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Abstract. Product integration methods for Cauchy principal value integrals based 
on piecewise Lagrangian interpolation are studied. I t  is shown that  for this class of 
quadrature methods the truncation error has an asymptotic expansion in integer 
powers of the step-size, and that  a method with an asymptotic expansion in even 
powers of the step-size does not exist. The relative merits of a quadrature method 
which employs values of both the integrand and its first derivative and for which the 
truncation error has an asymptotic expansion in even powers of the step-size are 
discussed. 

I. Introduction 

Integrals of the following type  are considered: 

1 

f ~(0, t), (t.t) h(t) 
I(/) =. g(t)/(t)dt, g( t ) - - t_z ,  

o 

where the integral is to be understood as a Cauchy principal value integral, and 
[ (t), h (t) E C (~+1) [0, 1 ], with p => t. The function h (t) is not  included in [ (t), because 
in applications one often encounters integrals of the type  (1.t), with g(t) a fixed 
function, for example the kernel of an integral equation. 

Hunte r  [3] has constructed a numerical quadrature  formula for integrals of 
the type  (t . t) ,  which has an asymptot ic  expansion for the t runcat ion error in 
even powers of the step-size. This makes a very  effective application of Richardson 
extrapolat ion (Romberg integration) possible. Hunter ' s  quadra ture  formula 
consists of the following generalised trapezoidal rule: 

t m--1 
t +_m_~=xg~/~+:r h if --2--~(go]o+g,n[m) = (*)/(Z) cot m ~  7;=~j/m, 

t 1 f i - - 1  m--1 

+ ~ (h'(i/m) l (i/m) + h (i/m) r (i/m)) if, = i/.~, 

where i is an integerr  [t, m - - t ] ,  [k=](k/m), gk=g(k/m). 
A disadvantage of Hunter ' s  method is the need to evaluate ['(k/m). This is 

not  always possible, for example when one solves an integral equation. Replacing 
the derivative by  a divided difference introduces an additional t runcat ion error 
with an asymptot ic  expansion in odd powers of t /m, so tha t  much of the effec- 
tiveness of Richardson extrapolat ion gets lost. Another  disadvantage of Hunter ' s  
me thod  is its sensit ivity to  rounding errors. 
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Obviously it would be desirable to have a quadrature method for integrals of 
the type (t.1) which does not contain derivatives and which has an asymptotic 
expansion in even powers of t/m. We will investigate whether such a quadrature 
formula can be found within the class of product integration methods, or, if not, 
whether there are perhaps methods in this class which are less sensitive to round- 
ing errors than Hunter's method. 

2. Derivation of Asymptotic Expansion for Product Integration 

De Hoog and Weiss E21 have derived asymptotic expansions for product 
integration with absolutely integrable singularities. Their analysis is adapted 
below to Canchy integrals. 

Let the Lagrangian interpolation polynomial L k (t) be defined by: 

(t) 
Lk (t) = w,(uk)( t_uk),  k = t  (t)n;  

(2.1) n 

w(t)=~(t-uk); 0<Ul<U2<. . .<u,<t ,  n<p. 

The function /(t) is approximated by the piecewise Lagrangian interpolation 
polynomial/,~ (t), defined as follows: 

n 

(2.2) 
t t=  t ,  t t , : t t + u , / m ,  f : 0 ( 4 ) m - - t ,  k : t  0)n .  

The following product integration formula for 0 . t )  is considered: 

1 

I,, (/) = ~ g (t) /n (t) dt. (2.3) 

The integral in (2.3) is a Cauchy principal value integral. For the existence of 
I m (/) it is necessary and sufficient that /~ (t) be H61der-continuous; in other words, 
we must have: 

n ~ 2, u 1--- O, u.----- i .  (2,4) 

Eq. (2.3) can be written in the following form: 
r  s 

Ira(~) = t~ffio i~=1 qti/(tti). (2.5) 
Writing: 

7 =  (k+so)/m, 0 =<so < 1, with k an integer, (2.6) 

one obtains the following expression for the weights qti: 
1 

f h(  t + s t l ds. (2.7) qti= d ~--~n---] Lj (s) e + s -- k -- So 
0 

If necessary, the foregoing integral is interpreted as a Cauchy principal value 
integral. An exception has to be made for the case s o = 0, t =  k - - t ,  k, because 
then the singularity lies at  the boundarzr of the integration interval, a situation 
for which the Cauchy principal value integral is not defined. Except for qk-l,, 
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and qk,1 the numerator contains a factor f + s - - k ,  so that (2.7) still holds. One 
finds that  qk-l,, and qk,1 must satisfy: 

1 

as, 
--1 

with L* (s) ~ L ,  (s + 1), -- 1 <--_ s < 0 ; L* (s) ~ L l(s),  0 ~ S ~ t .  Note that  because 
of (2.4) the function L* (s) is H51der-continuous, so that  the preceding integral 
exists as a Cauchy principal value integral. The fact that (2.8) does not define 
qk-l,,, and qk,1 separately is of no consequence, because both weights multiply 
the same function value /(tk_l,n)~/(tk,1)=/(tk). One may arbitrarily define 

qk-l,~----qk, v (2.9) 

This completes the definition of the weights in the quadrature formula (2.5). 

The truncation error E,~ (]) is defined by: 

E.,  (/) = I~ (/) - -  I ( / ) .  ( 2 a  o) 

De Hoog and Weiss E21 prove, that  
1 p - - n  

. . . .  fw,(s) ' ._IZ E = ( l ) = ~ , m  ,-o o ~ * - o g ( t ' + s h ) t ( " + ' ~ ( t t + s h ) d s + O ( m - * - l ) '  (2.11) 

where w, (s) = w (s) p, (s), with p, (s) a polynomial of degree r, and h = 1/m. 

In the derivation of (2.11) no use is made of the properties of g(t), so that  
(2A t) holds not only for absolutely integrable g (t), which is what [2] is concerned 
with, but also for g (t) of the type g (t)= h (t)/(t--~). Of course, if ~ = k/m Eq. (2A t) 
does not make sense, because then the singularity lies at the boundary of two 
integration intervals. I t  is easily seen, that for T =  k/m (2At) must be replaced by: 

1 
p- -n  P t flc--fl m--1 I 

1 (2A2) 
p - - n  

. . . .  fn ,  Is) g (t,+ sh)t ~'§ (**+ sh)ds+o  (m-~-l), + 
r ~ 0  - -1  

where 
=lw,(s), s>o, 

n , ( s )  [ w , ( s + l ) ,  s < o .  

The same result is obtained if (2.tl) is interpreted in the following way, for 
~ = k /rn : 

l - - e  
p--n I m--1 

E~ (/) =~-~m . . . .  lim fw, (s) ~ t ~ o  g (tt + s h)/(~+') (tt + s h) d s + 0 (m-P-l) .  (2.13) 

In what follows we will base ourselves on (2At), interpretated as a Cauchy 
principal value integral in the usual sense, or if ~=k /m ,  as defined by (2.t3). 

We proceed to derive an asymptotic expansion for the generalized trapezoidal 

s u m ~ g ( t t + s h ) / ( * + ' ) ( t t + s h ) .  The analysis proceeds along similar lines as 
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the investigation of Lyness and Ninham E6] concerning generalized trapezoidal 
sums of absolutely integrable functions. 

If r (t) is a periodic generalised function with period 1, then it can be represent- 
ed b y  a Fourier  series as follows (see for example Lighthill [53): 

oo 

~b (t) = __~_oock exp (2zri k t). (2.t 4) 

For  the concept of a generalised function and the meaning of the (possibly in the 
ordinary sense divergent) Fourier  series (2.14) the definitions of [5] are adopted. 
From (2.t4) it follows, tha t  

oo 

~(tt+sh)--Co= ~_,' ckexp(2zeik(t,+sh)), (2.t5) 
k ~ - - o o  

where the prime denotes omission of the term with k = 0. It  follows, tha t  

"1 i r a - - 1  \ r  

m-(~=o*(tt-+-sh)--Co)= =~_ooCkmeXp(2~ik(s--t)), (2.t6) 

where the subscript  km means k times m, and where use has been made of the 
fact, that  

-t-~lexp(2zrik-~+sl={oP(2zrik(s--t)/m)'m ~=o ' m , , otherwise.lk]/m=integer' (2A7) 

For  q5 (t) we choose successively the functions ~b, (t), r = O  ( t ) p - - n ,  defined by:  

r 0 < t ~ l ;  q~,(t+ 1) = qb,(t). (2.t8) 

The Fourier coefficient ck,~ can be asymptot ical ly  approximated for large m in the 
following way  (see Lighthill [5])- In (0, a 3 $ ,  (t) lacks derivatives at t----z and t = t.  
The function ~b, (t) --/71,, (t), with F~,, (t) = h (~)/l~+,l (~)/(t-- , ) ,  has an absolutely 
integrable (p+l - -n - - r ) th  derivative in a neighbourhood of t = , .  The same 
holds in a neighbourhood of t----t for ~b, ( t ) -  F~., (t), with 

i!)!. I s g n ( t - - t )  ~,  ( q~iI (O) --  qg~il (l )) -(-t ~ (2.t9) ( t )  = 

The Fourier  transforms of F1, , and F2, , are, respectively, 

G1, , (y) = --  h (~)/l~+,/(,) ~ sign (y) exp (--  2z~ i ~y), (2.20) 
# - - n - - T  

G~,,(y)=exp(--2~iy) i~=o (4~i)(O)--q~i~(l))(2:riy) -~'-1. (2.21) 

The following asymptot ic  approximation of Ckm is valid (Lighthill [5]): 

C~m =GI, , (kin) -+ G=,, (kin) @ o (I k m [ -P-I+~+') .  (2.22) 
One finds tha t  

(3O OO 

k=~_'ooexp (2~ik (s-- t)) GI,, (kin) = 2~ h (~)/(~+') (~)k=~xsin (2~r k (s--  t - -  vm)) (2.23) 

cot ( s -  ; 
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see Jones [4], p. t37. Furthermore, 
oo I 

p- -n-- r  oo 

=,__X ~ P-n-'-r 0 ) -  r 1 7 6  IJ +1)! m~+, Bi+l(s--l)' 

(see [1]), where B](s) is the j-th Bernoulli polynomial as defined in [1]. 

Using (2A6), (2.t8) and (2.22)-(2.24) one obtains: 
| ra--1 

- ~ o  g (t,+ sh) ]("+'~ (t,+ s h) =r,+~ h (~)/c~+,~ (~) cot (~ (~- Tin)) 
t,-n-r 1 (2.25) 

+,=~o (r -- r (j + 1)! rni+X Bi+l (s-- 1) + o (m-P-l+n+'), 

where y ,=c  o in the Fourier-expansion of ~b,. Substitution of (2.25) in (2At) and 
collecting powers of m one obtains: 

1 

E~ (t) = m - ~ f w  o (s) (Yo + ~ l (~1 (~) cot ~ (s -- so) ) d s 
0 

1 p - n  
+ m - ' - l ~ o f w , ( s  ) (~b{]'-'~-T'(!)--C~r ' . . . .  '(0)) BP-'~-~'+x(s--t) 

_ ( p - - n - - r + 1 ) l  ds 
(2.26) 

p- -~- - I  1 [  

+m-" ~, m- ' -~ l  ~w,+~(s) ()/,+l+ :7"~h(T)]{n+r+l)('r ) 
r = 0  ~ L 

�9 1 +~Z,_~(~ ) (r B~§ g~- t) ds+O(m_p_~). 

This is the desired asymptotic expansion for the truncation error. Because of the 
symmetry properties of the Bernoulli polynomials B, it is possible to choose 
w (s) such that for r even a number of the integrals above involving B k are zero 
so that  if the cotangent were not present only even powers of t /m remain (cf. the 
Euler-MacLaurin expansion for the trapezoidal rule). However, it is obviously 
not possible to make the integral involving the cotangent vanish for any value 
of r for arbitrary s o. 

3. Discussion and Comparison with Hunter's Method 

I t  has just been shown that  there is no product integration method (using 
piecewise Lagrangian interpolation) for Cauchy principal value integrals with an 
asymptotic expansion in even powers of t/re. Therefore one expects that  if ]'(~) 
can be evaluated Hunter 's method coupled with Romberg integration will in 
general require much less computation time than a product integration method. 
If ]'(~) is not known but is approximated by a difference, the asymptotic expan- 
sion for Hunter's method proceeds in powers of t/m, as for product integration. 
Both methods profit equally from the application of Richardson extrapolation, 
and one expects that  in general the computation times for the two methods will 
not differ greatly. 

3t Numer. Math., Bd. 24 
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With respect to rounding errors there is a significant difference between 
Hunter 's  method and product integration. For stability with respect to rounding 
errors it is necessary and sufficient that the sum of the absolute values of the 
weights is bounded. However, in Hunter 's  method (t.2) the weights gk are 
obviously not bounded, both as z--~j/m for fixed m and for m-+ oo with fixed ~, 
which makes this method sensitive to rounding errors in/k. With product integra- 
tion the weights are bounded, as is clear from (2.7), (2.8) and (2.9). Although for 
product integration the weights are bounded, the sum of their absolute values is 
not, because this quant i ty  can be regarded as the product integration approxima- 

1 

tion to the divergent integral : ]h (t)/(t--~)ldt. We will determine the sum of the 

absolute values of the weights for the special case n =  2, u l =  0, u s =  t,  in order 
to find out how rapidly this sum diverges as m-+oo. The ease n-----2, ul-----0, u~-----t 
gives the simplest possible formula. This is probably the most important method 
for extrapolation purposes, because it seems that  extrapolation methods applied 
to quadrature are most efficient when applied to simple, low-order formulae. 
With n = 2, u 1 = 0, u S = l the following integration formula is obtained: 

l (l) = ZoOCtb, (3.t) 

where It=/(C/m), ~o = -  t +fll--fl0--1n (m~), 

x ~ = l  + f lm_~- - /~+ ln  [m(l --~)[, ctt=flt_l--2flt+flt+l, •=t  (l) m - - t ,  

fit= (r In Ir For  the sum of the absolute values of the weights one 
obtains: 

,s fin ((I --,)/,), O<'~<a/m, 
(3.2) 

t-o [In ( z / ( l -  r)), i - - a / m < , < l ,  

where a ~ 0.22 is defined by  the equation (t -- a) In I (t -- a) [a I = t. For the derivation 
of (3.2), see the appendix. 

For given m, the sum is bounded for v in any closed subinterval of (0, l), 
unlike the method of Hunter.  For m-+ oo the divergence is logarithmic. With 
Hunter 's method the divergence is at least linear in m, because the sum contains 
weights that  grow linearly: the weight gk contains a factor (k/m-- z)-I; the largest 
of these is at least t ]m. 

As an example we compute the following integral, which has also been treated 
by Hunter:  

l 

I f e-zdx - ~ d - ~ - : y  =e-Y{Ei(y)+EI(t--Y)}'  0 < y < t ,  (3.3) 
0 

where Ei (y) and E 1 (y) are exponential integrals as defined by Abramowitz and 
Stegun [t]. The following table gives the numerical results for y=0.375 and 
y = 0 . 3 7 5 + 0 . 5  ;* tO-~,using (t.2) and (3.t). The computation of table t was per- 
formed with a mantissa of more than t6  decimal figures. 



A s y m p t o t i c  E x p a n s i o n  f o r  P r o d u c t  I n t e g r a t i o n  

T a b l e  I .  

4 4 1  

y = 0 . 3 7 5  y = 0 . 3 7 5  + 0 . 5 .  t 0  - 6  

.~ r ~  i m r ~  z .  

l - -  0 . 1 4 4 6 6 6 9 2  - -  0 . 2 4 2 3 8 3 7 0  - -  0 . 1 4 4 6 6 9 3 2  - -  0 . 2 4 2 3 8  5 4 9  

2 - -  0 . 2 5 2 5 7  5 2 0  - -  0 . 3 3 4 3 3  3 1 4  - -  0 . 2 5 2 5 7  6 9 7  - -  0 . 3 3 4 3 3  4 7 2  

4 - -  0 . 2 8 9 3 8 6 6 5  - -  0 . 3 0 4 8 1  6 4 0  - -  0 . 2 8 9 3 8  8 2 1  - -  0 . 3 0 4 8 1  7 9 4  

8 - -  0 . 3 0 0 0 0 6 7 2  - -  0 . 3 0 4 2 1  9 0 5  - -  0 . 2 6 7 4 6 6 8 1  - -  0 . 3 0 4 2 2 0 0 3  

1 6  - -  0 . 3 0 2 7 9  7 9 8  - -  0 . 3 0 3 8 5  ! 8 1  - -  0 . 2 8 6 5 2 2 7 9  - -  0 . 3 0 3 8 5  3 0 5  

3 1  - -  0 . 3 0 3 4 9 0 3 6  - -  0 . 3 0 3 8 2 7 9 4  - -  0 . 3 0 3 4 9 1 8 3  - -  0 . 3 0 3 8 2 9 4 2  

3 2  - -  0 . 3 0 3 5 0  5 8 7  - -  0 . 3 0 3 7 6 8 7 7  - -  0 . 2 9 5 3 6 9 0 1  - -  0 . 3 0 3 7 7  0 1 4  

6 3  - -  0 . 3 0 3 6 8  t 6 1  - -  0 . 3 O 3 7 6  3 5 0  - -  0 . 3 0 3 6 8  3 O 8  - -  O . 3 0 3 7 6 4 9 7  

6 4  - -  0 . 3 0 3 6 8 3 5 0  - -  0 . 3 0 3 7 4 9 1 2  - -  0 . 2 9 9 6 1  5 8 t  - -  0 . 3 0 3 7 5 0 5 4  

t27 - -  0 . 3 0 3 7 2  773 - -  0 . 3 0 3 7 4  7 8 9  - -  0 . 3 0 3 7 2 9 2 0  - -  0 . 3 0 3 7 4 9 3 6  

t 2 8  - -  0 . 3 0 3 7 2  7 9 6  - -  0 . 3 0 3 7 4 4 3 5  - -  0 . 3 0 1 6 9  5 5 9  - -  0 . 3 0 3 7 4  5 8 0  

Table 1 clearly exhibits the considerable influence of rounding errors in T" 
for y = 0 . 3 7 5 + 0 . 5  * 10 4. Note the large differences between the results for 
m = 31  and 32, m = 6 3  and 64, m = t 2 7  and 128. 

Hunter  [3] has applied Romberg's method (repeated Richardson extra- 
polation) to T"  for y=0.375,  using the sequence r e = t ,  2, 4, 8, t6, 31, 59, and has 
obtained the value --0.30374278. 

Romberg's method was applied to the values of T" and I m listed in Table 1 
using the sequence m-----2 k-l, k =  l (t)8. The following results were obtained: 

T a b l e  2 

y = 0 . 3 7 5  y = 0 . 3 7 5  + 0 . 5 *  1 o  - e  

k T;:k X,,k r;k • 

I ~ 0 . 1 4 4 6 6 6 9 2  - -  0 . 2 4 2 3 8  3 7 0  - -  o . 1 4 4 6 6 9 3 3  - -  0 . 2 4 2 3 8  5 4 9  

2 - -  0 . 2 8 8 5 4 4 6 3  - -  0 . 3 6 4 9 8  2 9 5  - -  0 . 2 8 8 5 4  6 t 9  - -  0 . 3 6 4 9 8  4 4 6  

3 - -  0 . 3 0 2 5 3  t 3 1  - -  0 . 2 8 4 9 7 6 7 0  - -  0 . 3 0 2 5 3  2 7 9  - -  0 . 2 8 4 9 7  8 2 3  

4 - -  0 . 3 0 3 6 9 0 8 3  - -  0 . 3 0 6 6 6 7 3 8  - -  0 . 2 5 6 6 7 6 5 8  - -  0 . 3 0 6 6 6  8 0 t  

5 - -  0 . 3 0 3 7 4 1 7 9  - -  0 . 3 0 3 4 8 0 0 4  - -  0 . 2 9 5 8 0 6 4 7  - -  0 . 3 0 3 4 8 1 5 2  

6 - -  0 . 3 0 3 7 4 2 7 7  - -  0 . 3 0 3 7 5 6 1 2  - -  0 . 2 9 8 7 5  3 1 3  - -  0 . 3 0 3 7 5 7 5 3  

7 - -  0 . 3 0 3 7 4  2 7 8  - -  0 . 3 0 3 7 4 2 4 1  - -  0 . 3 0 1 2 6  5 4 5  - -  0 . 3 0 3 7 4  3 8 6  

8 - -  0 . 3 0 3 7 4  2 7 8  - -  0 . 3 0 3 7 4 2 7 9  - -  0 . 3 0 2 5 0  5 9 5  - -  0 . 3 0 3 7 4 4 2 5  

In this table T,',k and I , ,  k stand for the k-th entry on the main diagonal in 
Romberg's scheme. 

As is to be expected, for y=0 .375  the product-integration method converges 
somewhat more slowly than Hunter 's  method. For y = 0.375 + 0.5 * t 0 -6 rounding 
errors prevent convergence of Hunter 's  method. 

3 1 "  
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Appendix: Derivation of Equation (3.2) 

For  t =  t ( t ) m - - t  the formula for ~t can be rewrit ten as 

=t=l(vt), 
with 7t = ~ -  k -- so, and 

t ( x )=x  ln l ( x ' -  ~ )lxSl + ln l(x + t ) l ( x -  l) l. 
One finds t h a t  

t'(*) =>0, 1.1--2-" ,  /,(x) <0, l*l~>2-1/g. 
Furthermore,  

(At) 

(A2) 

(A3) 

I ( - ~) = I (o) = o. (A4) 

From (A3 and (A4) it follows, t h a t  /(x)~_0, x~_O. Because ] ( x )= - - / ( - - x )  it 
can be concluded tha t  

~t__<0, t__<k; ~ t > 0 ,  t > k ,  ~ = t ( 1 ) m - - 1 .  (AS) 
Hence, ~-1 k m-x 

t~ l  1~11 = - -  s ~!-1- Z 0r (A6) = 1=1 t=k+l which results in: ,~-1 

t~=xl=t ] =flx--flo + 2fib-- 2flk+l--~m-12i-~m �9 (A7) 

One m a y  easily verify, t ha t  

Oto~O, O < v ~ a / m ;  ~ 0 < 0 ,  a / m < ~ < t ;  
(A8) 

o~m>=O, O<~<=t--a/m; ~m<0 ,  l - - a i m < T < 1 ;  

where ~ 0 . 2 2  is defined by  the equation ( t - - ~ ) l n [ ( t - - ~ ) / e [ = t .  Adding I~0[ 
and ]==] to the sum in (AT) results in equation (3.2). 
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