iteration number for the stable
discretization was taken for efficiency reasons, because of a very robust outer iteration
convergence behavior observed in this case.

An example showing how the chosen inner stopping criterion affects the outer
iteration convergence can be seen in Figure 3.1, where, in addition to the stopping
criterion (3.1), convergence plots for a much stricter criterion are given. As we see,
for the stable discretization the outer iteration convergence is hardly affected by the
choice of the inner solver. This robust convergence behavior was observed for this
discretization in almost all runs (see the results reported in Section 3.3).

3.2. Skew and SSOR preconditioners. The convergence results of Section 2.1
were obtained for the skew preconditioner (1.3), (1.5) rather than for the SSOR pre-
conditioner (1.3), (1.4) we are aiming at. As it has been already stated, the skew
preconditioner should be an increasingly better approximation to SSOR as the skew-
symmetric component S of A grows in norm. In practice, we do observe the similar
convergence behavior of both preconditioners already for not so small viscosity values
v (note that ||S|| ~ 1/v). This can be seen in Figure 3.2 and in the results reported
in Section 3.3.

3.3. Comparison with other preconditioners. Here, we present results of
the comparison of the SSOR and skew preconditioners with the BF BT preconditioner
[16], the block-triangular preconditioner [18], and the Stokes preconditioner [30]. To-
gether with the “exact” version of the SSOR preconditioner, we test the inexact SSOR
preconditioner implemented as explained in Section 3.1.
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We emphasize that comparison of inexact forms of SSOR with inexact forms
of other preconditioners is beyond the scope of the paper. We restrict ourselves to
demonstrating that
(i) the new preconditioning technique in its exact form can be very competitive with
other techniques for the cases where the exact implementations are feasible and require
comparable work,

(ii) the inexact form of the new preconditioner (presented in Section 3.1) is robust
and leads to only a moderate increase of the number of the outer iterations.

In the Stokes preconditioner, P is taken in the same way as in (1.3), with P
being the symmetric component H of A. Therefore, we expect this preconditioner
to work well only for weakly nonsymmetric systems (for large viscosity values). We
implement the Stokes preconditioner by computing the Cholesky factorization of H
and then following the same procedure as for the SSOR and skew preconditioners (see
Section 2.6).

The BFBT and the block-triangular preconditioners were used for respectively
the stable (Q1-i80-Q2)-Po and for the stabilized Q1-P( discretizations. These precon-
ditioners were selected for comparison as the most efficient preconditioners provided
by the software [50] for each of these discretizations.

The costs of the SSOR, BFBT and block-triangular preconditioners, as they are
implemented for this test, are reported in Tables 2.1-2.3. For this model problem the
parameters appearing in the cost estimations have the following values: [ = u = 4,
r =10, s = 0 for the stable discretization, and s = 3 for the stabilized discretization.
For the values of m and n see Tables 3.1 and 3.2.

Both the BFBT and the block-triangular preconditioners involve action of A~! on
a given vector, this was implemented by the LU factorization (which was computed
once and reused every iteration, see Tables 2.2 and 2.3). This factorization and
corresponding back/forward substitutions (with costs of 2n? and 4n+/n operations,
respectively) were done very fast, taking a hardly noticeable part of the total CPU
time.

The SSOR and BF BT preconditioners both required O(m?) floating point opera-
tions at the initialization stage and an iteration of BF BT was approximately a factor
three more expensive than an SSOR iteration. The initialization stages for both pre-
conditioners took up a significant, sometimes dominant part of the total CPU time.
For this reason the reported CPU time is not proportional to the number of iterations.

We have also made tests with a simple constraint preconditioner (1.3) with P
taken to be the identity matrix which, due to the applied diagonal prescaling, is
the diagonal of A. The matrix BP~!BT + C = BB + C is a sparse band matrix
with bandwidth \/n and the costs of this preconditioner scale linearly with m (see
Section 2.6).

The results of the comparisons are presented in Tables 3.1 and 3.2. As we see
in Table 3.1 the SSOR preconditioner competes quite well with the other techniques,
especially for the small values of v, when the matrix A is far from symmetric. For this
stable discretization the inexact form is much slower than the exact form (even though
the maximum number of the inner iterations was restricted to 15, see Section 3.1).
This is because of the high efficiency of direct solvers in MATLAB, two-dimensionality
of the test problem and its size. The situation is different for the stabilized discretiza-
tion (see Table 3.2): in the SSOR, skew and Stokes preconditioners the costs for the
Schur complement system solution are increased due to the larger values of m and
the simple constraint preconditioner with P = I, appears to be the most efficient in
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TABLE 3.1
The CPU time (seconds) and number of iterations (given in brackets) for different precondi-
tioners, mesh sizes and viscosity parameters v. The stable (Q1-iso-Q2)-Po discretization. “—”
means that a preconditioner has not been tried for this case.
One BFBT iteration is approzimately a factor three more expensive than one SSOR or skew itera-
tion (for estimation of costs per iteration see Tables 2.1 and 2.2). We emphasize that the reported
CPU times are obtained for MATLAB codes and, thus, give only an indication of the performance.

n = 2178, m = 256 (mesh 32 x 32)
v SSOR  inexSSOR skew BFBT Stokes P=1

01 | 1.4(24)  39(24)  24(64) 1.6(29) 2.1(16)  2.4(74)
0.01 | 1.9(41)  4.7(41)  23(60) 1.7(32)  3.3(85)  6.8(198)
0.005 | 2.0(43)  85(43)  2.1(50) 2.0(37) 8.7(141) 6.6(198)
0.002 | 2.6(69)  12(70)  2.7(71) 9.5(111)  16(261)  9.8(277)

n = 8450, m = 1024 (mesh 64 x 64)

v SSOR  inexSSOR skew BFBT Stokes pP=1
0.1 12(50) 27(50) 18(130) 21(42) 25(15) 13( 43)
0.01 | 14(82)  51(83)  23(150) 22(46)  37(91)  51(437)

0.005 | 17(116)  68(117)  23(150)  22(45)  53(176)  70(546)
0.002 16(106) 61(104) 20(126) 23(50) 75(277) 54(494)

0.001 20(129) 73(126) 21(137) 46(124) 130(467) 65(568)
0.0005 | 26(182) 96(182) 27(187) 127(344) 209(693) 101(771)
TABLE 3.2

The CPU time (seconds) and number of iterations (given in brackets) for different precondi-
tioners, mesh sizes and viscosity parameters v. The stabilized Q1-Po discretization. “—” means

that a preconditioner has not been tried for this case.
For estimation of costs per iteration see Tables 2.1 and 2.3. We emphasize that the reported CPU
times are obtained for MATLAB codes and, thus, give only an indication of the performance.

n = 2178, m = 1024 (mesh 32 x 32)

v SSOR inexSSOR skew block-tr Stokes P=1
0.1 7.3(23) 5.2(23) 10(51) 0.7(28) 9.0(15) 1.8(76)
0.01 10(55) 19(55) 12(70) 12(286) 21(89) 6.2(231)

0.005 13(84) 28(85) 14(96) 35(549) 29(145) 8.2(326)
0.002 | 20(154) 50(163) 21(161) 78(796) 35(246) 16(486)
n = 8450, m = 4096 (mesh 64 x 64)

v SSOR  inexSSOR skew block-tr Stokes pP=1

0.1 | 272(48)  70(48)  470(120)

0.01 | 296(69)  176(90)  414(162) 58(283) 384(90)  81(443)
0.005 | 509(139)  276(144)  622(159) 193(615) 708(159)  127(665)
0.002 | 684(220)  476(255)  561(276) >1075(>1500) 654(270)  285(1002)
0.001 | 706(371)  705(386)  749(400) >2500(>2000) 1264(425) 433(1348)
0.0005 | 963(574)  1097(589)  995(592) 718(1822)

3.3(25) 280(15)  17(128)

this case. The performance of this preconditioner, however, deteriorates strongly as
v decreases and A becomes more nonsymmetric. We also see that the inexact SSOR
preconditioner is more competitive for this problem.

4. Conclusions and an outlook to future research. As our analysis and
experiments suggest, the nonsymmetric preconditioner approach (1.3), (1.4) appears
to be an interesting alternative to other preconditioning techniques, especially when A
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is strongly nonsymmetric and when the Schur complement system can be efficiently
solved (for example, because of its size or structure). When solution of the Schur
complement system is expensive, inexact forms of the preconditioner can be employed.
Our experiments show that the chosen simple strategy for the inner-outer iteration
(namely, keeping the inner residual norm bounded by the outer iteration residual
norm) usually works well in practice. However, if necessary, more can be done to
minimize the overall work in the inner-outer iteration (see e.g. [22]).

The framework introduced in Section 2.1 can be applied to analyze any precon-
ditioner (1.3) with P having the same skew-symmetric part as A. In fact, other
choices of P are possible. For example, one could define a class of skew incomplete
LU factorizations of A (cf. (1.4))

P := Payewitu = (D + Lg)D™H(D + Us),

where D is a diagonal matrix chosen such that Diag(A4) = Diag(P) or, for the modified
version of ILU, such that the row sums in A and P are identical. Another class of
skew preconditioners for the discretized Navier-Stokes problems can be obtained by
using the rotation form of the equations [44, 45, 41]. These skew preconditioners will
be a subject of future research.
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Appendix. Here, we further analyze the model problem of Section 2.4. For the
realistic choice w = w, = 1/0, we inspect the effect of the 5 and ~ on the eigenvalues
of (2.19). This awkward expression reduces in this case to

o—1 3 l
x(p-ay=| OF%) A (2.19")
0_(,7 + ﬁ2) (7 - ﬂ )

whose eigenvalues are (cf. Figure 4.1):

1| o-1 5 1 s S O s
)\1,2—2 U(’Y+52)B Ui\/<o(’y+52)62 J) +402(’Y+52)7 . (40)

Analysis of the eigenvalues yields this lemmas:
LEMMA 4.1. Let the matriz X (P — A)) given by (2.19') result from the action of
the SSOR preconditioner (1.3), (1.4) on the blocks (2.17), 0 > 1 and w = w, = 1/0.
Then for the spectral radius of X (P — A)) holds:
1. p(X(P—A))=1|1-2/0] ify=0.

2. For~v >0,
A if 0< 3,
[A1l, otherwise,
(4.2)
5= . 1 1 if o>2,
00, otherwise.

Furthermore, p(X (P—A)) decreases monotonically with |3| whenever p(X (P — A)) =
[A2| or o < 3. If p(X(P — A)) = |\1| then it is a constant (monotonically
increasing) function in |B|, for o = 3 (respectively, for o > 3). Finally,

1++4o -3 2
p(X(P—A))<maX{+270,1——} forany B, v>0,0>1
g g

(4.3)

Proof. For v = 0, it follows directly from (2.20) that p(X(P — A)) = |1 — 2/0].

For v > 0 we analyze the eigenvalues (4.1) as functions of |3]. Since 8 appears in A1 2
only as (3%, assume, without loss of generality, that 3 > 0. From (4.1), we have

Mz = 5((8) % V) +90)
o—1 2 l _ oc—1
T o O EnEE

If o > 1 then f/(8) > 0 and derivatives of A2 with respect to 3 are positive if and
only if

5 9B\ _ s —2
VI a0+ (100 + S0 ) = VP = (1600 + ) >0 (0a)

f(B)
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6=1.5, y=30

o0=2.5, y=30

Ay Ay POX(P-A))

Ay Ay POX(P-A))

Fi1c. 4.1. An illustration of Lemma 4.1: the eigenvalues A1 (dash-dotted line), Ao (dashed line)
and the spectral radius (solid line) of the matriz X (P — A) against 3 for different values of o. The
dotted line is the asymptote 1 — % The value of v is taken arbitrarily.

The second of these inequalities (with the minus sign) corresponds to Ay and is always
true. Hence, A2 monotonically increases with 8. Multiplying the two inequalities (4.4)
with each other, we obtain

9B) = 5+ fB)>0 & (530> (o~ HF,

which holds if and only if ¢ > 3. If 0 = 3 then A\; = 1/3. Furthermore, it is easy to
see that A1 o have different signs and that for 8 = 0 it holds —\; = ltvdo=3 V;};HS > A1.

Moreover,
. 2 ) ) 2
lim Ay =max<0,1—— >, lim Ay =min<0,1——5.
B—o0 g B—o0 g
This completes the proof. (|

The eigenvalues and the spectral radius of X (P — A) from (2.19’) for the different
situations described in Lemma 4.1 are plotted in Figure 4.1.

Lemma 4.1 provides information on the action of the SSOR preconditioner (1.3),
(1.4) for the choice w := w, = 1/0 which is made only for the blocks (2.17) with
0 = Omax- For the other blocks this choice of w will result in w = /o with & = 0/ max.
Then the eigenvalues of these blocks are either given by (2.22) for v = 0 or, for v > 0,
can be obtained in the same way as done in (2.19"), (4.1). The precise analysis of
these eigenvalues is rather complicated and beyond the scope of this paper.



