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ABSTRACT 

Top-down tree transducers with regular look-ahead are introduced. It is shown how these 
can be decomposed and composed~ and how this leads to closure properties of surface sets 
and tree transformation languages. Particular attention is paid to deterministic tree 
transducers. 

Introduction. The top-down finite state tree transformations discussed in, for 
example, [3, 7, 13, 14] fail to have certain nice closure properties with respect to 
composition. It was argued in [7] that this is due to the fact that a top-down tree 
transducer cannot inspect a subtree before deleting it (a property possessed by 
bottom-up tree transducers). In this paper we add the facility of regular look- 
ahead to the usual type of top-down tree transducer. The transducer is now 
allowed to inspect the subtrees of a node before processing it (thus having an 
arbitrarily large look-ahead). However, the look-ahead is restricted in that the 
information which the transducer extracts from the .subtrees should be finite and 
even regular (or "recognizable" i.e. computable by a finite tree automaton). We 
note that the idea of regular look-ahead also occurs in the theory of parsing of 
context-free languages [4]. It turns out that the class of tree transformations 
realized by this type of transducer has all the expected closure properties with 
respect to composition, for instance, both the classes of linear and deterministic 
top-down tree transformations are now closed under composition (we note here 
that composition results can also be proved for restricted types of top-down tree 
transducers, such as total or nondeleting ones, see [13, 14]). These composition 
results are proved, as in [7], by first decomposing the transformations into 
simpler parts and then showing composition properties of these simpler 
transformations. In fact, any top-down tree transducer with regular look-ahead 
can be realized in two phases. The first phase (which can be accomplished 
bottom-up and deterministically) computes all the look-ahead information and 
stores it in the labels at the nodes of the input tree. The second phase is an 
ordinary top-down tree transducer which uses this information to imitate the one 
with regular look-ahead. This decomposition result is also useful in obtaining 
results about top-down finite state tree transformations without regular look- 
ahead, in particular concerning their surface sets. 

*The research reported here was carried out during a one-year visit of the author to the Dept. of 
Computer Science of Aarhus University, Aarhus, Denmark, 
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This paper is a sequel to [7] and the reader is assumed to be familiar with the 
methods and results of [7]. However, we do not assume any familiarity with 
section 5 of [7]. We note that the class T'-FST, defined in that section, is in fact 
equal to the clas~ of top-down tree transformations with regular look-ahead (cf. 
the remarks following 1-7, Theorem 5.13]). 

In section 1 we list some changes in terminology with respect to [7], some 
additional terminology, and some additional lemmas. 

In section 2we define the top-down tree transducer with regular look-ahead 
and show the above mentioned decomposition and composition results. 

In section 3 we compare the deterministic bottom-up and top-down tree 
transformations. The deterministic bottom-up tree transformations are 
(properly) contained in the deterministic top-down tree transformations with 
regular look-ahead. 

In section 4 we apply the results of the previous sections to top-down surface 
sets and yields of surface sets. It follows for instance from the result in section 3 
that the deterministic top-down surface sets are closed under deterministic 
bottom-up tree transformations. We finally mention possible applications to 
Lindenmayer languages. 

1. Preliminaries 

The reader is referred to I-7] for all unexplained terminology. That paper will 
from now on be referred to as [BT] rather than [7]. 

We recall that we often make no explicit distinction between a transducer (Y,, 
A, Q, Qd, R) and the transformation from T~ to T a that it computes. We also recall 
that by the relational composition R 1 o R z we mean "first R1, then R2". We finally 
restate the important properties (B1), (B2) and (T) of [BT]. 

(B 1) Copying of an output tree after nondeterministic processing of the input 
tree. 

(B2) Deciding whether to delete a tree or not after processing it. 
(T) Copying of an input tree and processing the copies differently. 
In the rest of this section we list some changes in and additions to the 

terminology in 1-BT]. Some additional facts, to be used in later sections, are also 
mentioned. 

First we change our use of "deterministic top-down" and of "DT"  so as to 
agree with 1-13]. A t op-down.[st (E,. A, Q, Qa, R) will be called determin ist ic if ( 1 ) 
Qd is a singleton and (2) different rules in R have different lefthand sides. It is easy 
to see that every deterministic top-down./st is equivalent to one which processes 
the whole input tree (except eventually for its leaves) and then decides whether to 
accept it or not. The version in [BT] will be called a total deterministic t-fst (since 
it accepts every input tree). Determinism will be denoted as usual by a D, so that 
D T-FST denotes the class of deterministic top-downfst (and not the class of total 
deterministic top-down fst, as was the case in [BT]). The class of linear 
deterministic top-downfst will be denoted by LDT-FST. The definition of HOM 
and LHOM is not changed, i.e. homomorphisms are total. 

Secondly, we shall write REL rather than RELAB. Thus QREL denotes the 
class of (bottom-up or top-down) finite state relabelings (cf. Definition 3.14 of 
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[BT]). The class of deterministic bottom-up finite state relabelings will be 
denoted by DBQREL (this class was denoted D Q R E L A B  in [BT]), and the class of 
deterministic top-down finite state relabelings by D T Q R E L .  

We shall use the following additional decomposition results, the detailed 
proof of which is left to the reader. 

(1) 

LEMMA 1.1. 

T-FST  ~_ H O M  o L T . F S T  

DT-FST c_ H O M  o LDT-FST, 

(2) LDT-FST ~_ D T Q R E L  o LHOM.  

Proo f  (1) The first inclusion is shown in [BT, Lemma 3.6] and the second 
inclusion easily follows from the proof of that lemma. 

(2) The proof of this inclusion is similar to that of [BT, Theorems 3.5 and 
3.15]. Roughly, for T in LDT-FST,  one can construct T 1 in D T Q R E L  and T z in 
L H O M  such that the i-th rule q(tr(xl . . .  Xk) ) -+ t of T is split into two rules 
q(a(xi . . .  Xk))---> i(ql(xO . . . qk(Xk)) of T 1 and *(i(x 1 . . .  Xk)) ~ t [* (Xl ) , . . . ,  
*(Xk)] of T2, where • is the only state of T2, and where, for each j(1 < j  < k), either 
q~(x~) occurs in t or q~ = qo (and qo is a new statewhich is, for instance, the identity 
on all trees). [] 

We shall also use the following result (cf. [12]). 

LEMMA 1.2. Let  F be the composition of  a f inite number of  bottom-up fst,  i.e. 
F = B1 oB2 . . . . .  B ,  j b r  some n > 1 and BiEB-FST. Then 
(1) RECOG is closed under F -  1 (i.e. i[" L E RECOG, then F -  1 (L) E RECOG), and 
(2) dom(F)ERECOG. 

Proo f  (1). It obviously suffices to assume that F~B-FST.  Let L be a 
recognizable tree language and let R be a finite tree automaton with domainL. 
Then F - I ( L )  = dom(F oR). By [BT, Lemma 4.2(1)] F o R ~ B . F S T  and hence its 
domain is recognizable by [BT, Corollary 3.12]. Statement (2) is immediate from 
(1) by the fact that dora(F) = F-l(Ta), where A is the output alphabet ofF. [] 

Note that, since F T A ,  R E L  and H O M  are included in B-FST, the 
decomposition result for top-downfst [BT, Theorem 3.9] implies that Lemma 1.2 
also holds with "bottom-up" replaced by "top-down" ([12]). 

We finally introduce some more terminology concerning surface sets and tree 
transformation languages. 

Let £,0 be a class of tree languages and ~ a class of tree transformations. Then 
~(£e)  denotes the class of tree languages {F(L) IF ~ ~ and L ~ ~} ,  which we shall 
call (~ .  Lt') surface sets. If .w = RECOG then the (~ ,  £P) surface sets are the .~ 
surface sets. 

Let e be a fixed symbol of rank 0 (which may or may not be an element of a 
ranked alphabet). The yield of a tree t, denoted by yield(t), is the string defined 
recursively as follows: 
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{~ if o ~ e where ;~ is the (1) for a of rank 0, yield(a) = if a = e empty  string; 

(2) for a of rank k > 1 and trees t ~ , . . . ,  t~, 
y i e l d ( o ( t l . . ,  tk) ) = y i e l d ( t o ) . . ,  yield(tk). 

Fur the rmore  we define, for a tree language L, yield(L) = {yield(t)Jt ~ L} and, for a 
family ~e of tree languages, yield(La) = {yield(L)lL E ~ } .  Thus yield(L) is a string 
language and yield(L,e) is a family of  string languages. 

For  a class 5e of tree languages and a class ~ of tree t ransformat ions ,  the class 
of languages y i e l d ( ~ ( ~ ) )  will be called the class of ( ~ ,  £~') tree transformation 
languaoes. Thus  a tree t ransformat ion  language is the yield of a surface set. 

In the next l emma we show that  in m a n y  cases we can do without  the special 
symbol  e to denote  2. This l emma is in fact a part icular  case of Theorem 3.2.10 in 
[3]. 

LEMMA 1.3. Let LP be a.family of tree languages and ~ a.family of tree 
trans[brmations such that ~ ( LP) is closed under linear deterministic bottom-upfst. 
Let  L be an ( ~ ,  ~ )  tree transformation languaoe i.e. L E yield(W(Ze))). Then 
L - { 2 }  = yield(F(M)) for  some M aZP and some F e J  ~ ,  such that the output 
alphabet of  ~ does not contain e. 

Proof  Let L = yield(G(M 1)) for some M 1 E ~ and G e ~ ,  and let G(M 1) be over 
the ranked a lphabet  E with e ~ E (otherwise there is nothing to prove). We now 
construct  a linear deterministic bot tom-upfs t  B which, for any tree t in T~, deletes 
all subtrees t 1 o f t  with yield(t1) = 2 (and does not accept t if yield(t) = 2). In fact, 
B = (~, ,A,Q,  Qd, R ) w h e r e  Q = Stqeqsj, ~, Qd =Stqs;, Ais the ranked alp habet  such 
that, for each k, A k = Y - {e l, and R contains  the following rules. First of all it 
contains rules o ~ q¢(o) for each o e-Eo - {el and one rule e --* q,,(tro) where Oo is 
an arbi t rary  element of Eo - Ste J~ (note that  for Eo -- Itej~ the p roof  is trivial). 
Fur thermore ,  for  each k _> 1, 0"~"~ k and q x , . . . ,  qkeQ, R contains  the rule 
o(q l ( x l )  . , . qk(Xk)) ~ q(o(Xi~ . . . Xi,)) where  qi~ = qi~ . . . . .  qi, = qj 
(1 < i~ < i 2 < . . .  < i, < k )anda l lo ther  q jareequal toqe ,  and.q -- q~ifand only 
if n -- 0 (i.e. q~ -- q2 . . . . .  qk = q~ ; in this case the r ighthand side of the rule is 
q~(a)). It  is easy to prove that,  if tx ~ q~( t2)  , then yield(t~) -- 2, and if tx ~, qf(t2) , 
then yield(rE) = yield(t~) ~- 2. Thus  L -  {,t} = yield(B(G(M~))) and, since .~'(LP) 
is closed under  B, L - ~ 2 }  = yield(F(M)) for some F(M)e.T(~a) ,  where F has 
output  a lphabet  A. [ ]  

No te  that,  when a tree transducer,  together  with an input tree language, is 
viewed as a generat ing device of a tree t ransformat ion  language, then L e m m a  1.3 
tells us that  we can get rid of ).-rules. 

2. Top-down tree transducers with regular look-ahead; 
decomposition and composition 

In this section we add the facility of regular look-ahead to the top-down/s t .  
Consequent ly  the top-down./st  will be able to inspect a subtree in order  to decide 
whether  to delete it or not  (cf. p roper ty  (B2)). Thus  the difference between bo t tom-  
up fst  and top-down.[st  with regular  look-ahead can then be characterized by 
propert ies  (B1)and  (T). 
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In order to define the top-down./st with regular look-ahead we have to slightly 
generalize the notion of a semi-thue system with variables [BT, section 1]. We 
shall allow the range of the variables to be different for different rules. Formally 
we redefine a semi-thue system with variables to be a system G = (A,X,  R) ,  where 
A is an alphabet, X = {xl, x 2 . . . .  } and R a finite set of rules of the form (4) ~ ~,, 
D)  such that, for some k > 0, ¢ and ~O are in (A wXk)* and D is a mapping fromXk 
into the powerset of A*. For 1 < i < k, D(x~) is called the range ofxj; ¢ is called the 
lefthand side and ff the righthand side of the rule. Whenever D is understood (in 
particular when k = 0, D is always empty) or will be specified later, we shall write 
¢ ~ ~ rather than (~b ~ ~k, O). The relations ~, and ~ are defined as in [B T], the 
only difference being that the mapping D now depends upon the rule. 

We now define a top-down/st with regular look-ahead to be a top-down]st in 
which the ranges of the variables in each rule are certain recognizable tree 
languages. 

Definition 2.1, A top-down finite state tree transformation with regular look- 
ahead (abbreviated by t'-fst) is a 5-tuple T = (E, A, Q, Qd, R) ,  where Z, A, Q and" 
Qd are as for a top-downfst and R is a finite set of rules of the form ( t  1 ~ t2, D), 
where t 1 ~ t 2 is an ordinary top-downfst rule and D is a mapping fromX k into the 
powerset of T~ (where Xk is the set of variables occurring in tl), such that, for 
1 < i < k, D(xl)e RECOG. T is viewed as the semi-thue system with variables 
(E w A w Q w {(,)},X, R),  and the tree transformation defined by T is as usual 
{(t, s ) e T r x  T alq(t)~s for some q in aa}. []  

The class of all t"-fst will be denoted by TR-FST 
We note that it will always be assumed in a t*-fst that the ranges of the 

variables are specified in some effective way, for instance as deterministic bottom- 
up finite tree automata. Throughout  the paper all constructions will be effective in 
this sense. 

Example 2.2. There is a tr-fst that is not a t-fst. In fact, consider th e bottom-up 
fst B = (Z, A, Q, Qd, R)  of [BT, Example 2.6] which is not a t-fst. Let U be the 
recognizable tree language Tn, where.qo r = ,b~,.Q I = {a} and.Q2 = {a}. Consider 
now the tr-fst T = (Z, A, Q', Q~, R ' )  where Q' = Qd = {*} and R' consists of the 
rules 

(,(a(xy)) ~ a(,(x)), O1) with Ol(x ) = Ol(y ) = U, 
(.(a(x)) ~ a(.(x)), O2) with D2(x ) = Tz, and 
*(b) ---, b. 

Then, obviously, T = B. For  instance, *(~(ba(b))) ~ a(*(b)) ~ or(b), since both b 
and a(b) belong to U. But no rule is applicable to ~(a(ba(a))). Note that Dl(x } 
could as well be T~ since T can check later that the left subtree is of the required 
form. The essential use of the regular look-ahead is in the restriction of the right 
subtree to U. 

An even more simple example was exhibited in [ 16 2. Let a be of rank 0 and b of 
rank 2. Then the tree transformation ((b(aa), a)) is not a t-fst, but it is a tr-fst and 
also a b-fst. [] 

We immediately obtain the following corollary. 
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COROLLARY 2.3. T-FST c TR-FST. 
Proof. Inclusion is trivial: each t-[st is changed into a t'-fst by simply specifying 

all variables to range over the recognizable tree language T~:, where Z is the input 
alphabet. Proper inclusion was shown in Example 2.2. [] 

We now obtain the following two facts. 

COROLLARY 2.4. 
(1) The classes of tree transformations B-FST and TR-FST are incomparable. 
(2) TR-FST is not closed under composition. 

Proof. For (1), it should be clear that the b-fst of [B T, Example 2.1] is not a t'- 
.fst, while Corollary 2.3 and [BT, Example 2.2] imply that there is a t'-fst that is not 
a b-fst. For (2), note that [BT, Example 2,I] is a composition of two t'-fst. [] 

We now define linearity and determinism. 

Definition 2.5. Let T = (Z, A, Q, Qa, R)  be a t'-.fst. T is linear if all righthand 
sides of rules in R are linear. T is deterministic if the following holds: 
(1) Q~ is a singleton; 
(2) if (s ~ t 1, D~)and (s ~ t2, D2)are different rules in R (with the same lefthand 

side), then Dl(xi)nD2(xi) = ~ for some iE{1, 2 , . . . ,  k}, where k is the 
number of variables in s (for k = 0 this means that different rules should have 
different lefthand sides). [] 

Thus, in a deterministic tr-fst, different rules may have the same lefthand side, 
but, in that case, the ranges of the variables are such that the two rules are never 
applicable in the same situation. Note that one can effectively determine whether 
a given t'-/st is deterministic (RECOG is closed under intersection and has a 
solvable emptiness problem). 

Linearity and determinism will be denoted as usual by L and D respectively. 
Note that, for a modifier Z~{L,  D, LD}, Z T - F S T c Z T - F S T  (the t'-fst of 
Example 2.2 is linear and deterministic). 

Since for linear brfst and linear t'-fst all properties (B1), (B2) and (T) are now 
"eliminated", one would expect that LB-FS T = L TR-FS T. Before proving this we 
show how to decompose the t'.fst: the regular look-ahead can be computed in 
advance by a deterministic bottom-up finite state relabeling. 

THEOREM 2.6. TR-FST ~ DBQRELo T.FST, and, for ZE{L,  D, LD}, 
ZTR-FST c DBQREL o ZT-FST. 

Proo/i Let T = (E, A, Q, Q~, R)  be a t'-.fst. Consider all "recognizable 
properties" which T checks with its regular look-ahead. A finite state relabeling 
can be used to check, for a given input tree t, whether the subtrees of t have these 
properties or not, and to put this information at their father nodes. After this, an 
ordinary t-[st can be used to simulate T. Formally we proceed as follows. 

Let L1 . . . . .  L, be all the recognizable tree languages occurring as ranges of 
variables in the rules of T. Let U denote the set {0, 1}", i.e. the set of all sequences of 
O's and l's of length n. For u ~ U, thejth element (1 < j < n) of u will be denoted by 
u(j). Intuitively, an element u of U will be used to indicate membership of a tree in 
L1 . . . . .  L, (u(j) "= 1 iffthe tree belongs to L j). Let f~ be the ranked alphabet such 
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that -Q0 = Eo and, for k > 1, -Qk = Zk × U k. Thus an element of.Qk is of the form 
( a, ( u 1, . . . ,  Uk ) ) with a E Z k and u 1 . . . . .  Uk a U. Intuitively, i fa node is labeled 
by (or, ( u l , . . . ,  Uk)) ,  it means that u i contains all the information about the ith 
subtree of the node. The mapping B: Tz ~ T a is now defined recursively as 
follows: 
(1) for aaZo,  B(o)  = o; 

(2) for k > 1, a a Zk and t l , . . .  , tk a T z , B ( a ( t l  . . • tk)) = r(B(t~) . . . B( tk ) ) ,where  

= (a,  (u I . . . . .  uk)) and, for 1 _< i < k and 1 _<j_< n, u;(j) = 1 iff t i a L r  
It is left to the reader to show that B can be realized by a (total) deterministic 

bottom-up finite state relabeling (given the deterministic bottom-up finite tree 
automata recognizing L~ . . . . .  L,). Next we define the t o p - d o w n f s t  T' = (fL A, 
Q, Qd, R ' )  such that 
(1) if q(a) -o t is in R, then it is in R'; 
(2) if ( q ( a ( x a . . .  X k ) ) ~ t ,  D )  is in R, then each rule of the form q((cr, a)  

(x~ . . .  Xk)) --* t is in R', where ff = (u~ . . . . .  Uk) aU k and, for 1 < i < k and 
1 < j < n, if D(xi)  = Lj  then ui(j) = 1. 

This completes the construction. It should be clear that T = B ~ T', and that, 
if T is linear, then so is T'. It should also be obvious that, in the above 
construction, U may be replaced by the smaller set { u a U  I for all j~ and J2, if 
Lj, n Lj~ = ~,  then u(j~) and /'/(J2) a r e  not both 1~ (other elements of U do not 
occur in trees B(t)). After this replacement (which influences T') one can easily see 
that if T is deterministic, then so is T'. [] 

An immediate consequence of this theorem and previous decomposition 
results (in [BT])  is that each element of T n - F S T  is decomposable into elements of 
R E L ,  F T A  and H O M .  

COROLLARY 2.7. T h e  domain o f  a tr-fst is recognizable .  

P r o o f  Lemma 1.2(2). [] 
We now show that the classes of linear b-[st and linear tr-fst coincide (cf. [BT, 

Theorem 2.8]). 

T H E O R E M  2.8. L T R - F S T =  LB-EST.  

P r o o f  First 
L T R - F S T  ~_ D B Q R E L  o L T - F S T  by Theorem 2.6 

~_ D B Q R E L  o L B - F S T  by [BT, Theorem 2.8] 
~_ L B - F S T  by [BT, Theorem 4.5(2)] 

(note that finite state relabelings are linear). 
Secondly, we show that L B - F S T  ~_ LTR-FST .  The construction is the same as 

that in the proof of [BT, Theorem 2.9], but now we can use look-ahead to handle 
deletion. Let B = (Z, A, Q, Qa, R )  be an arbitrary linear b-fst. Let, for each q in Q, 
B(q) denote the b-fst  (Z, A, Q, {q}, R). Then we construct the linear tr-[st T = (Z, 
A, Q, Qd, R r ) ,  where R r is defined by the following two requirements. 
(1) If a --, q(t) is in R, then q(a) ---, t is in Rr. 
(2) If a ( q l ( x l )  . . . qk(Xk) ) ~ q(t) is in R, then 
the rule ( q ( a ( x l . . .  X k ) ) - - * t [ q l ( x l )  . . . . .  qk(Xk)], D ) ,  is in R r, where, for 
1 < i <<, k, D(xl )  = dom(B(q i )  ). Note that dom(B(q~)) is recognizable by [BT, 
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Corollary 3.12]. Note also that it would suffice to have D(xg) = dom(B(q~)) for 
those x i that do not occur in ~, and D(x~) = T x for the other x i. 

A formal proof that T = B is left to the reader. Intuitively T simulates B in the 
top-down direction by translating each node in the same piece of tree as B. 
Whenever B deletes a subtree t after arriving at its top in state q, T checks whether 
t e dom(B(q)) before deleting-t (t e dom(B(q)) means that there exists s e T~ such 
that t ~ q(s)). [] 

In the rest of this section we discuss composition of t'-J'st. We shall show (cf. 
property (/31 )) that, if either T t is deterministic or T 2 is linear, then T 1 o T 2 is in T R. 
FST. Moreover, DTR-FSTand LTR-FSTare closed under composition. To prove 
these results we first consider some simple cases in the following two lemmas 
(concerning homomorphisms and finite state relabelings respectively). 

LEMMA 2.9. 

(1) TR-FST o L t tOM ~_ Tg-FST, 

(2) DTR-FSTo HOM ~_ DTR-FST. 

Proof Let T = (Z, A, Q, Qd, R )  he a tr-Jst and letH be a homomorphism from 
TA into T a. For both cases, (1) and (2), the construction of a Fr[st • T' defining T o H 
is similar to that in [B T, Lemma 4.1] ; look-ahead is used to handle deletion by H. 
Let H be extended to TA[Q(X)] by definining, informally, H(q(x)) = q(x) for all 
q(x)eQ(X). Let, for p~Q, T(p) denote the FrJ'st (Y., A, Q, {p}, R). Note that, by 
Corollary 2.7, dom(T(p)) ~ RECOG. We now construct the t~-[st T' = (E, .Q, Q, Qd, 
R')  such that 
(1) if q(a) ~ t is in R, then q(a) ~ H ( t )  is in R'; 
(2) if (q(a(xl  • • • Xk)) --' t, D)  is in R, 
then (q(a(x 1 . . . Xk) ) ~ H(t), D')  is in R', where, for 1 < i <_ k, D'(xi) is the 
intersection of D(x~) and all tree languages dom(T(p)) such that p(x~) occurs in t 
but not in H(t). 

It is left to the reader to prove that T : H  ~_ T' and that, i fH is linear or T is 
deterministic, then T' _ T oH also. Note that, if T is deterministic, then so is T' 
(the D'(xi) are included in the D(x~)). This proves the lemma. [] 

LEMMA 2.10. 

(1) TR-FSTo QREL~_ TR-FST, 

(2) DTR-FSToDTQREL ~_ DTg-FST, 

(3) DTR-FSToDBQREL ~_ DTR-FST. 

Proof We first prove (1) and (2). The proof is similar to that of [BT, Lemma 
4.2]. Let T = (X, A, Q, Qa, RT)  be a t'-fst and L = (A, ,Q, P, Pal, RL) a top-down 
finite state relabeling. We extend the input alphabet of L to A ~ X  by addingX to 
Ao. We now define a tr-fst K such that K =  T L. Let K = ( E ,  fL Q × P ,  
Qd × Pd, RK), where R~ is obtained by the following two requirements. 
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(i) If the rule q(a) -~ t 1 is in R T and p(tl) ~ t2, then the rule ( q , p )  (a) --, t 2 is in 
RK. 

(ii) Let (q(~(xl  . . .  Xk) ) -~ t, D )  be in R r. Obviously t can be written as 
t = s l [ q ~ ( x i l ) , . . . ,  q,.(x;,~)], where sl • T~[X,.] is linear and nondeleting with 
respect to X,,. If p(s ~) ~ s z [p~ (x 1 ) . . . .  , p,,(x,,)], then the rule 

(q, p ) (a (x l  . , .  X k ) ) ~  s2[(q 1, p l ) ( X i ~ ) ,  . . . , (q,,, p,,)(xim) ] 
is in R K with the same D. 

Clearly, if T and L are deterministic, then so is K. 
We now prove (3), which is the essential composition result. Let T be in D T  R- 

F S T  and B in DBQREL.  We shall construct a transducer T'  in D TR-FST such that 
T ' =  T~B.  

Intuitively, when T' arrives at a node of the input tree, it first computes the 
piece of output t that T would produce at this node, and then runs B on t. 
However, to be able to run B on t, T' should know the states in which B arrives at 
this piece of output. But, these states can be computed by regular look-ahead. The 
formal construction is as follows. Let T = (Z, A, Q, Qd, R )  with Qd = [qd} and let 
B = (A, .Q, QB, QBa, RR)" Let as usual, for q • Q, T(q) denote (Y, A, Q, [q}, R)  and, 
for q • QB, B(q) denote (A, .% Qe, {q}, Re). We now construct the tr-fst T' = (Z, .Q, 
Q, Qd, R ' ) ,  where R' is determined as follows. 

(i) Let q(a) --, t be in R, where q • Q, a • Z0 and t • T a. Suppose that t ~ p(t') for 
some t' • T n and some p • QB such that, if q = qd then p • QBd" Then the rule q(a) 

t' is in R'. 
(ii) Let (qo(a(xl  •. • Xk)) --' t, D)  be in R, where k > 1, aeYk,  t •  T~[Q(Xk)], 

qoeQ and, for 1 < i <  k, D(x~)~_ Ty.. Clearly t can be written as t 
= s[q~(xg,) . . . . .  q m ( x j ]  for certain m > 0 ,  s E T ,  IX,,], q~, . . . , q,~eQ and 
x ~ , . . . ,  x ~ e X  k, such that x ~ , . . . ,  x,, all occur in s. Let p ~ , . . . ,  Pm be a 
sequence ofm states from QB and suppose that s[pa(x~) . . . . .  p,,(x.,)] ~ po(S') for 
some s' • Tn[X,, ] and some P0 • Qe such that, ifqo = qd then Po s QB~ (B is of course 
extended to trees with variables in the usual way). Then the rule qo(a(xl . . .  Xk) ) 
---, s'[ql (Xi~) . . . . . .  q,.(X~,,)] is in R',where the ranges o f x ~ , . . . ,  Xk are specified by 
D' as follows. For 1 <_ u < k, D'(x,)  is the intersection of D(x,) and all tree 
languages dom(T(qj) o B(pj)) such that xgj = x,. Note that these tree languages are 
recognizable by Lemma 1.2 and the fact that each tr-/st can be decomposed into b- 
./it (Theorem 2.6). 

This ends the construction o f  T'. It is left to the reader to check that T' is 
deterministic (using the determinism of T and B) and to prove that T' = T ~ B.[] 

We can now prove the composition results for t'-fst. 

T H E O R E M  2.11. 

(1) T R - F S T o L T R _ F S T  c_ TR-FST, and 
L TR-FST o L TR-FST ~_ L TR-FST. 

(2) DTR-FSTo  TR-FST ~_ TR-FST, and 
DTR_FST o DTR_FST c_ DTR_FST. 

Proo f  
(1) The second inclusion is immediate by Theorem 2.8 and [BT, Theorem 4.5(27]. 
The first inclusion can be shown as follows. 
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TR-FST o L TR-FST 

= TR-FST ~ L B . F S T  
~_ TR-FST o QREL o L H O M  

~_ TR-FSTo L H O M  

~_ TR-FST 

(2) For both inclusions we have that 

D T a - F S T  o (D)TR-FST 
c_ D T R . F S T  o DBQREL o (D)T-FST 

c_ DTR_FST o (D)T-FST 

D T R - F S T  o H O M  o L(D)T-FST 
c_ DTR_FST o L(D)T-FST 

by Theorem 2.8 
by [BT, Theorem 3.15(2)] 
by Lemma 2.10(1) 
by Lemma 2.9(1). 

by Theorem 2.6 
by Lemma 2.10(3) 
by Lemma 1.1(1) 
by Lemma 2.9(2). 

Now DTR-FSTo  L T - F S T  ~_ TR-FST by (1) of this theorem, and 

D T R - F S T  o LDT-FST  

c D T R . F S T  o D T Q R E L  o L H O M  

c DTR_FST o L H O M  

c DTR_FST 

This proves the theorem. [] 

by Lemma 1.1(2) 
by Lemma 2.10(2) 
by Lemma 2.9(2). 

It is left to the reader to show that L D T R - F S T  is closed under composition. 
Note that it follows from Theorem 2.11 that the inclusion signs in Theorem 

2.6 may be replaced by equality signs. Thus T n . F S T =  DBQREL o T-FST. We 
finally mention a result similar to [BT, Theorem 3.7] (see also [BT, Theorem 
5.15-]). 

THEOREM 2.12. TR-FST = H O M  o L TR-FST. 

Proof. The inclusion H O M o  L T R - F S T  c_ TR-FST is immediate from 
Theorem 2.11. The inclusion Tg-FS T ~ H O M o  L TR-FS T can be shown in much 
the same way as in the proof of T-FST ~_ H O M o  L T - F S T  [BT, Lemma 3.6]. The 
only additional problem is the regular look-ahead: the image of a recognizable 
tree language under a homomorphism need not be recognizable. The solution is 
to consider a homomorphism H from Ty, to T x (see the proof of [BT, Lemma 3.6] 
for notation) such that, for all t in T z, H(TI(t))  = t. The easy definition of H is left 
to the reader. Now, if in a rule of the tr-fst T, the recognizable tree language U 
occurs as look-ahead, then we can  use , H - I ( U )  as look-ahead in the 
corresponding rule of T 2. Note that H - I ( U ) ~ R E C O G  (cf. Lemma 1.2(1)). The 
details of the proof are left to the reader. [] 

COROLLARY 2.13. TR-FST = T-FSTo LHOM.  
Proof. By Theorems 2.12 and 2.8, T R - F S T =  H O M o  LB-FST. From the proof 

of (7) in [BT, section 6] it follows that H O M o  L B - F S T  = T-FST o LI tOM.  [] 

3. Comparison of deterministic fst 

The classes of tree transformations DB-FS T and D T-FS T are incomparable. In 
fact there are several reasons for the incomparability of these classes. We now 
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consider some typical db-fst and dt-fst capabilities respectively. We start by 
considering advantages of DB-FST over D T-FST. 

Firstly we note that property (B 1) is eliminated, but property (B2) is not. Thus 
DB-FST contains elements not even in T-FST (obviously, the b-fst B in [BT, 
Example 2.6] is in DB-FST). 

Secondly, a db-fst can recognize the "lowest" occurrence of some symbol in a 
tree (since it is the first occurrence), but this cannot be done by a dt-fst (since it is 
the last occurrence for him). 

Thirdly, it is well known (see for instance [15]) that there are recognizable tree 
languages which cannot be recognized by a deterministic top-down finite tree 
automaton. The next theorem shows that such languages cannot be the domain 
of any deterministic t-J'st (cf. [11]). 

THEOREM 3.1. A tree language is the domain of a deterministic t-fst !land 
only ([" it is the domain of a deterministic top-down fta. 

Proof The if-direction is trivial. To prove the only-if direction, let T = (Z, A, 
Q, Qd, R)  be a dt-fst. We may assume that for all k _> 1, tre E k and q e Q there is a 
rule with lefthand side q(~(x 1 . . .  Xk)) in R. We construct the deterministic top- 
downfta F = (Z, Z, Q', Q~, R ' )  such that Q' is the powerset of Q, Q~ = { Q~} and R' 
is defined as follows. 
(1) For k > 1, A c Q and aeZk, the rule A(tr(xl . . .  Xk)) ~ tr(Al(xO. • • A,(x,)) 

is in R', where Ai = {PeQI there is a rule q(a(x 1 . . .  Xk)) -'-' t in R such that 
qeA and p(xi) occurs in t}. 

(2) For A ~_ Q and a E Z0, A(tr) --, a is in R' if and only if for all q E A there is a rule 
with lefthand side q(a) in R (note that in particular ~(tr)  ~ ~ is in R'). 

It is left to the reader to show that dom(F ) = dom(T). Intuitively, the state ofF 
at some node contains all states in which T arrives at copies of this node (made by 
T when processing higher nodes). At the leaves, F checks whether all these states 
are final states of T. []  

Next we consider advantages of DT-FST over DB-FST. First we note that 
property (T) is not eliminated: a dt-fst has the ability to copy an input subtree and 
to continue translation of these copies in different states. Thus the dt-fst which 
translates every tree a(b(b(.. ,  b(a). . . )))  into 
r (b ( ( . . ,  b(al ) . . . ) )b(b( . . ,  b(a2) . . . ) ) )  is not in B-FST. 

Secondly, a dt-fst can recognize the "highest" occurrence of some symbol in a 
tree, but this cannot be done by a db-fst. 

Thirdly, a dt-fst can distinguish between left and right, but a db-/st is not able 
to see this difference, because it starts at the bottom. 

This concludes our comparison of DB-FST and DT-FST. The reader might 
have noticed that the mentioned advantages of DB-FST over DT-FSTcan all be 
handled by the use of regular look-ahead. Also, those of DT-FST over DB-FST 
can be eliminated by restricting the number of states of the dt-fst to one. We now 
show that this holds in general. Let ODTR-FSTdenote the class ofdt'zfst (Y., A, Q, 
Qa, R)  such that Q = Qa, i.e. the class of one-state deterministic t'-fst. 

THEOREM 3.2. O D T R - F S T  = D B - F S T  ~ DTR-FST. 
Proof Inclusion of DB-FST in DTR-FST is proved as follows. 
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DB-FST 
c_ DBQREL o HOM 
c_ D T R-FS T o DBQREL o HOM 
c_ DTR-FST o HOM 
c_ DTR.FST 

by [BT, Theorem 3.15(3)] 
(since the identity is in DTR-FST) 

by Lemma 2.10(3) 
by Lemma 2.9(2). 

Since the identity can be realized by a one-state dt'-fst and since the 
constructions in Lemmas 2.9 and 2.10(3) preserve the number of states, DB-FST is 
included in OD TR-FS T. The properness of the inclusion of DB.FST in D TR-FS T 
follows from the discussion preceding this theorem. Inclusion of ODTR-FST in 
DB-FST can be proved as follows. By Theorem 2.6, DTR-FST c DBQREL o DT- 
FST. Moreover, from the construction in the proof of that theorem it follows that 
every one-state dtr-fst is the composition of an element of DBQREL and a one- 
state dt-fst. It is left to the reader to show that each one-state dt-fst is in DB-FST. 
The required inclusion now follows from the closure of DB-FST under 
composition ([BT, Theorem 4.6(2)]). [] 

Thus the addition of regular look-ahead to T-FST has made the deterministic 
bottom-up .fst into a proper subclass of the deterministic top-down fst (with 
regular look-ahead). 

4. Surface sets and tree transformation languages 

In this section we show how the results of the previous sections can be used to 
prove properties of surface sets and tree transformation languages, in particular 
closure properties. 

Notation 4.1. Throughout this section, f f  denotes a fixed family of tree 
languages closed under deterministic bottom-up finite state relabelings (i.e. 
elements of DBQREL). [] 

Note that DBQREL is included in both LB-FST and DB-FST. Note also that 
for instance RECOG is closed under DBQREL. 

We first show that regular took-ahead has no influence on surface sets: the 
classes of (T-FST, ~ )  and (TR-FST, ..~) surface sets are equal. 

THEOREM 4.2. 

(1) TR-FST(~.~)= T-FST(~),  
(2) DTR-FST(~)  = DT-FST(~£~), 
(3) LTR-FST(~.~) = LT-FST(~)  = LB-FST(~).  

Proof. Follows immediately from the decomposition result of Theorem 2.6 
(and, for (3), Theorem 2.8). [] 

Obviously a similar result for tree transformation languages is obtained by 
applying yield to the above equations. 

From this theorem and the composition results in Theorem 2.11 we obtain a 
number of closure properties of surface sets, some of which are expressed in the 
next theorem. 
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T H E O R E M  4 . 3 .  

(1) T-FST(ZZ ~) is closed under linear fst. 
(2) DT-FST(ZP) is closed under deterministic bottom-up and top-down fst. 

Proof Immediate from Theorem 4.2, Theorem 2.11 and Theorem 3.3. [] 
Theorem 4.3(1) was proved by Baker [3, Theorem 1.2.5] by generalizing 

Rounds' proof [13] for the special case ~ =RECOG. Closure of DT- 
FST(RECOG) under dt-]stwas proved by Rounds [13]. 

These theorems can easily be extended to surface sets which are obtained by 
repeated application of top-down fst. In fact, the next theorem shows that the 
regular look-ahead can be "taken out of '  any sequence of tr-fst. Let, for any class 

of tree transformations, ~-k be defined by ~1 = ~- and ~-k+ 1 = ~ - k  o ~-. 

THEOREM 4.4. For each k 2 1, 
(1) (TR-FST) k = DBQREL o (T-FST) k, 
(2) ( TR-FS T) k ~ D Tg-FST = DBQREL o (T-FS T) k o D T- FST. 

Proof. (1) We first show that TR-FSTo TR-FST = TR-FSTo T-FST. One 
inclusion is trivial. The other inclusion is proved as follows: 

TR-FST o TR-FST 
~_ TR-FSToDBQREL o T-FST by Theorem 2.6 
~_ TR-FSTo T-FST by Lemma 2.10(1). 

From this, and the fact that TR-FST = DBQREL o T-FST (see section 2), (1) easily 
follows. The proof of (2) is similar. [] 

From this theorem it follows for instance that (T-FST)k(zf ') = (TR-FST)k(.~q~), 
and hence (T-FST)k(LP) is closed under linearfst ([3, Corollary 1.2.7]). Similarly, 
DT-FST((T-FST)k(L~)) is closed under deterministic bottom-up and top-down 
Jst. 

Let us now turn to tree transformation languages. Recall that we have 
introduced a symbol e such that yield(e) = 2. We note first that it follows from 
Theorem 4.3 t~aat Lemma 1.3 holds for both yield(T-FST(Zf')) and yield(DT- 
FST(~)) .  We express this informally in the following corollary. 

COROLLARY 4.5 Both (T-FST, ~ )  and (DT-FST, ~ )  tree transformation 
languages can be "generated without 2-rules" (modulo 2). [] 

It should be clear that from Tlieorem 4.3 other closure properties for these 
tree transformation languages can be inferred. Since the closure properties of 
yield(T-FST(Za)) have been discussed thoroughly by Baker [3], we restrict 
ourselves to the following closure property of deterministic tree transformation 
languages. 

THEOREM 4.6. The class of tree transformation languages yield(DT- 
FST(Y) )  is closed under deterministic gsm mappings. 

Proof. Let Z and A be ranked alphabets with e e IEo and e e Ao. Let S = (K, Zo 
- {e}, Ao - {e}, 6, qo,F) be a deterministic gsm (for notation, see [10, sections 9.3 
and 12.3]). We shall show that there exists a deterministic top-downfst T with 
regular look-ahead such that, for every t e T~:, if yield(t) is not accepted by S, then t 
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is not accepted by T, and if yield(t) is accepted by S, then so is t by T and 
yield(T(t)) = S(yield(t)). Consequently, for any tree language L _ Tz, yield(T(L)) 
= S(yield(L)). The theorem then easily follows from the closure of DTR-FST  
under composition (Theorem 2.11 (2)). 

T is constructed as follows (the construction being a variation on a known 
theme). Let, for ql, q2 eK, R(ql ,  q2) denote the recognizable tree language 
consisting of all trees t ~ Tz such that 6(q 1, yield(t)) = (q2, w) for some output 
string w~(Ao-{e})* (thus, when started in state ql, S arrives in state q2 after 
processing yield(t)). Recognizability of R(q 1, q 2 )  follows from a straight forward 
extension, to handle e, of [13, section 3, Lemma 2]. Let now T = (E, A, Q, Qe, R ) ,  
where Q = (K xK) w {q~} (with qs new), Q~ = {qs} and the rules of R are defined as 
follows. 
(1) For k >_ 1, tre ~k and ql, q2 . . . . .  qk + 1 ~K, the rule (q  l, qk + 1 )  ( t r ( X l  • • • Xk)) 

tr((ql, q2) (X1) (q2, q3) ( X 2 )  " " " (qk, qk+ 1) ( X R ) ) i s  in R, where the range of 
variable x i is D(xi) = R(q i, qi .  l). 

(2) For creEo-{e } and (ql, q2)EK xK, if 6(ql, t~) = (q2, w) for some we(Ao 
- {e})*, then the rule (ql, q2) (t~) ~ t is in R, where t is some tree in T~ such 
that yield(t) = w (note that, if w = ,~, one can take t = e). 

(3) For q aK, the rule (q, q) (e) -~ e is in R. 
(4) For k >_ 1, o ' e E  k and ql . . . . .  qk+ 1 eK,  if ql = qo and qk+ 1 e F ,  then the rule 

q~( g( x i • • • Xk) ) ~ tr( ( q 1, q 2 ) (X 1) . • • (qk, qk + 1) (Xk)) is in R, where the range 
of x i is R(q i, q~+l). 

(5) For ~ ~ E o - {e}, if 6(qo, tr) = (qf, w) for some ql ~F and w e (A o - {e})*, then 
the rule q~(o-) ~ t is in R, where t is a tree such that yield(t) = w. 

(6) If qo ~F, then q~(e) -~ e is in R. 
This ends the construction of T. It should be clear that T is deterministic and 

that T satisfies the requirements. [] 
Note that it follows from this theorem that yield(DT-FST(~q~)) is closed under 

string homomorphisms and intersection with a regular language. 
We finally mention that these results can directly be applied to certain classes 

of Lindenmayer languages (see also [-1]). 
Let M O N  be the class of monadic recognizable tree languages (a tree language 

is monadic if all symbols appearing in its trees are of rank 0 or 1 ; in [8] the 
number of symbols of rank 0 is restricted to one, but this is not essential for what 
follows). 

It was shown in [1, 5, 8] that E T O L =  y ie ld(T-FST(MON))  and E D T O L  
= yield(DT-FST(MON)), where E T O L  and E D T O L  are classes of Lindenmayer 
languages defined in for instance [9]. Thus, since M O N  is obviously closed under 
DBQREL, Corollary 4.5 implies the well known fact that (modulo 2) E T O L  and 
E D T O L  languages can be generated without 2-rules. From Theorem 4.6 we 
directly obtain the following useful result (cf. [6]). 

COROLLARY 4.7. E D T O L  is closed under deterministic gsm mappinos. [] 
For any ~L~ _c M O N  (with certain closure properties) yield(T-FST(.L~)) and 

yield(DT-FST(.L~)) are equal to the ~-controlled E T O L  languages and the .,q~- 
controlled E D T O L  languages respectively (see [2]; for L ~ ,  only those 
sequences of tables which are in Lmay be used in the generation of the E T O L  
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language) .  It  fo l lows tha t  the  a b o v e  resul ts  a re  a l so  app l i cab l e  to c o n t r o l l e d  

E T O L  and  E D T O L  l anguages .  
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