
Acta Informatica 17, 451-476 (1982)

�9 Springer-Verlag 1982

Complexity Theory and the Operational Structure
of Algebraic Programming Systems

P.R.J. Asveld* and J.V. Tucker**

Mathematical Centre, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Summary. An algebraic programming system is a language built from a
fixed algebraic data abstraction and a selection of deterministic, and non-
deterministic, assignment and control constructs. First, we give a detailed
analysis of the operational structure of an algebraic data type, one which is
designed to classify programming systems in terms of the complexity of
their implementations. Secondly, we test our operational description by
comparing the computations in deterministic and non-deterministic pro-
gramming systems under certain space and time restrictions.

O. Introduction

Algorithms are written in a def in i te , possibly high level, programming for-
malism L, ~ and are designed to compute functions on data structures belonging
to a def in i te , possibly complicated, collection of data types. Here we consider
the semantical problems involved in assessing the complexity of such com-
putations in the context of small scale programming systems whose data types
have been designed using the algebraic specification methods first worked out
by S. Zilles [23, 31, 32], J.V. Guttag [14, 15] and, in particular, the ADJ Group
[1, 2].

Typically, we shall have in mind a programming system ~Sp possessing a
selection of deterministic, and non-deterministic, control and assignment con-
structs and whose data types are characterised in a formal specification naming
a set of primitive operators S, on different kinds of data, which satisfy a set of
axioms E. We shall devise an operational view of the semantics of such
programming systems for the purpose of analysing the complexities intrinsic to
the computations they support and, especially, in order to make a useful

* Present address: Department of Mathematics and Computer Science, Delft University of
Technology, Julianalaan 132, 2628 BL Delft, the Netherlands
** Present address: Department of Computer Studies, The University of Leeds, Leeds, LS29JT
England

0001-5903/82/0017/0451/$05.20

452 P.R.J. Asveld and J.V. Tucker

classification of programming systems based upon the space and time re-
sources involved in their implementation.

Of course, the central problem is how to delimit the complexity of imple-
menting the data types underlying a system ~ If one supposes ~ 5 e to be
implemented in some general purpose program language 5e - say, by imple-
menting the data types of ~ 6 ~ as functional procedures in which the type
specifications have the status of comments - then one quickly sees the in-
vestigation sink into incidental features of the definition of ~ . This is even
true of those languages which support data abstraction such as CLU, see
Liskov [-21]. It is precisely here that the algebraic ideas about data abstraction
play their elegant, and essential, r61es. Syntactically, the data types of ~ 5 ~ are
described by an algebraic specification (S, E); semantically, the data types of
~ 6 e are grouped together and modelled by a many-sorted algebra A, unique
up to isomorphism. Our concepts for the complexity of an implementation of
the data types of ~ 5 P are derived from general characteristics of how the
semantics of (2;, E) defines A with the result that these concepts turn out to be
intrinsic invariants of data types. We set ourselves the goal of framing de-
finitions of polynomial time, and space, implementable data types which are as
uncontentious and useful as the concepts of finite and computable data types.
That this goal can be achieved is not accidental. It is merely a reflection of one
of the manifold advantages of using autonomous specification languages to
deal with data types; in this case, semantically concrete implementations begin
to assume certain normal forms and these reflect the abstract structure of the
data types.

After this operational view of a programming system's data types is ex-
plained, in the first three sections, we test our analytical machinery by using it
to compare programming systems ~ 5 e and ~ 5 e' sharing the same data types,
but having different memory structures and deterministic and non-determinis-
tic control constructs. For example, for general systems based upon what we
call polynomial space enumerable data types, a class of data types containing all
the polynomial space implementable types, we show that the computational
abilities within polynomial space restrictions are equivalent; a result which
rests on an extreme generalisation of Savitch's theorem 1-27] on the equiva-
lence of deterministic and non-deterministic polynomial space bounded Turing
machine computations. For ~ 5 e and ~ 6 e' built from polynomial time en-
umerable data types we can only confirm the existence of efficient simulations
of non-deterministic control constructs by deterministic constructs when cer-
tain conditions are placed on the memory structures available in the non-
deterministic system. The P = N P problem for these polynomial time enumer-
able programming systems with unrestricted memory is shown to be reducible
to the P = NP problem for Turing machines.

Henceforth, it is assumed that the reader is acquainted with the ideas and
technical work in the theory of algebraic data types, at least with the basic
paper ADJ [2] (but the more the reader knows about specification languages,
such as AFFIRM [12, 25] or CLEAR [10], the better). Only the rudiments
of complexity theory are required and these can be found in the book [19].

Algebraic Programming Systems 453

1. Algebraic Data Types: Semantics, Specification, Implementation

Syntactically, the programming systems in which we are interested are those
modelled by a pair

~ = [(Z , E), 50(Z)]

consisting of algebraic specification (Z, E) for the data types of the language,
and a set of program schemes 50(Z), based upon the operator names contained
in the signature Z, which formalise the programming constructs available for
the encoding of algorithms in the language. Semantically, we may model such
a programming system, denotationally, by a pair

[A, 50(A)]

wherein A is a (single-sorted) algebraic structure of signature Z defined by the
specification (Z, E) uniquely up to isomorphism, and 50(A) is the set of all
partial functions on A computable by the schemes of 50(Z) interpreted over A
according to the rules of some "standard account" of 50(Z) computations. The
only requirement on A which is worth mentioning is that it is a structure
finitely generated by elements named in its signature.

Let us straightaway observe that the extent to which such a programming
system ~ 5 ~ represents a high-level language is determined solely by the de-
notational meaning A of its data types and that this is achieved by using
algebraic isomorphism as the sharpest notion of semantical equivalence for
data types. For example, in an algebraic manipulation language A might
contain a ring of elementary analytic functions over the complex numbers,
faithfully represented at a lower level by an elaborate symbolic implemen-
tation.

Now, how the schemes of 50(Z) compute in A is commonly described in
terms of the combinatorial activities of a virtual machine whose states are
defined using A as the value set for program variables. Perhaps the reader had
such a semantics for 5~ in mind when we spoke of 50(A) a moment ago.
The point is that an operational view of 50(Z) relative to the structure A is not
a problem: in devising an operational view of the programming system ~5~, the
problem lies in settling on an operational structure of the data abstraction A.
This problem we will explore in this and the following two sections.

Our point of departure, and technical motivation, lies in the initial algebra
semantics for data types created by the ADJ Group [2]. An axiomatic specifi-
cation (Z, E) for a data type distinguishes the class ALG(Z, E) of all structures
of signature 27 satisfying the properties in E, and in order to fix a unique
meaning for (27, E) one must assign an algebra J/(27, E)eALG(27, E), unique up
to isomorphism. This done, one can then say a given data type semantics A is
correctly defined by a specification (Z, E) if ~I(Z, E)_~A. When (27, E) is an
algebraic specification, Jg(27, E) can be defined to be the initial algebra 1(27, E)
of ALG(Z, E), necessarily unique up to isomorphism. This is a natural step to
take because it corresponds to the decision that two terms t and t' over the
operator signature 27 are made semantically identical if, and only if, t and t' can
be proved equal from the axioms in E; in the obvious notation,

rig(Z, E)=I(Z, E)~ t=t ' if, and only if, E~-t=t'. (1)

454 P.R.J. Asveld and J.V. Tucker

In its turn, this initial algebra I(X, E) can be uniquely defined as a factor
algebra of the syntactic algebra T(,r) of all terms over 2; because T(Z) is initial
in the category of all N-algebras. Let I(X, E)~-T(Y,, E)=T(Z,)/=_ e where --E is
the unique congruence corresponding to the provability clause of (1). Now if A
is a data type semantics there is a unique epimorphism vA: T(,~,)~A. There-
fore, we can always uniquely write A~-T(,r , ,A)=T(~) / - A where -A is the
congruence induced on T(X) by v A. If (X,E) specifies A then ---E and --A
coincide.

Many of the perplexing conceptual and technical problems to do with data
types find exact expressions through this handful of algebraic ideas, and can be
perspiciously studied by the meticulous dissection of programming problems
[2-6] or by highly theoretical work aimed at establishing general facts [8, 9];
and this seems to be true of the problem of finding an operational structure for
a data type A from which both particular and general questions about com-
putations over A may be answered.

Now there are two operational parameters for A which are obvious and
fundamental: a chosen data representation and a chosen mechanism for
evaluating basic operations which together make an implementation of the type.
To treat these parameters, and their complexity, in a general and uniform way,
we focus attention on transversals for --A"

A transversal for ~A is a set of terms s T(S) such that for each t~T(S,)
there is some t'ef2 for which t -At ' and if t, t'el2 and t4:t' then t~gat'. For any
given resource characteristic of syntax, a transversal is meant to fix the com-
plexity of data representation and operations in some implementation of
T(S, A).

The idea of a transversal originates in an algebraic implementation tech-
nique for data types defined by algebraic specifications using initial algebra
semantics. Given a specification (X, E), the semantic and proof theoretical
equivalence (1) determines an operational meaning for (S, E) in the shape of a
deductive term rewriting system --*~ on T(Z) defined by E. A transversal for --~
then represents a complete set of normal forms for the reduction rules making
up --*E. Thus, for an account of the complexity of an implementation of A
defined by a specification (E, E) it seems reasonable to analyse the complexities
involved in operating the reduction relation ~E. Actually, the semantics of
algebraic specifications in the AFFIRM specification and verification language
is defined, in this operational way, as a rewrite system: see Musser [25-1. (For an
introduction and survey of research into equational replacement systems, in-
cluding results on their complexity, see Huet and Oppen [20].) We will not
need to bring in as a new parameter the specification of a data type A in order
to deal with its implementation. In what follows we make no hypotheses about
the concept of implementation save that whatever its mathematical model may be
it will produce some distinguished transversal for =--A. And that the complexity
properties of the type according to such a model will be faithfully represented in
properties of that transversal. With this understanding, we make statements
about implementations of data types and their complexity, and think of the
semantical complexity of the type through properties of the class of all imple-
mentations, all transversals.

Algebraic Programming Systems 455

How transversals for T(S, A) can be made to characterise the operational
structure of a data type A will be explained by using them to support a
classification of the intrinsic complexity of a data type semantics. Just as one
can presently speak of finite or computable data types [8, 9] one wants to be able
to speak of polynomial time or space implementable data types because these
latter concepts would determine a resource based classification of the algebraic
programming systems, for example. Framing reliable definitions for such no-
tions is a delicate matter and we shall divide the task between two sections.
First, we consider the complexity of data representation and then, in Sect. 3,
the complexity of the primitive operators of a type. All the results we sub-
sequently prove about the complexity of computations on abstract data types
are meant to test analytic value and reliability of our operational description
of data types.

2. Normed Data Types

Measuring the complexity of computations on a data type A rests primarily on
an assessment of the complexity of data from A which we invest in the concept
of a norm on A, being a function NA: A- ,o) specially tailored to the algebra of
A. Secondly, it rests on the charges made for applying the operations of A
which we formalise as charge functions associated to the norm. If c~ is a
program which computes on A then we might say e runs in polynomially many
steps over A with respect to n o r m N A if there is a polynomial p,: o)"~o) such
that for each input al, ..., a, eA, the number of steps involved in computing
~(a 1, ..., a,) is bounded by p,(Na(aO, . . . ,Na(a,)). But to speak realistically
about time in this way we must take into account the dictates of some charge
function.

The starting point for norming a data type A is some decision on charging
the syntax involved in its specification represented in a norm N: T(Z)~O).
From an implementation of T(X, A), inducing a transversal O, there arises a
canonical implementation norm N~: T(X,A)-~O) which in turn induces the
final norm N a on A. So in this way, NA(a) will represent the charge made on
asA as this is determined by an implementation of T(Z, A) and measured by N.
Along similar lines the charge functions on A are created.

First, we will develop a bit of theory about norms; despite their simplicity
and generality, these definitions will support quite complicated conceptual and
technical discussions later on and should be mastered here and now.

A norm on an algebra A is a map N: A ~ o) and is intended to structure the
data in A by giving A a prewellorder,

a<b if, and only if, N(a)<N(b)

(cf. Fig. 2.1). Given such a norm N, to each k-ary operation a of A is
associated a resource charge function with respect to N, C~:Ak~o), defined
from a numerical function ro: o)k~o), SO that

C~(al, ... , a~)= r o(N (aO, ... , N (ak))

456 P.R.J. Asveld and J.V. Tucker

03

A n

(n)

Fig. 2.1

is the cost of applying a to a~ , ak~A in terms of norm N. The resource may
be time or space, for example.

Being interested in asymptotic behaviour in infinite, but finitely generated,
algebras prompts us to make these definitions. Let N - 1 (n) = {a~A : N(a) < n}.

A norm N: A--, ~ is trivial if there exists some n for which A ~ N-1 (n).
A norm N: A--,co is finite if for each n, N-l(n) is a finite set.
Notice that finite norms on infinite algebras are never trivial. We will often

abbreviate N(a) by [a[x or simply [a[.

Examples

Strings 2.1. The semigroup of words over an alphabet X is normed by string
length: if W=Xl . . .xkeX + then]w[=k. The charge function with respect to
either time or space for concatenation is defined C(wa, w2)=]wl] +]w/I. And [']
is a finite norm iff X is finite.

Arithmetic 2.2. The semiring of natural numbers is finitely normed by]nl=n
and by [n I = 1 + [-log2(n)] where the second norm measures complexity in terms
of the binary representation of natural numbers. For example, for this second
norm the obvious charge functions for space satisfy C+(n, m)< 1 +m ax {]nl,]m[}
and C • (n, m)__< In[+]mJ.

Polynomials 2.3. Let R be a ring and R[X] =R[-X1, ..., X.] a polynomial ring
over R. Then the degree function d e g : R [X] ~ o is a norm and it is a finite
norm iff R is finite. As a norm it is biased towards multiplication for its charge
function for space satisfies C • (p, q) <= deg (p) + deg (q) while addition satisfies
C+ (p, q) < max {deg (p), deg (q)} where p, q ~R [X].

Polynomials Again 2.4. In a programming system for algebraic manipulation,
polynomial degree is a rather pointless measure of the complexity of data in its
computations because the number and size of the coefficients defining a poly-
nomial are ignored. Assume the ring R is already defined and normed by
N:R--*o). An obvious way of representing R[X]=R[X~, . . . ,X ,] is to use

Algebraic Programming Systems 457

arrays of elements of R so that if peR[X] has degree d then the length of the
array representing p is

t=o \ n - 1 /"

�9 A sensible norm N: R[X]-~co would be to take/V(p) as the sum of the norms
of the coefficients appearing in p. Clearly, if N is a finite norm then .g is too.

Notice that if N(r) = 1 for all reR then with this trivial norm on R we have

t=0 n - 1

Only when n = 1 do we "recover" polynomial degree. []

For the moment, we concentrate on norms and say nothing of their charge
functions, postponing that subject to the next section and, in particular, Sect. 5.

Although a norm on an algebra A is meant to express, locally, the com-
plexity of data in A it also expresses something, globally, about the complexity
of construction of algebras:

Let A be an algebra and N: A ~co a finite norm. The growth function of A
with respect to N is the mapgN: ~o--*e) defined by gN(n)=card[N-l(n)].

The algebra A is said to be of polynomial growth with respect to norm
N: A--.co if there is a polynomial p: co---,co such that for all nee), gN(n)<p(n).
And A is of exponential growth with respect to norm N: A-*e) if there is an
exponential function e: co~e~ such that for all neco, gN(n)<e(n).

Example 2.5. Consider the norm N:R[-X1, ... , X,] ~ o derived from the given
norm N:R-~co as defined in Example 2.4. Assume N is a finite norm with
growth function g: ~o~co and let ~: (~---,(n denote the growth function of/V.
Then a formula for ~ is

k k

~,(k) = Z Z 1--[G(z,)
/=1 z l + . . . + z k = l i = l

wherein G(z)=card{reR: N(r)=z}. Clearly, ~ is not bounded by a polynomial
even i fg is. []

It is easy to construct finite norms, say on the natural numbers, with non-
exponential growth.

In order to pin down the extent to which the complexities of data repre-
sentation are semantic invariants of data types we at least need to establish a
criterion for the equivalence of two norms. We make the following natural
choice.

Let N and M be norms on A. Then N is linearly reducible to M (in
symbols: N<M) if there is 2co) such that for all aeA, N(a)<2M(a). And N is
linearly equivalent to M (in symbols: N - M) if N < M and M<N. As usual,
two functions f g:e)--,o) are linearly reducible f < g if there is some 2e~o so
that f(n)< g(2n) for all nee); and they are linearly equivalent if f < g and g__<f

Lemma 2.6. Let N and M be finite norms on A. I f N < M then gM < gN and if
N - M then gN =- gM.

458 P.R.J. Asveld and J.V. Tucker

x y

Fig. 2.2

Proof Clearly, N < M implies {aEA: M(a)<n}~_{a~A:N(a)<2n} for each
n6~o. Thus gM(n)<gN(2n). []

Now we can shape our measures of the complexity of the data belonging to
a data type A derived from its syntactic implementations.

Norms on Syntax 2.7. Observe that the common definitions of " term height"
are important norms on the syntax T(27). Consider norms N 1 and N 2 which
take the value 1 on the constants of 27 and are elsewhere defined inductively by

Nl(a(s I, . . . , Sk)) = 1 + m a x {Nl(Si): 1 <=iNk},
k

N2(a(s 1 , Sk)) = 1 + ~, N2(si).
i=1

When one parses a term one obtains a tree and N l(t) calculates (one plus) the
height of this tree (the supremum of the heights of all paths in the tree) while
NE(t) calculates the number of nodes in this tree. For example, if Z contains
the binary operation a and constants x, y, z then for t=a(a(a(x, y), y), a(x, z)),
whose tree is that in Fig. 2.2, we have N l (t)=4 and Nz(t)=9.
Quite generally, for any term tsT(Z), NE(t)<__M N'('~-I where M is the maxi-
mum arity of the operation symbols in t. N 1 and N 2 are finite iff Z is finite.
Mathematically, the essential property of norms for syntax is this.

A norm N: T(Z)~a~ is said to be inductive if for all t=a(s 1 , Sk)ST(Z),

N(t) > 1 + max {N(si): 1 <__ i <= k}

or, quite simply, N(t)>=Nl(t). The connection between inductiveness and non-
trivial syntactic norms is obvious, as indeed is the following fact:

Lemma 2.8. Let N: T(Z)~a~ be an inductive norm. Then N 1 is linearly reducible
to N. I f g is the growth function of N and gl is the growth function of N 1 then
gl >=g. In particular, the growth function g of N is bounded by an exponential
function. []

And so now we are able to explain our measures for data in A as they are
determined by a measure of term complexity and a term model implemen-
tation of A.

Algebraic Programming Systems 459

Data Type Norms and Implementations 2.9. Let N: T(S)--*w be any syntactic
norm. Let A be a data type isomorphic with T(X, A) by the unique map
4): A-o T(X, A). Let f2 be a transversal for an implementation of T(X, A). An
implementation now uniquely defines a norm N: T(S, A) ~ (o by

N~([t])=N(to) for that unique toeQ such that t - -at o.

So let NA=NA, a=Nno (~: A ~ (o be the norm on A determined by implementation
f~ from norm N: T(S)--*(o. The situation is illustrated in this commutative
diagram,

A

\
T{Z) -P-W

N

Lemma 2.10. Let N: T(Z,)-ooo be an inductive norm and let NA, a : A - , c o be a
norm determined by implementation E2 from N. Then the growth function g =ga,n
of NA, ~ is bounded by an exponential function. []

Thus, it is fair to say that most naturally occurring norms for data types
are finite norms of exponential growth.

Each norm NA=NA, ~ is uniquely determined on A by an implementation
transversal O; moreover, it is uniquely determined by f2 up to algebraic
isomorphism. To obtain norms on A which are full isomorphism invariants we
have only distinguish special implementations:

A transversal ~2 for T(S, A) is said to be minimal or optimal with respect to
norm N: T(2;)-.(o if for each tel2 there does not exist a term t'eT(_r) such that
t'=--At and N(t ')<N(t) .

A norm N a derived from such an optimal transversal f2 represents the most
economical data representation available to any implementation of the type A
as this is judged by the underlying syntactic norm N. Thus, in case N = N 1 we
are taking a tree representation as compact as possible from the point of view
of its height; in case N - - N 2 we are taking a tree representation with a minimal
number of nodes. Clearly, any two optimal transversals for a given syntactic
norm define precisely the same norm on A, and this type of norm is a general
isomorphism invariance.

For a fixed measure of syntactic complexity, how do the derived data
representations differ between different choices of initial values for the data
type? The norms on an algebra A determined by the standard norms N1 and
N 2 on T(_r) enjoy a rather special invariance property in this respect which we
shall formulate in Lemma 2.11.

A function h: oJk--+O) is semilinear if it can be written in the form h(x)=c
+f(x) for ceco and with f satisfying this linearity condition: for all
x 1 , Xke(O and all 2eeo, f (2 x 1 2Xk)=2f(x 1 , Xk).

460 P.R.J. Asveld and J.V. Tucker

A norm N: T(2;)-*~o is semilinear if it is inductively defined by semilinear
mappings: for each k-ary operation symbol ~eX there is a k argument semi-
linear map G + f~(x) such that if t = ~ (s l , . . . , Sk)eT(X) then

N(t) = c, + f A N (s 0 , . . . , N(s~)).

Clearly, the norms N 1 and N 2 are semilinear.
Let A be an algebra of signature 2: and assume A is generated by two sets

of generators {ai, ..., a,} and {b~, ..., b,,} not yet named in 2;. Let T(2;, X) be
the algebra of polynomials over 2: in the symbols of X which we shall use to
name the a i and b i. T(2;, X) is merely T (X w X) , of course.

Unicity Lemma 2.11. Let N be a semilinear norm on T(Y., X). Let A be a X-
algebra finitely generated by {al, . . . , a,} and {b I bin}. Then the correspond-
ing norms on A induced by these generating sets and any pair of implementations
are linearly equivalent and their growth functions are linearly equivalent.

Proof First we derive a lemma about semilinear norms on syntax.

Recall that a mapf : cok~co is extensive if for every xl ,XkeO),

f (X l , . . . , X k) ~ X i , 1 <_i<_k.

Composition Lemma 2.12. Let].[: T(Y., X) ~ c o be a semilinear norm. Then for
each to(X l, . . . , X ,) and t i(X 1, . . . , Xm)eT(2;, X) , f o r 1 <_iNn, we have

]tO(tl, ... , tn) [~ [tO[" [q([t I [, . . . , [tn[) -k- C]

where c__>max {%: G~2;} and q is any extensive map.

Proof This is done by induction on the structure of t o . The basis is obvious so
we consider only the induction step. Let t o = a (s ~ ,sk) and t= (t 1 , t,).
Assume that lemma holds for all terms of lower complexity than t o. The
calculation runs as follows:

Jto(t) l = I ~ (s l (t) , . . . , sk(t))l
=f~(lsl (t)l, ..., Isk(t)[) + c~

<=L([Sl][q([t[)+c], . . . , [Sk[[q([t])+c])+ % by induction

<=[q([t[)+c] .f~([Sx[. [s~[)+% by semilinearity

< [q([tl) + c]-(f~(ls 11, ..., Iskl) + c~)

__<lt0l. Eq(lt])+c]. []

The proof of the Unicity Lemma 2. l l now proceeds as follows. We show
N , < N b. Let w = t (a 1, . . . , a ,) sA and let ai=ti (b)=t i (b 1 , bm), 1 <=i<n, wherein
the terms chosen are from respective transversals f2 a and f2 b. Thus we have [w[,
=N(t) and [ai[b=N(ti), 1 <_i<_n. Now [W[b=[t(t~(b) , t,(b))[b and by the Com-
position Lemma 2.12,

N (t(t 1 (X), . . . , t ,(X))) <= N (t) [q(g (t 0 g (tn)) + c]

where X = (X ~ X,,). Setting l=[q(ltl(b)lb, . . . , It,(b)lb)+C] and substituting

we get [W[b ~ l " [W[a"

Algebraic Programming Systems 461

So for given generating sets {al, ..., a,}, {bl , bm} there exists a constant l to
linearly reduce I-Ib to 1.1~. The converse reduction follows mutatis
mutandis. []

We conclude this section on data representation with a sophisticated math-
ematical example.

Groups with Polynomial Growth 2.13. Consider a finitely generated group as a
data type. Let S = { . , - a , I , Xt , . . . ,Xm} be the signature of a group with m
names for generators adjoined. The equational laws which define group struc-
tures E taken over 2 can be used to define f#(m) the class of all m generator
groups whose initial object T(S, E) is F(m), the free group of rank m.

In group theory, T(S) is identified as the set of all finite strings over the
alphabet X={X~ Xm, XF 1, ...,XT, ~} and is implicitly normed by string
length just as in Example 2.1. The Normal Form Theorem proved for F(m) is a
result which effectively assigns to each string of T(S) (---X*) a word in reduced
normal form. The set of all reduced normal forms is a transversal f2 for T(S, E)
_~F(m) and indeed it is optimal with respect to the norm N: T(S)~o. The
induced norm No: T(S, E) ~ o is what a group theorist means by word length;
notice that T(2, E) does not have polynomial growth with respect to Na.

Repeating these constructions for ~r the class of all m generator
abelian groups, leads to an initial object which does have polynomial growth.

Which groups in general have polynomial growth with respect to an
optimal transversal's norm?

According to J. Wolf [-30], if G has a nilpotent subgroup of finite index
(meaning: a nilpotent subgroup N < G such that GIN is finite) then G has this
polynomial growth property. Thus, if G is nilpotent then G has polynomial
growth; nilpotence is a generalisation of abelianness. Amazingly, if G is soluable
- a generalisation of nilpotence! - and has polynomial growth then G has a
nilpotent subgroup of finite index. This result is obtained by Wolf's paper
together with J. Milnor [24].

From Tits' theorem, which classifies those finitely generated groups which
are (isomorphic to) matrix groups, a similar algebraic characterisation of linear
groups with polynomial growth is possible, see J. Tits [28].

It is presently an open problem of group theory as to whether or not a
finitely generated group has polynomial growth, if, and only if, it has a nilpotent
subgroup of finite index.

3. Polynomial Time and Space Implementable Data Types

What is left for us to do, to complete our operational classification of data
types and, by extension, programming systems is to consider the charge func-
tions determined by an implementation with respect to a norm on syntax. It is
here that automata-based complexity theory enters in an essential way to
analyse the complexity of transversals and the operations which must be
performed on them in implementing a type T(_r, A). This is quite easy to do
and naturally leads us to the important kinds of data type whose names are
given to this section.

462 P.R.J. Asveld and J.V. Tucker

T(2;) is a subset of the set of all strings over the finite alphabet Z'w{(,),, }
and as such is context-free considered as a formal language. The complexity of
a transversal ~ we will identify with the complexity of f2 as a formal language
within T(2;): it might be a regular language or an r.e. set, for example. (Indeed
it need not be computable at all: if --A is r.e. and ~? is r.e. then --A is recursive
and this means T(_r, A) has soluable word or term problem. Many data types
with finite, equational specifications have --A as r.e., but not recursive. See
[8, 9-] for further information on this point; obviously here we wish to stay
well within the world of the computable data types.)

In modelling implementations of A it is, of course, essential to consider the
complexities involved in manipulating data representations because it is these
which determine the charge functions for the primitive operators of A. Let A
be a data type and Q a transversal for T(22, A). Define the function COM-
POSE: 2; x g2=~M~?, where M is the maximum arity of operations in 22, by

COMPOSE(a,s 1 , S k) = t 0 for that unique to~12 such that to-Aa(s t Sk).

COMPOSE implements the operations of T(22, A). If N: T(2;)--*co is a norm
then the complexity of computing COMPOSE~ with respect to N, by means of
some automaton, we define to be the charge function C+ of T(,r, A) with
respect to N~.

We give the following basic definition assuming the reader is acquainted
with the idea of (deterministic) polynomial time computation, see for example
Hopcroft and Ullman [19].

Let N: T(I ;)~e) be a norm and let A be a data type semantics. Then A is
said to be a polynomial time implementable data type with respect to N if there
exists a transversal f~ for T(I;, A) for which

1) The set g2 may be recognised in polynomial time within T(22); and
moreover the set ~2 may be enumerated in polynomial time without repetitions
in increasing order with respect to N. More precisely, given some norm on co,
there exists a polynomial time bounded Turing machine e: co ~Q satisfying

(i) e is surjective;
(ii) if m#n, then e(m)+e(n); and

(iii) if m < n, then N(e(m)) < N(e(n)).
2) The function COMPOSE: ,Yx~?~M~2 is computable in polynomial

time over T(22).
3) The function ge(n)=card[{tef2: N(t)<n}] is bounded by a polynomial.
Condition (3) is equivalent to saying T(-~, A) has polynomial growth with

respect to Ne, of course.
Of course, there are other functions which have a bearing on the notion of

an implementation, and consequently on its efficiency, but which we have not
mentioned. For example, we could define an inverse to COMPOSE, DECOM-
POSE: ~2~22 x ~2 ~ t by choosing one of the functions that satisfy

DECOMPOSE(t)=(a, Sa, ..., Sk) where s I , skef2 and t = - - A f f (S 1 , Sk)

and assume that the transversals considered in connection with norms
N : T (2 ;) ~ o have the property that if COMPOSE(a,s 1 ,sk)=t then

Algebraic Programming Systems 463

N (t) > N (s) for 1 <_i<_k and if DECOMPOSE(t)=(a , sa , Sk) then N (t) > N (s)
for 1 -< i_< k. But we prefer to let the definition stand on what we consider to be
its three essential conditions.

Example 3.1. Abelian Semigroups

Consider a finitely generated abelian semigroup as a data type. Let Z
={ . , X~, ..., X,,} be the signature of a semigroup with m names for generators
adjoined. The equational laws which define abelian semigroups E taken over 22
can be used to define ~45P(m) the class of all m generator commutative
semigroups whose initial object T(27, E) is the free-abelian semigroup of rank
m. The algebra T(Z, E) is invariably thought of as the set of all strings

... X;m: 2i~o, 1 <=i<=m} with a commutative concatenation:

(X ~ , . . .;,~ ~ J(X~ +u~ ~(;-,,, +um X m)" (X 1 . . . X~m m) =

Remembering that T(X) is the free groupoid over 27 - no associativity, no
commutativity - one realises this Q is the obvious transversal for T(X, E).
Since abbreviations in complexity arguments are misleading, write �9 as the
binary function symbol c and by X]' . . . X~ ~" mean

c (X 1, C (X l , (c (X m , Xm)) . . .))
t

21 + . . . + 2., - 1 times.

Under the usual norm N2: T(X)-,o) it is easy to check that O is polynomial
time computable, since it is a context-free language, and has polynomial
growth as in condition (3), because ge(n)<n ~. Explicit analysis with Turing
machine will demonstrate that DECOMPOSE is real-time computable (see 1-26])
while COMPOSE is quadratic time computable. Thus T(X,E) is a polynomial
time implementable data type.

Revising these calculations for the class 5P(m) of all m generator semi-
groups yields its obvious transversal, that usually, and informally, written

Q={X~I ... XUR.~,, l <2i<m;p,,i6~o},_= _

to be a context-free language with real-time computable DECOMPOSE, linear
time computable COMPOSE, but of exponential growth. Thus the initial
object of 5P(m) is not such a data type.

The definition of a polynomial space implementable data type derives from
that of polynomial time implementable data type mutato nomine; it is clearly
a broader concept.

This concludes our discussion of data types in isolation.

4. P r o g r a m m i n g Constructs

The assignment and control constructs of our algebraic programming systems
are modelled by various sets of deterministic and non-deterministic program

464 P.R.J. Asveld and J.V. Tucker

schemes L,e=L,e(2;) based upon operator signatures 2;. Assignments in ca are of
three kinds and are defined by

1) X==Y;
2) X : = c for a constant ceX;
3) X:=cr(Y I, ..., Yk) for an operation symbol ae2 .
The simplest programming system with which we deal is based upon a set

of program schemes obtained by closing assignments (1), (2) and (3) under
composition and the control structures if B t h e n , e l s e , f i and w h i l e B
d o �9 od. Here B is any test of the form I11 = Y2, Y1 + Y2 or R(YI , Yk) where
R is a basic relation from 22. This set of schemes will be denoted by ~ , the
language of well-structured flow chart programs. This basic formalism ~ will be
extended with constructs like:

arrays;
counters, i.e. special variables of auxiliary sort natural number which one

can increase, decrease and test a counter variable for being zero
or equal to another counter;

recursion.

Thus, we obtain the sets of schemes f f d , flog and f f ~ respectively. And, by
combining these new facilities, we obtain languages such as Y d (g . We intend
to compute membership in sets X ~ A " so assume our programming languages
contain the halting statements a c c e p t and reject.

The semantics of any set of program schemes 5~ must be operationally
defined over each data type A. We do this informally by assigning to any
program a of 5e over A an A-register machine which we imagine to be able to
process the instructions (1), (2) and (3) deterministically as they occur in the
program c~ (cf. [-29]). The operational semantics of those languages including
arrays or counters is defined in the usual way, while each recursive procedure
is considered to be an abbreviation of the (possibly infinite) program obtained
by procedure body replacement. We must also assume the reader to be familiar
with the comparative power of these programming constructs. See Greibach
[13], Manna [23], Tucker [29] and the references there cited.

Introducing non-determinism into programming languages is possible in
many different ways. Here we add a non-deterministic analogue of the control
structure if B t h e n , e l s e , f i . This construct is choose,or,to, and the
operational semantics of this non-deterministic choice between two statements
is informally defined as follows.

In a computation, when we encounter a c h o o s e S 1 or S 2 ro we follow both
branches determined by S 1 and S 2 in parallel. Meeting an a c c e p t statement
in some branch terminates the computation with an acceptance of the input.
But meeting a reject statement signals only the end of the branch in which it
occurs and not the end of the computation. Thus a is in the set X~ of all
elements of A" accepted by the (non-deterministic) program c~ if, and only if, a
computation ~(a) includes some a c c e p t statement. This non-determinism is
that known as breadth first with ignoring in the studies of non-determinism of
D. Harel and V.R. Pratt; see [17, 18] for details. Adding the or-statement to
the definitions of sets of schemes, such as f f and ffsg(g, makes their non-
deterministic counter-parts Aro ~ and A~ffdcg, and so on.

Algebraic Programming Systems 465

Unless it is stated otherwise, ~ always denotes a set of non-deterministic
program schemes. The computat ions of a program ~ in Lf over A are de-
scribed in terms of states, transformations of states, and of computat ion trees.

A state of a computat ion of ~ on an input (a 1 , a,)~A" consists of an
instruction from ~ (viz. the next instruction to be executed) together with a list
of those variables occurring in c~ and their actual values in A used so far in the
computat ion of ~ on (a I a,).

The initial state of a computat ion ~(al, ..., a,) consists of the first in-
struction of ~ and the n input variables to which the inputs a~ , a, are
assigned. A state is final if its first entry is either an accept or a reject
statement. A state s is transformed in the obvious way to a new state s' by
executing the instruction in the first entry of s, and s' is called a direct
successor of s. Note that a state s has two direct successors when the first entry
in s is a c h o o s e , o r , r o instruction. This "direct successor" relation gives
rise to the computation tree of e(al , ..., a,), the root of which is the initial state,
and the sons of a node are its direct successors. A path from the root in this
tree is finite if a final state occurs in this path (which will be the last state of
that path). Whenever e happens to be deterministic, the computat ion tree is a
chain. Obviously this chain is finite if, and only if, c~ terminates on (a~, ..., a,).

5. Complexity Measures and Complexity Classes

We may now turn to complexity considerations involving time and space in
our programming systems. Typically, we are computing over A with a program
c~ in s and we want to measure the complexity of a computat ion ~(a) for aEA"
as a function of the norm of the input N(a). For example, in Sect. 2 we spoke
of the unit cost criterion for time: the shortest distance from the root of the
computat ion tree to a final accepting state. The unit cost criterion for space
counts the number of data locations (corresponding to variables or counters)
accessed in the computat ion ~(a) as a function of N(a). But neither of these are
particularly refined and, indeed, that for space is trivial in programming
systems which fix bounds to the number of variables appearing in com-
putations by their programs, such as those using ~ of the previous section, but
not Y d . Thus we work with respect to the so-called weighted cost criterion and
it is for precisely this reason we have carried the charge functions in Sects. 2
and 3, of course.

Under a weighted cost criterion each step is charged for the "work in-
volved in that step". In the case of time we take the sum over all steps of a
computation. The cost for a single step depends on the instruction applied and
is represented in Table 5.1 for all programming constructs we use. (By N(Y) we
mean the norm for the element from A contained in the location named by Y.)

In the case of space the situation is slightly more involved. Again the cost
of a single step depends on the instruction; the assumptions we make in
Table 5.1 reflect the idea of bit-wise information transport in implementations.
For assignment statements we have to store the result which requires ad-
ditional space (locations corresponding to variables X i will be charged for
N(Xi) units). So the space consumed in a single step consists of the space

466

Table 5.1. Charge functions

P.R.J. Asveld and J.V. Tucker

Instruction Charge (Time) Charge (Space)

X: = Y N(Y) log N(Y)
X.=c N(c), cG2; is a constant logN(c)
X:=a(YI Yk), aeZ t.(N(Y,) N(Yk)) s.(N(Y1) N(Yk))
a c c e p t 1 0
reject 1 0
if B then * else * fi 1 + t o S B

whi le B d o , o d l + t B s B
c h o o s e , or * ro l 0

test:
B=-)I1 = Y2 tB=N(Y1)+ N(Y2) sB=I~ N(Y2))
B=- Y1 * Y2 tB=N(YO+ N(Y2) sB=l~ N(Yz))
B=-R(Y, Yk), ReS tR(N(Y1) N(Yk)) sR(N(Y,) N(Yk))

Counters:

Recursion:

Assuming a given norm on co they are treated similarly.

We consider the corresponding (possibly infinite) program obtained by procedure
body replacement, and we charge each call and return instruction for 1 with respect
to time and for 0 with respect to space

required to perform the instruction (this space is reusable!) and the sum of the
norms of the elements stored in all locations. Finally, we take the maximum
over all states in the computat ion tree up to the first a c c e p t statement.

Since we are unable to reduce in general a resource bound by a constant
factor (i.e. "linear speed up", "linear space compression") as in Turing machine
based complexity theory, we define complexity classes in terms of (9(f(n)) for
some resource bound f (n) rather than in terms of f (n) itself.

Let f : co--co be a monotonic function. Let A be a data type normed by
N : A ~ c o and let ~ be a set of program schemes over A. The class of all
subsets of A m, for all m, which are accepted by deterministic 5r programs
within time (9(f(n)) with respect to N we denote D T I M E A (f (n)) . Similarly, we
let D S P A C E ~ (f (n)) designate the class of all subsets of A m, for all m, which are
accepted by deterministic ~ programs within space (9(f(n)) with respect to N.
The full classes of sets recognized by L,e, allowing its non-deterministic features,
but still under resources bounded by f (n) , we denote N T I M E A (f (n)) and
NSPACE~e(f (n)) , respectively. As usual we define

P(A, ~qa)= ~ DTIME~(nk) , N P (A , ~9~ U NTIMEA(nk) ,
k>l k>-I

P S P A C E (A , 5(')= 0 DSPACEA(nk) , N P S P A C E (A , ~) = (.9 NSPACE-~(nk) ,
k>=l k>=l

for each ~ over A.

6. T i m e a n d S p a c e B o u n d e d C o m p u t a t i o n s

In this section, we try to test the reliability of our definitions for polynomial
time and space implementable data types by comparing the complexity classes

Algebraic Programming Systems 467

determined by the high-level programming systems these data types support.
What sort of theorems ought to be expected2 It must be remembered that our
data types are not polynomial time, or space, implementable in any generalised
complexity-theoretic sense. Rather, the data types are complicated general
structures which can be constructed and operated in polynomial time, or
space, in the ordinary sense. Thus, whatever results about complexity classes
are obtained they must be consistent with the basic facts of life for automaton
based complexity theory.

We organise the comparison theorems for the complexity classes by prov-
ing them from conditions on a general programming system which are weak-
er than implementability whenever this is possible. It should be emphasised
that establishing other results, known in the Turing-machine based theory,
might well require stronger hypotheses on the data types, but the comparisons
between determinism and non-determinism do not.

To begin with, let [A, L~ a] be a programming system wherein 2.~ is some set
of deterministic or non-deterministic program schemes and A is a data type
with some given finite norm N: A ~ o . We denote the growth function of A
with respect to N by g: o) ~ o . And henceforth f : ~ o ~ o is always a monotonic
function satisfying f (n)> n for each nero.

The first condition we must enforce throughout the section is one which
concerns the complexity measures on a data type; it requires the charge
functions to behave "properly":

Assumption 6.1. For each k-ary operation or relation symbol ~ in the signature
N of A(k>O), the corresponding time charge function tr ~ok~o and space
charge function S~:o~k~o satisfy: there exists a natural number 7r such
that

s r l , xk) <= t~(x l , xk) <= ~ (. ~)

for all arguments (xl , X k) ~ k. []

The following fact is now immediate from this assumption and Table 5.1.

Observation 6.2. For each instruction i, the corresponding time charge function
t i and space charge function s i satisfy: there is a 71 >2 such that

S i (X 1 , Xk) ~ t i (X 1 , Xk) ~ 7si i (.)

for all arguments (x~ , Xk)~O~ k when t~ and s~ are k-ary. []

From Observation 6.2 and the fact that one cannot "visit" more space than
there is time available we obtain our first expected comparison:

Proposition 6.3. For each programming system [A, 5Y],

D TIME~e (f(n)) c_ DSPA CE A (f (n))
and

NTIMEA(f(n))~_NSPACE~(f(n)) . []

Clearly, for any programming system we know that

P(A, s ~Lf) (1)
and

P(A, ~) ~_ NP(A, ~) ~_ NPSPA CE (A, 5f). (2)

468 P.R.J. Asveld and J.V. Tucker

Our next task is to show that under certain assumptions on the data type
and schemes of a programming system it is indeed the case that

NPSPA CE (A, ~) ~_ PSPA CE (A, 5f)

(Corollary 6.5); thus, for such a system

P (A, 5F) c UP (A, 5F) c_ PSPA CE (A, ~) = NPSPA CE (A, ~)

which is a situation familiar in Turing machine complexity. This we prove
from a generalisation of Savitch's theorem to programming systems with so-cal-
led f (n)-space enumerable data types.

Let A be a data type with norm N: A ~ co. Assume the basic operators of A
are augmented by a constant FIRST and a unary operator N E X T which
together enumerate A by satisfying these axioms: (i) A
= {NEXTn(FIRST): n~o}; (ii) N E X T is injeetive; and (iii) N(a) <= N(NEXT(a))
for each a6A.

Now A is called f(n)-space enumerable if the charge functions C] with
respect to space for all its operators, including NEXT, satisfy

C~(x~,..., xk) =<f(max {N(xi): 1 _< i< n}).

A is called polynomial space enumerable if A is f(n)-space enumerable for
some polynomial function f

Clearly, any polynomial space implementable data type is polynomial space
enumerable; although this latter concept is quite weak it can carry an efficient
deterministic simulation of non-deterministic computations:

Theorem 6.4. Let A be a data type which is f (n)-space enumerable with respect
to norm N, and let s be a set of program schemes over A which allow counters
and recursion. I f X6NSPACEA(f(n)), then there exists a constant c depending
on X such that X6DSPACEA(f2(n) �9 log g(cf(n))), where g is the growth function
of A. In particular X6DSPACE~(f3(n)) whenever A has exponential growth
with respect to N.

Proof Let a be an f(n)-space bounded non-deterministic LP-program over A
which accepts X. We may assume that before ~ enters an accepting state it first
erases deterministically all the registers used during the computation. This
modification gives rise to a finite number of accepting states.

The maximal number of different states encountered during a computation
of ~ on an input of norm n is roughly bounded by [~[. (g(c.f(n))) f(n) for some
constant c depending on ~ and hence on X, where [~[is the number of
instructions in a, and g is the growth function of A.

We will show that a modification of Savitch's original argument [27] as
described in [-7, 19] enables us to simulate ~ deterministically within space
(9 (f2 (n). log (g(cf(n)))).

For each accepting state C: we determine whether it can be achieved from
the initial state C 0. This is done by the recursive procedure TEST(C 1, C2, i) as
given in [-7, p. 370]. In this procedure there are two space comsuming state-

Algebraic Programming Systems 469

ments, viz., the test whether either C 1 = C2 or C 2 is a direct successor of C1,
and the to t - loop that enumerates all possible intermediate states.

Now checking the equality C 1 = C 2 can be performed in space f(n). And in
determining whether C z is a direct successor of C~ we need no more space
than ~ already consumed since exactly the same (space) charge functions are
involved.

Enumerat ing all states (in the for- loop) that occupy no more space than
f(n) can easily be programmed. Using the fact that A is f(n)-space enumerable,
it follows that this enumeration requires at most (9(f(n))-space.

It is now a routine matter to verify that the space bound on the de-
terministic simulation of ~ is f2(n) , log g(cf(n)). Clearly, log g(cf(n)) is of order
at most f(n) if g is bounded by an exponential function. []

Corollary 6.5. Let A be a polynomial space enumerable data type of exponential
growth and let ~LP be a set of program schemes which allow counters and
recursion. Then in the programming system [A, oL, a],

NPSPA CE (A, 5f) = PSPA CE (A, 5f). []

Actually, for polynomial space enumerable data types with exponential
growth we can improve on Theorem 6.4.

Theorem 6.6. Let A be an f(n)-space enumerable data type of exponential growth
and let ~c# be a set of program schemes which allow counters and recursion. Then
in the programming system [A, 5f],

NSPACEA(f(n))~-DSPACE.~(fZ(n)). []

Proof In essence the argument is the same as in establishing the previous
theorem except that now we are able to obtain a tighter estimate on the
number of states.

We will show that the number of different states does not exceed
leg I - 2 f (n) - I C f~n) for some constant c. (The combinatorial background material
used in proving this bound can be found in e.g. [16, Chap. 4].) This in turn
implies a deterministic simulation in space (9(f2(n)).

The number of different states equals the product of the size [c~[of c~, and
the number C(f(n); g) of different ways we can fill at most f(n) registers such
that the total amount of space does not exceed f(n). For sake of simplicity we
write K for f(n). Moreover, we consider for a while the growth function g
being a parameter of C (although for a given A provided with a norm, g is
fixed). Then

K k

C(K; g)= ~ ~ I~ g(ij).
k = l i l+. . .+ik=K j = l

The innerproduct equals the number of ways we can fill k registers such that
the total space does not exceed i~ + . . . + i k. Then we bound i~ + . . . + i k by K,
and finally we take all possible values of k.

Since the growth function g(n) satisfies b <g(n)<c" for some constants b > 1
and c > 2, for all n > 1, we now have

C(K; b)<= C(K; g(n))< C(K; c").

470 P.R.J . A s v e l d a n d J.V. T u c k e r

For the lower bound we obtain

K b k = k K (K _ l) b k
C(K;b)= Z E E k - 1

k = l il+...+ik=K = 1
K--1

1 bl) =b(b+l)K-1'

while for the upper bound we have similarly,

C(K;c")= Z ~ exp~ Z i t
k = l il+...+ik=K j = l

= Y Y c =c K
k=X i,+...+ik=K k=a \k - -1]!

Summarising, we obtain with b = 1,

2f(,)-1 < C(f (n); g(n))=< 2 f(")- 1 c f(,).

Thus C(f(n);g(n)) is bounded by �89 I~"), in which c depends on g, and
therefore on A and its norm. []

From the proof of Theorem 6.6 it follows that even for "slowly" growing
data types (i.e. g(n)<c" for some c>2) the number of configurations is still
exponential in f(n). So an improvement of the f2(n)-space bound in the
simulation requires - even for those slowly growing data types - essentially
more powerful techniques than Savitch's divide-and-conquer argument.

We shall now begin to involve time in our discussion.

Theorem 6.7. Let A be an f (n)-space enumerable data type and let ~ be a set of
program schemes. I f XeDSPACEA(f(n)), then there exist constants c> l and
d > 2 depending on X such that X~DTIME.~(expd I f (n) log g(cf(n))]), where g is
the growth function of A.

Proof Let ~ be a deterministic ~ -p rog ram which accepts X within space f(n).
A rough bound on the number of different states occurring in an accepting
computation of ~ on an input of norm n is]~]. [g(cf(n))] I~"~ for some c > l ,
which is of order expa, I f (n) log g(cf(n))] for some suitable d' >2.

Going from one of these states to another by means of any instruction i in
takes time at most

max ti(...) < max 7~ '~''') < [max ~y(")
i i i

(cf. Observation 6.2 and the f(n)-space enumerability of A).
Let d be the maximum of d' and the 7i's. Then after consuming an amount

of time greater than expnl-f(n) log g(cf(n))], ~ will enter the same state twice,
and therefore ~ will never halt. So XeDTIME~e(exPd [f(n)logg(cf(n))]) . []

Corollary 6.8. Let A be an f(n)-space enumerable data type of exponential
growth, and let ~ be a set of program schemes over A. Then in the programming
system [A, ~] ,

DSPA CE~(f(n)) ~_ ~ DTIME~(expd [f(n)]).
d>2

Algebraic Programming Systems 471

Proof Due to the assumption on the norm on A, we can - as in the proof of
Theorem 6.6 - bound the number of different states by 1~1"2f~")-1 c f~") for
some c >2. From this the statement easily follows in a way similar to the proof
of the previous theorem. []

Using Proposition 6.3, Theorem 6.4 and Theorem 6.7 (in that order) it is
possible to simulate non-deterministic time-bounded computations determin-
istically. However, for those programming languages that are in X ~ c c g a
direct simulation turns out to be more efficient.

We take the definitions of f(n)-time enumerable and polynomial time en-
umerable data types mutatis nomine from the corresponding ideas about space
resources.

Theorem 6.9. Let A be an f (n)-time enumerable data type, and let LP be a set of
program schemes which is included in ArYdcg. Then for each
X~NTIME~(f (n)) , there exist constants c> l and d>2 depending on X, such
that XeDTIME~c~(expd[f (n) logg(cf(n))]), where g is the growth function of
A.

Proof The argument consists of a straightforward simulation which for a given
non-deterministic program ~ enumerates for each input (al a,)~A" all
possible states in the computation tree of ~(a~ , a,), and searches for the
shortest accepting path in that tree. To do this, the deterministic simulating
language must involve counters and arrays, because there is no a priori bound
on the number of different states in a computation corresponding c~(a 1 , a,).

The deterministic simulating algorithm /7 determines for each state in the
computation tree of ~(al a,) its successor states. Each successor state s is
stored temporary, after which it is compared with all previously computed (and
definitely stored) different states of ~(a 1 , a,). When s happens to be "new",
it is also stored definitely. As soon as an accepting state is encountered,/7 halts
and accepts the input.

For storing the different states of c~(a~, ..., a,), /7 uses a doubly indexed
array. The first index refers to a number provided by/7 in order to distinguish
different states; the latter index corresponds to the variable (or array-entry) as
it occurs in the original program ~.

The number of different states is again bounded by [~1 g(cf(n)) I~"). Comput-
ing and storing a successor state takes time at most f(n). And determining
whether this successor state is "new" requires no more time than
]~[fZ(n). [g(cf(n))] I~"). So the total time /7 needs for an input of norm n is
[~[[g(cf(n))]I~")(f(n)+l~lfZ(n)[g(cf(n))]II")). Using the facts that f (n) > l and
that g is monotonically non-decreasing, and by increasing c appropriately, it is
easy to show that this is of order expn If(n) log g(cf(n))] for some d > 2. []

In a way similar to Theorem 6.6 and Corollary 6.8 we obtain the following:

Corollary 6.10. Let A be an f(n)-time enumerable data type with exponential
growth and let ~q~ be a set of program schemes which is included in A /~dcg .
Then in the programming system [A, 5f],

NTIMEA(U(n)) ~- U DTIMEA~(expa[T(n)]) �9 []
d>_2

472 P.R.J . Asve ld a n d J.V. T u c k e r

For the program constructs represented by ~ and ~ , ~ there is for each
program ~ a fixed bound M = M ~ on the number of variables and counters
occurring in ~. Consequently, the number of computation states for such
programs is bounded by [~[[g(cf(n))] ~. Therefore we have:

Corollary 6.11. Let A be an f(n)-time enumerable data type with exponential
growth and let .~ be a set of program schemes included in A/'~cg, Then in the
programming system [A, s

NTIME~(f(n))~_ u71DTIME~([g (c f (n))]u) " []

c~ l

Corollary 6.12. Let A be a polynomial time enumerable data type and let ~f be a
set of program schemes which is included in A~cg . I f A has polynomial growth
then

NP(A, ~f)~_P(A, ~dcd) . []

We shall now prove that the full abstract P = N P problem for programming
systems, with polynomial time enumerable data types and allowing programs
which do not have restrictions on the size of memory they may access, reduces
to the P = N P problem for Turing machine computation. The argument is a
rather straightforward adaptation of the argument for Cook's Theorem [11]
which says that the satisfiability problem for formulae of the Propositional
Calculus is NP-complete.

Let " ~ f f denote the set of all propositional formulae of the Propositional
Calculus in propositional variables P1,-.., P, and let 0 and 1 denote true and
false respectively. Then the satisfaction relation for " ~ is the predicate
" s a t ~ " ~ x {0, 1}" defined by

"sat(r(P 1 P,), xl , ..., x ,)e~F(x I , x,) =0.

Whence the satisfiability predicate is defined by

"SA T (F(P1, ..., P,))r x =(xl , ..., x,)6{0, 1}'. "sat(F(Pa, ..., P,), x).

Now "sat is a relation which is decidable in polynomial time with respect to
formula length and uniformly so in n. Clearly, for fixed n, "SAT is polynomial
time decidable with respect to formula length. It is the "exponential search" as
n varies which gives rise to the NP-completeness of satisfiability: Cook's
theorem says that SAT= U "SAT is NP-complete on ~o~ = U " ~ "

tleco #i~r

Theorem 6.13. Let A be a polynomial time enumerable data type and let ~ be a
set of program schemes which is included in dg'~dcg. Assume A has polynomial
growth. Then for each non-deterministic ~ which recognises the set X,~_A ~ in
time bounded by polynomial p~ there is a reduction function r, which maps each
input a~A" to a propositional formula

r,(a)=F,,,

in s propositional variables such that

aEX,~ f ' (")SA T (F~,u)

Algebraic Programming Systems 473

and these maps r, and f~ are polynomial time computable with respect to the norm
on A and formula length. Moreover, the reductions are uniform in the program
and the polynomial bounding function for its computations over A, being poly-
nomial time computable in program length and polynomial degree.

Proof Let e be a non-deterministic ~ -p rog ram over A which accepts X in
time bounded by polynomial p. Let N(a)=n and suppose that aeX. Then a is
accepted within p(n) time and there exists a sequence of computation states C
= C 1 , . . . , Cq with C 1 an initial state, Cq a final state and for l<t<_q<p(n),
CtF-Ct+ 1 meaning Ct+ 1 is a direct successor of C r Clearly, each C t involves
no more than p(n) data locations; and not more than g(n+p(n))=k distinct
elements of the type A may appear in the computation C.

The formula F,, a is made along the same lines as in the Turing machine
reduction except that our propositional variables are chosen as follows:

D(i,j, t) represents "the i-th data location contains the j-th element of A at
time t" where 1 <i<p(n), 1 < j < k , 1 <t<p(n).

S(l, t) represents "the l-th instruction of cc is to be processed at time t"
where 1 < l< t~ l and 1 <t<p(n).

Thus we have p(n). k. p(n)+]ctl, p(n)=p(n). (kp(n)+lc~l) propositional va-
riables at our disposal from which we can make propositional formulae
~1, ..., ~6, corresponding to the 6 statements about C given below, such that
F~.a=CI) I A ... A CI) 6.

1) Each C~ has one and only one element in each location.
2) Each C t has one and only one instruction.
3) At most one location is altered in the passage from C t to Ct+ ~.
4) The transition of C t to Ct+ 1 is legal according to the instruction of C t.
5) C~ is initial.
6) C q is final and marks acceptance.

Clearly, we then have

aeX~*there exist C~, ..., Cq satisfying statements (1)-(6).

~,3 xE{0, 1} ~. ~sat(F,,a, x)

~:> ~SA T (Fa, a)

where S =p(n) . (k. p(n) +l~l).
The construction of these formulae is straightforward because it follows

Cook's proof so closely. For example, statements (1) and (2) are based upon
the fact that the mutually exclusive disjunction U(P~, ..., P~) of proposition
variables which when written out is a formula of length C(r2), see [7]. We
consider (3) as an illustration.

Define ~b(i,j, t)=D(i,j , t+ 1)~-~D(i,j, t) and notice the length of this formula
is constant. Its interpretation is "the j-th element of A is in location i at time t
+ 1 iff it was there at time t". The formula #3 is defined by

p(n) p(n) p(n) k

(bs-- A V A A q~(i,j,t)
t = l i o = 1 i ~ l j = l

i e~ io

and the order of its length is given by

p(n) . p(n) . (p(n) - 1)-k.

474 P.R.J. Asveld and J.V. Tucker

On completing such formalisations, the reader will find that the length of
the formula F=,a is of order bounded by

p3(n). [g(p(n))] ~

where M is the maximum arity of the operations of the data type, a parameter
which creeps into case (4).

We have only to check the complexity of this construction as the uni-
formity R: L f o x A " ~ N f f where do is the set of pairs of ~-programs and
their bounding functions. Most of the computation R(e, a)=F,,, is work for a
Turing machine on ~ f f such as in Cook's proof, but it depends on the
number n, which is obtained by the enumeration function; the bound p, which
is given by the data; and the number k, which is given by the growth function,
an invariant determined by the data type A and its norm. The hypotheses of
polynomial time enumerability clearly enlail that all this information is avai-
lable so that R(~,a) is polynomial time computable in I~] and N(~). []

Corollary 6.14. Let A be a polynomial time enumerable data type with polynomial
growth and let ~.~ be a set of program schemes which is included in sV'~Ncg.
Then all non-deterministic computations in the programming system [A ,~] are
reducible to the satisfiability problem for propositional formulae. []

7. Concluding Remarks

From the point of view of the general theory of program semantics, we have
tried to think seriously, and in a precise mathematical way, about the algebraic
semantics of high-level computations: specifically by thinking operationally of
the simple minded equations,

Data Types = Specifications + Implementation

Programs = Assignments+Control Structures

and fusing them together by the equation

Algorithms = Data Types + Programs.

From this point of view the complexity theory is meant as a stiff test of the
semantical theory.

From the point of view of complexity theory, we have simply tried to lift
all the conceptual equipment for conducting analyses of computational re-
sources into a general algebraic setting, but without loosing sight of the fact
that it is only in computations on the hard ground of syntax that any realistic
measure of complexity must set down its root. Certainly most of the arguments
used in Sect. 6 are routine generalisations of known techniques once one has
the conceptual equipment at hand; perhaps Theorem 6.6 and its corollaries may
be claimed to be novel. And it may be of interest to realise that such familiar
ideas as those used in proving Savitch's theorem are in no sense specific to
Turing machines.

Algebraic Programming Systems 475

In any case, it seems to us that, whatever the shortcomings in our own
work reported here, it is only through the organizing framework of the ADJ
Group's initial algebra methodology that some mathematical unity between
models of high and low level computations can be achieved.

References

1. ADJ l,Goguen, J.A., Thatcher, J.W., Wagner, E.G., Wright, J.B.]: Abstract data types as initial
algebras and correctness of data representations. In: Proceedings ACM Conference on Com-
puter Graphics, Pattern Recognition and Data Structure, ACM, New York (1975), pp. 89-93

2. ADJ I-Goguen, J.A., Thatcher, J.W., Wagner, E.G.]: An initial algebra approach to the
specification, correctness and implementation of abstract data types. In: Current Trends in
Programming Methodology IV, Data Structuring, R.T. Yeh (ed.), Prentice-Hall, Englewood
Cliffs, N.J. (1978), pp. 80-149

3. ADJ l,Thatcher, J.W., Wagner, E.G., Wright, J.B.]: Data type specification: parameterization
and the power of specification techniques. IBM Yorktown Heights Research Report RC 7757,
Yorktown Heights (1979)

4. ADJ I-Ehrig, H., Kreowski, H.-J., Thatcher, J.W., Wagner, E.G., Wright, J.B.]: Parameterized
data types in algebraic specification languages. In: Automata, Languages and Programming,
7th Colloquium 1980, J.W. de Bakker and J. van Leeuwen (eds.). Lecture Notes in Computer
Science 85, Springer: Berlin Heidelberg New York (1980), pp. 157-168

5. ADJ [Thatcher, J.W., Wagner, E.G., Wright, J.B.]: More on advice on structuring compilers
and proving them correct. IBM Yorktown Heights Research Report, RC 7588 (1979)

6. ADJ [Goguen, J.A.]: Abstract errors for abstract data types. In: IFIP 1977 Working Con-
ference on Formal Description of Programming Concepts. North-Holland: Amsterdam (1977),
pp. 21.1-21.32

7. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms.
Addison-Wesley: Reading, Mass. (1974)

8. Bergstra, J.A., Tucker, J.V.: A characterisation of computable data types by means of a finite,
equational specification method. In: Automata, Languages and Programming, 7th Colloquium
1980, J.W. de Bakker and J. van Leeuwen (eds.). Lecture Notes in Computer Science 85,
Springer: Berlin Heidelberg New York (1980), pp. 76-90

9. Bergstra, J.A., Tucker, J.V.: Initial and final algebra semantics for data type specification: two
characterisation theorems. Report IW 142/80, Department of Computer Science, Mathematical
Centre, Amsterdam (1980)

10. Burstall, R.M., Goguen, J.A.: Putting theories together to make specifications. Proc. 5th
Internat. Conf. on Artificial Intelligence: Cambridge, Mass. (1977), pp. 1045-1058

11. Cook, S.A.: The complexity of theorem proving procedures. Proc. 3rd Ann. ACM Symp.
Theory of Computing (1971), pp. 151-158

12. Gerhart, S., Wile, D.S.: Preliminary report on the delta experiment: specification and verifi-
cation of a multiple-user file updating module. In: Proc. Specifications of Reliable Software
Conf., Boston, Mass. (1979)

13. Greibach, S.A.: Theory of Program Structures: Schemes, Semantics, Verification. Lecture Notes
in Computer Science 36, Springer: Berlin Heidelberg New York (1975)

14. Guttag, J.V.: The specification and application to programming of abstract data types. Ph.D.
Thesis, University of Toronto, Department of Computer Science: Toronto (1975)

15. Guttag, J.V., Horning, J.J.: The algebraic specification of abstract data types. Acta Informat.
10, 27-52 (1978)

16. Hall, M.: Combinatorial Theory. Blaisdell: Waltham, Mass. (1967)
17. Harel, D.: On the total correctness of non-deterministic programs. IBM Yorktown Heights

Research Report, RC 7691 (1979)
18. Harel, D., Pratt, V.R.: Nondeterminism in logics of programs. MIT Laboratory for Computer

Science Research Report MIT/LCS/TM-98 (1978)
19. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation.

Addison-Wesley: Reading, Mass. (1979)

476 P.R.J. Asveld and J.V. Tucker

20. Huet, G., Oppen, D.C.: Equations and rewrite rules: a survey. Report TR CSL-111, S.R.I.
International: Menlo Park, Ca. (1980)

21. Liskov, B.: CLU reference manual. MIT Laboratory for Computer Science Research Report
MIT/LCS/TM-225 (1979)

22. Liskov, B., Zilles, S.: Specification techniques for data abstractions. IEEE Transactions on
Software Engineering 1, 7-19 (1975)

23. Manna, Z.: Mathematical Theory of Computation. McGraw-Hill: London (1974)
24. Milnor, J.: Growth of finitely generated solvable groups. J. Differential Geometry 2, 447-449

(1968)
25. Musser, D.R.: Abstract data type specification in the AFFIRM system. IEEE Transactions on

Software Engineering 6, 24-32 (1980)
26. Rosenberg, A.L.: Real-time definable languages. J. Assoc. Comput. Mach. 14, 645-662 (1967)
27. Savitch, W.J.: Relationships between non-deterministic and deterministic tape complexities. J.

Comput. Systems Sci. 4, 177-192 (1970)
28. Tits, J.: Free subgroups in linear groups. J. Algebra 20, 250-270 (1972)
29. Tucker, J.V.: Computing in algebraic systems. In: Recursion theory, its generalisations and

applications, F.R. Drake and S.S. Wainer (eds.). Cambridge University Press: Cambridge, pp.
215-235, 1980

30. Wolf, J.: Growth of finitely generated solvable groups and curvature of Riemannian manifolds.
J. Differential Geometry 2, 421-446 (1968)

31. Zilles, S.: Algebraic specification of data types. Project MAC Progress Report 11, MIT:
Cambridge, Mass. (1974)

32. Zilles, S.: An introduction to data algebras (working paper). IBM Research Laboratory: San
Jos6, Ca. (1975)

Received November 28, 1980 / May 28, 1982

