
MATHEMATICAL SYSTEMS THEORY 10, 289-303 (1977)
:(2 1977 by Springer-Verlag New York Inc.

Top-down Tree Transducers with Regular Look-ahead

by

JOOST ENGELFRIET*

Twente University of Technology
Enschede, Netherlands

ABSTRACT

Top-down tree transducers with regular look-ahead are introduced. It is shown how these
can be decomposed and composed~ and how this leads to closure properties of surface sets
and tree transformation languages. Particular attention is paid to deterministic tree
transducers.

Introduction. The top-down finite state tree transformations discussed in, for
example, [3, 7, 13, 14] fail to have certain nice closure properties with respect to
composition. It was argued in [7] that this is due to the fact that a top-down tree
transducer cannot inspect a subtree before deleting it (a property possessed by
bottom-up tree transducers). In this paper we add the facility of regular look-
ahead to the usual type of top-down tree transducer. The transducer is now
allowed to inspect the subtrees of a node before processing it (thus having an
arbitrarily large look-ahead). However, the look-ahead is restricted in that the
information which the transducer extracts from the .subtrees should be finite and
even regular (or "recognizable" i.e. computable by a finite tree automaton). We
note that the idea of regular look-ahead also occurs in the theory of parsing of
context-free languages [4]. It turns out that the class of tree transformations
realized by this type of transducer has all the expected closure properties with
respect to composition, for instance, both the classes of linear and deterministic
top-down tree transformations are now closed under composition (we note here
that composition results can also be proved for restricted types of top-down tree
transducers, such as total or nondeleting ones, see [13, 14]). These composition
results are proved, as in [7], by first decomposing the transformations into
simpler parts and then showing composition properties of these simpler
transformations. In fact, any top-down tree transducer with regular look-ahead
can be realized in two phases. The first phase (which can be accomplished
bottom-up and deterministically) computes all the look-ahead information and
stores it in the labels at the nodes of the input tree. The second phase is an
ordinary top-down tree transducer which uses this information to imitate the one
with regular look-ahead. This decomposition result is also useful in obtaining
results about top-down finite state tree transformations without regular look-
ahead, in particular concerning their surface sets.

*The research reported here was carried out during a one-year visit of the author to the Dept. of
Computer Science of Aarhus University, Aarhus, Denmark,

289

290 J. ENGELFRIET

This paper is a sequel to [7] and the reader is assumed to be familiar with the
methods and results of [7]. However, we do not assume any familiarity with
section 5 of [7]. We note that the class T'-FST, defined in that section, is in fact
equal to the clas~ of top-down tree transformations with regular look-ahead (cf.
the remarks following 1-7, Theorem 5.13]).

In section 1 we list some changes in terminology with respect to [7], some
additional terminology, and some additional lemmas.

In section 2we define the top-down tree transducer with regular look-ahead
and show the above mentioned decomposition and composition results.

In section 3 we compare the deterministic bottom-up and top-down tree
transformations. The deterministic bottom-up tree transformations are
(properly) contained in the deterministic top-down tree transformations with
regular look-ahead.

In section 4 we apply the results of the previous sections to top-down surface
sets and yields of surface sets. It follows for instance from the result in section 3
that the deterministic top-down surface sets are closed under deterministic
bottom-up tree transformations. We finally mention possible applications to
Lindenmayer languages.

1. Preliminaries

The reader is referred to I-7] for all unexplained terminology. That paper will
from now on be referred to as [BT] rather than [7].

We recall that we often make no explicit distinction between a transducer (Y,,
A, Q, Qd, R) and the transformation from T~ to T a that it computes. We also recall
that by the relational composition R 1 o R z we mean "first R1, then R2". We finally
restate the important properties (B1), (B2) and (T) of [BT].

(B 1) Copying of an output tree after nondeterministic processing of the input
tree.

(B2) Deciding whether to delete a tree or not after processing it.
(T) Copying of an input tree and processing the copies differently.
In the rest of this section we list some changes in and additions to the

terminology in 1-BT]. Some additional facts, to be used in later sections, are also
mentioned.

First we change our use of "deterministic top-down" and of "DT" so as to
agree with 1-13]. A t op-down.[st (E,. A, Q, Qa, R) will be called determin ist ic if (1)
Qd is a singleton and (2) different rules in R have different lefthand sides. It is easy
to see that every deterministic top-down./st is equivalent to one which processes
the whole input tree (except eventually for its leaves) and then decides whether to
accept it or not. The version in [BT] will be called a total deterministic t-fst (since
it accepts every input tree). Determinism will be denoted as usual by a D, so that
D T-FST denotes the class of deterministic top-downfst (and not the class of total
deterministic top-down fst, as was the case in [BT]). The class of linear
deterministic top-downfst will be denoted by LDT-FST. The definition of HOM
and LHOM is not changed, i.e. homomorphisms are total.

Secondly, we shall write REL rather than RELAB. Thus QREL denotes the
class of (bottom-up or top-down) finite state relabelings (cf. Definition 3.14 of

Top-down Tree Transducers with Regular Look-ahead 291

[BT]). The class of deterministic bottom-up finite state relabelings will be
denoted by DBQREL (this class was denoted D Q R E L A B in [BT]), and the class of
deterministic top-down finite state relabelings by D T Q R E L .

We shall use the following additional decomposition results, the detailed
proof of which is left to the reader.

(1)

LEMMA 1.1.

T-FST ~_ H O M o L T . F S T

DT-FST c_ H O M o LDT-FST,

(2) LDT-FST ~_ D T Q R E L o LHOM.

Proo f (1) The first inclusion is shown in [BT, Lemma 3.6] and the second
inclusion easily follows from the proof of that lemma.

(2) The proof of this inclusion is similar to that of [BT, Theorems 3.5 and
3.15]. Roughly, for T in LDT-FST, one can construct T 1 in D T Q R E L and T z in
L H O M such that the i-th rule q(tr(xl . . . Xk)) -+ t of T is split into two rules
q(a(xi . . . Xk))---> i(ql(xO . . . qk(Xk)) of T 1 and *(i(x 1 . . . Xk)) ~ t [* (Xl) , . . . ,
*(Xk)] of T2, where • is the only state of T2, and where, for each j(1 < j < k), either
q~(x~) occurs in t or q~ = qo (and qo is a new statewhich is, for instance, the identity
on all trees). []

We shall also use the following result (cf. [12]).

LEMMA 1.2. Let F be the composition of a f inite number of bottom-up fst, i.e.
F = B1 oB2 B , j b r some n > 1 and BiEB-FST. Then
(1) RECOG is closed under F - 1 (i.e. i[" L E RECOG, then F - 1 (L) E RECOG), and
(2) dom(F)ERECOG.

Proo f (1). It obviously suffices to assume that F~B-FST. Let L be a
recognizable tree language and let R be a finite tree automaton with domainL.
Then F - I (L) = dom(F oR). By [BT, Lemma 4.2(1)] F o R ~ B . F S T and hence its
domain is recognizable by [BT, Corollary 3.12]. Statement (2) is immediate from
(1) by the fact that dora(F) = F-l(Ta), where A is the output alphabet ofF. []

Note that, since F T A , R E L and H O M are included in B-FST, the
decomposition result for top-downfst [BT, Theorem 3.9] implies that Lemma 1.2
also holds with "bottom-up" replaced by "top-down" ([12]).

We finally introduce some more terminology concerning surface sets and tree
transformation languages.

Let £,0 be a class of tree languages and ~ a class of tree transformations. Then
~(£e) denotes the class of tree languages {F(L) IF ~ ~ and L ~ ~} , which we shall
call (~ . Lt') surface sets. If .w = RECOG then the (~ , £P) surface sets are the .~
surface sets.

Let e be a fixed symbol of rank 0 (which may or may not be an element of a
ranked alphabet). The yield of a tree t, denoted by yield(t), is the string defined
recursively as follows:

292 J. ENGELFRIET

{~ if o ~ e where ;~ is the (1) for a of rank 0, yield(a) = if a = e empty string;

(2) for a of rank k > 1 and trees t ~ , . . . , t~,
y i e l d (o (t l . . , tk)) = y i e l d (t o) . . , yield(tk).

Fur the rmore we define, for a tree language L, yield(L) = {yield(t)Jt ~ L} and, for a
family ~e of tree languages, yield(La) = {yield(L)lL E ~ } . Thus yield(L) is a string
language and yield(L,e) is a family of string languages.

For a class 5e of tree languages and a class ~ of tree t ransformat ions , the class
of languages y i e l d (~ (~)) will be called the class of (~ , £~') tree transformation
languaoes. Thus a tree t ransformat ion language is the yield of a surface set.

In the next l emma we show that in m a n y cases we can do without the special
symbol e to denote 2. This l emma is in fact a part icular case of Theorem 3.2.10 in
[3].

LEMMA 1.3. Let LP be a.family of tree languages and ~ a.family of tree
trans[brmations such that ~ (LP) is closed under linear deterministic bottom-upfst.
Let L be an (~ , ~) tree transformation languaoe i.e. L E yield(W(Ze))). Then
L - { 2 } = yield(F(M)) for some M aZP and some F e J ~ , such that the output
alphabet of ~ does not contain e.

Proof Let L = yield(G(M 1)) for some M 1 E ~ and G e ~ , and let G(M 1) be over
the ranked a lphabet E with e ~ E (otherwise there is nothing to prove). We now
construct a linear deterministic bot tom-upfs t B which, for any tree t in T~, deletes
all subtrees t 1 o f t with yield(t1) = 2 (and does not accept t if yield(t) = 2). In fact,
B = (~, ,A,Q, Qd, R) w h e r e Q = Stqeqsj, ~, Qd =Stqs;, Ais the ranked alp habet such
that, for each k, A k = Y - {e l, and R contains the following rules. First of all it
contains rules o ~ q¢(o) for each o e-Eo - {el and one rule e --* q,,(tro) where Oo is
an arbi t rary element of Eo - Ste J~ (note that for Eo -- Itej~ the p roof is trivial).
Fur thermore , for each k _> 1, 0"~"~ k and q x , . . . , qkeQ, R contains the rule
o(q l (x l) . , . qk(Xk)) ~ q(o(Xi~ . . . Xi,)) where qi~ = qi~ qi, = qj
(1 < i~ < i 2 < . . . < i, < k)anda l lo ther q jareequal toqe , and.q -- q~ifand only
if n -- 0 (i.e. q~ -- q2 qk = q~ ; in this case the r ighthand side of the rule is
q~(a)). It is easy to prove that, if tx ~ q~(t2) , then yield(t~) -- 2, and if tx ~, qf(t2) ,
then yield(rE) = yield(t~) ~- 2. Thus L - {,t} = yield(B(G(M~))) and, since .~'(LP)
is closed under B, L - ~ 2 } = yield(F(M)) for some F(M)e.T(~a) , where F has
output a lphabet A. []

No te that, when a tree transducer, together with an input tree language, is
viewed as a generat ing device of a tree t ransformat ion language, then L e m m a 1.3
tells us that we can get rid of).-rules.

2. Top-down tree transducers with regular look-ahead;
decomposition and composition

In this section we add the facility of regular look-ahead to the top-down/s t .
Consequent ly the top-down./st will be able to inspect a subtree in order to decide
whether to delete it or not (cf. p roper ty (B2)). Thus the difference between bo t tom-
up fst and top-down.[st with regular look-ahead can then be characterized by
propert ies (B1)and (T).

Top-down Tree Transducers with Regular Look-ahead 293

In order to define the top-down./st with regular look-ahead we have to slightly
generalize the notion of a semi-thue system with variables [BT, section 1]. We
shall allow the range of the variables to be different for different rules. Formally
we redefine a semi-thue system with variables to be a system G = (A,X, R) , where
A is an alphabet, X = {xl, x 2 } and R a finite set of rules of the form (4) ~ ~,,
D) such that, for some k > 0, ¢ and ~O are in (A wXk)* and D is a mapping fromXk
into the powerset of A*. For 1 < i < k, D(x~) is called the range ofxj; ¢ is called the
lefthand side and ff the righthand side of the rule. Whenever D is understood (in
particular when k = 0, D is always empty) or will be specified later, we shall write
¢ ~ ~ rather than (~b ~ ~k, O). The relations ~, and ~ are defined as in [B T], the
only difference being that the mapping D now depends upon the rule.

We now define a top-down/st with regular look-ahead to be a top-down]st in
which the ranges of the variables in each rule are certain recognizable tree
languages.

Definition 2.1, A top-down finite state tree transformation with regular look-
ahead (abbreviated by t'-fst) is a 5-tuple T = (E, A, Q, Qd, R) , where Z, A, Q and"
Qd are as for a top-downfst and R is a finite set of rules of the form (t 1 ~ t2, D),
where t 1 ~ t 2 is an ordinary top-downfst rule and D is a mapping fromX k into the
powerset of T~ (where Xk is the set of variables occurring in tl), such that, for
1 < i < k, D(xl)e RECOG. T is viewed as the semi-thue system with variables
(E w A w Q w {(,)},X, R), and the tree transformation defined by T is as usual
{(t, s) e T r x T alq(t)~s for some q in aa}. []

The class of all t"-fst will be denoted by TR-FST
We note that it will always be assumed in a t*-fst that the ranges of the

variables are specified in some effective way, for instance as deterministic bottom-
up finite tree automata. Throughout the paper all constructions will be effective in
this sense.

Example 2.2. There is a tr-fst that is not a t-fst. In fact, consider th e bottom-up
fst B = (Z, A, Q, Qd, R) of [BT, Example 2.6] which is not a t-fst. Let U be the
recognizable tree language Tn, where.qo r = ,b~,.Q I = {a} and.Q2 = {a}. Consider
now the tr-fst T = (Z, A, Q', Q~, R ') where Q' = Qd = {*} and R' consists of the
rules

(,(a(xy)) ~ a(,(x)), O1) with Ol(x) = Ol(y) = U,
(.(a(x)) ~ a(.(x)), O2) with D2(x) = Tz, and
*(b) ---, b.

Then, obviously, T = B. For instance, *(~(ba(b))) ~ a(*(b)) ~ or(b), since both b
and a(b) belong to U. But no rule is applicable to ~(a(ba(a))). Note that Dl(x }
could as well be T~ since T can check later that the left subtree is of the required
form. The essential use of the regular look-ahead is in the restriction of the right
subtree to U.

An even more simple example was exhibited in [16 2. Let a be of rank 0 and b of
rank 2. Then the tree transformation ((b(aa), a)) is not a t-fst, but it is a tr-fst and
also a b-fst. []

We immediately obtain the following corollary.

294 J. ENGELFRIET

COROLLARY 2.3. T-FST c TR-FST.
Proof. Inclusion is trivial: each t-[st is changed into a t'-fst by simply specifying

all variables to range over the recognizable tree language T~:, where Z is the input
alphabet. Proper inclusion was shown in Example 2.2. []

We now obtain the following two facts.

COROLLARY 2.4.
(1) The classes of tree transformations B-FST and TR-FST are incomparable.
(2) TR-FST is not closed under composition.

Proof. For (1), it should be clear that the b-fst of [B T, Example 2.1] is not a t'-
.fst, while Corollary 2.3 and [BT, Example 2.2] imply that there is a t'-fst that is not
a b-fst. For (2), note that [BT, Example 2,I] is a composition of two t'-fst. []

We now define linearity and determinism.

Definition 2.5. Let T = (Z, A, Q, Qa, R) be a t'-.fst. T is linear if all righthand
sides of rules in R are linear. T is deterministic if the following holds:
(1) Q~ is a singleton;
(2) if (s ~ t 1, D~)and (s ~ t2, D2)are different rules in R (with the same lefthand

side), then Dl(xi)nD2(xi) = ~ for some iE{1, 2 , . . . , k}, where k is the
number of variables in s (for k = 0 this means that different rules should have
different lefthand sides). []

Thus, in a deterministic tr-fst, different rules may have the same lefthand side,
but, in that case, the ranges of the variables are such that the two rules are never
applicable in the same situation. Note that one can effectively determine whether
a given t'-/st is deterministic (RECOG is closed under intersection and has a
solvable emptiness problem).

Linearity and determinism will be denoted as usual by L and D respectively.
Note that, for a modifier Z~{L, D, LD}, Z T - F S T c Z T - F S T (the t'-fst of
Example 2.2 is linear and deterministic).

Since for linear brfst and linear t'-fst all properties (B1), (B2) and (T) are now
"eliminated", one would expect that LB-FS T = L TR-FS T. Before proving this we
show how to decompose the t'.fst: the regular look-ahead can be computed in
advance by a deterministic bottom-up finite state relabeling.

THEOREM 2.6. TR-FST ~ DBQRELo T.FST, and, for ZE{L, D, LD},
ZTR-FST c DBQREL o ZT-FST.

Proo/i Let T = (E, A, Q, Q~, R) be a t'-.fst. Consider all "recognizable
properties" which T checks with its regular look-ahead. A finite state relabeling
can be used to check, for a given input tree t, whether the subtrees of t have these
properties or not, and to put this information at their father nodes. After this, an
ordinary t-[st can be used to simulate T. Formally we proceed as follows.

Let L1 L, be all the recognizable tree languages occurring as ranges of
variables in the rules of T. Let U denote the set {0, 1}", i.e. the set of all sequences of
O's and l's of length n. For u ~ U, thejth element (1 < j < n) of u will be denoted by
u(j). Intuitively, an element u of U will be used to indicate membership of a tree in
L1 L, (u(j) "= 1 iffthe tree belongs to L j). Let f~ be the ranked alphabet such

Top-down Tree Transducers with Regular Look-ahead 295

that -Q0 = Eo and, for k > 1, -Qk = Zk × U k. Thus an element of.Qk is of the form
(a, (u 1, . . . , Uk)) with a E Z k and u 1 Uk a U. Intuitively, i fa node is labeled
by (or, (u l , . . . , Uk)) , it means that u i contains all the information about the ith
subtree of the node. The mapping B: Tz ~ T a is now defined recursively as
follows:
(1) for aaZo, B(o) = o;

(2) for k > 1, a a Zk and t l , . . . , tk a T z , B (a (t l . . • tk)) = r(B(t~) . . . B(tk)) ,where

= (a, (u I uk)) and, for 1 _< i < k and 1 _<j_< n, u;(j) = 1 iff t i a L r
It is left to the reader to show that B can be realized by a (total) deterministic

bottom-up finite state relabeling (given the deterministic bottom-up finite tree
automata recognizing L~ L,). Next we define the t o p - d o w n f s t T' = (fL A,
Q, Qd, R ') such that
(1) if q(a) -o t is in R, then it is in R';
(2) if (q (a (x a . . . X k)) ~ t , D) is in R, then each rule of the form q((cr, a)

(x~ . . . Xk)) --* t is in R', where ff = (u~ Uk) aU k and, for 1 < i < k and
1 < j < n, if D(xi) = Lj then ui(j) = 1.

This completes the construction. It should be clear that T = B ~ T', and that,
if T is linear, then so is T'. It should also be obvious that, in the above
construction, U may be replaced by the smaller set { u a U I for all j~ and J2, if
Lj, n Lj~ = ~, then u(j~) and /'/(J2) a r e not both 1~ (other elements of U do not
occur in trees B(t)). After this replacement (which influences T') one can easily see
that if T is deterministic, then so is T'. []

An immediate consequence of this theorem and previous decomposition
results (in [BT]) is that each element of T n - F S T is decomposable into elements of
R E L , F T A and H O M .

COROLLARY 2.7. T h e domain o f a tr-fst is recognizable .

P r o o f Lemma 1.2(2). []
We now show that the classes of linear b-[st and linear tr-fst coincide (cf. [BT,

Theorem 2.8]).

T H E O R E M 2.8. L T R - F S T = LB-EST.

P r o o f First
L T R - F S T ~_ D B Q R E L o L T - F S T by Theorem 2.6

~_ D B Q R E L o L B - F S T by [BT, Theorem 2.8]
~_ L B - F S T by [BT, Theorem 4.5(2)]

(note that finite state relabelings are linear).
Secondly, we show that L B - F S T ~_ LTR-FST . The construction is the same as

that in the proof of [BT, Theorem 2.9], but now we can use look-ahead to handle
deletion. Let B = (Z, A, Q, Qa, R) be an arbitrary linear b-fst. Let, for each q in Q,
B(q) denote the b-fst (Z, A, Q, {q}, R). Then we construct the linear tr-[st T = (Z,
A, Q, Qd, R r) , where R r is defined by the following two requirements.
(1) If a --, q(t) is in R, then q(a) ---, t is in Rr.
(2) If a (q l (x l) . . . qk(Xk)) ~ q(t) is in R, then
the rule (q (a (x l . . . X k)) - - * t [q l (x l) qk(Xk)], D) , is in R r, where, for
1 < i <<, k, D(xl) = dom(B(q i)). Note that dom(B(q~)) is recognizable by [BT,

296 J. ENGELFRIET

Corollary 3.12]. Note also that it would suffice to have D(xg) = dom(B(q~)) for
those x i that do not occur in ~, and D(x~) = T x for the other x i.

A formal proof that T = B is left to the reader. Intuitively T simulates B in the
top-down direction by translating each node in the same piece of tree as B.
Whenever B deletes a subtree t after arriving at its top in state q, T checks whether
t e dom(B(q)) before deleting-t (t e dom(B(q)) means that there exists s e T~ such
that t ~ q(s)). []

In the rest of this section we discuss composition of t'-J'st. We shall show (cf.
property (/31)) that, if either T t is deterministic or T 2 is linear, then T 1 o T 2 is in T R.
FST. Moreover, DTR-FSTand LTR-FSTare closed under composition. To prove
these results we first consider some simple cases in the following two lemmas
(concerning homomorphisms and finite state relabelings respectively).

LEMMA 2.9.

(1) TR-FST o L t tOM ~_ Tg-FST,

(2) DTR-FSTo HOM ~_ DTR-FST.

Proof Let T = (Z, A, Q, Qd, R) he a tr-Jst and letH be a homomorphism from
TA into T a. For both cases, (1) and (2), the construction of a Fr[st • T' defining T o H
is similar to that in [B T, Lemma 4.1] ; look-ahead is used to handle deletion by H.
Let H be extended to TA[Q(X)] by definining, informally, H(q(x)) = q(x) for all
q(x)eQ(X). Let, for p~Q, T(p) denote the FrJ'st (Y., A, Q, {p}, R). Note that, by
Corollary 2.7, dom(T(p)) ~ RECOG. We now construct the t~-[st T' = (E, .Q, Q, Qd,
R') such that
(1) if q(a) ~ t is in R, then q(a) ~ H (t) is in R';
(2) if (q(a(xl • • • Xk)) --' t, D) is in R,
then (q(a(x 1 . . . Xk)) ~ H(t), D') is in R', where, for 1 < i <_ k, D'(xi) is the
intersection of D(x~) and all tree languages dom(T(p)) such that p(x~) occurs in t
but not in H(t).

It is left to the reader to prove that T : H ~_ T' and that, i fH is linear or T is
deterministic, then T' _ T oH also. Note that, if T is deterministic, then so is T'
(the D'(xi) are included in the D(x~)). This proves the lemma. []

LEMMA 2.10.

(1) TR-FSTo QREL~_ TR-FST,

(2) DTR-FSToDTQREL ~_ DTg-FST,

(3) DTR-FSToDBQREL ~_ DTR-FST.

Proof We first prove (1) and (2). The proof is similar to that of [BT, Lemma
4.2]. Let T = (X, A, Q, Qa, RT) be a t'-fst and L = (A, ,Q, P, Pal, RL) a top-down
finite state relabeling. We extend the input alphabet of L to A ~ X by addingX to
Ao. We now define a tr-fst K such that K = T L. Let K = (E , fL Q × P ,
Qd × Pd, RK), where R~ is obtained by the following two requirements.

Top-down Tree Transducers with Regular Look-ahead 297

(i) If the rule q(a) -~ t 1 is in R T and p(tl) ~ t2, then the rule (q , p) (a) --, t 2 is in
RK.

(ii) Let (q(~(xl . . . Xk)) -~ t, D) be in R r. Obviously t can be written as
t = s l [q ~ (x i l) , . . . , q,.(x;,~)], where sl • T~[X,.] is linear and nondeleting with
respect to X,,. If p(s ~) ~ s z [p~ (x 1) , p,,(x,,)], then the rule

(q, p) (a (x l . , . X k)) ~ s2[(q 1, p l) (X i ~) , . . . , (q,,, p,,)(xim)]
is in R K with the same D.

Clearly, if T and L are deterministic, then so is K.
We now prove (3), which is the essential composition result. Let T be in D T R-

F S T and B in DBQREL. We shall construct a transducer T' in D TR-FST such that
T ' = T~B.

Intuitively, when T' arrives at a node of the input tree, it first computes the
piece of output t that T would produce at this node, and then runs B on t.
However, to be able to run B on t, T' should know the states in which B arrives at
this piece of output. But, these states can be computed by regular look-ahead. The
formal construction is as follows. Let T = (Z, A, Q, Qd, R) with Qd = [qd} and let
B = (A, .Q, QB, QBa, RR)" Let as usual, for q • Q, T(q) denote (Y, A, Q, [q}, R) and,
for q • QB, B(q) denote (A, .% Qe, {q}, Re). We now construct the tr-fst T' = (Z, .Q,
Q, Qd, R ') , where R' is determined as follows.

(i) Let q(a) --, t be in R, where q • Q, a • Z0 and t • T a. Suppose that t ~ p(t') for
some t' • T n and some p • QB such that, if q = qd then p • QBd" Then the rule q(a)

t' is in R'.
(ii) Let (qo(a(xl •. • Xk)) --' t, D) be in R, where k > 1, aeYk, t • T~[Q(Xk)],

qoeQ and, for 1 < i < k, D(x~)~_ Ty.. Clearly t can be written as t
= s[q~(xg,) q m (x j] for certain m > 0 , s E T , IX,,], q~, . . . , q,~eQ and
x ~ , . . . , x ~ e X k, such that x ~ , . . . , x,, all occur in s. Let p ~ , . . . , Pm be a
sequence ofm states from QB and suppose that s[pa(x~) p,,(x.,)] ~ po(S') for
some s' • Tn[X,,] and some P0 • Qe such that, ifqo = qd then Po s QB~ (B is of course
extended to trees with variables in the usual way). Then the rule qo(a(xl . . . Xk))
---, s'[ql (Xi~) q,.(X~,,)] is in R',where the ranges o f x ~ , . . . , Xk are specified by
D' as follows. For 1 <_ u < k, D'(x,) is the intersection of D(x,) and all tree
languages dom(T(qj) o B(pj)) such that xgj = x,. Note that these tree languages are
recognizable by Lemma 1.2 and the fact that each tr-/st can be decomposed into b-
./it (Theorem 2.6).

This ends the construction o f T'. It is left to the reader to check that T' is
deterministic (using the determinism of T and B) and to prove that T' = T ~ B.[]

We can now prove the composition results for t'-fst.

T H E O R E M 2.11.

(1) T R - F S T o L T R _ F S T c_ TR-FST, and
L TR-FST o L TR-FST ~_ L TR-FST.

(2) DTR-FSTo TR-FST ~_ TR-FST, and
DTR_FST o DTR_FST c_ DTR_FST.

Proo f
(1) The second inclusion is immediate by Theorem 2.8 and [BT, Theorem 4.5(27].
The first inclusion can be shown as follows.

298 J. ENGELFRIET

TR-FST o L TR-FST

= TR-FST ~ L B . F S T
~_ TR-FST o QREL o L H O M

~_ TR-FSTo L H O M

~_ TR-FST

(2) For both inclusions we have that

D T a - F S T o (D)TR-FST
c_ D T R . F S T o DBQREL o (D)T-FST

c_ DTR_FST o (D)T-FST

D T R - F S T o H O M o L(D)T-FST
c_ DTR_FST o L(D)T-FST

by Theorem 2.8
by [BT, Theorem 3.15(2)]
by Lemma 2.10(1)
by Lemma 2.9(1).

by Theorem 2.6
by Lemma 2.10(3)
by Lemma 1.1(1)
by Lemma 2.9(2).

Now DTR-FSTo L T - F S T ~_ TR-FST by (1) of this theorem, and

D T R - F S T o LDT-FST

c D T R . F S T o D T Q R E L o L H O M

c DTR_FST o L H O M

c DTR_FST

This proves the theorem. []

by Lemma 1.1(2)
by Lemma 2.10(2)
by Lemma 2.9(2).

It is left to the reader to show that L D T R - F S T is closed under composition.
Note that it follows from Theorem 2.11 that the inclusion signs in Theorem

2.6 may be replaced by equality signs. Thus T n . F S T = DBQREL o T-FST. We
finally mention a result similar to [BT, Theorem 3.7] (see also [BT, Theorem
5.15-]).

THEOREM 2.12. TR-FST = H O M o L TR-FST.

Proof. The inclusion H O M o L T R - F S T c_ TR-FST is immediate from
Theorem 2.11. The inclusion Tg-FS T ~ H O M o L TR-FS T can be shown in much
the same way as in the proof of T-FST ~_ H O M o L T - F S T [BT, Lemma 3.6]. The
only additional problem is the regular look-ahead: the image of a recognizable
tree language under a homomorphism need not be recognizable. The solution is
to consider a homomorphism H from Ty, to T x (see the proof of [BT, Lemma 3.6]
for notation) such that, for all t in T z, H(TI(t)) = t. The easy definition of H is left
to the reader. Now, if in a rule of the tr-fst T, the recognizable tree language U
occurs as look-ahead, then we can use , H - I (U) as look-ahead in the
corresponding rule of T 2. Note that H - I (U) ~ R E C O G (cf. Lemma 1.2(1)). The
details of the proof are left to the reader. []

COROLLARY 2.13. TR-FST = T-FSTo LHOM.
Proof. By Theorems 2.12 and 2.8, T R - F S T = H O M o LB-FST. From the proof

of (7) in [BT, section 6] it follows that H O M o L B - F S T = T-FST o LI tOM. []

3. Comparison of deterministic fst

The classes of tree transformations DB-FS T and D T-FS T are incomparable. In
fact there are several reasons for the incomparability of these classes. We now

Top-down Tree Transducers with Regular Look-ahead 299

consider some typical db-fst and dt-fst capabilities respectively. We start by
considering advantages of DB-FST over D T-FST.

Firstly we note that property (B 1) is eliminated, but property (B2) is not. Thus
DB-FST contains elements not even in T-FST (obviously, the b-fst B in [BT,
Example 2.6] is in DB-FST).

Secondly, a db-fst can recognize the "lowest" occurrence of some symbol in a
tree (since it is the first occurrence), but this cannot be done by a dt-fst (since it is
the last occurrence for him).

Thirdly, it is well known (see for instance [15]) that there are recognizable tree
languages which cannot be recognized by a deterministic top-down finite tree
automaton. The next theorem shows that such languages cannot be the domain
of any deterministic t-J'st (cf. [11]).

THEOREM 3.1. A tree language is the domain of a deterministic t-fst !land
only ([" it is the domain of a deterministic top-down fta.

Proof The if-direction is trivial. To prove the only-if direction, let T = (Z, A,
Q, Qd, R) be a dt-fst. We may assume that for all k _> 1, tre E k and q e Q there is a
rule with lefthand side q(~(x 1 . . . Xk)) in R. We construct the deterministic top-
downfta F = (Z, Z, Q', Q~, R ') such that Q' is the powerset of Q, Q~ = { Q~} and R'
is defined as follows.
(1) For k > 1, A c Q and aeZk, the rule A(tr(xl . . . Xk)) ~ tr(Al(xO. • • A,(x,))

is in R', where Ai = {PeQI there is a rule q(a(x 1 . . . Xk)) -'-' t in R such that
qeA and p(xi) occurs in t}.

(2) For A ~_ Q and a E Z0, A(tr) --, a is in R' if and only if for all q E A there is a rule
with lefthand side q(a) in R (note that in particular ~(tr) ~ ~ is in R').

It is left to the reader to show that dom(F) = dom(T). Intuitively, the state ofF
at some node contains all states in which T arrives at copies of this node (made by
T when processing higher nodes). At the leaves, F checks whether all these states
are final states of T. []

Next we consider advantages of DT-FST over DB-FST. First we note that
property (T) is not eliminated: a dt-fst has the ability to copy an input subtree and
to continue translation of these copies in different states. Thus the dt-fst which
translates every tree a(b(b(.. , b(a). . .))) into
r (b ((. . , b(al) . . .))b(b(. . , b(a2) . . .))) is not in B-FST.

Secondly, a dt-fst can recognize the "highest" occurrence of some symbol in a
tree, but this cannot be done by a db-fst.

Thirdly, a dt-fst can distinguish between left and right, but a db-/st is not able
to see this difference, because it starts at the bottom.

This concludes our comparison of DB-FST and DT-FST. The reader might
have noticed that the mentioned advantages of DB-FST over DT-FSTcan all be
handled by the use of regular look-ahead. Also, those of DT-FST over DB-FST
can be eliminated by restricting the number of states of the dt-fst to one. We now
show that this holds in general. Let ODTR-FSTdenote the class ofdt'zfst (Y., A, Q,
Qa, R) such that Q = Qa, i.e. the class of one-state deterministic t'-fst.

THEOREM 3.2. O D T R - F S T = D B - F S T ~ DTR-FST.
Proof Inclusion of DB-FST in DTR-FST is proved as follows.

300 J. ENGELFRIET

DB-FST
c_ DBQREL o HOM
c_ D T R-FS T o DBQREL o HOM
c_ DTR-FST o HOM
c_ DTR.FST

by [BT, Theorem 3.15(3)]
(since the identity is in DTR-FST)

by Lemma 2.10(3)
by Lemma 2.9(2).

Since the identity can be realized by a one-state dt'-fst and since the
constructions in Lemmas 2.9 and 2.10(3) preserve the number of states, DB-FST is
included in OD TR-FS T. The properness of the inclusion of DB.FST in D TR-FS T
follows from the discussion preceding this theorem. Inclusion of ODTR-FST in
DB-FST can be proved as follows. By Theorem 2.6, DTR-FST c DBQREL o DT-
FST. Moreover, from the construction in the proof of that theorem it follows that
every one-state dtr-fst is the composition of an element of DBQREL and a one-
state dt-fst. It is left to the reader to show that each one-state dt-fst is in DB-FST.
The required inclusion now follows from the closure of DB-FST under
composition ([BT, Theorem 4.6(2)]). []

Thus the addition of regular look-ahead to T-FST has made the deterministic
bottom-up .fst into a proper subclass of the deterministic top-down fst (with
regular look-ahead).

4. Surface sets and tree transformation languages

In this section we show how the results of the previous sections can be used to
prove properties of surface sets and tree transformation languages, in particular
closure properties.

Notation 4.1. Throughout this section, f f denotes a fixed family of tree
languages closed under deterministic bottom-up finite state relabelings (i.e.
elements of DBQREL). []

Note that DBQREL is included in both LB-FST and DB-FST. Note also that
for instance RECOG is closed under DBQREL.

We first show that regular took-ahead has no influence on surface sets: the
classes of (T-FST, ~) and (TR-FST, ..~) surface sets are equal.

THEOREM 4.2.

(1) TR-FST(~.~)= T-FST(~),
(2) DTR-FST(~) = DT-FST(~£~),
(3) LTR-FST(~.~) = LT-FST(~) = LB-FST(~).

Proof. Follows immediately from the decomposition result of Theorem 2.6
(and, for (3), Theorem 2.8). []

Obviously a similar result for tree transformation languages is obtained by
applying yield to the above equations.

From this theorem and the composition results in Theorem 2.11 we obtain a
number of closure properties of surface sets, some of which are expressed in the
next theorem.

Top-down Tree Transducers with Regular Look-ahead 301

T H E O R E M 4 . 3 .

(1) T-FST(ZZ ~) is closed under linear fst.
(2) DT-FST(ZP) is closed under deterministic bottom-up and top-down fst.

Proof Immediate from Theorem 4.2, Theorem 2.11 and Theorem 3.3. []
Theorem 4.3(1) was proved by Baker [3, Theorem 1.2.5] by generalizing

Rounds' proof [13] for the special case ~ =RECOG. Closure of DT-
FST(RECOG) under dt-]stwas proved by Rounds [13].

These theorems can easily be extended to surface sets which are obtained by
repeated application of top-down fst. In fact, the next theorem shows that the
regular look-ahead can be "taken out of ' any sequence of tr-fst. Let, for any class

of tree transformations, ~-k be defined by ~1 = ~- and ~-k+ 1 = ~ - k o ~-.

THEOREM 4.4. For each k 2 1,
(1) (TR-FST) k = DBQREL o (T-FST) k,
(2) (TR-FS T) k ~ D Tg-FST = DBQREL o (T-FS T) k o D T- FST.

Proof. (1) We first show that TR-FSTo TR-FST = TR-FSTo T-FST. One
inclusion is trivial. The other inclusion is proved as follows:

TR-FST o TR-FST
~_ TR-FSToDBQREL o T-FST by Theorem 2.6
~_ TR-FSTo T-FST by Lemma 2.10(1).

From this, and the fact that TR-FST = DBQREL o T-FST (see section 2), (1) easily
follows. The proof of (2) is similar. []

From this theorem it follows for instance that (T-FST)k(zf ') = (TR-FST)k(.~q~),
and hence (T-FST)k(LP) is closed under linearfst ([3, Corollary 1.2.7]). Similarly,
DT-FST((T-FST)k(L~)) is closed under deterministic bottom-up and top-down
Jst.

Let us now turn to tree transformation languages. Recall that we have
introduced a symbol e such that yield(e) = 2. We note first that it follows from
Theorem 4.3 t~aat Lemma 1.3 holds for both yield(T-FST(Zf')) and yield(DT-
FST(~)) . We express this informally in the following corollary.

COROLLARY 4.5 Both (T-FST, ~) and (DT-FST, ~) tree transformation
languages can be "generated without 2-rules" (modulo 2). []

It should be clear that from Tlieorem 4.3 other closure properties for these
tree transformation languages can be inferred. Since the closure properties of
yield(T-FST(Za)) have been discussed thoroughly by Baker [3], we restrict
ourselves to the following closure property of deterministic tree transformation
languages.

THEOREM 4.6. The class of tree transformation languages yield(DT-
FST(Y)) is closed under deterministic gsm mappings.

Proof. Let Z and A be ranked alphabets with e e IEo and e e Ao. Let S = (K, Zo
- {e}, Ao - {e}, 6, qo,F) be a deterministic gsm (for notation, see [10, sections 9.3
and 12.3]). We shall show that there exists a deterministic top-downfst T with
regular look-ahead such that, for every t e T~:, if yield(t) is not accepted by S, then t

302 J. E N G E L F R I E T

is not accepted by T, and if yield(t) is accepted by S, then so is t by T and
yield(T(t)) = S(yield(t)). Consequently, for any tree language L _ Tz, yield(T(L))
= S(yield(L)). The theorem then easily follows from the closure of DTR-FST
under composition (Theorem 2.11 (2)).

T is constructed as follows (the construction being a variation on a known
theme). Let, for ql, q2 eK, R(ql , q2) denote the recognizable tree language
consisting of all trees t ~ Tz such that 6(q 1, yield(t)) = (q2, w) for some output
string w~(Ao-{e})* (thus, when started in state ql, S arrives in state q2 after
processing yield(t)). Recognizability of R(q 1, q 2) follows from a straight forward
extension, to handle e, of [13, section 3, Lemma 2]. Let now T = (E, A, Q, Qe, R) ,
where Q = (K xK) w {q~} (with qs new), Q~ = {qs} and the rules of R are defined as
follows.
(1) For k >_ 1, tre ~k and ql, q2 qk + 1 ~K, the rule (q l, qk + 1) (t r (X l • • • Xk))

tr((ql, q2) (X1) (q2, q3) (X 2) " " " (qk, qk+ 1) (X R)) i s in R, where the range of
variable x i is D(xi) = R(q i, qi . l).

(2) For creEo-{e } and (ql, q2)EK xK, if 6(ql, t~) = (q2, w) for some we(Ao
- {e})*, then the rule (ql, q2) (t~) ~ t is in R, where t is some tree in T~ such
that yield(t) = w (note that, if w = ,~, one can take t = e).

(3) For q aK, the rule (q, q) (e) -~ e is in R.
(4) For k >_ 1, o ' e E k and ql qk+ 1 eK, if ql = qo and qk+ 1 e F , then the rule

q~(g(x i • • • Xk)) ~ tr((q 1, q 2) (X 1) . • • (qk, qk + 1) (Xk)) is in R, where the range
of x i is R(q i, q~+l).

(5) For ~ ~ E o - {e}, if 6(qo, tr) = (qf, w) for some ql ~F and w e (A o - {e})*, then
the rule q~(o-) ~ t is in R, where t is a tree such that yield(t) = w.

(6) If qo ~F, then q~(e) -~ e is in R.
This ends the construction of T. It should be clear that T is deterministic and

that T satisfies the requirements. []
Note that it follows from this theorem that yield(DT-FST(~q~)) is closed under

string homomorphisms and intersection with a regular language.
We finally mention that these results can directly be applied to certain classes

of Lindenmayer languages (see also [-1]).
Let M O N be the class of monadic recognizable tree languages (a tree language

is monadic if all symbols appearing in its trees are of rank 0 or 1 ; in [8] the
number of symbols of rank 0 is restricted to one, but this is not essential for what
follows).

It was shown in [1, 5, 8] that E T O L = y ie ld(T-FST(MON)) and E D T O L
= yield(DT-FST(MON)), where E T O L and E D T O L are classes of Lindenmayer
languages defined in for instance [9]. Thus, since M O N is obviously closed under
DBQREL, Corollary 4.5 implies the well known fact that (modulo 2) E T O L and
E D T O L languages can be generated without 2-rules. From Theorem 4.6 we
directly obtain the following useful result (cf. [6]).

COROLLARY 4.7. E D T O L is closed under deterministic gsm mappinos. []
For any ~L~ _c M O N (with certain closure properties) yield(T-FST(.L~)) and

yield(DT-FST(.L~)) are equal to the ~-controlled E T O L languages and the .,q~-
controlled E D T O L languages respectively (see [2]; for L ~ , only those
sequences of tables which are in Lmay be used in the generation of the E T O L

Top-down Tree Transducers with Regular Look-ahead 303

language) . It fo l lows tha t the a b o v e resul ts a re a l so app l i cab l e to c o n t r o l l e d

E T O L and E D T O L l anguages .

REFERENCES

[1] A. ARNOLD and M. DAUCHET, Transductions de forets regulieres monadiques; forets
coregulieres, RAIRO 10 (1976), 5--28.

[2] P. R. J. ASVELD, Controlled iteration grammars and full hyper-AFL's, Memoradum 114,
Technical University Twente, Holland, 1976.

[3l B. S. BAKER, Tree transductions and families of tree languages, Ph.D. Thesis, Harvard
University, Report TR-9-73, t973 (also: 5th Theory of Computing, 200-206).

[4] K. Ct;LIK II and R. COnEN, LR-regular grammars--an extension of LR(k) grammars, JCSS 7
(1973), 66-96.

[5] P. J. DOWNEY, Tree transducers and ETOL tree systems (abstract), Conference on Formal
Languages, Automata and Development, Noordwijkerhout, Holland, 1975.

[6] A. ERRENFEUCHT and G. ROZENBER6, On inverse homomorphic images of deterministic ETOL
languages, LO~OS 13, Utrecht University, Holland, 1974.

[7] J. ENGELFRIET, Bottom-up and top-down tree transformations--a comparison, Math. Syst.
Theory" 9 (1975), 198-231. This paper is also referred to as BT.

18] J. ENGELFRIBT, Surface ti'ee languages and parallel derivation trees, DA1MI Report PB-44,
Aarhus University, Denmark, 1975 (to appear in Theoretical Computer Science).

[9] G.T. HERMAN and G. ROZENBERG, Developmental systems and languages, North-Holland Publ.
Co., Amsterdam, 1975.

[101 J. E. HOPCROFT and J. D. ULLMAN, Formal languages and their relation to automata, Addison-
Wesley Publ. Co., Reading, Mass., 1969.

[11] L. S. LEVY and A. K. Josl-n, Some results in tree automata, Math. Syst. Theory 6 (1973),
334-342.

[12] W. F. OGDEN and W. C. ROUNDS, Composition of n transducers, 4th Syrup. on Theory of
Computing, 1972, pp. 198-206.

[13] W. C. ROUNDS, Mappings and grammars on trees, Math. Syst. Theory 4 ((1970), 257-287.
[14] J. W. THATCHER, Generalized z sequential machine maps, JCSS 4 (1970), 339-367.
[15] J. W. THATCHER, Tree automata: an informal survey, in: Currents in the Theory of Computing

(ed. A. V. Aho), Prentice-Hall, 1973, pp. 143-172.
[16] M. DAUCHET, Transductions inversibles deforets, These, Univ. de Lille, France, 1975.

Received September 18, 1975 and in rev&ed form December 2, 1976.

