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Abstract

We obtain a decomposition result for the steady state queue length distribution in egalitarian processor-sharing
(PS) models. In particular, for multi-class egalitarian PS queues, we show that the marginal queue length distribution
for each class equals the queue length distribution of an equivalent single class PS model with a random number
of permanent customers. Similarly, the mean sojourn time (conditioned on the initial service requirement) for each
class can be obtained by conditioning on the number of permanent customers. The decomposition result implies
linear relations between the marginal queue length probabilities, which also hold for other PS models such as the
egalitarian PS models with state-dependent system capacity that only depends on the total number of customers in
the system. Based on the exact decomposition result for egalitarian PS queues, we propose a similar decomposition
for discriminatory processor-sharing (DPS) models, and numerically show that the approximation is accurate for
moderate differences in service weights.
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1. Introduction

The processor-sharing (PS) service discipline is of considerable interest in many application areas in
which different users receive a share of a scarce common system resource. In particular, in the field of
the performance evaluation of computer and communication systems, the PS discipline has been widely
adopted as a convenient paradigm for modeling bandwidth sharing.

Kleinrock [16] introduced the simplest and best known egalitarian PS discipline, in which a single
server assigns each customer a fraction 1/n of the service capacity whenn > 0 customers are in the
system. In particular, he showed that the mean sojourn time conditional on the initial service requirement
x > 0 is proportional tox. For an extensive body of literature on (egalitarian) PS queues, we refer to
Yashkov’s survey paper[20].

Cohen[10] generalized the standard PS model into a PS model in which each customer receives a
service rate according to an arbitrary positive functionφ(n). By appropriate choice ofφ(n), this model
describes a very wide class of service disciplines, and significantly enhances the modeling capabilities
of the standard PS model. In many practical applications it models the main factors determining the
performance, while on the other hand, it is simple enough to be analytically tractable (see, e.g.,[4,17]).

Another generalization of PS is the discriminatory processor-sharing (DPS) discipline, where a cus-
tomer of typek receives service ratewk/

∑K
j=1 wjnj, according to the set of weights{wj : j = 1, . . . , K}

and whennj customers of typej are present in the system. If all weightswj are equal, then we have the
ordinary PS queue. Under DPS it is possible to give preferential treatment (non-preemptive) to one or
more customer classes at the expense of others. The range of applications for DPS is extremely large
(see, e.g.,[1,6,9,14]). Exact analysis of DPS turns out to be difficult compared to ordinary PS. Therefore,
results for DPS are scarce in the literature. Most notably, the simple geometric queue length distribution
for the ordinary PS queue does not have a counterpart for DPS, and tractable transform results for the
sojourn time distribution seem not to exist.

For DPS, Fayolle et al.[11] showed that the conditional mean sojourn times satisfy a system of
integro-differential equations and derived closed-form expressions for the case of exponential service
requirements. In that case, the unconditional sojourn times can be obtained from a system of linear
equations. Rege and Sengupta[19] obtained the moments of the queue length distributions as the solutions
to linear equations for the case of exponential service requirements, and they also proved a heavy-
traffic limit theorem for the joint queue length distribution. These results were extended to phase type
distributions by van Kessel et al.[13]. Kim and Kim[15] found the moments of the sojourn time in the
M/M/1 DPS queue as a solution of linear simultaneous equations. More recently, Avrachenkov et al.[2]
showed that the mean queue lengths of all classes are finite under the usual stability condition, regardless
of the higher moments of the service requirements. They also showed that the conditional sojourn times
of the different customer classes are stochastically ordered according to the DPS weights.

In the present paper, for multi-class egalitarian and discriminatory PS models we investigate a de-
composition of the marginal queue length distributions into the queue length distributions of PS models
with permanent customers. In particular, for the egalitarian PS model we obtain an exact and analyti-
cally tractable decomposition that is remarkable and interesting on its own and offers additional insights
into egalitarian PS queues. We apply this decomposition to discriminatory PS to obtain an efficient and
analytically tractable approximation of the queue length distribution and mean sojourn times.

More specifically, for a two-class egalitarian PS queue with Poisson arrivalsλ1, λ2, when (N1, N2) is
the joint steady state queue length, we show that the marginal queue lengthNi is in distribution equal
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to Ñ
(Nj+1)∗
i , with i �= j. The latter random variable denoted asÑ

(Nj+1)∗
i can be interpreted as the steady

state queue length of asingle class M/G/1 PS queue with arrival rateλi and with a random number
of permanent customers distributed asNj (i.e., marginal queue length of theother type in the original
two-class PS queue).

The decomposition result implies that the marginal queue length distribution for class 1, factorizes
over the number of class 2 customers, and where the factorizing coefficients are equal to the queue length
probabilities of an isolated PS queue for type 1, given that type 2 customers are permanent in the system.
This queue length decomposition result can be generalized for arbitrary number of classesK, and similar
results hold for other egalitarian PS models, e.g., PS networks with feedback customers, and PS models
with state-dependent butbalanced class capacities, which are treated in Section3.

In Section4, we propose an approximation method for DPS models based on the queue length de-
composition result. The basic assumption is that an isolated customer class in DPS is considered to
behave like an egalitarian PS model with reduced capacity and arandom environment that is exoge-
nously determined. More specifically, if one type of customers is treated as permanent in a general
two-class DPS model, then the model is analytically tractable for the non-permanent class, with re-
duced service capacity that is exogenously given. The approximations are obtained as solutions of linear
systems.

2. Model

In this section we introduce a general single server processor-sharing model withK customer classes and
we introduce the notation used in this paper. Customers arrive at a single server according to individual
and independent Poisson processes with rateλk > 0 for customer classk, k = 1, . . . , K. The service
requirements of typek customers are i.i.d. random variables with a general distributionFk(x) = P(Xk ≤ x)
with meanEXk. Denote the load of classk by ρk = λkEXk, and the total offered load byρ := ∑K

j=1 ρj.
The server shares its capacity among all customers present in the system. Denoten = (n1, . . . , nK) as
the system state withnj customers of typej. The server capacity may be dependent on the system state.
When the system state isn, the total rate classk receives isφk(n). All customers within classk share the
capacityφk(n) in an egalitarian manner, i.e., each customer in classk receives rateφk(n)/nk. We assume
thatφk(n) = 0 if and only ifnk = 0. The total server capacity is denoted byφ(n) := ∑K

k=1 φk(n).
This general model describes a very wide class of service disciplines. In particular, it includes the

following special cases of processor-sharing models:

(a) Egalitarian processor-sharing (with fixed capacity):φk(n) = nk/
∑K

j=1 nj.

(b) Egalitarian processor-sharing with state-dependent service capacity:φk(n) = nkφ(n)/
∑K

j=1 nj. Note
that in the originalgeneralized PS model studied by Cohen[10], φ(n) only depends onn through its
sumn1 + · · · + nK.

(c) Discriminatory processor-sharing (with fixed capacity):φk(n) = wknk/
∑K

j=1 wjnj.

This model framework also covers DPS models with state-dependent service capacityφ(n) and
state-dependent service weightswk(n). The DPS models with both state-dependent capacity and state-
dependent weights are calledgeneralized discriminatory processor-sharing (GDPS) models in[9].
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The egalitarian PS models a. and b. are analytically tractable (whenφ(n) only depends onn through its
sumn1 + · · · + nK). In particular, analytical expressions are available for the equilibrium distributions of
customers simultaneously present in the system (and marginal distributions), mean number of customers
ENk of classk, mean sojourn timeETk and conditional mean sojourn timeETk(x) of a classk customer
given its initial service requirementx > 0. For GDPS models, these expressions have not yet been obtained
in tractable form.

3. Decomposition of egalitarian processor-sharing models

In this section, we first establish decomposition results for the ordinary egalitarian PS model. Results
for more general egalitarian PS models are briefly indicated at the end of this section.

Consider an egalitarian processor-sharing model with two types of customers (indexed byl = 1, 2),
class capacity functionsφl(n) := φl(n1, n2) = nl/(n1 + n2), and where the second class of customers is
possibly an aggregate of several other classes. Let the random vector (N1, N2) denote the joint steady
state queue length of this processor-sharing model; its distribution has the product form (cf.[10,12]):

P(N1 = i; N2 = j) = (1 − ρ)

(
i + j

j

)
ρi

1ρ
j
2, (1)

when the stability condition is satisfied, i.e.,ρ := ρ1 + ρ2 < 1, and is insensitive to the service requirement
distributions apart from their means (see, e.g.,[7]). Fori, j ∈ Z+, the marginal queue length probabilities
are given by

P(N1 = i) = 1 − ρ

1 − ρ2

(
ρ1

1 − ρ2

)i

, P(N2 = j) = 1 − ρ

1 − ρ1

(
ρ2

1 − ρ1

)j

. (2)

3.1. Queue length decomposition

Theorem 1shows how the marginal steady state queue length probabilities of the two-class PS queue
can be related through the negative binomial probabilitiesα(i, j) andβ(j, i), defined as

α(i, j) := P
(
Ñ

(j+1)∗
1 = i

)
= (1 − ρ1)

j+1

(
i + j

i

)
ρi

1, (3)

β(j, i) := P
(
Ñ

(i+1)∗
2 = j

)
= (1 − ρ2)i+1

(
i + j

j

)
ρ

j
2, (4)

∑∞
i=0 α(i, j) = 1 for all j ∈ Z+,

∑∞
j=0 β(j, i) = 1 for all i ∈ Z+, whereÑk denotes the steady state queue

length of anisolated M/G/1 PS queue with arrival rateλk and general service requirement distribution
Fk(x). The random variable denoted asÑm∗

k has a distribution which is them-fold convolution of the
distribution ofÑk. Assume that̃Ni is independent ofNj, for i �= j.

Theorem 1. For i, j = 1, 2and i �= j, the marginal queue length Ni is in distribution equal to the random

variable Ñ
(Nj+1)∗
i , i.e.,Ni

d= Ñ
(Nj+1)∗
i , where Ñ

(Nj+1)∗
i := ∑Nj

m=0 Ñi,m, with {Ñi,m}m≥0 i.i.d. and distributed
as Ñi.
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Proof. First observe that the following equality holds by combining Eqs.(1)–(4):

P(N1 = i; N2 = j) = α(i, j)P(N2 = j) = β(j, i)P(N1 = i).

Hence, by conditioning on{N2 = j} and independence of̃N1 andN2, we have for alli ∈ Z+:

P

(
Ñ

(N2+1)∗
1 = i

)
=

∞∑
j=0

α(i, j)P(N2 = j) = P(N1 = i),

i.e.,Ñ (N2+1)∗
1

d= N1. Analogously, we have that̃N (N1+1)∗
2

d= N2. �
Corollary 2. From Theorem 1, we obtain the following set of linear equations:

P(N1 = i) =
∞∑

j=0

α(i, j)P(N2 = j), P(N2 = j) =
∞∑
i=0

β(j, i)P(N1 = i).

The decomposition theorem can be generalized for arbitrary number of classesK, and also for multi-class
egalitarian PS models with state-dependent service capacity that only depends on the total number of
customers present in the system (see Section3.4).

Theorem 1can be interpreted as follows. In the two-class PS model, the marginal queue lengthN1

is in distribution equal to a queue length from a related M/G/1 queue with permanent customers. The
latter M/G/1 queue has additionalj permanent customers with probabilityP(N2 = j). To this end, note
that the queue length distribution in an ordinary M/G/1 PS queue withj permanent customers, equals the
(j + 1)-fold convolution of the queue length distribution of the same model without permanent customers
(see[5]).

The remarkable fact is thata(i, j) = P(Ñ1 = i|j permanent customers) andP(N1 = i|N2 = j) =
P(N1 = i; N2 = j)/P(N2 = j) are identical and independent ofρ2, i.e., the ‘conditional steady state
probability’ of the original two-class PS queue equals the ‘single class permanent customer’ probability
a(i, j).

From the class 1 point-of-view in the original two-class PS model, it seems as if class 1 behaves
according to an ordinary single class Mλ1/G/1 PS queue withj permanent customers ifj customers of type
2 are present in the system. Furthermore, if there is a customer arrival (resp. departure) for type 2 in the
system, then it seems as if class 1instantaneously ‘jumps’ to a Mλ1/G/1 model withj + 1 (resp.j − 1)
permanent customers, and as if the new equilibrium (steady state behavior) is instantaneously attained at
the jump epoch.

3.2. Sojourn time decomposition

After establishing the queue length decomposition result, a natural question is whether or not a similar
decomposition result holds for the sojourn time distribution. It can be shown that a similar decomposition
holds for the first moment of the conditional sojourn time distribution (seeTheorem 3), whereTk(x) is
the sojourn time for customer typek with initial service requirementx > 0 in the original two-class PS
model, andT̃

(Nj+1)∗
i (x) is the conditional sojourn time of the isolated M/G/1 PS queue with arrival rate

λi and a random number of permanent customersNj.
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Theorem 3. For all x ≥ 0, the conditional mean sojourn times can be decomposed into

ET1(x) = E
(
T̃

(N2+1)∗
1 (x)

)
≡

∞∑
j=0

(j + 1)x

1 − ρ1
P(N2 = j), (5)

ET2(x) = E
(
T̃

(N1+1)∗
2 (x)

)
≡

∞∑
i=0

(i + 1)x

1 − ρ2
P(N1 = i), (6)

where (m + 1)x/(1 − ρk) is the mean conditional sojourn time of an isolated M/G/1 PS queue with arrival
rate λk, service requirement distribution Fk(x) and with m permanent customers.

Proof. From Eqs.(2), (5) and (6), it is readily verified thatE(T̃ (N2+1)∗
1 (x)) = E(T̃ (N1+1)∗

2 (x)) = x/(1 − ρ),
which is the same as the well-known resultET1(x) = ET2(x) = x/(1 − ρ). �

Obviously, the result for unconditional mean sojourn times is similar; since it also follows directly
from the exact decomposition result for queue length distributions and Little’s law. For higher moments
of the (conditional) sojourn time distribution, it can be easily seen that a similar decomposition does not
hold in general. However, if both customer classes have the same service requirement distribution, then
a certain stochastic ordering result has been proven in[8]. More specifically, the moment ordering:

E

(
T̃

(N2+1)∗
1 (x)

)k ≤ E
(
T̃

(N1+1)∗
2 (x)

)k

holds for allx ≥ 0 andk ≥ 2, k ∈ N, if and only if λ1 ≥ λ2. From this moment ordering result, insen-
sitive upper bounds forall moments of the sojourn time distribution (conditioned on the initial service
requirement) for an ordinary M/G/1 PS queue are obtained. In addition, these upper bounds have a very
special structure with so-called Eulerian numbers in the expressions (see[8]).

3.3. A feedback network with egalitarian processor-sharing

Now consider a processor-sharing network with an egalitarian PS node and a node used by a single
feedback customer. Exogenous customer arrivals at the PS node form a Poisson process with rateλ > 0,
and these customers are served at the PS node with i.i.d. service requirements; generally distributed with
meanEX. The service requirement for the feedback customer at the PS node is generally distributed and
denoted by the random variableZ. After service completion of the feedback customer at the PS node,
the feedback customer is routed to the feedback node (with probability 1) where he spends a generally
distributed timeY. After this random timeY at the feedback node, the feedback customer joins the PS
node for a service requirementZ.

If we denoteP(NPS = n) as the steady state distribution of the number of (non-feedback) customers
at the PS node, then it is readily verified that the following decomposition holds:

P(NPS = n) = ξπ0(n) + (1 − ξ)π1(n),

whereπm(·) is the steady state queue length distribution of the isolated Mλ/G/1 PS queue withm permanent
customers, andξ is the steady state probability that the feedback customer is at the feedback node in the net-
work, i.e.,π0(n) = (1 − ρ)ρn, π1(n) = (1 − ρ)2(n + 1)ρn, ρ := λEX andξ = EY/(EY + EZ/(1 − ρ)).
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The result can be extended to multiple feedback customers where the feedback node is a so-called
BCMP [3] node. In fact, the feedback node may be replaced by a BCMP network.

3.4. Multi-class egalitarian processor-sharing with state-dependent capacity

Consider the egalitarian processor-sharing queue withK customer classes, with the total service capacity
dependent on the system staten through its sumn1 + · · · + nK (cf. [10]). More precisely,φ(n) = ϕ(n · e),
for all n �= 0 (null vector), wheree is the vector with 1-entries of appropriate length,n · e denotes the inner
product, and whereϕ(·) : N→ R+ is an arbitrary positive function. Serving the customers in egalitarian
manner reads

φi(n)

ni

= ϕ(n · e)

n · e
, for all i = 1, . . . , K (7)

and the class capacitiesφi(n) are uniquely characterized and balanced byφi(n) = Φ(n − ei)/Φ(n), where
Φ(n) is the so-calledbalance function, andei is theith unity vector of appropriate length (see[12,7]). It is
said that the class capacitiesφi(n) are balanced if a functionΦ(n) exists such thatφi(n) = Φ(n − ei)/Φ(n)
is satisfied, and equivalently, the class capacitiesφi(n) are balanced if

φi(n − ej)

φi(n)
= φj(n − ei)

φj(n)
, for all i, j, andni > 0, nj > 0.

From Eq.(7) and the balance property, we getΦ(n) = (n · e)!/
∏K

i=1 ni!
(∏n·e

j=1 ϕ(j)
)−1

, and without
restrictionϕ(0) ≡ 1. The joint steady state queue length distributionπ(n) := P(N1 = n1; · · · ; NK = nK)
is given by the product form:

π(n) = (n · e)!


G

n·e∏
j=1

ϕ(j)




−1
K∏

i=1

ρ
ni

i /ni!, for n �= 0,

with ρi = λiEXi and a normalizing constantG (see[7]). It can be shown that the marginal distributions
of π(n) can be decomposed into queue length distributions of (isolated) permanent customer queues.

Theorem 4. For multi-class egalitarian processor-sharing models, with balanced class capaci-
ties φk(n) = ϕ(n · e)nk/(n · e), the marginal steady state queue length Nk can be decomposed into

Nk
d= Ñ

(N−k+1)∗
k , for all k = 1, . . . , K, and where we denote N−k := ∑K

i=1,i�=k Ni.

Proof. The decomposition for classk follows from the observation that

n·e∏
j=1

ϕ(j)−1 ≡
(

nk∏
l=1

ϕ(l + (n · e − nk))

)−1

n·e−nk∏

j=1

ϕ(j)




−1

, for nk ≥ 1, (8)
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with ϕ(0) ≡ 1. Hence, with(8) and by appropriate summation ofπ(n), the marginal queue length distri-
bution for classk equals:

P(Nk = nk) ∼
∑

n1,...,nk−1
nk+1,...,nK

(n · e)!


 n·e∏

j=1

ϕ(j)




−1
K∏

i=1

ρ
ni

i

ni!

=
∑ (n · e)!

nk!

{
nk∏
l=1

ϕ(l + (n · e − nk))
−1ρ

nk

k

}n·e−nk∏
j=1

ϕ(j)−1
K∏

i�=k

ρ
ni

i

ni!


 , (9)

where the symbol∼ denotes equality up to a multiplicative constant. The proof is readily completed, by
observing that the expression between parentheses in Eq.(9) is equivalent to the queue length distribution
for typek in isolation and with the number ofn · e − nk permanent customers of the other classes, i.e.,
P(Ñk = nk|n · e − nk permanent customers). The expression after the parentheses in(9) is equivalent to
the marginal steady state probabilityP(N−k = n · e − nk), after appropriate summation.�

4. Approximation for discriminatory processor-sharing models

In this section we propose an approximation method for (unconditional) mean sojourn times ingen-
eralized discriminatory processor-sharing models (GDPS). The basic approximation assumption in the
(G)DPS model is that a classk queue (in isolation) is considered as an egalitarian PS model with (reduced)
state-dependent capacity, and where the state-dependent capacity is exogenously determined. In the exact
(G)DPS model this is obviously not the case, since therandom environments for the different isolated
queues in (G)DPS are interrelated and not independent.

We investigate the approximation error if this assumption is made under DPS models. By the exact
queue length decomposition results for egalitarian PS models (with state-dependent and balanced class
capacities), our method provides exact results if applied on these balanced PS models.

4.1. General approximation method for mean sojourn times

For sake of notational convenience, we first consider a two-class GDPS model where the class capacities
φl(n) = φl(n1, n2) are arbitrary non-negative functions, forl = 1, 2. In addition, we assume a finite
number of service positions for both customer types separately (N1 ≤ m andN2 ≤ n), which is not a
crucial assumption.

4.1.1. Approximation method for K = 2 customer classes
If one customer type is treated as permanent in the system, then the model is analytically tractable

for the non-permanent type. More precisely, the probabilitiesα(i, j) andβ(j, i) are easily computed in
closed-form by (see[10,17]):

α(i, j)
ρi

1ϕ1,i(j)∑m
k=0 ρk

1ϕ1,k(j)
and β(j, i) = ρ

j
2ϕ2,j(i)∑n

k=0 ρk
2ϕ2,k(i)

, (10)
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where

ϕ1,i(j) =
(

i∏
k=1

φ1(k, j)

)−1

, ϕ1,0(j) ≡ 1 for all j = 0, 1, . . . , n,

ϕ2,j(i) =

 j∏

k=1

φ2(i, k)




−1

, ϕ2,0(i) ≡ 1 for all i = 0, 1, . . . , m.

Our basic approximation assumption for (G)DPS models is that the linear system given inCorollary 2is
applicable. Under this assumption, we approximate the marginal queue length probabilitiesηi = P(N1 =
i) andξj = P(N2 = j) by solving the following set of linear equations:

η = Aξ and ξ = Bη, (11)

whereη = (η0, η1, . . . , ηm)T, ξ = (ξ0, ξ1, . . . , ξn)T, and the matrices are given by

A =




α(0, 0) α(0, 1) · · · α(0, n)

α(1, 0) α(1, 1) · · · α(1, n)
...

...
...

...

α(m, 0) α(m, 1) · · · α(m, n)


 , B =




β(0, 0) β(0, 1) · · · β(0, m)

β(1, 0) β(1, 1) · · · β(1, m)
...

...
...

...

β(n, 0) β(n, 1) · · · β(n, m)


 .

It is not difficult to give conditions such that the (approximated) probability vectorsη andξ are uniquely
determined after normalization. The system of Eq.(11) is also equivalent toη = (AB)η, or ξ = (BA)ξ,
which can be interpreted as ‘solving the equationπ = πP’, whereP is a transition matrix of a discrete-
time Markov chain. In many practical (G)DPS models, it is easily verified that the product matrices (AB)T

and (BA)T, have row sums equal to one and do not have negative entries (irreducible, regular stochastic
matrices). It is sufficient to haveφj(n) > 0 for all j, and for all vectorsn with nj > 0, to guarantee
uniqueness ofη andξ, up to a multiplicative constant.

The approximated (unconditional) mean sojourn time for each class follows from Little’s law, and in
our case with finite capacity (blocking) we have the approximation:

ET̂1 = 1

λ1(1 − ηm)

m∑
i=0

iηi and ET̂2 = 1

λ2(1 − ξn)

n∑
j=0

jξj. (12)

Remark 5. The proposed approximation method is exact for egalitarian PS models withbalanced class
capacities. The steady state queue length distribution is insensitive to the service time distributions, if and
only if the class capacities arebalanced (see[7]). Hence, approximations(10)–(12)cannot be exact for
PS models withunbalanced class capacities, since the approximation is insensitive to the service time
distributions.

4.1.2. Outline of the approximation method for K > 2 customer classes
In principle, our approximation can be applied for general number of customer classesK. The method

seems very efficient, since only linear systems needs to be solved. However, significantly more compu-
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tational effort needs to be done for increasingK. To illustrate the complexity, let us consider the case of
K = 3 classes. Suppose that the class capacitiesφl(n) = φl(n1, n2, n3), l = 1, 2, 3, are given in a three-
class GDPS model with system states (N1, N2, N3) = (i, j, k). The approximated marginal steady state
queue length probabilities denoted byηi = P(N1 = i), ξj = P(N2 = j), ζk = P(N3 = k) are uniquely
obtained from the linear equations(13)–(15), up to a multiplicative constant:

ηi = ∑
j

(∑
k α(i|j, k)π3,2(k|j)

)
ξj =:

∑
j ai,jξj

ηi = ∑
k

(∑
j α(i|j, k)π2,3(j|k)

)
ζk =:

∑
k bi,kζk,

(13)

ξj = ∑
i

(∑
k β(j|i, k)π3,1(k|i)

)
ηi =:

∑
i cj,iηi

ξj = ∑
k

(∑
i β(j|i, k)π1,3(i|k)

)
ζk =:

∑
k dj,kζk,

(14)

ζk = ∑
i

(∑
j γ(k|i, j)π2,1(j|i)

)
ηi =:

∑
i ek,iηi

ζk = ∑
j

(∑
i γ(k|i, j)π1,2(i|j)

)
ξj =:

∑
j fk,jξj.

(15)

The coefficientsα(i|j, k) are given in closed-form formulas, similar to Eq.(10), sinceα(·|j, k) is the
steady state queue length distribution for the isolated type 1 queue given that type 2 and 3 customers are
permanently in the system. Analogously, the coefficientsβ(j|i, k) andγ(k|i, j) are also easily computed.
The pairs of coefficients{π2,1(j|i), π3,1(k|i)}, {π1,2(i|j), π3,2(k|j)}, and{π2,3(j|k), π1,3(i|k)} are obtained
as unique solutions from the linear systems(16)–(18), similar to the approximation method in case of
K = 2, up to multiplicative constant:

π2,1(j|i) =
∑

k

β(j|i, k)π3,1(k|i), π3,1(k|i) =
∑

j

γ(k|i, j)π2,1(j|i) for all i, (16)

π1,2(i|j) =
∑

k

α(i|j, k)π3,2(k|j), π3,2(k|j) =
∑

i

γ(k|i, j)π1,2(i|j) for all j, (17)

π1,3(i|k) =
∑

j

α(i|j, k)π2,3(j|k), π2,3(j|k) =
∑

i

β(j|i, k)π1,3(i|k) for all k. (18)

The systems(13)–(15)written in matrix form:η = Aξ, η = Bζ, ξ = Cη, ξ = Dζ, ζ = Eη, andζ = Fξ,
are efficiently solved by, e.g., the following two systemsη = (ACBFDE)η, andξ = (CADEBF)ξ, with
normalizationη · e = 1 andξ · e = 1, and where the system for determiningζ is automatically satis-
fied and normalized. For increasingK, it seems that convenient notation may overcome the increase in
complexity.

4.2. Conservation law

In this subsection, we obtain a conservation law for unconditional mean sojourn times in a DPS
queue, which turns out to be useful in improving the approximations for the lowest priority class.
The practical use of a conservation law is that if we are able to obtain accurate approximations
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of ETk for customer classesk = 1, . . . , K − 1, then an accurate approximation for classk follows
automatically.

Theorem 6. For a K-class DPS queue with fixed capacity, fixed weights, Poisson input, and exponential
service requirements with mean EXi, i = 1, . . . , K, the following conservation law for unconditional
mean sojourn times holds:

K∑
j=1

ρjETj =
K∑

i=1

ρi

1 − ρ
EXi, independently of (w1, . . . , wK). (19)

Proof. The result follows from the conservation law[2] for DPS models and from the fact that (1−
Fj(x))dx = (1/µj)dFj(x) andEX2

j = 2(EXj)2 = 2/µ2
j , in case of exponential service requirements.�

4.3. Numerical results

In this section, we numerically investigate our approximation method with exact results in case of
exponential service requirements, for the two- and three-class DPS models with fixed weights and fixed
capacity. For numerical experiments and an application of the GDPS model with state-dependent service
weights and state-dependent service capacity, we refer to[9].

4.3.1. Two-class DPS queue
In the two-class DPS model we refer to type 1 customers as thehigh priority customers and to type 2

customers as thelow priority customers (w1 > w2). In case of exponential service requirements, exact
closed-form expressions are given by[11].

The approximated mean sojourn timesET̂1 andET̂2 are calculated from Eqs.(10)–(12)and with
infinite buffer capacity (m = n = ∞). The direct approximationET̂2 (based on decomposition) for the
low priority class can be improved. The improved approximation, denoted byET̂

imp
2 , is based on the

conservation law(19)and the direct approximationET̂1 for the high priority class.
Fig. 1 provides graphs for the exact and approximated mean sojourn times for both classes with

EX1 = EX2 = 1, and for different values ofw1/w2. For class 2, in addition, the improved approximation
ET̂

imp
2 is included.Fig. 1gives results as function ofρ = ρ1 + ρ2, with ρ1 = ρ2 = ρ/2. As can be seen

from these graphs, the approximation forET1 is reasonable up to a traffic loadρ = 0.9 for weight
ratios 1≤ w1/w2 ≤ 5. The approximation forET2 breaks down with increasing difference in weights.
However, the approximationET̂ imp

2 that usesET̂1 to approximateET2 is accurate for all weight ratios.
For a discussion of the quality of the approximation, we refer to Section4.4.

4.3.2. Three-class DPS queue
For the three-class DPS model, we consider the following numerical examples with mean service

requirementsEX1 = 2, andEX2 = EX3 = 1. The exact values forETj, j = 1, 2, 3, are obtained from
[11] as solution of a linear system.

Fig. 2 provides graphs for the exact and approximated mean sojourn times for the three classes and
for two sets of weightsw = (w1, w2, w3), respectively forw = (2, 2, 1) andw = (3, 2, 1). Fig. 3 pro-
vides approximated and exact mean sojourn times forw = (5, 3, 1) andw = (10, 3, 1). The approxi-
mated mean sojourn timesET̂j, j = 1, 2, 3, are calculated according to the system of Eqs.(13)–(18)
and by applying Little’s law. The figures are provided as function of the total loadρ := ρ1 + ρ2 + ρ3,
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Fig. 1. Exact and approximated mean sojourn times for the two-class M/M/1 DPS queue, withEX1 = EX2 = 1, and for weight
ratiosw1/w2 ∈ {2, 3, 5, 10}.

with ρ1 = ρ2 = ρ3 = ρ/3. In addition, inFig. 3, an improved approximationET̂ imp
3 is included, based

on the conservation law(19) and based on the direct approximationsET̂1 and ET̂2 of the other
types.

As can be seen from the graphs (Figs. 2 and 3), the approximations forET̂j, are accurate as long as the
set of weights is ‘more or less balanced’ (seeRemark 5). It seems that our approximation improves for
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Fig. 2. Exact and approximated mean sojourn times for the three-class M/M/1 DPS queue (withEX1 = 2,EX2 = EX3 = 1),
for weightsw = (2, 2, 1) andw = (3, 2, 1).

K = 3 customer classes. This can be explained by the fact that adding an additional customer class can
increase thebalance between the classes.

4.4. Discussion

In this section, we discuss the quality of our approximationET̂j for ETj. In particular, in the case
of K = 2 customer classes, numerical examples indicate that the approximation for the lower priority
classET̂2 is poor when the ratio of weightw1/w2 is extremely large (unbalanced), whereas the improved
approximationET̂ imp

2 is accurate.
Our basic approximation assumption is that the various customer classes in DPS models are

treated as single class egalitarian PS queues with state-dependent (and reduced) service capacity. Sup-
ported by the queue length decomposition result for egalitarian PS models, the isolated single class
PS queues in a multi-class egalitarian PS queue are exactly related to the other isolated customer
queues.
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Fig. 3. Exact and approximated mean sojourn times for the 3-class M/M/1 DPS queue (withEX1 = 2,EX2 = EX3 = 1), for
weightsw = (5, 3, 1) andw = (10, 3, 1).

When the ratio of weightsw1/w2 is large, then from a class 2 point-of-view, the queue behaves as
an ON–OFF processor-sharing queue[18]. As an illustration,Fig. 4 shows the typical behavior of the
queue length processesNi(t) for a two-class DPS queue under heavy load and large ratiow1/w2. From
a class 2 point-of-view, it seems as if aburst of permanent customers (of sizew1/w2) arrives, when
a single customer of type 1 arrives in the original two-class DPS model. Therefore, when the number
of class 1 customers gets large enough, then the service process for class 2 may seem frozen (OFF
period), and the queue length process for class 2 increases rapidly. However, since the high priority
customers (class 1) reside in the system for a relatively short time period (class 1 gets a large share of
the capacity), the queue length for the high priority class will decrease rapidly. When there is no high
priority customer in the system, the low priority class receives all the available service capacity despite
the large ratio of weightsw1/w2 (ON period), and the queue length for the low priority class decreases
significantly.

In the original two-class DPS model, the isolated customer class 2 has arandom environment that
is severely influenced by the ‘burstiness’ of class 1 (seen from class 2 point-of-view), while from an
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Fig. 4. A sample path of the queue length processN1(t) andN2(t), for a two-class M/M/1 DPS model withw1/w2 = 10,
λ1 = λ2 = 0.49, andEX1 = EX2 = 1.

isolated class 1 point-of-view, it seems as if class 1 behaves according to its own single class and isolated
(egalitarian) PS queue, with a random environment that is less fluctuating over time, compared to the
isolated class 2 point-of-view.

For the case ofK ≥ 3 customer classes, similar behavior is present in the DPS model. The queue
length process of the highest priority class has a significant influence on the queue length process of the
lowest priority class, and not in the other way round. However, in the case that more classes are present
in the system, with service weights that are in between the highest and lowest priority class, the marginal
influence of the highest priority class on the random environment of lowest priority class may be less
than in the case ofK = 2.

5. Conclusion

In this paper, we obtained a decomposition result for the queue length distributions in the egalitarian
processor-sharing models. In particular, for a multi-class egalitarian processor-sharing model, the marginal

steady state queue lengthNk for classk, satisfiesNk
d= Ñ

(N−k+1)∗
k . The latter random variablẽN (N−k+1)∗

k

can be interpreted as a random variable denoting the queue length of an isolated processor-sharing queue
for classk, where the other customer types are permanent customers in the system andN−k represents
the random variable of the total number of permanent customers. This result remains valid for egalitarian
processor-sharing models with state-dependent system capacity that only depends on the total number of
customers.

Motivated by these results, we have proposed an approximation for mean sojourn times ingeneral DPS
models. The numerically efficient method is also applicable for GDPS models with state-dependent service
capacity and state-dependent service weights. Numerical results have indicated that our approximation
is accurate for a wide range of the weight ratios and for moderate loads. The approximation error is
small for all loads if the DPS queue has ‘nearly balanced’ class capacities, which is in agreement with
the exact queue length decomposition results. In heavy traffic and for extreme asymmetric weights, the
approximation breaks down. However, insights provided in this paper suggest other approximations for
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these regimes, e.g., exploit PS models with ON–OFF periods. This remains a topic for further research.
In addition, further theoretical study and improvements of the approximation scheme is desired.
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[14] G. van Kessel, R. Ńuñez-Queija, S.C. Borst, Differentiated bandwidth sharing with disparate flow sizes, Proceedings of
IEEE INFOCOM, Miami, USA, 2005.

[15] J. Kim, B. Kim, Sojourn time distribution in the M/M/1 queue with discriminatory processor-sharing, Perform. Eval. 58
(2004) 341–365.

[16] L. Kleinrock, Time-shared systems: a theoretical treatment, J. Assoc. Comput. Mach. 14 (1967) 242–261.
[17] R. Litjens, F. Roijers, J.L. van den Berg, R.J. Boucherie, M. Fleuren, Analysis of flow transfer times in IEEE 802.11 wireless

LANs, Ann. Telecommun. 59 (11–12) (2004) 1407–1432.
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