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Abstract

This review presents the first systematic treatment of the voluminous literature on the theory of polycondensation. Processes

for obtaining homo- and copolymers with linear and branched macromolecules are considered. Emphasis is on a thorough

discussion of various polycondensation models, and the methods of their solution for the calculation of the statistical

characteristics of the chemical structure of polymers. The effects on these characteristics of the process modes for

thermodynamically and kinetically controlled regimes of a polycondensation are analyzed in detail.
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1. Introduction

The polycondensation method of polymer syn-

thesis is one of the most widespread means of

manufacturing high-molecular products. The ample

potentialities of this method reside in both the

impressive variety of monomers used and the wide

range of chemical reactions resulting in the formation

of macromolecules. In view of the utmost practical

importance of polycondensation it has been exten-

sively investigated in a wealth of experimental works.

A considerable body of experimental evidence

on polycondensation has been accumulated by now.

Its presentation and systematization can be found in

monographs dealing with important classes of

polycondensation polymers [1–3,10], or general

regularities of polycondensation [4–10]. However,

almost all these monographs focus on experimental

results, whereas burning problems of quantitative

theory are rather slightly covered. This deficiency

is made up to a certain extent in sections of

monographs [11,12] and reviews [13,14]. At the

same time, when designing industrial processes, the

choice of optimum performance conditions is of

critical significance. Successful realization of this

task suggests the availability of well-elaborated

quantitative theory of these processes, to enable the

development of adequate mathematical models

aimed at searching optimum technological regimes

of polycondensation.

In this review theoretical work devoted to

homophase polycondensation processes is critically

surveyed. Major attention is focused on the

discussion of the original postulates of the theory,

the illustration of the potentialities of different

methods of calculation and general problems of the

modern quantitative theory of polycondensation.

To provide a comprehensive statistical description

of the products of linear homopolycondensation, it is

enough to determine their molecular-weight distri-

bution (MWD). If a cyclization reaction is strongly

pronounced for the process, it is necessary to

additionally find the MWD of the cyclic molecules.

Copolymer molecules are known to vary not only in

the degree of polymerization (size), but also in the

fractions of monomeric units of different types

(composition). As a consequence, the inhomogeneity

of the products of copolycondensation will be defined

by the size-composition distribution (SCD). In

addition, even copolymer macromolecules identical

in size and composition may exhibit different

microstructure, characterized by the pattern of

arrangement of units in a polymer chain. When

describing statistically branched polymers, the neces-

sity arises to take into consideration that apart from

the above mentioned characteristics macromolecules
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differ also by their configurations. Specifically, they

can vary in number and lengths of lateral branches and

interjunction chains. Fortunately, for many practical

purposes there is no need to differentiate all possible

isomers.

The outlined statistical characteristics provide

insight to the physico-chemical properties of poly-

mers through the primary (i.e. configurational)

structure of macromolecules, which carries infor-

mation on possible conformations, and secondary

supramolecular structures. Hence, the main objective

of a quantitative theory of polycondensation consists

in establishing dependencies of corresponding stat-

istical parameters of the primary structure of a

polymer sample on the composition of the initial

monomer mixture, and on thermodynamic or kinetic

parameters, i.e. on the constants of equilibrium or the

rate of the reactions proceeding in the course of

polymer synthesis. The solution of this problem is

expected to furnish a means for a scientifically

grounded choice of the optimum conditions for the

synthesis of polycondensation polymers with desired

service properties.

During a polycondensation process, several

elementary reactions can proceed simultaneously.

The main reaction for chain propagation implies the

interaction of two functional groups belonging to

different molecules, resulting in the formation of an

intramolecular bond. Here, the combination of two

reacting molecules (monomers, oligomers or poly-

mers) results in the formation of one molecule, and is

often (but not necessarily) accompanied by extraction

of a low-molecular weight product. A common

feature of polycondensation is the fact that in its

course any two molecules containing interacting

functional groups in a reaction mixture are able to

enter into the condensation reaction. The reverse

reaction with respect to propagation is the degradation

of a polymer molecule. At sufficiently high values of

the equilibrium constant k of this pair of elementary

reactions degradation may be neglected, and poly-

condensation may be considered to be an irreversible

process. Conversely, at moderate value of k the

reversibility of the polycondensation becomes essen-

tial. While irreversible polycondensation is always

nonequilibrium, reversible polycondensation may

proceed under either equilibrium or nonequilibrium

conditions. In order to perform polycondensation in

the equilibrium regime, it is necessary to remove low-

molecular by-product from the reaction zone slowly

enough to ensure for the system the possibility to be at

every instant in a state of thermodynamic equilibrium,

corresponding to the current concentration of the by-

product. The rate of its removal from the reaction

zone is responsible for the overall rate of such an

equilibrium polycondensation. A reversible polycon-

densation will proceed under nonequilibrium regime

when the rate of the by-product removal is compar-

able with that of its formation during the condensation

reaction.

Along with the propagation and degradation of

polymer molecules in the course of polycondensation,

other elementary reactions are also possible, such as

interchain exchange, termination and intramolecular

cyclization. The interchain exchange reaction exert-

ing no influence on the number average degree of

polymerization can predetermine to a great extent

both the MWD and SCD. There exist two types of

exchange reactions. For the first of them an elemen-

tary act consists in the interaction of a terminal

functional group with an intramolecular bond,

whereas for the second one this role is played by

mutual interaction of a couple of such bonds. When

theoretically describing reversible polycondensation,

in addition to the terminal functional groups (for

instance, hydroxyl, carboxyl and amine groups), one

should consider intramolecular bonds as ‘internal’

functional groups (e.g. ester or amide groups),

because they participate in degradation and exchange

elementary reactions. Termination reactions inherent

in polycondensation consist of chemical deactivation

of terminal functional groups. They are often caused

by the interaction of these with monofunctional

compounds, either introduced deliberately or present

as impurities in the mixture. Under intramolecular

cyclization, both of the reacting functional groups are

on the same molecule. Consequently, such a reaction

contributes to the consumption of these groups

concentration, but does not lead to an increase of

the polymer molecular weight. When carrying out

practical calculations, not all elementary reactions

should necessarily be taken into account, inasmuch as

many of them proceed in such a moderate way under

the conditions of particular process that they may be

neglected for the construction of kinetic scheme of the

process.
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Treatments to compute the statistical character-

istics of the primary structure of polycondensation

products generally apply three principle approaches:

kinetic, thermodynamic and statistical [11–14]. The

first two consist in deriving and solving the material

balance equations (kinetic approach) or chemical

equilibrium equations (thermodynamic approach) for

the concentrations of molecules involved in the

process. Under the third approach, the fractions of

molecules with specified configuration at fixed instant

are calculated. This fraction is identified with the

probability for a randomly chosen molecule to have

the corresponding configuration. Different modifi-

cations of the statistical approach are in use for this

calculation. Noteworthy, recourse can be made to

several versions of the statistical approach for the

quantitative description of even the same class of

polycondensation processes. In the most convenient

of these versions a macromolecule is regarded as an

individual realization of a particular stochastic

process of conventional progression, or movement,

along a polymer molecule. These realizations can be

calculated using the methods of the theory of the

corresponding stochastic process.

The statistical method for the calculation of a

polycondensation process was pioneered by Flory

about half a century ago [11], and thereafter gained

worldwide recognition as a quantitative description

for a variety of both linear and branched polymers. An

indisputable advantage of the statistical approach

consists in its ability to provide an exhaustive and

straightforward description of the configurational

structure of macromolecules in terms of certain

probability parameters. However, the choice of the

stochastic process for the description of the products

of a particular polycondensation system cannot be

fulfilled in principle within the framework of the

statistical method itself. The solution to this problem

is provided only by kinetic and thermodynamic

approaches, which enable simultaneous expression

of the probability parameters of the stochastic process

of interest through corresponding kinetic and equili-

brium constants, the concentration of the reagents and

other measurable quantities.

A key feature of the kinetic approach lays in the

fact that its application implies the solution of an

infinite set of material balance equations, due to

infinitely large number of reagents. The fundamental

distinction from traditional chemical kinetics of low-

molecular compounds resides in this circumstance. It

is of prime importance that the kinetic equations of

polycondensation are written down for the concen-

tration of isomers varying in number of monomeric

units and functional groups of different types, rather

than for the concentrations of molecules of individual

chemical compounds. The solution of these equations

makes it possible to find the MWD or SCD, whose fit

to those obtained by the statistical method testifies to

the validity of the latter.

It is necessary to use the general principles of

statistical physics and chemical thermodynamics,

particularly, the detailed equilibrium principle, for a

rigorous assessment of the applicability of a specific

modification of the statistical approach to the

description of the primary configurational structure

of the equilibrium polycondensation products. Thus,

the probability to find an arbitrary macromolecule in

an equilibrium system is governed by the free energy

alteration due to the formation of all its intramolecular

bonds. In accordance with the detailed equilibrium

principle, this probability does not depend on the

sequence of the formation of these bonds, i.e. on the

previous history of a system. Proceeding from general

thermodynamic relationships, it is possible to express

the free energy evolution during the formation of

intramolecular bonds through the equilibrium con-

stants of the respective elementary reactions corre-

sponding to the stoichiometric scheme of the process

in hand. The probability parameters employed in the

statistical approach may then be determined in terms

of these constants.

It is possible to clearly distinguish two stages for

the evolution of the polycondensation theory. The first

of them, originated by the fundamental work by Flory

[11], only addressed systems which will be referred to

as ideal. Furthermore, intramolecular reactions are

neglected, whereas intermolecular reactions are

assumed to obey the Flory principle. According to

this basic principle, the reactivity of a functional

group of specified type in every elementary reaction is

the same, irrespective of the molecule to which this

group belongs or its location in that molecule. The

ideal polycondensation model, used extensively in the

majority of published theoretical studies, has per-

mitted calculation by different methods of a variety of

statistical characteristics of the products of the most
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general polycondensation processes with participation

of any number of monomers of an arbitrary function-

ality, and with different type functional groups. The

task of the elaboration of the theory of ideal

polycondensation may be regarded as basically

fulfilled. The next stage in the development of

quantitative theory of polycondensation consists in

the description of systems other than ideal ones.

Attempts to describe such systems are generally

concerned with overcoming difficulties of a funda-

mental nature. It is highly important that the

dissimilarity of the factors contradicting the assump-

tions which underlay the ideal polycondensation

model prevent a unified approach for the description

of nonideal polycondensation. Hence, this stage of the

theoretical development is presently far from

complete.

Let us indicate the physical prerequisites under-

lying the original postulates of the model of ideal

polycondensation systems, and reveal some of the

reasons which can be responsible for the violation of

those postulates. First, it should be stressed that

polycondensation reactions in the liquid phase are

comparatively slow, and are normally not diffusion-

controlled. Intermolecular reactions are second order,

whereas intramolecular ones are first order. This is

conducive to the increase of the relative fraction of the

latter via dilution of the reaction mixture by an inert

solvent. The condition is readily achievable in which

the cyclization reactions may be neglected for the

description of the polycondensation kinetics. The

probability in a unit of time that an arbitrarily chosen

functional group of a macromolecule will enter into

competing condensation reactions of inter- or intra-

molecular type equals, respectively, kC and k0; where

k and k0 represent the rate constants of bi- and

monomolecular reactions, respectively, and C stands

for the concentration of functional groups in the

system. The quantity k0 is proportional to the number

of such conformations of the initial molecule for

which in a close vicinity of the group chosen one more

group belonging to this molecule is contained. In

other words, the constant k0 is proportional to the

effective local concentration c; created in the vicinity

of a chosen group by all the remaining groups of a

polymer molecule due to its conformational

rearrangements. Because the system is supposed to

be in conformational equilibrium, the value of c

coincides with the concentration of corresponding

conformers. If functional groups in a molecule are

separated by sufficiently large number of intramole-

cular bonds the proportionality coefficient between k0

and c is equal to k; since the probabilities of an

elementary act of intra- and intermolecular reactions

will be the same in that case. Consequently, the

condition for neglecting intramolecular cyclization

reactions, k0 p kc; holds at c p C: The value of C

decreases as the system is diluted, while c is defined

by the configuration and segmental mobility (flexi-

bility) of a polymer molecule, and in many systems is

virtually unaffected by dilution. If the rates of inverse

reactions are taken to be independent of confor-

mational structure of molecules, all the above

reasoning with respect to the rate constants of the

reactions of condensation may be entirely transferred

to the corresponding equilibrium constants k0 and k. In

particular, when the functional groups entering into

the reaction are separated by many intramolecular

bonds, the ratio k0/k is equal to the effective

concentration c: Under equilibrium, the ratio c=C

controls that contribution in the change of a

macromolecule free energy at specified intramolecu-

lar reaction that is due to the decrease of the number of

conformations of the molecule in the course of this

reaction. Therefore, the value of c is unambiguously

prescribed by the conformational entropy of a

macromolecule, and may be calculated by thermo-

dynamic methods.

By analogy with the conformational properties of

macromolecules, conceivable reasons for the viola-

tion of the Flory principle may be divided into two

classes: short- and long-range effects. Among the first,

there are the so-called substitution effects due to

steric, inductive or other kinds of the influence of

reacted functional groups upon the reactivity of

neighboring unreacted functional groups. Such effects

are referred to as the first shell substitution effects

(FSSE) provided a group reactivity is governed by the

state of the functional groups involved exclusively in

the monomeric unit which this group is attached to.

Such an effect is peculiar to the polycondensation of

many aromatic monomers. Sometimes allowance

must be made for the possibility of higher order

substitution effects when the group reactivity is acted

upon by the states of the groups attached to

neighboring units.
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The calculation of polycondensation systems

taking account of the substitution effect can be carried

out using an extended Flory principle [12,13].

According to this principle, any functional group

reactivity in a molecule can be controlled solely by the

microstructure of neighboring fragments of the

polymer molecule and can change during the process

influenced by this microstructure evolution by the

state of neighboring groups. In the FSSE model, the

role of a kinetically independent fragment of a

polymer molecule is played by a monomeric unit,

with adjacent functional groups and chemical bonds

connecting this unit with neighboring ones. The set of

these bonds unambiguously specifies this fragment

configuration, i.e. the type and kind of corresponding

monad. Hence, under thermodynamic and kinetic

approaches to the consideration of polycondensation

of monomers with dependent functional groups, it

would suffice to distinguish polymer molecules in the

framework of the FSSE model by the number of

monads of a given type and kind.

The long-range effects can be conditioned by the

possible influence of the solvent on the spatial

conformations of macromolecules and, as a conse-

quence, on the reactivity of their functional groups.

For example, shrinking of macromolecules occurring

in passing from thermodynamically ‘good’ to ‘poor’

solvents may lead to a dramatic decrease in the

accessibility of functional groups. Moreover, this

effect can result in a total loss of the reactivity by

these groups due to their intramolecular ‘burying’.

The account in the polycondensation theory of such

long-range effects, where the accessibility of every

individual group for its reactions with other groups is

prescribed by conformational–configurational struc-

ture of an entire macromolecule, is a far more

complicated problem as compared to that arising

when describing the short-range effects.

A quantitative theory of polycondensation in

which the long-range effects would be rigorously

considered is virtually not available. The difficulties

encountered in elaborating such a theory are due to the

inapplicability of the Flory principle, even in its

extended version. A theory of this a kind calls for

consideration of the conformational–configurational

statistics of reacting the molecules. As for the

intramolecular reactions, these latter unlike the

intermolecular ones are, in principle, impossible to

calculate within the framework of a theory allowing

for just short-range effects. This is obvious since the

chemical interaction of any pair of functional groups

belonging to a macromolecule depends essentially on

their relative positions, as well as on the possible set

of equilibrium conformations for this molecule. They

are responsible for the probability that groups on a

given molecule may draw close enough to ensure a

chemical reaction.

An intrinsic peculiarity of ideal polycondensation

systems ensues from the random character of the

reactions proceeding in them. All of the statistical

characteristics of the products of ideal polycondensa-

tion at every instant are independent of the previous

history of the system. It is not essential whether the

process proceeds under equilibrium conditions or not,

nor whether destruction and transfer reactions take

place or the process is completely irreversible. These

characteristics are entirely controlled by the concen-

trations of functional groups and intramolecular bonds

of each type at a particular time. This ‘universality’

principle when describing such systems by a statisti-

cal method provides a chance to choose the number of

functional groups and bonds of each type in an

arbitrary macromolecule as variables unambiguously

setting its probability [12]. The fact that the state of a

system in a nonequilibrium process does not depend

on previous history (as in equilibrium) is exclusively

due to the ideality of these processes. When the

ideality is broken, the probability for the formation of

a particular molecule in the course of nonequilibrium

polycondensation is dependent on the sequence of the

formation of bonds in that molecule. Hence, when

invoking the statistical method for the description of

the products of nonideal polycondensation processes

in the absence of the equilibrium, the correctness of

this method in the framework of the model chosen

should be always verified by analysis of the solutions

of corresponding kinetic equations.

The traditional examination of polycondensation is

generally restricted to closed systems, in which

neither input of monomers nor output of the reaction

products takes place in the course of chemical

transformations. The investigation of polycondensa-

tion in semi-open and continuous-flow reactor rep-

resents two limiting cases of open systems is of

special practical significance. In both, the input of

monomers into the reactor is performed during
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the polymerization. However, in the first case the rate

of the output of polymers is zero, while in the second

one it is equal to the rate of the input of the initial

compounds. Both of these polycondensation pro-

cesses exhibit a number of indisputable advantages

compared to closed systems processes. This is

especially true for the continuous-flow reactors

extensively used in industry for many polymerizations

[4]. It is worth emphasizing that the MWD, SCD and

structure of molecules formed in the course of

polycondensation are controlled, along with the

stoichiometric, thermodynamic and kinetic par-

ameters of a reaction system, by the way the process

is conducted. Pronounced differences in the service

properties of polymers synthesized in closed and

continuous-flow systems are known to occur for the

same values of the stoichiometric, thermodynamic

and kinetic parameters.

Hereafter, we shall designate different monomers

by a sequence of letters, the first of which, (R,S,…),

will correspond to a monomeric unit, whereas each of

the subsequent letters, (A,B,…), will define a

particular type of functional groups in a monomer. If

this monomer comprises several identical groups their

number will be specified by a superscript appearing

next to corresponding letter.

2. Linear polycondensation

2.1. Classification

Bifunctional monomers are generally used to

prepare linear macromolecules. Homopolycondensa-

tion, heteropolycondensation and copolycondensation

are distinguished, depending on the number and type

of the monomers. The products of the first two

processes are homopolymers with an elementary unit

comprising, respectively, one or two monomeric

units. The products of the third process are copoly-

mers, with macromolecules varying in size, compo-

sition and microstructure. The processes of obtaining

either polyamides from amino acids (initial monomer

RAB, with only A and B interacting) or ethers from

glycols (monomer RA2) are examples of a homo-

polycondensation. Under a heteropolycondensation

the initial mixture is normally composed of two

symmetric monomers, RA2 and SB2, with A and B

being different type groups. However, processes of a

more general type are also plausible when the groups

of the same type in each asymmetric monomer,

RA1A2 and SB1B2, differ in reactivities. Among

widespread heteropolycondensation processes are the

formation of polyamides from diamines and dicar-

boxylic acids and the synthesis of esters from

dicarboxylic acid chlorides and glycols. Their macro-

molecules contain regularly alternating monomeric

units R and S, whose dyad RS plays the role of the

elementary unit of the homopolymer being formed.

Except for the heteropolycondensation, all pro-

cesses for which the number of monomers involved is

more than one refer to a copolycondensation. The

simplest cases of linear copolycondensation are bi-

and interbipolycondensation. As an example of the

first one a process can be mentioned, where at least

one of the two initial monomers (e.g. amino acid) is

able under given conditions to form the homopoly-

mer. In the second process three monomers are

simultaneously involved, for instance, S1A2
1; S2A2

2

and IB2. Essentially the first two, termed comono-

mers, do not react one with another, while each of

them is capable of entering into heteropolycondensa-

tion with the third component, referred to as an

intermonomer. The reactivities of the functional

groups of any of monomers may, generally speaking,

be different. Such processes with an arbitrary number

of comonomers are known as intercopolycondensa-

tion. In the following, heteropolycondensation and

intercopolycondensation will refer to processes with

using symmetric monomers unless otherwise

specified.

2.2. Ideal homo- and heteropolycondensation

The first theoretical works dealing with linear

polycondensation appeared in the late thirties

[15,16]. Flory was the first [15] who managed to

calculate the MWD of the products of homo- and

heteropolycondensation by the statistical method,

with the neglect of cyclization reactions, using his

fundamental principle. The number average degree

of polymerization, PN; the weight function of the

distribution fWðlÞ of molecules with degree of

polymerization l; as well as the polydispersity

coefficient K; defining the width of this MWD were
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calculated [15] for homopolycondensation products:

PN ¼ ð1 2 pÞ21
; fWðlÞ ¼ ð1 2 pÞ2lpl21

;

K ¼ 1 þ p

ð1Þ

These statistical characteristics are controlled by

the sole parameter p; equal to the functional group

conversion. The same relationships are applicable for

the description of the products of the heteropoly-

condensation of an equimolar mixture of monomers,

while the corresponding formulas were also derived

for the nonequimolar initial mixtures [15]. In the

latter case, the formula aib
l ði ¼ 1; 2; 3Þ characterizes

the MWD of each of the three kinds of molecules

differing by the type of terminal functional groups,

every kind having its individual value of parameters

ai: Such a distribution is identified as an extended

Flory distribution. In order to calculate the distri-

bution of polymer molecules for their molecular

weight, rather than for their chemical size, it is

necessary, to take account of the dependence of the

statistical parameters ai on the molecular weights of

monomers [17,18].

Later on these relationships have been repeatedly

rederived in a variety of ways. Thus, Schulz [16],

proceeding from the principle of the detailed equili-

brium calculated the MWD of the products of

equilibrium homopolycondensation, found the theor-

etical dependence of the molecular weight of a

polymer on the propagation reaction equilibrium

constant. This problem was later solved indepen-

dently by Elias [19]. Subsequently, Meggy [20]

extended these results to an equilibrium heteropoly-

condensation. In the early 1940s, Flory [21] proposed

two variants of the thermodynamic method to obtain

the MWD in equilibrium systems. Various modifi-

cations of the statistical method have been employed

for calculation of the most probable Flory distribution

(1). In particular, they proceed from consideration of a

one-dimensional process of a random walk [22] and a

convolution integral [23]. The kinetic method has also

been extensively applied when calculating the poly-

mer MWD. The Flory distribution (1) was obtained by

this method for products of irreversible [24] and

reversible [25] polycondensation in closed system, as

well as for reversible [26] and equilibrium [27]

polycondensation, with allowance for the removal of a

by-product from the reaction zone. An illustration of

the danger of mere speculation in the quantitative

theory of polycondensation is the claim [28] that the

Flory distribution (1) holds only for an irreversible

polycondensation, whereas the account in the theory

of the degradation reaction leads to MWD other than

distribution equation (1). This assertion is erroneous

[25,26,29], contradicting to the results of a rigorous

kinetic consideration of reversible polycondensation

[25,26].

Kinetic schemes adopted in papers [24–27] took

no account of exchange reactions. The latter have

been claimed [30] to be responsible for a considerable

narrowing of the MWD as compared to the Flory

distribution. However, this claim was found incorrect

[31] upon simplified kinetic derivation of the MWD in

a system where an exchange reaction (such as

alcoholysis or acidolysis) proceeds, and the propa-

gation and destruction of macromolecules is absent.

The MWD of the polymer obtained in this equilibrium

system was shown to be described by the distribution

(1). Consideration of the general kinetic scheme of

reversible homopolycondensation [32,33] with allow-

ance for all the above-mentioned reactions discloses

that the products of such a process at all its stages will

be adequately characterized by the Flory distribution.

Although an analogous general kinetic consideration

has not been carried out for a heteropolycondensation,

there are strong grounds for believing that with an

equimolar mixture of initial monomers (this being the

only possibility for high molecular products to be

obtained), the MWD of a polymer prepared for an

arbitrary reversible process will be defined by formula

(1) as well. The proof of this statement for two

opposite limiting cases, i.e. irreversible and equili-

brium heteropolycondensation, supports this conjec-

ture [12,13].

Theoretical analysis of the effects of the chain

termination reaction on the polymer statistical charac-

teristics was undertaken in papers [34–38]. The first

to calculate the MWD and values of PN and K for

homo- and heteropolycondensation products was

Case [34], using the statistical method. He established

that the chain termination reaction does not affect the

form of the polymer MWD, but controls the molecular

weight. This inference was confirmed later by the

kinetic method [35]. Sokolov et al. [36] have found

the value of PN analytically and numerically for

different kinetic schemes and mechanisms of
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the functional groups’ deactivation. In particular, they

examined the chain termination reaction by either

impurities or a by-product released during the process.

The chain of kinetic equations for the concentrations

of macromolecules involved in an irreversible homo-

polycondensation has been written down [37,38], with

allowance for the chain termination by the impurity.

No exact solution of these equations has been reported

by the authors, although some approximate results

showing that the chain termination reaction may lead

sometimes to a substantial narrowing of the MWD can

be found in these papers.

There are statistical [34,39] and kinetic [40–42]

considerations of heteropolycondensation of two

monomers, one of which contains groups of different

reactivity. It was revealed that the MWD of the

products of such a process obeys an extended Flory

distribution, which (at the same value of PN) will be

the wider the more strongly pronounced is the

distinction in reactivity of the functional groups.

Mathematical modeling of a polycondensation can

be highly efficient when developing new processes of

a polymer synthesis, provided the theoretical results

are grounded experimentally and realized as a

computer program. An illustrative example of such

a comprehensive approach is the series of publications

by Costa and Villermaux [43–45], devoted to the

investigation of polyesterification of adipic acid and

triethyleneglycol.

Summing up the discussion of the quantitative

theory of the ideal homo- and heteropolycondensa-

tion, it can be stated with reasonable confidence that

no unsettled problems remain. However, many

systems are known that are not amenable to descrip-

tion by an ideal model. The simplest criterion here is

the value of the polydispersity coefficient K: Since for

ideal systems its value must be close to two, any

appreciable deviation from this value signals violation

of the conditions of ideality. The treatment of the

experimental data reported, for example, in reviews

[46,47] points to the existence of nonideal systems,

along with ideal ones. A polymer MWD in the former

can prove wider, K . 2; or narrower, K , 2; as

compared to the Flory distribution (1). The violation

of the ideality of a kinetic model may happen because

either the Flory principle no longer holds or a

macrocyclization reaction is markedly pronounced.

Sections 2.3 and 2.4 discuss theoretical works taking

account of each of these effects.

2.3. Models allowing for the violation of the Flory

principle

Likely reasons for violations of the Flory principle

may be attributed either to the long- or short-range

effects. Among the first category are substitution

effects due to steric and/or induction influence of the

reacted functional groups on the reactivity of the

neighboring unreacted groups. The simplest among

the kinetic models taking such an influence into

account is the FSSE model. According to this model,

the reactivities of the functional groups of monomers

differ from those of the rest of the molecules in the

system, with any reactions between the latter

presumed to obey the Flory principle. Monomers

with a latent functionality like phthalic anhydride also

can be considered as bifunctional monomers having

kinetically dependent functional groups.

The specific polymeric nature of reagents is

distinctly manifested in the long-range effects. The

reactivity of a functional group positioned at the end

of a polymer molecule is acted upon by fragments

located over its entire length. A typical example is the

intramolecular catalysis by active centers, that despite

being separated from the terminal group by a large

number of monomeric units, still fall within its

vicinity as a result of conformational rearrangements

of a polymer chain. When such long-range effects take

place the reactivity of this group may be controlled by

the number of units in a macromolecule [13].

2.3.1. The short-range effects

Almost all theoretical work accounting for short-

range effects have been accomplished within the

framework of the FSSE model. This model was

introduced by Case [34] who presented the

expressions for the MWD and its statistical moments

for the products of a heteropolycondensation of two

monomers. The first of them, RA2, has dependent

groups, unlike the second monomer, SB2, for which

the groups are independent. The MWD of polymers

for this system is described by the extended Flory

distribution, analogous to that obtained under an ideal

heteropolycondensation of asymmetric RA1A2 and

symmetric SB2 monomers. Nonideal systems showing
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such a property were called ‘quasi-ideal’ [48]. A

rigorous kinetic substantiation of the foregoing

expressions for the MWD that Case [34] presented

using the statistical method, was carried out later [49]

for the irreversible heteropolycondensation. An ana-

logous substantiation evidently works for any revers-

ible regime of a polycondensation in the quasi-ideal

system due to the existence of an equivalent ideal

system. The appearance of the MWD of the latter up

to the values of the parameters of this distribution is

invariant with respect to the presence of the

degradation and exchange reactions. In papers [41,

49,50] the dependence is analyzed of the polydisper-

sity coefficient on the conversion of functional groups

as well as on the values of stoichiometric and kinetic

parameters of an irreversible quasi-ideal heteropoly-

condensation. The quantity ~K that characterizes the

polydispersity of the MWD of only the reaction

products is best suited for such an analysis of systems

described by the FSSE model. The exclusion of the

monomer from the consideration in the framework of

this model comes as no surprise because, unlike the

case with an ideal polycondensation, the monomer

plays a specific role as compared with other molecules

in the reaction system. The value of the modified

polydispersity coefficient ~K never exceeds two and is

closer to this value the greater is PN: For equimolar

initial mixture of monomers, ~K does not deviate

substantially from two, irrespective of the distinction

in the reactivity of the first and the second groups of

monomer RA2 [41]. Some attempts have been made to

rederive MWD expressions [51] presented in the

literature [34,49].

An irreversible heteropolycondensation for which

both monomers comprise dependent functional

groups is considered in papers [52–54]. Sokolov

et al. [52] calculated PN at different values of four

kinetic constants, which in the model chosen describe

all plausible chain propagation reactions. The calcu-

lations disclosed that the greater the reactivity of the

second group of monomers as compared to the first,

the more high-molecular polymer can be obtained for

a given conversion. When the above distinction in the

reactivities becomes rather pronounced in both

monomers, the polycondensation process exhibits

the features inherent in a chain polymerization. The

key feature is that high-molecular products can be

obtained in a nonstoichiometric mixture of initial

monomers, and under incomplete conversion. Poly-

condensation systems of this kind have not been found

experimentally. Case [53,54] managed to obtain the

MWD of a polymer by the statistical method for the

most general case of the irreversible heteropolycon-

densation, for which the groups of both monomers are

not only dependent, but also differ in initial reactivity.

This MWD is the extended Flory distribution,

analogous to that derived for the heteropolycondensa-

tion of monomers with independent groups. However,

a kinetic analysis indicates that the system examined

by Case [53,54] is not quasi-ideal. In other words, the

expressions he derived in these works for the MWD of

the products of an irreversible polycondensation are

erroneous. Moreover, even the heteropolycondensa-

tion of two symmetric monomers RA2 þ SB2 does not

exhibit the quasi-ideality property when both of them

contain dependent functional groups [55,56]. That is

why in such truly nonideal systems, unlike in quasi-

ideal ones, it is reasonable to expect that, contrary to

the Flory distribution, the expressions for the MWD

will depend on the intensity of the degradation and

exchange reactions, as well as on the regime of the

process.

The simplest example of a truly nonideal system is

the irreversible homopolycondensation of monomer

RA2 described by the FSSE model. This model is

characterized by three kinetic parameters, k0; k1 and

k2: They are the rate constants of the reactions

between functional groups of two monomers, mono-

mer with polymer and two polymers, respectively.

Using this example, Kuchanov [12,48] pointed for the

first time to important peculiarities of such systems,

qualitatively distinguishing them from a quasi-ideal

ones. In particular, it was demonstrated that the Flory

distribution describing the products of an equilibrium

polycondensation in such a system does not satisfy the

set of the kinetic equations of the irreversible

polycondensation under any values of the kinetic

parameters (apart from the trivial case corresponding

to the absence of the substitution effect). Analytical

and numerical examination of this set of equations

[12,48] revealed that the character of the dependence

of the modified polydispersity coefficient ~K on the

polymer molecular weight may qualitatively differ

from that under equilibrium polycondensation. For

this regime, ~K always approaches two with increasing

PN: Conversely, under irreversible polycondensation,
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when PN !1 there are kinetic parameters for a truly

nonideal system for which the limiting value of ~K will

be noticeably more than two.

Calculations of the time evolution of the number

and weight average degrees of polymerization

(unmodified and modified), as well as the MWD,

has been reported [57–59] for an irreversible homo-

polycondensation in the framework of the simplified

FSSE model. This model contains one kinetic

parameter less than its general variant. Here, two

different modifications of the simplified model were

introduced. In the framework of the first of them

[57,58], the rate constant of the reaction between two

monomers was assumed to be distinct from that of the

mutual interaction of all other pairs of molecules. In

the second model [59], an analogous assumption was

made with respect to the rate constant of the reaction

of a monomer with any other molecule of an l-mer. Of

special interest is the oscillating character of the

MWD predicted by the theory for some values of

kinetic parameters [58,59]. The period of these

oscillations, for which the amplitude decreases with

increasing conversion, is one monomeric unit. Further

development of the theory of nonideal homopolycon-

densation described by the Gupta model [57] enabled

Park [60] to obtain analytical expressions for the

concentrations of monomers and dimers, as well as PN

and PW of polymer products.

A more detailed analytical and numerical results

on the investigation of the irreversible homopolycon-

densation of monomer RA2 was published in which

the kinetic method was invoked to theoretically

analyze MWD in the framework of the FSSE model

[61]. This in-depth analysis provided an answer to the

centrally important problem of the applicability of the

statistical method for the calculation of the MWD of

the polymer molecules in the system under examin-

ation. The stochastic process of conventional move-

ment along polymer chain considered under the

statistical method has one regular and one absorbing

state. The transition from one monomeric unit to the

other and the abandoning the limits of a polymer

molecule correspond, respectively, to the falling into

the first and the second of these states. For an ideal

model, the foregoing stochastic process is a Markov

chain with probability p of transition into the regular

state. As applied to the FSSE model this stochastic

process was rigorously proved [61] to be non

Markovian since the probability of such a transition

turns out to be predetermined by all preceding states.

It is essential, however, that this dependence normally

decays at scales np several monomeric units long.

Hence, to numerically calculate the MWD of real

polymers, one has to solve a set of about np

differential equations, while under the straightforward

kinetic method the number of equations to be solved is

about PN q np:

The main conclusions of the theoretical analysis of

the FSSE model equations may be formulated as

follows [61]. The distribution fWðlÞ of the polymer

length l within the oligomer region, for which l is less

than np; may vary in appearance depending on the

values of the kinetic parameters k ¼ k1=k0; k0 ¼ k2=k0;

and the conversion p: In particular, this distribution

can be either bimodal or oscillatory. In the second

region, with l more than np; the MWD is described by

the Flory distribution, such that the sole parameter in

that distribution is specified by the values of k; k0 and

p: The same qualitative peculiarities seem to be

inherent in the MWD calculated under consideration

of a nonideal polycondensation in the framework of

models allowing for the higher-order substitution

effects.

More than a decade separates the publication [61]

and papers by Irzhak et al. [62,63], in which the same

FSSE homopolycondensation model was addressed.

They reformulated the calculation of the MWD in

terms of small fragments of polymer molecules, called

‘bond blocks’. The authors found the distribution

fWðlÞ by numerically solving the set of kinetic

equations for these fragments. Using this approach,

it became possible not only to reestablish an

oscillating MWD, but also to formulate the conditions

of the existence of such oscillations in terms of the

kinetic parameters k and k0:

When considering the homopolycondensation

described by the FSSE model, allowance for the

effect of the degradation reaction leads to serious

difficulties under analytical analysis of the equations

for the l-mer concentrations. Here, their degradation

as distinct from the ideal model may cause the change

not only of the parameters of the MWD, but also its

form as compared to that characterizing the products

of an irreversible polycondensation. The difficulties

arising are likely to be responsible for the absence

of analytical results obtained in the framework of
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the model. Indeed all theoretical results reported so far

on the reversible homopolycondensation of a mono-

mer with kinetically dependent functional groups

were relevant only to numerical solution of the

material balance equations for l-mers [64–66].

While Gupta et al. [64,65] proceeded from the

simplified FSSE model with k0 ¼ k; Irzhak et al.

[66] relaxed this constraint.

The quantitative theory of equilibrium polycon-

densation is far more simple than that of none-

quilibrium polycondensation because of the

applicability of fundamental thermodynamic laws.

On their basis, a general algorithm was formulated

[67] permitting one to calculate the MWD of the

products of an equilibrium polycondensation

described by the substitution effect model of arbitrary

order, and to indicate the set of independent

thermodynamic parameters for this model.

2.3.2. The long-range effects

In the papers discussed above, the role of the

solvent and the impact of the long-range volume

effects on statistical characteristics of polymers were

totally ignored. Several attempts have been under-

taken to take these effects into account in the theory of

equilibrium polycondensation [68–73]. Thus, in

papers [68–71] the equilibrium MWD of a polymer

was calculated by minimizing the free energy of the

polymer system. The expression for this was com-

plemented by a term describing the interaction of

polymer molecules with the solvent. The appearance

of this term is prescribed by the particular model of

such an interaction among those currently used in the

theory of polymer solutions. So, for the concentrated

solutions described by the Flory–Huggins lattice

model it was shown [68–70] that the MWD of the

products of the equilibrium polycondensation is

characterized by the Flory distribution. Proceeding

from other lattice models one may get other

distributions [70]. The Flory distribution always

describes the polydispersity of the products of the

equilibrium polycondensation when the free energy of

a macromolecule interacting with the solvent depends

linearly on the number of its monomeric units. Only

the Flory–Huggins model among all those considered

in paper [70] meets this condition. The equilibrium

MWD of a polymer was calculated [71–73] for dilute

solutions, for which the interaction between the units

of different chains could be neglected. The lattice

model seems to be the most suitable to determine the

free energy of a system under theoretical consider-

ation [71,72]. The MWD was found [71] to be

narrower in a bad solvent and wider in a good one, in

comparison with the Flory distribution. Besides, in a

good solvent there exists a critical value of the number

average degree of polymerization over which the

MWD becomes bimodal [72]. The sophisticated

methods of statistical physics were employed to

consider a dilute polymer solution close to

Q-conditions [73]. Interestingly, the author of this

work arrived at the conclusions opposite to those

made in paper [71]. He found the equilibrium MWD

of a polymer in a bad and a good solvent to be,

respectively, wider and narrower than the Flory

distribution. This contradiction, testifies, in particular

to the existence of a number of issues to debate and

problems to solve in quantitative investigation of the

influence of the long-range effects and the solvent on

the statistical characteristics of the products of an

equilibrium polycondensation.

This conclusion applies more emphatically to

nonequilibrium processes for which the thermodyn-

amic approach is not applicable. Here, to develop a

quantitative theory, one is supposed to determine the

dependence of the kinetic constants of elementary

reactions between functional groups on their location

in macromolecules as well as on the number of their

monomeric units. Then, it is necessary to calculate the

statistical characteristics of a polymer proceeding

from the solution of kinetic equations corresponding

to the model chosen.

There are a number of publications [60,74–82]

devoted to the calculation of the MWD of the products

of an irreversible nonideal homopolycondensation

using some empirical dependence of the constants of

elementary reactions between polymer molecules on

their lengths under the kinetic approach [60,74,75], or

the analogous dependence of the probability par-

ameters in case of the statistical approach [76–82].

So, for the constant of the reaction between polymer

molecules whose lengths are i and j the empirical

dependencies k0ðijÞ
21 [76], k0½1 2 1ði þ jÞ� [75] and

k0½1 þ 1ðijÞ� [60] were assumed. The authors of these

publications did not manage to find analytical

expressions for the MWD. Park [60] presented

expressions for the fractions of monomers and dimers
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as well as for PN and K: As for the other two models,

cumbersome approximate expressions for the frac-

tions of di-, tri- and tetra-mers [74] as well as for PN

and K [75] valid only for 1p 1 were derived.

Attempts were undertaken [75–82] to extend the

statistical Flory approach to nonideal systems for the

calculation of the MWD of the products of the ideal

polycondensation. They were grounded on the same

assumption implying that all ways of forming a

macromolecule with a given degree of polymerization

l are equiprobable. Under this assumption, the

‘history’ of its formation is of no importance. That

is why analyzing the sequential addition of monomers

one by one to the propagating chain the authors of

publications [75–82] employed the formula fN ¼

pð1Þpð2Þ· · ·pðl 2 1Þ½1 2 pðlÞ� for the number MWD of

a polymer. Then having empirically taken two- or

three-parametrical dependencies of the probability

pðlÞ of a bond formation on the degree of polymeriz-

ation l of a molecule entering into the reaction they

found the expression for the MWD of a polymer in

terms of adjustable parameters pðlÞ:

It is pertinent to stress that for nonideal systems the

equiprobability property of all conceivable ways of

the formation of a molecule with fixed length has been

rigorously substantiated only for systems under

equilibrium [67]. Such a substantiation is not

available for nonequilibrium processes. Moreover,

systems are known (for instance, irreversible homo-

polycondensation of monomer RA2 with kinetically

dependent groups) for which this property does not

hold. Consequently, the formal harnessing of the

Flory statistical approach to calculate the MWD of

nonequilibrium nonideal polycondensation products

may lead to erroneous results. This reasoning equally

applies to a derivation [76] of the MWD of the

products formed during the above polycondensation

process, in which the equiprobability property was

used implicitly.

2.3.3. Macrocyclization reactions

The foundation was laid by Jacobson and Stock-

mayer in their classical work [83] presenting a

quantitative consideration of linear polycondensation

with allowance for intramolecular reactions. They

calculated the MWDs and their statistical moments

for linear and cyclic products of equilibrium homo-

and heteropolycondensations. The calculations were

accomplished using the law of acting mass, with the

equilibrium constant of the cyclization reaction found

under the assumption that macromolecules are long

and flexible enough to have a Gaussian end-to-end

distance distribution. This means that the foregoing

theory works only for the calculation of the concen-

trations of cyclic molecules with sufficiently large

number of skeleton bonds n in the chain. Moreover,

when considering the conformational statistics of

macromolecules, the long-range effects may be

neglected only under Q-conditions. In this case

Jacobson–Stockmayer’ theory being asymptotically

exact when n ¼ ml !1 leads to dependence

kc
l , l22:5 of equilibrium constant kc

l of the cycle-

chain reaction on number l of a macromolecule. The

proportionality coefficient in this dependence is

controlled by the thermodynamic flexibility of the

macromolecule and the number m of the skeleton

bonds in a single monomeric unit. The rotational-

isomeric conformation model [84–86] enables this

coefficient to be calculated for a variety of widely

used polymers. The results ensuing from the Jacob-

son–Stockmayer theory were later derived by stat-

istical [87] and kinetic [88] methods.

Having analyzed the derivation of the expression

for constant kc
l reported in paper [83], Flory and

Semlyen [89] noticed that one of the applicability

conditions of this expression is the absence of

correlations between the orientations of the terminal

bonds under their approaching within the distance that

allows the chemical interaction [86]. These corre-

lations become stronger as l diminishes, and to take

account of them Flory and co-workers [90] put

forward a method for the calculation of kc
l incorporat-

ing empirical observations on a number of polymers

under Q-conditions.

One more factor to be necessarily included in

calculating kc
l for oligomers with a small number of

skeleton bonds is the violation of the Gaussian

approximation for the distribution of the distance

between a macromolecule ends. To calculate the

cyclization constants for such oligomers proceeding

from the rotational-isomeric model, recourse has been

made to the matrix technique [90–96], straightfor-

ward enumeration of the conformers [97] as well as to

computer simulation of chain conformations by the

Monte Carlo method [98–101]. Along with these,

there are similar papers dealing with the calculation of
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the cyclization constant for a number of polymers in

the framework of some conformational models

[102–110]. The input parameters for such calcu-

lations are only the structure characteristics of

polymer chains, such as valence angles, lengths of

interatomic bonds, potentials of internal rotation

around them. For some models, this set of parameters

is complemented by the maximum value of the

separation of terminal functional groups for their

mutual diffusion that will permit the condensation

reaction. The calculation of kc
l is possible with limited

use of adjustable empirical parameters since structural

characteristics have been measured for a variety of

polymers [86]. The values of kc
l obtained for such

calculations mostly show reasonable fit to those found

experimentally via the analysis of the data on the

MWD of the cyclic products of an equilibrium

polycondensation obtained by the NMR technique.

The results of such a comparison of the theory and

experiment are reported for many equilibrium systems

by Semlyen [102] as well as in some of the above

cited papers.

Since the cyclization constant of a macromolecule

is controlled by its equilibrium conformational set, it

is reasonable to consider the problem of the statistical

mechanical calculation of kc
l [111–113]. This permits

one to consistently include long-range volume effects

in the calculation of the partition functions of a cyclic

and linear macromolecule, the ratio of which is

proportional to the probability of the cyclization. The

literature abounds in publications addressing the

calculation of the conformational characteristics of

macromolecules using either lattice or continuous

models, incorporating volume interactions of units

positioned far apart from each other along a polymer

chain. Inasmuch as the examination of the long-range

effects is beyond the scope of this review, we will not

dwell on the publications covering this matter,

referring interested readers to reviews [114–117].

The general conclusion ensuing from the consider-

ation of the results of theoretical study of confor-

mational statistics of macromolecules performed both

analytically and by means of computer simulations

can be formulated as follows. Because of volume

effects the exponent s in asymptotic dependence

cef , l2s of effective local concentration cef of one

terminal functional group in the vicinity of the other

exceeds the value s ¼ 3=2 typical for polymer chains

under Q-conditions.

Determination of the equilibrium MWD of linear

and cyclic molecules with allowance for the long-

range effects is of prime importance for the theory of

equilibrium polycondensation. Erukhimovich [118]

presented (omitting the derivation) an expression for

the first of these distributions for the case of a dilute

polymer solution in a thermodynamically good

solvent. It follows from that expression that the

products of an equilibrium polycondensation due to

an excluded volume effect are expected to have a

polydispersity coefficient K ¼ 1:85; that is, a some-

what narrower number MWD than that for the Flory

distribution. These distributions differ qualitatively in

form, with the second of them showing its maximum

at l ¼ 0; and the first distribution attaining a

maximum at l . 0:

For an equilibrium polycondensation, upon speci-

fying the equilibrium constant kc
l of the cyclization

reaction for all l-mers, the MWDs and their statistical

moments for linear and cyclic products have been

calculated in a standard way using simple algebra

[83]. By contrast, in the nonequilibrium regime to

cope with this task, one is supposed to solve an infinite

set of differential kinetic equations that describe the

polycondensation, with the cyclization reactions

incorporated into the kinetic scheme. Note, this set

of equations is not closed, since the overall concen-

tration of the linear molecules (occurring there as a

coefficient) cannot be calculated independently,

unlike the case for an ideal polycondensation. That

is why it is necessary to make recourse to some

assumption to truncate the set of equations for the

concentrations of the linear l-mers. So, in considering

the irreversible homopolycondensation, Moravetz and

Goodman assumed that only monomer may enter the

cyclization reaction [119]. They calculated the

fraction of the monomer involved in cyclic molecules

under complete conversion of all functional groups,

depending on the sole dimensionless parameter of

their model, equal to the ratio of cef to the initial

monomer concentration. Gordon and Temple [120]

numerically solved the equations of the irreversible

heteropolycondensation with the cyclization employ-

ing the expression for the rate constant of this reaction

derived proceeding from the Gaussian statistics of a

polymer chain. Interestingly, to obtain a closed set of
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equations, Gordon and Temple truncated it in an

arbitrary way, retaining for the solution a system

containing a certain number of equations, on the

assumption that there exists some maximal degree of

polymerization of macromolecule, beyond which they

stop growing. Extending the Moravetz–Goodman

model [119] the authors of paper [121] admitted for

their calculations the possibility of the formation of

cycles comprising up to twelve monomers. Calculat-

ing the concentrations of l-mers being formed in the

course of an irreversible heteropolycondensation,

Rolando and Macosko [122] abandoned the assump-

tion concerning the Gaussian statistics of macromol-

ecules [120], to vary the dependence of the cyclization

constant kc
l on the chain length l:

In developing a theory of nonideal polycondensa-

tion with cyclization, Irzhak et al. [123] did not

restrict consideration to systems obeying the Flory

principle. Unlike their predecessors [120,122], in

calculating the irreversible heteropolycondensation

they employed a model that took account of

substitution effects, along with the formation of cyclic

macromolecules. Kinetic equations were solved for a

range of the kinetic parameters in the framework of

the simplified FSSE model for the concentrations of

l-mers. The dependence of the weight fraction of the

cycles on conversion of functional groups was plotted

[123], and the character of the MWD evolution during

the synthesis was investigated [124] on the basis of

these results. These curves feature a strongly pro-

nounced plateau testifying to the dramatic decrease of

the rate of the formation of cyclic molecules in the

course of the synthesis. The MWD of such molecules

formed during the irreversible heteropolycondensa-

tion over the whole range of conversions proved to be

markedly narrower than the equilibrium distribution

of cycles [124]. This assertion is also supported by

comparison of the values of polydispersity coefficient

K of macrocycles obtained in two limiting regimes of

polycondensation.

In parallel with a straightforward solution of the set

of kinetic equations for l-mer concentrations

[119–124], a theory of nonideal heteropolycondensa-

tion made use of various modifications of the

statistical method [125–127]. The key idea was to

consider a small number of some small species, and to

find their concentrations from the solution of a closed

set of simultaneous differential equations, comprising

a much smaller set than required for the kinetic

method. Given the concentrations of the small

species, the statistical moments of the MWD of linear

and cyclic polymers or the distribution itself may be

determined using some probabilistic considerations.

The main drawback of such statistical approaches is

that the accuracy of the approximate results is

unknown. In the ‘cascade theory’ [125] and the ‘rate

theory’ [126], the role of the small species is played

by monomeric units of types R and S distinguished by

their kinds. The kind of a monomeric unit of given

type is prescribed by the number of unreacted

functional groups adjacent to it. There are three such

kinds. Apart from them there is the ‘fourth’ one which

every monomeric unit of given type involved in a

cyclic macromolecule belongs to. Differing in the

character of underlying probabilistic reasoning the

‘cascade theory’ [125] and the ‘rate theory’ [126] lead

to distinct expressions for number fraction of ring

molecules [128].

A variant of the statistical method radically

different from those employed earlier [125,126] was

advanced by Miller and co-workers [127]. They

developed a combined kinetic–recursive approach

for calculating the MWD of the products of an

irreversible random heteropolycondensation, with

allowance for cyclization. The major assumption of

the model employed is the prohibition on the

formation of cyclic molecules composed of more

than a certain fixed number N of monomeric units.

Under such an approach, along with the cycles and

oligomer linear molecules with l # N units, the small

species were defined to include some auxiliary

structures comprising one, two or three monomeric

units, together with adjacent reacted and unreacted

functional groups. A system of 4N þ 3 simultaneous

kinetic equations was set up to describe the inter-

conversion of these small species. After numerically

solving this system, Miller et al. [127] used the

auxiliary structures and the approximately recursive

nature of the larger molecules to ‘build back’ the long

chains. Later, these authors discussed [129] the main

approximations underlying several approaches that

have been used to model irreversible heteropolycon-

densations incorporating intramolecular reactions,

and studied their range of validity. They found that

some never give good results, while others may be

used when cycle formation is low, and the better ones
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may be applied with low to moderate levels of

intramolecular reaction. None were satisfactory for a

high degree of cycle formation.

The theoretical papers considered above

[119–127] dealt with polycondensation systems for

which the cyclization reaction is kinetically con-

trolled. However, at sufficiently large value of the

condensation reaction constant k; the rate of the

formation of cyclic molecules is no longer dependent

on k; and will be entirely controlled by the rate of

macromolecule conformational rearrangements by

which the terminal functional groups on a molecule

approach in space. Since such an approach is due to

their mutual diffusion, all analogous reactions are

diffusion-controlled. The theory of such reactions was

treated initially by Wilemski and Fixman [130]. In

terms of the Rouse–Zimm model, their calculations

predict a powerlaw dependence of the diffusion-

controlled cyclization rate constant kc
l , l2s on chain

length l: Excluded volume effects are neglected in this

theory, and the magnitude of s depends upon the

extent of the hydrodynamic coupling associated with

the polymer motion. For free draining chains, s ¼ 2;

whereas for the more realistic nondraining description

of polymers in dilute solution, s ¼ 3=2: Certain

features of the theory have been examined in detail

by Doi [131]. Perico and Cuniberti [132] have

extended theory [130] to partially draining chains of

finite length. Two extensive publications review both

the theory and experiments associated with diffusion

controlled polymer cyclization [133,134].

2.4. Linear copolycondensation

Molecules of linear heteropolymers are known to

vary within a specimen in the numbers of their

constituent units (size and composition), as well as in

the pattern of arrangement of these units along the

chain (structure). It should be emphasized that many

problems arising for the statistical description of

heteropolymers prepared by chain and step copoly-

merization differ substantially. Hence, in theories of

radical copolymerization, one is inevitably faced with

the task of finding the composition of the products

formed. Conversely, in case of copolycondensation

the above problem can emerge in closed reaction

systems exclusively under a pronounced violation of

the stoichiometric condition between functional

groups when oligomers are finite products. To get

high-molecular polycondensates it is necessary to

adhere to this condition by conducting the reaction up

to nearly complete conversion. In that case, the

copolymer average composition will be virtually the

same as that of the initial monomer mixture and thus

the problem of its determination ceases to be actual.

Another essential distinction between the products

of copolycondensation and radical copolymerization

is a marked configurational isomerism of the former.

When at least one of the initial monomers has an

asymmetric structure, a complementary type of

structural isomerism arises due to the dissimilarity

in the ways these monomers are added to the growing

chain. Such a constitutional isomerism takes place

even in macromolecules obtained for a homopoly-

condensation of an asymmetric monomer, with ‘head-

to-tail’, ‘head-to-head’, or ‘tail-to-tail’ pattern of

mutual arrangement of successive directed mono-

meric units. In the case of chain polymerization of

most asymmetric vinyl monomers they add mainly by

the ‘head-to-tail’ pattern, to form constitutionally

regular polymers. For copolycondensates with asym-

metric units fractions of different types of the above

patterns of arrangement are normally comparable, so

that constitutional isomerism must necessarily be

taken into account for a statistical description of their

configurational structure [135–139]. The methods of

such a description of homopolymers exhibiting

constitutional isomerism are similar to those tra-

ditionally employed to characterize an isomerism due

to a distribution of different type units in copolymers

[140,141]. Consequently, it seems reasonable to

consider structural isomerism of homopolymers in

this section.

2.4.1. Copolycondensation of symmetric monomers

The first classification of the processes of the linear

copolycondensation may be that advanced by

Shtraikhman [142], who derived an equation con-

necting the conversions of the functional groups of

comonomers in an ideal irreversible interbipolycon-

densation. This equation was used to analyze the

dependence of a copolymer composition on conver-

sion at different stoichiometry of the initial monomers

and their functional group reactivity [143]. A similar

problem was also studied for a range of stoichiometric

and kinetic parameters [144,145]. Expressions for
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the composition of copolymer formed in the irrevers-

ible regime of the process are set up for an

intercopolycondensation of an arbitrary number of

comonomers [146,145] as well as for bipolyconden-

sation of monomers RAC and SBC [147].

The foregoing publications utilized the ideal

polycondensation model. Nikonov et al. [148] dis-

missed the Flory principle carrying out a calculation

of the kinetics of the interbipolycondensation of

monomers with dependent functional groups. On the

basis of the simplified FSSE model allowing for the

substitution effect for all three monomers, they wrote

down a set of six material balance equations for the

concentrations of the functional groups involved.

Numerical solution of these equations at certain

values of kinetic parameters permitted calculation of

the composition of oligomer products formed under

complete conversion of an intermonomer, present in

the initial mixture with a molar fraction less than 1=2:

Expressions for different average molecular

weights, MWD and size, composition and function-

ality (SCFD) of polycondensation copolymers were

derived by the statistical method [34,149,150]. In

particular, Case [34] obtained analytical relationships

for the MWD, as well as weight average and number

average molecular weights of the products of an ideal

bipolycondensation, and the ratio of these was

theoretically examined for copolymers synthesized

by an ideal interbipolycondensation [149,150]. Gen-

eral expressions presented in monograph [12] and

review paper [13] permit simple algebraic derivation

of analytical expressions for the generating functions

(gf) of the SCFD of an arbitrary ideal copolyconden-

sation products. Given these expressions, it is possible

to find the distributions and their statistical moments,

resorting to the standard mathematical procedure. In

the publications cited above, an algorithm was

formulated of an analogous calculation of the SCFD

for the products of a copolycondensation involving

some monomers comprising kinetically dependent

groups.

Different approaches to the statistical description

of the chemical structure of condensation copolymers

have been invoked. The most straightforward way to

characterize the microstructure of such copolymers is

to specify the fractions of all dyads of elementary

units. In case of binary copolymer of a given

composition these fractions are controlled only by

microheterogeneity coefficient KM; which can be

expressed through the fractions of different dyads of

elementary units RI and SI as follows

KM ¼
PðRSÞ

PðRSÞ þ 2PðRRÞ
þ

PðRSÞ

PðRSÞ þ 2PðSSÞ
ð2Þ

For a mixture of two homopolymers PðRSÞ ¼ 0

and, thereupon, KM ¼ 0: For a regularly alternating

copolymer PðRRÞ ¼ PðSSÞ ¼ 0; and, consequently,

KM ¼ 2: All conceivable values of coefficient KM lay

between these two extreme cases, corresponding to

the ideally ordered arrangements of units in macro-

molecules. For example, KM ¼ 1 corresponds to a

random (i.e. the most disordered) distribution of units.

Thus, the degree of ordering of a copolymer

microstructure can be quantified from the absolute

value of the deviation KM from unity. The sign of this

deviation is indicative of the tendency of monomeric

units’ arrangement in chains either to regular alterna-

tion ðKM . 1Þ or to the formation of long blocks of

both comonomers ðKM , 1Þ: The challenge for a

theory consists in expressing the fractions of dyads

through kinetic (nonequilibrium processes) or ther-

modynamic (equilibrium processes) parameters, and

to find, thereupon, the values of KM (2).

The calculation of KM has been carried out for the

products of an irreversible interbipolycondensation

[151–153] and a bipolycondensation [151]. It was

demonstrated [151] that the sequence distribution in

copolymer chains is necessarily random (i.e. Ber-

noullian) provided the intermonomer has independent

functional groups. This result stems from the equality

KM ¼ 1; which holds in this case irrespective of the

values of the initial fractions of monomers, the

reactivities of their functional groups, or the degree

of their conversion. Besides, the effect of these factors

on quantity KM has been theoretically studied [151]

for the opposite case when the comonomers have

independent groups, unlike the intermonomer, for

which the groups are dependent. In line with this

model, the reactivity of an intermonomer second

group positioned at the end of any polymer molecule

does not depend on the type of a comonomer

penultimate unit, though it differs in reactivity from

the first group. Such a model is characterized by just

four elementary reaction rate constants, i.e. by three

dimensionless reactivity ratios of the functional

groups. The number of these kinetic parameters
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decreases to two when the reactivities of the first and

the second groups of an intermonomer are presumed

to be proportional in their reactions with the first and

the second comonomer (following the authors of

paper [148]). In the framework of such a simplified

FSSE model, general regularities have been revealed

of the dependence of KM on stoichiometric and kinetic

parameters, and simple analytical expressions for KM

have been derived at different limiting values of these

parameters [151]. Analogous results have been

reported [154] for the equilibrium regime of inter-

bipolycondensation in which the independence of

intermonomer groups was shown to be a sufficient

condition for obtaining a random copolymer.

Theoretical analysis of the irreversible [151] and

equilibrium [155,156] bipolycondensation revealed

certain qualitative distinctions from the interbipoly-

condensation. Of prime importance among them is the

fact that even for the ideal bipolycondensation model

RA1B1 þ SA2B2, the quantity KM turns out, generally

speaking, to differ from unity. A simple analytical

expression for KM was derived [151] for the particular

case with B1 ¼ B2:

The microheterogeneity coefficient is the best

suited to characterize the chemical structure of

copolymers whose molecules are made up of the

elementary units of two types. If the number of such

types exceeds two, the description of the sequence

distribution in copolymer chains calls for several

parameters similar to KM: In this connection, a major

problem facing a copolycondensation theory is an

appropriate choice of the structure parameters for a

particular system. Practical recommendations for such

a choice have been suggested [157], with the general

ideas exemplified by the copolycondensation of four

monomers R1A2
1 þ R2A2

2 þ S1B2
1 þ S2B2

2; whose

functional groups of types Ai only react with groups

of types Bi:

The second mode of description of the chemical

structure of the macromolecules of linear copolymers

consists in specifying the distributions for the length

of blocks of different elementary units. The first

calculations for the products of ideal intercopolycon-

densation of a stoichiometric mixture of monomers

were made by Best [146]. Using the statistical

method, he found that for each ith type of units the

distribution is the Flory distribution with parameter

aip
2
i depending on the initial mole fraction ai of

a corresponding ith comonomer, RiA
2
i ; and the

conversion pi of its functional groups Ai: In contrast

to this case, when the Bernoulli copolymer is formed a

similar problem has been solved within the frame-

work of a simplified FSSE model for the intermono-

mer [152]. The solution of corresponding kinetic

equations gives the Flory distribution (as obtained

earlier [146]) with a parameter, which being

expressed through the concentrations of the dyads of

the elementary units, reduces to aip
2
i only if the

functional groups of the intermonomer are

independent.

A statistical analysis of the distribution of blocks

for length in the products of an ideal irreversible

interbipolycondensation was carried out in papers

[158–161]. The authors of the first two used the

formalism of the Markov chains as applied to infinite

[158] and finite [159] macromolecules. Gritsenko

[160,161] conducted a qualitative theoretical study of

the effect of the stoichiometry of the initial monomers

and the reactivity of their functional groups on the

character of distribution of units for a single- and two-

step process mode. The latter case has been analyzed

[162] to give the coefficient of polydispersity of the

distribution of different type blocks for length, i.e. the

ratio of the weight-average to the number-average

block length of the ith comonomer as a function of the

stoichiometry, conversion, as well as the reactivities

of the first and second groups of the intermonomer.

Various average block lengths have also been

calculated [146,149,152,160,161].

The problem of finding the distribution of block

lengths in macromolecules obtained for bipolycon-

densation of monomers with dependent groups was

handled by Irzhak et al. [163] for the case with one of

monomers incapable of forming a homopolymer.

However, they failed to solve this problem, having

restricted their calculations to the time-dependence of

the fraction of triads.

An algorithm for the calculation of the probability

of arbitrary sequence of units is needed for an

exhaustive description of their distribution in a

copolymer macromolecule. A very simple algorithm

of this kind is available for linear copolymers with a

Markovian configurational statistics. In this context,

the finding that the sequence distribution in the

products of an arbitrary homogeneous process of an

ideal irreversible copolycondensation is described by
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a Markov statistics is of general theoretical signifi-

cance [164]. The Markov chain parameters are related

to the constants of the elementary reactions and to the

composition of the initial monomer mixture. A similar

result was reported for an ideal equilibrium poly-

condensation [154]. The identity of the results for

these two extreme process modes shows that any

statistical characteristic of the chemical structure of

the products may be calculated by the Markov chain

formalism for any intermediate regime of an ideal

copolycondensation. This fundamental property,

referred to as ‘universality’ [12,13], is violated in

systems not described by the ideal model. The

sequence distribution in such systems proves to be

predetermined to a considerable extent by the process

regime.

When developing the quantitative theory of an

equilibrium copolycondensation it was shown [154]

that the extension of the model by incorporating any

order ‘substitution effect’ does not disturb the

Markovian character of the sequence distribution.

The same authors employed different versions of the

FSSE model to calculate the parameters of the

corresponding Markov chain in the limiting case

when the average length of a macromolecule PN tends

to infinity. A set of simple algebraic equations was

derived to calculate these statistical parameters, and

its analytical solution was found for interbipolycon-

densation. Expressions for the parameters of the

Markov chain characterizing the chemical structure of

macromolecules of finite length were presented for

arbitrary PN [165]. These expressions make it possible

to perform calculations of the polycondensation

processes used to obtain reactive oligomers important

in the manufacturing of a variety of polymer

materials. The above relationships are but a particular

case of general expressions for the parameters of the

Markov chain which describes the configurational

statistics of the products of arbitrary equilibrium

linear copolycondensation within the framework of

the most general FSSE model [165].

A proof that the sequence distribution in macro-

molecules may be described by a Markov chain under

the applicability of the same FSSE model, but in the

course of a nonequilibrium copolycondensation, is

missing. Moreover, it seems that such a proof is

impossible to provide in principle for systems, which

are not quasi-ideal. The quasi-ideality condition for

intercopolycondensation of any number of monomer

types resides in the kinetic independence of functional

groups, either of the intermonomer or of all

comonomers. In the first case, even when the

substitution effect takes place in the comonomers,

the sequence distribution obeys Bernoulli statistics

[166]. In the second case, it obeys first-order Markov

chain [48,166]; the expressions for its parameters

were derived first in a simplified FSSE model [166],

and later in its full version [48].

Finding an unambiguous correspondence between

the configurations of copolymer molecules and the

realizations of a Markov chain made it possible to

obtain simple asymptotic relationships at large PN for

the composition distribution of polycondensation

copolymers [154,164,165]. In the case of interbipo-

lycondensation, these distributions are Gaussian [154,

164,165], with parameters depending only on three

quantities: PN; the composition of the initial monomer

mixture and KM: An analysis of these dependencies

reveals that the composition distribution becomes

narrower as PN grows or the average length of blocks

in the copolymer decreases with increasing KM:

The mathematical apparatus employed in the

theory of Markov chains allows the calculation of

any required statistical characteristics of the chemical

structure of linear copolymers, including their MWD.

Durand and Bruneau [167 – 171] derived the

expressions for this distribution, describing copoly-

condensates obtained in various systems.

A resort to the method of computer simulation has

been used for the solution of some problems of the

theory of irreversible copolycondensation [158,159,

172–177]. This was employed to find the distribution

of blocks for length, molecular weight distribution

and some other statistical characteristics of the

chemical structure of macromolecules obtained

under the applicability of either the ideal model or

FSSE model. Comparison of the results of the Monte

Carlo simulations with those found via the numerical

solution of the appropriate kinetic equations per-

formed in some of the above cited papers revealed

reasonable agreement.

2.4.2. Nonsymmetric monomers

Many monomers acting as the initial compounds

for the synthesis of polycondensation polymers have a

nonsymmetric chemical structure. It is possible to
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designate such monomers by the symbol A1
~RA2;

conventionally distinguishing ‘head’ and ‘tail’ in the

oriented monomeric units ~R: Polymer molecules

involving similar units will, obviously, show the

constitutional isomerism due to their different mutual

orientations. One of the major challenges to a

quantitative theory of polycondensation with the

participation of nonsymmetric monomers is revealing

the dependence of the statistical characteristics of the

microstructure of polymer products on the stoichio-

metric and kinetic parameters of the initial mixture.

Evidently, this task resembles that discussed in

Section 2.4.1. Just this analogy was exploited when

studying the microstructure of chains formed in the

course of the irreversible heteropolycondensation of

nonsymmetric A1
~RA2 and symmetric BSB monomers

[178]. This paper was the first to report a theoretical

analysis of the constitutional isomerism of polycon-

densates with nonsymmetric units, for which it was

suggested that the microstructure could be character-

ized by a single parameter. This is analogous to KM

(2), with the sole distinction that the role of the triads

of monomeric units, RIR, SIS and RIS is played here

by ~RSzR; zRS~R and ~RS~R; respectively. This analogy

motivates the adoption of all the theoretical con-

clusions obtained when considering interbipolycon-

densation of symmetric monomers for the analysis of

heteropolycondensation A1
~RA2 þ BSB [178].

Embarking on the study of more complicated poly-

condensation systems, it is preferable instead of KM to

use the structure parameter KO ¼ 1 2 KM; which can

be called a ‘coefficient of orientation’. Its extreme

values KO ¼ 21 and KO ¼ þ1 correspond, respect-

ively, to the limiting cases of the constitutional

regularity, i.e. the head-to-tail and heat-to-head/tail-

to-tail arrangement of monomeric units.

An appreciable contribution to the theoretical

investigation of the constitutional isomerism of

condensation polymers was made by Suter and co-

workers [138,179–181]. They began [179] by study-

ing three polycondensation systems described by the

ideal model. Among them there are homopolycon-

densation of nonsymmetric monomer A1
~RA2 charac-

terized by three constants of elementary reactions

k11; k12; k22 between functional groups A1 and A2, as

well as the heteropolycondensation of nonsymmetric

A1
~RA2 and symmetric BSB monomers comprising

two such constants, k1B and k2B: The parameter s

denoting the probability for two adjacent units to point

in the same direction has been used to characterize the

microstructure of homopolymers formed in these

systems. In the limit PN !1 this parameter is related

to the coefficient of orientation in a simple mode

KO ¼ 1 2 2s: The theoretical dependence of s on the

relative reactivities of functional groups has been

presented for both the above systems. The third system

taken in paper [179] is the heteropolycondensation of

two nonsymmetric monomers A1
~RA2 þ B1

~SB2: To

describe the microstructure of polymer molecules

involved in this system Suter et al. [179] used along

with s; two additional structure parameters s1 and s2: The

latter two are controlled by the fractions of triads, unlike

s; which is governed only by the fractions of dyads of

nonsymmetric monomeric units. The parameters s1 and

s2 are the probabilities that two nearest ~R or ~S units

point in the same direction, respectively. When

calculating structure parameters, use was made of

the simplified variant of the ideal model [179],

incorporating the assumption that the constants of

elementary reactions are related by equation k22=k12 ¼

k21=k11: If so, the system is characterized by two

reactivity ratios instead of the three, normally

employed unless some simplifications are made.

This assumption was subsequently abandoned by

Gentile and Suter [180], who examined heteropoly-

condensation within the framework of the standard

ideal model. In order to avoid the solution of the 38

kinetic equations of this model necessary for calcu-

lation of the structural parameters, they determined

the fractions of dyads and triads by a Monte Carlo

technique. Extending the theoretical study of the

constitutional isomerism, Suter and co-workers [181]

considered the heteropolycondensation of nonsym-

metric and symmetric monomers, assuming that the

functional groups of the latter are kinetically depen-

dent. Having discarded the intention to examine the

general kinetic model with five relative reactivities

they restricted themselves to its simplified version

involving a triple of such parameters.

Turning from homopolymers to theoretical anal-

ysis of copolymers with molecules containing non-

symmetric monomeric units, an additional isomerism

comes into play, due to the difference in the

arrangement of units along macromolecules. In this

case, the problem of the choice of the structure

parameters becomes nontrivial. The first question
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a theory is supposed to answer concerns the number of

parameters that should be specified to describe

exhaustively the chemical structure of the chains

formed during the linear copolycondensation of an

arbitrary monomer mixture. Naturally, the answer is

fully conditioned by the kinetic model of copolycon-

densation that is of interest. The second issue to be

elucidated is the motivation for the choice of a

particular set of structure parameters. In view of the

ambiguity of such a choice, it would be advisable to

make it for reasons of convenience of the application

of these parameters for the treatment of experimental

data on the microstructure of copolymers.

General approaches have been developed [137,

140,141,157] for the solution of the theoretical

problems raised above, providing a comprehensive

description of the chemical structure of the products

of any ideal and quasi-ideal copolycondensation.

Their configurational statistics is Markovian that

permits finding any statistical characteristic of

copolymers resorting to the mathematical apparatus

of the theory of the Markov chains. The elaboration of

such a theory involves two steps. The first consists in

indicating the correspondence between the states of a

Markov chain describing a particular system and

fragments of polymer molecules. The second step

involves the derivation of the expressions connecting

the statistical parameters of this chain with the

structural parameters of a copolymer and its compo-

sition. The approach advanced to carry out these

procedures [137,157] suggests the application of the

universal Markov chain [137,157]. The regular states

of the above Markov chain correspond to directed

chemical bonds of different kinetic types. Type ðirÞ of

such a bond (e.g. an ester) is controlled by the types of

groups Ai and Ar which react to form the bond. The

process of conventional movement along the macro-

molecule may be envisaged as a sequence of oriented

bonds {ir} ‘passing’ from the first index to the second

one. The transition probabilities of the universal

Markov chain are readily expressible through the

relative fractions of pairs of states ð{ri}{js}Þ: Every

such a pair represents monomeric unit Ra of a

particular kind depending on with which groups Ar;

As there have reacted groups Ai;Aj of monomer Ai

RaAj: The probability of the transition from state {ri}

into state {js} of the universal Markov chain turns out

to be proportional to the fraction lð{ri}{js}Þ of units

of kind ð{ri}{js}Þ; i.e. to the fraction of the

corresponding triads of oriented monomeric units.

These triad probabilities are dependent, as they are

related by a certain linear stoichiometric equations.

Given the rank of the matrix of these equations, it is

possible to unambiguously indicate how many among

the probabilities of triads will be independent, in other

words, to specify the number of structure parameters.

The number of independent dyad parameters is

obtained similarly.

The potential of this algorithm was demonstrated

in a comprehensive theoretical study of the copoly-

condensation of four symmetric monomers [157] (see

Section 2.4.1), and interbipolycondensation with one

nonsymmetric comonomer involved [137]. The first

of these systems is characterized by the dyad structure

parameter, a coefficient of selectivity KS; and four

triad parameters, the microheterogeneity coefficients

KðiÞ
M ; where i ¼ 1; 2; 3; 4: The description of the

microstructure for the second system requires three

triad parameters, and it has been suggested that these

be taken as KM; a coefficient of direction, KD; and a

coefficient of orientation, KO [137]. In the framework

of a particular kinetic scheme of a copolycondensa-

tion process and given regime of its conducting it is an

easy matter to find the dependence of the structure

parameters on the rate or equilibrium constants of

elementary chemical reactions between the functional

groups of monomers as well as their initial fractions. It

should be emphasized that these sets of structural

parameters are intended to describe the configura-

tional structure of the products of quasi-ideal

copolycondensation when some of the monomers

have kinetically dependent functional groups. If such

monomers are absent, the number of independent

structure parameters is reduced. For example, the

microstructure of the products of ideal tetracopoly-

condensation is exhaustively described by a sole

parameter KS [157].

2.5. Special modes of polycondensation conducting

Up to this point the theoretical papers reviewed

have dealt exclusively with polycondensation regimes

under which the number of monomeric units remains

unaltered throughout the whole process of the

synthesis. However, alongside such closed (with

respect to monomers) systems there exist others for
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which the regime of polycondensation implies gradual

addition or removal of some monomers, respectively,

into or out of the reactor. Polymers in such semi-open

systems are normally prepared in semi-batch reactors.

Yet under the commercial manufacturing, preference

is usually given to a continuous regime of conden-

sation polymerization, in which monomer mixture is

fed at constant rate into the reactor, and polymer

products are steadily removed from the reactor. In

these cases, it is known that the polydispersity is

largely predetermined by the regime of hydrodynamic

stirring in the reaction vessel. When studying open

systems, the trend in chemical engineering science

[182] is to distinguish macro- and micro-level of

stirring, providing under mathematical modeling an

explanation for such a distinction in terms of a

‘continuous-flow stirred tank reactor’ (CSTR). In the

case of ideal stirring at both levels, a CSTR is said to

be homogeneous. If this occurs only at the macro-

scopic level, one should take into account the effect of

microscopic segregation in the theoretical analysis of

chemical transformations in CSTR.

2.5.1. Semi-open systems

One of the important disadvantages of a batch

polycondensation is that this mode virtually excludes

any control over the polymer microstructure. Such an

opportunity is, however, furnished when polymers are

prepared in a semi-batch reactor. Here, by varying the

types of monomers that are continuously fed into the

reaction vessel, as well as the rate of their addition, it

becomes possible to obtain macromolecules with a

desired arrangement of their monomeric units.

There is a fundamental difference between irre-

versible and equilibrium polycondensation performed

in such systems. To change statistical characteristics

of chemical structure of polymer products obtained

under these two limiting regimes, it is necessary in the

first to add gradually monomers into the reactor, while

in the second, conversely, to remove them from the

reactor.

The influence of the rate of the monomer feed into

the reaction vessel on the statistical characteristics of

the products of an irreversible heteropolycondensa-

tion was theoretically explored using the kinetic

method [183]. It was demonstrated that the MWD of

the polymer is described by the Flory distribution, as

in a closed system. However, unlike for the latter,

the polymer molecular weight may be rather high,

even for a pronounced violation of the equimolarity

condition of the initial compounds, provided the rate

of the addition of the monomer present in excess is

small enough. In this case, a simple expression has

been derived enabling one to determine the rate

constants of the condensation reaction, proceeding

from the results of the measurements of the depen-

dence of PN on the feed rate.

Calculations for an ideal interbipolycondensation

in semi-open system gave the dependence of the

copolymer composition on stoichiometric and kinetic

parameters and the rate of the addition of the

comonomers [184]. The results showed that the

compositions of the copolymer and monomer mixture

can notably differ. Such a situation is impossible in

principle for a polycondensation conducted in closed

system.

The microstructure of the products of an irrevers-

ible interbipolycondensation in a semi-batch reactor

was theoretically studied for the first time in work

[152]. That study established the dependence of KM

on the reactivity ratios of the functional groups of

monomers under their continuous addition, as well as

under a variety of multistage modes of

interbipolycondensation.

It is possible to obtain polymers with diverse

microstructure with parameters governed by a reac-

tion system parameters by changing the succession

and the rate of monomer’s addition into the semi-

batch reactor. The most comprehensive theoretical

examination of these dependencies in semi-opened

systems was realized for irreversible heteropolycon-

densation of nonsymmetric and symmetric monomers

[178,179,181]. Some of the general qualitative

regularities established are of particular interest

[138]. For example, the highest possible head-to-

head/tail-to-tail regularity is achieved by a very slow

addition of the symmetric monomer to a reaction

mixture containing all of the nonsymmetric mono-

mers. By contrast, a random polymer is invariably

obtained under slow addition of a nonsymmetric

monomer. Similar, though less detailed analysis of the

structural regularity was accomplished for the case of

an ideal heteropolycondensation of two nonsym-

metric monomers [180]; the Monte Carlo technique

was employed to find the dependence of three
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structure parameters on the monomer feed rate for

several particular values of reactivity ratios.

Degradation and rearrangement reactions of

macromolecules are particularly important in many

commercially significant polymer manufacturing

processes. Among them is the production of poly

(ethylene terephthalate) for which the macromol-

ecules comprise alternating units of ethylene glycol R

and terephthalic acids. However, in industry when

synthesizing this polymer the common practice is to

escape the direct heteropolycondensation of these

monomers, RA2 þ SB2 using some other method.

They use the diester of ethylene glycol and terephtha-

lic acid, ARSRA, as initial compounds, with the

polycondensation conducted in a semi-batch reactor

removing glycol as it is steadily released during

pronounced interchain exchange reactions like alco-

holysis and esterolysis. The first is the reaction

between a hydroxyl group of one molecule and an

ester linkage of any other molecule, whereas the

second is the reaction between two ester linkages of

different molecules. The set of equations for the

concentrations of molecules Cl containing l units S

was written out for reversible polyesterification

proceeding in well-stirred semi-batch reactor [185,

186]. The kinetic scheme which underlies these

equations incorporates only the alcoholysis reactions,

distinguishing their three types

A þ Qt; Ag þ Q; A þ Q ð3Þ

where A and Ag stand for hydroxyl groups belonging,

respectively, to polymers and glycol, while Q and Qt

denote interior and terminal ester linkages of polymer

molecules. Reaction Ag þ Qt is excluded from the

consideration because it does not alter the numbers of

units in the reacting molecules. The model adopted for

MWD calculations [185,186] presumed the reactiv-

ities of functional groups A, Q and Qt to be

independent of the polymer molecule in which they

reside. However, we are likely to deal here with the

FSSE model rather than with the ideal model of

heteropolycondensation since external groups A and

Ag as well as internal groups Q and Qt are presumed to

be kinetically distinguishable. The set of the material

balance equations for concentration Cl corresponding

to this model with three elementary reaction rate

constants has the Flory distribution as its solution at

all l $ 1: This result was arrived at numerically [185]

and analytically [186]. Essentially, unlike for ideal

heteropolycondensation here finding the value of the

parameter of this distribution as well as the glycol

concentration C0 calls for special consideration that

would take into account the equilibrium distribution

of this glycol between liquid and vapor phases.

Two different diol esters of dibasic acids ARIRA

and BSISB may be taken as the initial compounds in

the synthesis of copolyesters by equilibrium inter-

bipolycondensation. The synthesis should be con-

ducted under conditions in which glycols ARA and

BSB are continuously removed from the semi-batch

reactor. Apart from finding the copolymer statistical

characteristics, the theoretical examination of such

processes [187–190] suggests the solution of a

centrally important problem on establishing the

equilibrium dependence between a copolymer com-

position and the fractions of intermonomers ARA and

BSB in the vapor phase. Given this dependence it is

possible to calculate the composition of the final

products of the interbipolycondensation [187–190]

which, generally speaking, will be other than that of

the mixture of initial compounds. Such a distinction

can be quite substantial, even for ideal interbipoly-

condensation, which is inconceivable when the

synthesis is conducted in batch reactor.

2.5.2. Open systems

Theoretical investigation of polycondensation in

open systems is of utmost importance for both the

statistical chemistry of polymers and chemical

engineering science [191,192]. Alongside indisputa-

ble technological advantages, a polycondensation

process conducted under continuous regime features

one material drawback. This is due to the considerable

rise in polydispersity of macromolecules for their size

and composition as compared to that for polymers

obtained in a batch reactor. Because this may be

responsible for a noticeable deterioration of the

performance properties of polymer materials, the

theoretical estimate of the above polydispersity

depending on the parameters of the reaction system

is of prime significance when developing new

processes of the synthesis of polycondensates. In

view of the complexity of such an estimate,

theoretical papers have considered the general

regularities of polycondensation in open system only

for a CSTR or a series of such reactors.
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The theoretical consideration of the irreversible

homopolycondensation of monomer RA2 in a

CSTR [35,193 – 195] results in the following

expressions for polymer MWD and its statistical

characteristics

PN ¼
1

1 2 p
;

fWðlÞ ¼
ð2l 2 2Þ!ð1 2 pÞ

½ðl 2 1Þ!�2ð1 þ pÞ

p

ð1 þ pÞ2

� �l21

;

K ¼
1 þ p2

1 2 p

ð4Þ

where p stands for the conversion of groups

A. Expressions (4) as well as (1) remain true

either for homopolycondensation of monomer RAB

or heteropolycondensation of equimolar mixture of

monomers RA2 þ SB2. Comparison of the MWD in

Eqs. (1) and (4) at the same value of PN reveals

that the second of them is markedly wider than the

first one. This distinction is the more pronounced

the higher is the polymer molecular weight. The

value of the polydispersity coefficient K of the

products of polycondensation prepared in a CSTR

is PN q 1 times larger than that of the products

obtained in a batch reactor.

The polydispersity of the products of continuous

polycondensation may be reduced if the process is

conducted in a series of n CSTRs. The important

problem of finding the theoretical dependence of the

width of MWD on the number n of the reactors in a

series was solved for the first time in paper [196]. An

optimal polycondensation regime was found under

which the products prepared show the lowest poly-

dispersity at given number of reactors.

As distinct from studies of ideal homopolycon-

densation in a homogeneous CSTR [35,193–195],

Tadmor and Biesenberger [197] examined the effects

of microscopic segregation in a CSTR on the MWD of

the polymers formed. Proceeding from the ideal

model, they found substantial difference from results

obtained by neglecting the segregation. A similar

problem was solved in paper [196] for a cascade of n

identical CSTRs. Gupta et al. [198] explored the

influence of the ‘substitution effect’ on the MWD and

its moments for a homopolycondensation of monomer

RAB in a segregated CSTR.

Closing the section, it is pertinent to mention a pair

of publications [199,200] in which equations describ-

ing the kinetics of cyclization in CSTR were

numerically solved and analyzed. The dependence

of the MWD of cyclic products on the kinetic and

hydrodynamic parameters of a reaction system was

found.

3. Branched polycondensation

3.1. Distinctive features

This section deals with branched and network

polymers obtained in the course of polycondensation

with participation of at least one monomer whose

functionality is more than two. It should be stressed

that although necessary for the synthesis of the above

polymers, this condition is by no means sufficient. In

real systems showing appreciable deviation from

ideality, the involvement in the process of monomers

with functionality more than two will not necessarily

lead to the formation of a polymer network. For

example, for the polycondensation of two four-

functional monomers, pyromellitic dianhydride and

para-phenilen diamine, the polymer formed is a

cyclolinear rather than of branched structure [201],

owing to a strongly pronounced negative substitution

effect. Thus, the reactivity of the carboxyl groups and

unreacted hydrogen atom turns out to be too low to

ensure that they take part in intermolecular reactions

leading to branching. At the same time, due to the

mutual configuration of these groups, favorable for

the formation of the five-term imide cycle, the role of

the effective local concentration of one of them in the

vicinity of the other is high enough to induce an

intramolecular imidization reaction. As a conse-

quence, the consumption of functional groups occurs

with the formation of imide cycles in the main chain.

The preceding example is one of two limiting cases

of the polycondensation, for which intramolecular

cyclization suppresses completely the tendency of

macromolecules to branching. Ideal polycondensation

represents another limiting case at which the cycliza-

tion reactions in molecules of finite size can be

ignored completely. Real systems may be intermedi-

ate between these two limiting cases. The contri-

bution of intramolecular reactions as compared to

S. Kuchanov et al. / Prog. Polym. Sci. 29 (2004) 563–633586



intermolecular ones may be pronounced to different

extent, depending on the conformational set of

macromolecules, their flexibility and concentration in

solution. Most of the experimental data on branched

polycondensation in a melt or a concentrated solution

indicate that for many systems, the majority of

functional groups belonging to the sol fraction enter

intermolecular reactions, rather than intramolecular

ones. This enables one in the first approximation to

ignore at all the reactions of cyclization in molecules of

finite size when calculating the configurational charac-

teristics of the polycondensation products in such

systems, as it was suggested by Flory [11] in his model

of ideal branched polycondensation. Later, more

general models of this process have been developed,

taking account of violations of ideality due to the

substitution effects and intramolecular reactions before

network formation.

The characteristic feature of branched polycon-

densation is gelation, i.e. the appearance of giant

infusible and insoluble macromolecules having a

three-dimensional spatial structure. They distinguish

macro- or microgel depending on the relationship

between the size of these structures and that of the

reactor. In the first case, a three-dimensional polymer

network pierces the entire reaction volume, while in

the second one a microgel particles are found to be

dispersed in it.

The physico-chemical factors such as chemical

nature of a polymer, its affinity to the solvent, the

intensity of the cyclization reaction prescribe the

mechanisms of macrogel formation for branched

polycondensation. The simplest among them is

homogeneous gelation, in which a reaction system

remains homogeneous during the synthesis up to the

gel point, where this system instantly looses fluidity

and solubility in response to macrogel formation.

Other systems also exist in which macrogelation is

preceded by microgelation. In the course of the latter a

system undergoes phase microseparation,

accompanied by the formation of colloidal particles,

whose number and size can change with time. As a

result of the subsequent crosslinking of the microgel

particles, they integrate in a single macrogel network.

This mechanism of gelation was put forward [202] to

interpret experimental data on the solidification of

alkyd resins. As for the quantitative theory of gelation

all attempts of its elaboration have been undertaken

exclusively for homophase systems. An analogous

theory of microgelation for branched polycondensa-

tion has not been reported.

Historically, starting with the fundamental work by

Flory [11,203,204], various modifications of the

statistical approach have been employed to calculate

MWD, the average degree of polymerization and the

critical conversion at the gel point. In parallel with

straightforward combinatorial reasoning, a variety of

the statistical methods found application based on the

consideration of the probabilities of conventional

movement along macromolecule. Some ideas and

results of the theory of graphical enumeration and the

theory of branching stochastic processes proved to be

rather efficient under such a consideration. A

characteristic feature of many works invoking the

statistical approach is the absence of a rigorous

substantiation of the results obtained. That is why the

correctness of the final formulae of such publications

may be predetermined to a great extent by the

scientific intuition of their authors. This factor

becomes insignificant when one uses the kinetic or

thermodynamic methods of calculation as well as the

approaches founded on general concepts of chemical

kinetics, thermodynamics and statistical physics. The

results achieved in such a way are rigorous within the

kinetic models under examination and, consequently,

can serve as a criterion of the validity of the

expressions developed by the statistical methods.

As distinct from linear macromolecules, branched

ones may vary in their topological configurational

structure. In order to differentiate individual mol-

ecules obtained in the course of branched polycon-

densation, it is convenient to have them schematically

represented as molecular graphs. (Mathematically

speaking, a graph is a set of vertices connected by

edges.) A graph is put to every molecule, in one-to-

one correspondence, with a topological structure that

correlates with the molecule configuration. For

instance, to the products of ideal polycondensation

there corresponds a ‘forest’ of molecular ‘trees’, i.e.

graphs without cyclic fragments. The vertices of such

a tree correspond to monomeric units and functional

groups, while its edges correspond to chemical bonds.

The vertices corresponding to monomeric units are

referred to as nodes (filled circles) while those

corresponding to the functional groups are termed

pending vertices (open circles). Any two nodes of
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a molecular graph may be joined together with a

broken line consisting of edges whose number

controls the length of this path. To it there corresponds

the linear fragment of a molecule connecting two

monomeric units, known as a trail. In the case of tree-

like molecules, any pair of units is linked by a single

trail. A graph involving l nodes corresponds to an

arbitrary homopolymer molecule with l monomeric

units. The number of edges attached to each node of

such a graph coincides with the functionality of the

initial monomer. The molecules of an l-mer at given

l $ 4 can differ in topology (see Fig. 1). In order to

differentiate the vertices of molecular graphs if

several monomers are involved in the process, it is

convenient to assign different colors to these vertices.

Thus, when describing copolymers, colored graphs

should be introduced.

The task of a comprehensive statistical calculation

of a polymer configurational structure consists in

finding the probabilities of the molecular graphs

differing in the number of vertices and the topology.

However at typical values of the degree of polym-

erization of statistically branched molecules, the

number of their structural isomers is enormously

large. In this case the description of the reagents

commonly accepted in traditional organic chemistry

by setting the concentrations of chemically individual

compounds makes no sense even, for homopolymers.

Instead, another approach may be recommended to

characterize the topological structure of statistically

branched polymers, based on introducing the hier-

archy of probabilities PðUkÞ of different molecular

fragments ðUkÞ; termed k-ads, with progressively

larger number k of monomeric units [205]. Obviously,

the information on the configurational structure of

such a polymer becomes increasingly detailed with

the growth of k: An exhaustive description of this

microstructure suggests the development of a con-

structive algorithm for the calculation of the prob-

ability of any fragment ðUkÞ:

Key features of this approach are conveniently

demonstrated by the simplest example of a tree-like

homopolymer formed for the process of polycon-

densation of monomer RA3 with three identical

functional groups A in the approximation of the

absence of intramolecular reactions. When char-

acterizing branched polymers let us mean by k-ad

ðUkÞ a molecular graph composed of k nodes and

the edges incident to them. A part of these latter

(internal edges) connect the nodes of a k-ad among

themselves and with pendent vertices while the

remaining (external edges) join these nodes with

the other graph nodes situated outside this k-ad (see

Fig. 2).

Branched homopolymers containing, by definition,

only one type of units may be conventionally thought

of, however, as heteropolymers since their molecules

consist of units differing in kind, governed by the

number i of chemical bonds connecting a given unit

with others. For instance, the monads with i external

Fig. 1. Molecular trees of two structural isomers formed during

homopolycondensation of monomer RA3.

Fig. 2. Complete sets of acyclic monads U1q (q ¼ 0–3) and dyads

U2q (q ¼ 0–5), which are fragments of molecules formed under

homopolycondensation of monomer RA3. The black and white sites

correspond to monomeric units R and functional groups A,

respectively.
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bonds depicted on Fig. 2 correspond to units of kind i:

The simplest way to describe a polymer topological

structure is to specify the fractions li ¼ PðU1qÞ of units

whose kind is i ¼ q: Subsequent levels of the

description of a microstructure detail consist in the

indication of fractions PðU2qÞ; PðU3qÞ; etc. of different

dyads ðU2qÞ; triads ðU3qÞ and so on, arbitrarily indexed

by q individually for each set of k-ads ðUkqÞ with

given k: Knowledge of these quantities is of practical

importance because they enter into expressions for the

glass transition temperature and some structure–

additive properties of branched polymers.

The general principles of the quantitative descrip-

tion of the chemical structure of branched homo-

polymers formulated above can be extended to

heteropolymers. In order to characterize their mol-

ecules, it is necessary to distinguish by kinds

monomeric units of every type. Under such a

characterization, k-ads will additionally differ in

number of units of different types. Unlike the case

for homopolymers, here it is imperative to find the sol

and gel composition.

As for polymer network formed after the gel point,

apart from the calculation of the fractions of different

k-ads describing its local topological structure, it is

necessary to find some parameters which characterize

the global topology of the molecular graph of the

network. The most important among such parameters

are the number per monomeric unit of elastically

effective nodes m and of elastically active chains n

connecting such nodes. (The effective nodes are those

of an infinite graph of the gel, from which no fewer

than three ways spring to infinity.) Evidently, m and n

should be viewed as intensive variables. The signifi-

cance of these parameters as well as of their difference

R ¼ n2 m is due to the fact that they govern the

elasticity of a polymer network. The topological

parameter R is the cyclic rank of its molecular graph.

By definition, R is the least number of edges to be

removed from the graph in order to convert it into a

tree. The calculation of cyclic rank, the gel point, and

the weight fraction of gel vg and its composition is

one of the challenging problems of quantitative theory

of a polymer network formation.

To find the statistical characteristics of the

configurational structure of sol and gel molecules

discussed above, an abstract graph should be put in

correspondence to each of them. Such graphs provide

an exhaustive description of only the topological

structure of a branched macromolecule, neglecting the

positions of monomeric units in space. At this level of

description, full information on the polymer is

contained in its molecular-structure distribution,

which sets the fractions of different structure-

topological isomers. However, many physico-chemi-

cal characteristics of a polymer system (for instance,

the average geometrical size of macromolecules or the

intensity of the light scattering by its solution) are

governed by conformation set of molecules constitut-

ing this system, along with configuration set. The

calculation of such characteristics calls for averaging

over both conformations and configurations of

individual molecules of a polymer specimen. In this

approach, a graph embedded in three-dimensional

space should be put in correspondence to each

macromolecule. Under such a description of a

polymer specimen, the averaging is performed over

the probability measure on the set of labeled graphs,

i.e. such graphs every vertex of which is supplied by a

label characterizing its location within the Euclidean

space. This conformation probability measure is

normally presumed to be specified by the equilibrium

Gibbs distribution, because far away from the glass

transition temperature of a polymer the characteristic

time for conformational equilibrium to be established

is markedly less than that of the chemical transform-

ations in a reaction system.

The need for conformational averaging also arises

under the theoretical consideration of intramolecular

cyclization reactions inasmuch as the formation of

cyclic fragment in a polymer molecule induced by a

chemical reaction of any pair of its functional groups

is preceded by their approaching each other in the

three-dimensional space.

3.2. Ideal model of polycondensation

Flory pioneered the application of the ideal model

for the calculation of branched polycondensation

[203]. He provided a clear-cut definition of the

gelation phenomenon and formulated its mathemat-

ical condition, which resides in the divergence of the

polydispersity coefficient K characterizing the width

of the MWD of the polycondensation products.

Examining the statistics of trails in the course of a

random walk along branched macromolecules, Flory
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introduced the ‘probability of branching’ a; and

connected its critical value at the gel point with the

functionality of the branching monomer [203]. Using

several simple polycondensation systems as

examples, it was shown how a can be expressed

through the conversions of functional groups and the

stoichiometry of the initial monomer mixture [203],

making it possible to find the critical value of

conversion at the gel point. To find the MWD, Flory

[203,204,206,207] invoked the statistical approach,

calculating all of the necessary probabilities by means

of direct combinatorial reasoning. In particular, the

following expressions have been derived for the

weight MWD, fWðlÞ; of the products of the ideal

homopolycondensation of monomer RAf, as well as

the number average PN and weight average PW degree

of polymerization [202]:

fWðlÞ ¼ DðlÞpl21ð1 2 pÞðf22Þlþ2
;

where DðlÞ ¼
f½ðf 2 1Þl�!

ðl 2 1Þ! ðf 2 2Þl þ 2½ �!

ð5Þ

PN ¼
2

2 2 pf
; PW ¼

1 þ p

1 2 pðf 2 1Þ
ð6Þ

The only parameter occurring in the above

expressions is the conversion of the functional groups

p: Although only some particular types of polycon-

densation systems were covered in these seminal

papers [203,204,206,207], an indisputable merit of

their author consists in laying the foundation of the

theory for the ideal branched polycondensation.

The probabilistic approach advanced by Flory has

been repeatedly employed, explicitly or implicitly, in

various modifications by many researchers. Thus, the

homopolycondensation of monomer RAB1· · ·Bf was

considered [208,209], where along with the MWD the

distribution of molecules for number of different

bonds was calculated as well. In a number of

publications, the critical conversion was calculated

for the polycondensation processes with several

polyfunctional monomers, between the groups of

which the only elementary reaction proceeds

[210–216], and monofunctional compounds have

also been taken into account [213–216]. The gel

point for the polycondensation of different mixtures of

mono-, bi- and polyfunctional monomers was calcu-

lated [217–222] for the systems with more than two

types of functional groups, and the effect of side

reactions with involvement of the groups of bifunc-

tional monomers on the gel point was also theoreti-

cally analyzed [223]. In the mid-1970s the statistical

approach found further refinement in papers by

American [224–228] and French [229–234] scien-

tists. They proceeded from the recurrences for

conditional probabilities to pass from one fragment

of a macromolecule to another. The recursive method

applied for the statistical treatment of several

particular systems allowed them to derive expressions

for a number of important statistical characteristics of

the chemical structures of branched polymers. Among

such characteristics are different average molecular

weights [224,226,227,229–231,234], average func-

tionalities [227,232], the gel point location

[224–234], the weight fractions of sol and gel, the

conversions of functional groups in each of them as

well as the fractions of units of different types and

kinds in a polymer network.

Application of the statistical approach discussed in

the preceding entails rather cumbersome and non-

trivial probabilistic reasoning for each system of

interest. This is likely to be responsible for a number

of mistakes committed by some researchers. For

example, an erroneous relationship was derived for

the critical conversion during homopolycondensation

of a polyfunctional monomer with two types of

functional groups [210]. The effect of monofunctional

reagents on the location of the gel point was treated

incorrectly [213,214], as later pointed out [215].

Considering irreversible polycondensation in systems

with several types of groups and calculating prob-

ability parameters entering in formulas which they

derived using statistical method the authors [221]

failed to interpret the integrals obtained from the

solution of kinetic equations. This led them to wrong

conclusions on the limits of applicability of the

Flory–Case statistical method employed. Among

erroneous works paper [235] could be mentioned

where an attempt was made to construct a probabil-

istic scheme of the process of ideal polycondensation

distinct from the scheme introduced by Flory which

resulted in other theoretical conclusions. Particularly,

proceeding from this faulty scheme the divergence of

PN instead of PW was claimed to be the condition of

gelation. In the course of the discussion on this matter
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[236–241] the source of errors in paper [235] was

revealed.

A version of the statistical approach to the

calculation of the gel point and MWD of the products

of ideal polycondensation systems was proposed by

Stockmayer [242– 244]. The key ideas of this

approach bear some resemblance to methods applied

in statistical physics. Stockmayer took advantage of

the fact that for an ideal system at fixed conversion of

the functional groups, the probability of a particular

distribution of molecules for number of monomeric

units is proportional to the number V of ways in which

all N monomeric units can be partitioned among the

molecules with fixed MWD. Under the most probable

distribution, V exhibits a sharp maximum and in

systems with macroscopic N this distribution specifies

the MWD of the polymer. Following the Stockmayer

approach for the calculation of V it is necessary to

solve the problem of enumeration of all equiprobable

ways in which a molecular tree with given number of

nodes may be formed. By using straightforward

combinatorics, Stockmayer solved this problem for

the products of the ideal polycondensation of an

arbitrary number of monomers. However, his solution

covered exclusively the case when every monomer

comprised identical groups, and only one elementary

reaction proceeded in the system [243,244]. However,

his solution covered only the case when every

monomer comprised identical groups, and with only

one elementary reaction [243,244]. The results

obtained exactly coincide with those derived by the

Flory method, although this conclusion was ques-

tioned by some authors [216].

Rigorous substantiation of the Stockmayer statisti-

cal method as applied to the process of ideal

equilibrium homopolycondensation of monomer RAf

was outlined in paper [245] in which the Mayer diagram

technique extensively used in the theory of dense gases

was employed. As a result it became possible to relate

the MWD of the polymer obtained to the potentials of

intermolecular interaction, and to calculate some

thermodynamic parameters of the system. The equation

of state obtained enabled the authors to draw an analogy

between the gelation phenomenon occurring during

polycondensation and gas–liquid phase transition

under vapor condensation [245].

It must be admitted that the straightforward

combinatorial technique put forward by Stockmayer

for the solution of the enumeration problem, as well as

the Flory primitive probabilistic approach [11], look

rather archaic today. To cope with this task it is far

more convenient to resort to the graph enumeration

method, which permits one to calculate any ideal

system in a rather simple and universal way. Thus, the

number of different ways of the construction of a

molecular tree with fixed number of nodes is

unambiguously prescribed by the symmetry of its

configuration [246–248]. As a quantitative measure

of this property of a graph, its combinatorial entropy,

introduced by Gordon and Scantlebury [249], may be

used. Gordon and co-workers devoted major attention

[236,238,246–248,250–252] to the application of the

graph theory concepts for the statistical description of

the products of polycondensation, and some other

processes, developing the so-called ‘chemical combi-

natorics’ [238,247,248]. Proceeding from the detailed

equilibrium principle, they revealed the correlation

between the constants of equilibrium of chemical

reactions of branched molecules and the combinator-

ial entropy of the corresponding molecular graphs in

case of ideal polycondensation.

In calculations of the combinatorial entropy, it is

convenient to switch from molecular to rooted trees,

in which one of the nodes, referred to as the ‘root’, is

detached. All other nodes are connected to the root by

a single path. The length of this path is equal to the

generation number in which a given node is

positioned in a genealogical tree corresponding to

the given rooted tree. In a genealogical tree, the nodes

pertaining to the same generation are situated on one

horizontal line, along with all pendent vertices

connected directly with the nodes of the preceding

generation (see Fig. 3).

Two rooted trees may be thought of as identical

only if the number and the order in which their

vertices are arranged in every generation are the same.

Choosing some node of a molecular tree as a root and

varying the location of its vertices in every generation

will give several different rooted trees with the

topological structure of the initial molecular tree. Its

combinatorial entropy was found to be related by a

simple expression with the number of different rooted

trees originated by the molecular tree [246]. Con-

siderable progress has been made in the theory of

graph enumeration in methods to find this number

[253–257].
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The formalism of the theory of branching pro-

cesses is more convenient for the calculation of the

statistical characteristics of the molecular structure of

randomly branched polycondensates. This formalism

not only permits enumeration of all ordered rooted

trees in a uniform manner, but also simultaneously

gives the probability of each of them. In order to make

use of the powerful mathematical apparatus of the

theory of branching processes, it is necessary to

establish a correspondence between the fragments of

macromolecules and reproducing particles of a

branching process as well as to specify correctly the

probabilities of their reproduction. Gordon conjec-

tured that the calculation of the statistical character-

istics of randomly branched polymers can be

performed by the methods of the theory of branching

processes [258]. Then, Good noticed that this

approach also allows determination of the average

degrees of polymerization of molecules constituting

the sol and its weight fraction [259]. Later, Gordon

and co-workers showed how to proceed from known

gf of a branching process to calculate different

statistical characteristics of the products of ideal

polycondensation of monomer RAf [260] and some

stoichiometric mixture of several monomers [261].

Monograph [262] comprises a special section devoted

to the Gordon statistical method, abounding with

examples which illustrate the potentialities of this

method for the calculation of different statistical

characteristics of branched polycondensation

polymers.

The central ideas of the Gordon approach can be

briefly formulated as follows. To each polymer

molecule formed in the course of the ideal homo-

polycondensation of monomer RAf corresponds a

tree-like graph while the whole polymer specimen is

associated with the ensemble of such trees, referred to

as ‘molecular forest’. This can be transformed into a

clone, i.e. a forest of rooted trees obtained from

molecular trees as a result of the selection of every

node as a root. Such a transformation retains the

probability measure, so the only thing to do is to find

the distribution of rooted trees. Each of them may be

viewed in its turn as a genealogical tree describing the

history of a family, or as some realization of a

stochastic branching process of the birth and death of

particles. Thus, to the reproducing particles on Fig. 3

there correspond monomeric units R, presented by

filled circles. Open circles denote functional groups A

which are likely to take no part in reproduction, and

thus can be excluded from the consideration under the

construction of branching process. The history of the

evolution of the population depicted on Fig. 3 is as

follows. The particle–ancestor gives birth to two

children–particles, the first of which produces two

grandchildren–particles while the second one dies

childless and so on. The complete set of such

populations coincides with the set of all possible

realizations of a branching process of conventional

movement along randomly branched polymer

molecules.

Knowing the algorithm to find the probability of an

arbitrary realization of such branching process, it is

possible to determine any statistical characteristic of a

branched polymer described by this stochastic

process. For instance, the weight MWD fWðlÞ is the

probability that the overall number of the descendants

in a population equals l: By means of the formalism of

the theory of branching processes one can calculate

the statistical characteristics of the products of

branched polycondensation even after the gel point.

In particular, the weight-fraction of sol equals the

probability for a particle–ancestor to produce finite

number of descendants, i.e. the population generated

by this ancestor will eventually disappear.

Gordon was the first who anticipated that some

polycondensation randomly branched polymers

(hereafter mentioned as Gordonian) have the distri-

bution of probabilities of rooted trees described by

Fig. 3. One of the possible genealogical trees of the family

generated by an ancestor A. The numbers correspond to generations

of this family, whose representatives are denoted by filled circles.
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the probability measure on the set of genealogical

trees which are realizations of the Galton–Watson

process. In every generation except the zeroth one,

this branching process has the same distribution of

probabilities for a particle to give birth to a certain

number of descendants. The theory of the Galton–

Watson branching processes being thoroughly ela-

borated enables one to express any statistical

characteristic of the molecular structure of a

Gordonian polymer through the probability par-

ameters of the branching process describing this

polymer. Further, it only remains to reveal the

dependencies of these parameters on stoichiometric,

kinetic or thermodynamic parameters of the ideal

polycondensation which is a trivial problem.

Statistical parameters necessary for the calculation

of any characteristic of the chemical structure of a

Gordonian polymer are the probabilities for a particle

to give birth to any number of children. For the

products of the ideal homopolycondensation of

monomer RAf the role of such parameters will be

performed by probabilities að0Þ
i ði ¼ 0;…; fÞ and ai

ði ¼ 0;…; f 2 1Þ of birth of i descendants by a particle

in the zeroth generation and in all subsequent ones,

respectively. Substituting the gf of these probabilities

Fð0ÞðsÞ ;
Xf

i¼0

að0Þ
i si

FðsÞ ;
Xf21

i¼0

ais
i ¼

dFð0Þ

ds
=
dFð0Þ

ds

�����
s¼1

ð7Þ

into formulas of the Galton–Watson process for gf of

the distribution of populations for overall number of

particles in all generations

GpopðsÞ ¼ sFð0ÞðuÞ u ¼ sFðuÞ ð8Þ

we will get the expressions for finding gf GWðsÞ of the

weight MWD of the Gordonian homopolymer under

consideration

GpopðsÞ ¼ GWðsÞ ;
X1
l¼1

fWðlÞsl ð9Þ

Making recourse to the expansion of implicitly

given functions into a Taylor series, it is possible,

proceeding from Eqs. (8) and (9), to obtain formula

fWðlÞ ¼
1

ðl 2 1Þ!

dl22

dul22

dFð0Þ

du
Fl21

" #
u¼0

ðl $ 2Þ;

fWð1Þ ¼ Fð0Þð0Þ

ð10Þ

which enables one to derive explicit analytical

expressions for the MWD. Thus, for an ideal

polycondensation where að0Þ
i is described by binomial

distribution we will have

Fð0ÞðsÞ ¼
Xf

i¼0

f!

i!ðf 2 iÞ!
pið1 2 pÞ f2isi

¼ ð1 2 p þ psÞ f ð11Þ

FðsÞ ¼ ð1 2 p þ psÞ f21

Substitution of these expressions into formula (10)

will result in weight MWD (5) derived for the first

time by Flory [203] via tedious combinatoric

reasoning. Expression for the weight-average degree

of polymerization (6) can be also easily derived,

without explicit summation of MWD (5), by recourse

to the formula

PW ¼
X1
l¼1

lfWðlÞ ¼
dGW

ds

����
s¼1

¼ 1 þ
dFð0Þ

ds
1 2

dF

ds

� �21
" #

s¼1

ð12Þ

The essential drawback of the work cited above,

and the succeeding similar publications [263–265], is

the lack of rigorous proof of the correctness of the

choice of particular branching process which properly

describes the configurational statistics of macromol-

ecules. Methods of the construction of the gf used

under such an approach being intuitive may some-

times lead to wrong expressions for MWD and the gel

point. The same refers to attempts at intuitive

construction of the probability measure on the set of

random graphs corresponding to the products of

branched polycondensation [266–268].

The use of the kinetic method enables one to avoid

the above mistakes in the calculation of the config-

urational statistics of a polymer formed during

nonequilibrium polycondensation. For example,

Stockmayer showed [242] by direct substitution that
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the function MWD of the products of homopolycon-

densation of monomer RAf which he derived by the

statistical method is the solution of the corresponding

kinetic equation describing the evolution of the

concentrations of l-mers in the course of irreversible

polycondensation. The kinetic method for the calcu-

lation of the distribution of branched molecules for the

number of monomeric units and functional groups of

different types was introduced in the early 1970s [269,

270]. Analytic solution was reported to this problem

for arbitrary ideal copolycondensation for any number

of types of monomers and functional groups [164]. A

simple expression for the calculation of the gel point

was also derived [12], including as particular cases the

results of all papers devoted to this subject. The most

general in terms of the model of ideal polycondensa-

tion expressions for number-average and weight-

average degree of polymerization of macromolecules

taking part in the reaction system, both before and

after the gel point, are given in monograph [12].

Shortly after the appearance of papers [164,269,

270] and monograph [12] publications [271,272] were

issued in which the kinetic method was employed to

calculate the MWD and average degrees of polym-

erization of some particular systems. For example,

Saito [271] wrote down kinetic equations for the

concentrations of polymer molecules formed in the

course of irreversible copolycondensation of mono-

mers RAf1 Bf2 þ SAB; but did not present their

solution, having merely integrated the equations for

the statistical moments of the MWD. Stafford [272]

commenced with the erroneous assumption that the

solution of kinetic equations in case of homopoly-

condensation of monomer RAf is also capable to

describe the MWD of copolycondensation products,

provided the symbol f denotes the mean functionality

of initial monomers. The discussion of this mistake

[273,274] prompted Stafford to represent [275,276] a

derivation of the chemical size distribution of

polycondensation systems that contain mixtures of

monomers of different functionalities by a kinetic

method, without artificial recourse to the ‘mean

functionality’ assumption.

Employing the mathematical apparatus of the gf,

Ziff calculated the MWD of the products of homo-

polycondensation of monomer SAB2 and monomer

RA3 [277]. Examining the second of these systems, he

obtained three distinct solutions for the MWD of

the sol, corresponding to the models put forward by

Stockmayer, Flory and Ziff. For the first of these,

reactions between sol and gel are assumed to be

absent. In the second model, all functional groups

have the same reactivity, irrespective of whether they

belong to sol or gel. The third model differs from the

second only by the absence of the intramolecular

reactions in the gel. Recall, these reactions in sol are

prohibited in all three models in line with the

definition of an ideal polycondensation. Kinetic

equations are presented for the concentrations of

functional groups A pertaining either to sol or gel for

each of these models [277]. Later Ziff and Stell [278]

extended the results of paper [277] for the poly-

condensation of monomer RAf with f ¼ 3 to the case

with arbitrary functionality f. Interestingly, for the

Stockmayer model [242], they came to the hitherto

reported conclusion [279,280] about the invariance of

the MWD of sol fraction during the gelation stage.

Two more works [281,282] are worthy of mention

where this distribution was calculated in the frame-

work of the Flory model by the methods of the theory

of branching processes [281] as well as by computer

simulations [282]. In the latter case, an arbitrary pair

of functional groups was presumed to have the same

probability to enter into the reaction at any stage of

polycondensation of monomer RAf. It was shown that

the MWD for macromolecules with large number of

monomeric units was close to the distribution

described by the theory of branching processes, either

before or after the gel point. Besides, the dependence

on conversion of the number of bonds in a network

formed due to intramolecular cyclization reactions

was calculated [282]. Computer simulations applied

for the calculation of branched copolycondensation of

some mixtures of monomers with two types of

functional groups gave results [283,284] which are

in a good agreement with those of analytical

calculations. The direct summation of the differential

MWD was proposed to calculate its integral form

[285] and average degrees of polymerization [286].

Theoretical investigation of ideal branched poly-

condensation was undertaken by Tang and co-workers

[287–291]. When considering homopolycondensa-

tion of monomer RAf they derived recurrences for the

calculation of the dependence of statistical moments

of MWD of arbitrary order on the conversion of

functional groups A. In addition, they presented
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asymptotical, i.e. scaling, expressions describing this

dependence in the vicinity of the gel point.

This approach was applied later to the copolyconden-

sation of monomers RiA
fi

i ði ¼ 1;…;mÞ with mono-

mers SjB
gj

j ðj ¼ 1;…; nÞ; where the reaction proceeds

only between groups Ai and Bj [288]. In subsequent

work [289], the recurrences for the statistical

moments of the SCD were derived for the products

of alternating copolycondensation of monomers

RAf þ SBgCh, with functional groups that participate

in two reactions A þ B and A þ C. The expressions

for the gel point, the weight fraction of sol and the

equilibrium SCD of its molecules were also derived in

this paper. Such a distribution is obtained by

renormalization of the parameters of the SCD of the

macromolecules present in the reaction system at the

stage preceding gelation. The validity of this asser-

tion, proved earlier for arbitrary ideal polycondensa-

tion [12], was reestablished many years later for

particular cases of homopolycondensation of mono-

mer RAfBg [290], as well as for copolycondensation

of monomers RiA
fi

i ði ¼ 1;…;mÞ and SjB
gj

j ðj ¼

1;…; nÞ [291].

In applying the kinetic method for the calculation

of MWD of branched polymers it sometimes proves

advisable to invoke the analogy between polycon-

densation and coagulation [292–294]. Coagulation is

the process of aggregation of colloid particles,

resulting in the formation of new more large particles.

It is conventional to describe the evolution of their

weight distribution by an infinite set of ordinary

differential equations put forward by Smolukhovski.

Mathematically speaking this set may be viewed as an

ordinary difference-differential equation bearing the

name of Smolukhovski. This coincides with the

kinetic equation of the ideal irreversible homopoly-

condensation of monomer RAf in the limit f ! 1;

provided the probability of the coagulation of a pair of

particles is proportional to the product of their

weights. Such a coincidence seems to be quite

reasonable, since polycondensation and coagulation

in this case are described by the identical kinetic

scheme of the aggregation of monomers and colloid

particles, respectively. A wealth of work has been

published in which this analogy is harnessed to apply

the results of the coagulation theory to find the MWD

of polycondensation polymers, as well as to describe

gelation. Leaving aside the discussion of these works

let us note, however, that all results achieved in those

which deal with ideal polycondensation are obtainable

from the equations of the general theory [12,164] as

particular cases.

The matter of coincidence of the equations for the

configurational statistical characteristics of polymer

obtained by a statistical method with those achieved

by the kinetic or thermodynamic method is of critical

significance in the theory of branched polycondensa-

tion. This coincidence was revealed for some of the

simplest systems for the irreversible [295,296] and

equilibrium [245–249] regimes of polycondensation,

which testify to the validity of the statistical method

employed. Such a conclusion was arrived at in

monograph [12] as applied to the most general ideal

polycondensation system. The proper branching

process was constructed only upon rigorous examin-

ation of this system under each of these two regimes

proceeding from kinetic [297] and thermodynamic

[298] methods. It was found that the probabilities of

the reproduction of particles for this branching

process is controlled exclusively by the concen-

trations of terminal and internal (i.e. chemical

bonds) functional groups. Given their values, the

above probabilities are independent of the regime of

polymer synthesis. This fundamental ‘universality’

property plays a key role in quantitative theory of

polycondensation.

The idea to consider the change with time of the

SCD of polymer molecules in terms of a Markov

Stochastic Process (MSP) on the set of monomeric

units [298] is particularly important for the theory of

polycondensation. The state l of this stochastic

process for homopolymerization corresponds to a

unit entering into a l-mer molecule. The probability

distribution of these states is, evidently, the weight

MWD of polymer products. For copolycondensation,

the state of the stochastic process is characterized

by the type of the monomeric unit and the compo-

sition vector l of the molecule to which the particular

unit belongs. The probability measure on the set of

these states determines the weight SCD of the

polymer. This distribution may be found from the

solution of the Kolmogorov equations with matrix of

coefficients (referred to as the generator of MSP),

which is predetermined by this process peculiarities.

Expressions for the generator for ideal polycondensa-

tion in systems RAf, R1Af1 þ R2Af2 ; RAf þ SBg;
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R1Af1 Bg1 þ R2Af2 Bg2 were obtained by Faliagas

through a certain probability reasoning [299]. For

these systems, the Kolmogorov stochastic equations

may be reduced to traditional material balance kinetic

equations for concentrations of molecules with given

composition vector l: Instead of solving the latter it

has been suggested that the solution of the former be

found using the probability gf. This results in the

expressions for MWD and SCD of polymers that

strictly coincide with those distributions obtained

earlier by kinetic and statistical methods.

3.2.1. Configurational and conformational

characteristics of macromolecules

The foregoing discussion primarily concerned

papers in which ensembles of polymer molecules

were theoretically considered and their distributions

for size and composition were found. However, the

investigation of their configurational structure is

equally important. Its exhaustive description suggests

the construction of an algorithm to find the fractions

of all fragments of the macromolecules. In terms of

the graph theory, this means that instead of finding the

probability measure on a set of molecular graphs,

specifying MWD and SCD of a polymer specimen, it

is necessary to determine the probability measure on a

set of some subgraphs of these graphs [205].

For comprehensive analysis of the configurational

structure of branched polymers, it has been suggested

[298,300–302] that this be characterized by fractions

of different k-ads, each representing a polymer

molecule fragment composed of k monomeric units

connected by chemical bonds. These fragments have

been proposed to distinguish not only by types of

monomeric units involved, but also by their kinds

(see, for example, Fig. 2). The fractions of k-ads obey

the equations of topological stoichiometry [300,302],

which impose linear relations to some of them. These

equations permit one to express fractions of subgraphs

Uk21 through the fractions of subgraphs Uk: These

relations prove to be rather useful in interpreting

NMR-spectroscopy data for the experimental deter-

mination of the fractions of some of the k-ads.

To find them theoretically just the same methods

can be invoked which are traditionally applied for

deriving expressions for MWD or SCD of branched

polymers. However, the statistical method is the

best suited for an ideal polycondensation, because

a one-to-one correspondence is rigorously established

between the probabilities of polymer molecules

formed during the synthesis and the probabilities of

the realizations of a stochastic branching process

within the framework of the ideal model [297–298].

The general algorithm enabling one to derive the

expression for the fraction of any k-ad by the

statistical method was demonstrated for the products

of homopolycondensation of monomer RAf [301,

302]. The algorithm of the solution of the same

problem by the kinetic method can be found in the

textbook [33].

The statistical method allows the calculation of the

probabilities not only of k-ads, but also those of any

other fragments of polymer molecules [205]. Among

them of prime importance are the trails, which are

linear sequences of monomeric units. The fact is that

the distribution of these trails for lengths enters into

the expressions for the calculation of conformation-

dependent characteristics of randomly branched

polymers.

Among such characteristics, for example, are the

mean geometric sizes and diffusion coefficients of the

macromolecules, as well as the scattering intensity

from their dilute solutions. The theoretical determi-

nation of these physico-chemical parameters necess-

arily requires the averaging over conformations and

configurations of branched macromolecules. For the

solution of this problem [303–319], it is assumed that

every subchain (trail) connecting a pair of units in

such molecules is freely jointed, and that chemical

reactions do not break the conformational equili-

brium. Such assumptions enable the averaging over

all conformations of a macromolecule with an

arbitrary configuration, so that just configurational

averaging remains.

To this end, generally speaking, it is necessary to

perform the averaging first over conformations of all

topological isomers with fixed number of units, and

second over SCD of the products of branched

polycondensation. The number-average, weight-aver-

age or z-average values of characteristics of interest

may be computed using the appropriate expressions

for the selected distribution type (number, weight,

etc.). In the latter case, the determination is substan-

tially simplified. For example, it turns out possible to

perform a single configurational averaging instead of

double one in deriving the relationships for z-average
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radius of gyration Rgz of macromolecules formed in an

ideal branched polycondensation, and for the scatter-

ing factor from their dilute solution. This averaging,

which is over the distributions of the trails for their

length can be found from the recurrence relations

[306,308,310,311,315,316,318,319]. The expressions

have been derived for a variety of conformational–

configurational characteristics of the products of the

homopolycondensation of monomer RAf [311,316,

318], monomer RA1A2A3 [306,308,310,315] and the

copolycondensation of monomers RAf þ SBg [319],

both before and after the gel point. Burchard et al.

[308,315] came to the valid conclusion that the

distribution of trails for length can be easily found

provided every monomeric unit in a trail is supplied

by a label. This label is assigned to a monomeric unit

in accordance with the type of the reacted functional

group attached to it, involved in the intramolecular

bond connecting this unit with the preceding unit in

the trail. Under homopolycondensation of monomer

RA1A2A3, there are three types of labeled units, R1,

R2 and R3, whose alternation in any trail is described

by a Markov chain with three states, corresponding to

every type Ra ða ¼ 1; 2; 3Þ of these units. The theory

of Markov chains allows one to easily find the

distribution for length of trails of labeled units, and

then to erase the labels, joining three states in one.

This procedure of ‘labeling–delabeling’ of mono-

meric units is rather efficient for the solution of many

problems in the statistical chemistry of polymers [13].

The equivalence of the trails of the labeled units, and

the realizations of a certain Markov chain revealed by

Burchard et al. [308,315] for a particular system, was

later rigorously proved for arbitrary polycondensation

polymers synthesized under the condition of the

applicability of the ideal model [298]. Furthermore,

expressions for the elements of the transition matrix of

this chain were derived, enabling one to find their

dependence on kinetic or thermodynamic, as well as

stoichiometric parameters of a reaction system. This

provides a means to determine the probabilities of any

trails and, consequently, to calculate configurational–

conformational parameters of the products of an

arbitrary ideal branched polycondensation.

The straightforward method for the evaluation of

the probabilities of trails by means of the Markov

chains is perfectly suited for the calculation of simple

polycondensation systems. It has been suggested that

for more complicated systems ‘this technique

becomes very difficult and nontransparent so that

errors can scarcely be avoided’ [320], but this opinion

can hardly be shared in the light of the results reported

in paper [298]. The direct method of finding the z-

average radius of gyration Rg of statistically branched

macromolecules fails, however, for the calculation of

either the number-average or weight-average Rg

value. This is also true for any other configura-

tional–conformational characteristic of the products

of an ideal polycondensation. To cope with this

problem the formalism of the theory of branching

processes turns out to be rather convenient [260,261,

303–305,307–309,312–314,317]. This technique

makes it possible to obtain, among other things,

explicit expressions for the elements of the transition

matrix of the Markov chain occurring when the direct

method is employed for the calculation of the trail

probabilities. Following pioneer work by Gordon and

co-workers [260–261] an original approach was put

forward which used the path-weight gf to perform the

averaging over configurations of randomly branched

molecules [303–305]. The mathematical apparatus

underlying this approach made possible a uniform

derivation of the formulae for average gyration radii,

the scattering factor, the diffusion coefficient and

other analogous statistical characteristics of the

branched polymers formed in the course of the

polycondensation of monomers RAf [303–305,316,

318], RAf þ SB2 [307,309], RABC þ SAB [312],

and RAf þ SBg [319].

When calculating the characteristics described

above, it is advisable to use an approach considering

polymer molecules as graphs embedded in three-

dimensional space [321–323,205]. The label r is

assigned to every vertex of such a graph, characteriz-

ing the vertex position in this space. A graph with

labeled vertices unambiguously sets not only the

configuration of a macromolecule, but also its

conformation. It is possible to find uniformly any

statistical characteristic of the products of an ideal

polycondensation having constructed the probability

measure on the set of thus labeled graphs [205]. For

such a consideration, results are formulated in terms

of generating functionals (GF), which are a general-

ization of gf, widely used for finding the configura-

tional characteristics of macromolecules considered

as abstract graphs. For example, in the calculation of
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the conformational characteristics of macromolecules

it is of prime importance to obtain the distribution of

the probability for a unit chosen at random at point r

among the products of the ideal polycondensation of

monomer RAf to pertain to a molecule of an l-mer

with a given conformation. The GF of this distribution

is determined by the expression

GWðr; ½s�Þ ¼ sðrÞj fðrÞ;

jðrÞ ¼ 1 2 p þ p
ð
lðr 2 r0ÞUðr0; ½s�Þdr0

ð13Þ

where functional U is obtained from the solution of

integral equation

Uðr; ½s�Þ ¼ sðrÞj f21ðrÞ ð14Þ

Along with the conversion p of groups

A relationships (13) and (14) comprise probability

lðr 2 r0Þ for a unit situated at point r0 to have a

neighboring unit located at point r: If the position

of units in space is of no interest, then the function

sðrÞ should be put equal to a constant s: Then the

functional U is no longer controlled by coordinate

r; and turns into gf uðsÞ: It is readily noticed that in

this case Eqs. (13) and (14) are reduced to the

well-known ones in Eq. (8) because the integral of

function l in the right-hand part of formula for jðrÞ

in Eq. (13) equals unity.

Under the approach introduced by Kuchanov and

Korolev [205,321–323], a polymer molecule is

characterized by a random function denoting their

microscopic density rMðrÞ; whereas under the tra-

ditional treatment such a molecule is characterized by

random quantity l which is the number of its units.

The GF of the distribution of the density GWðr; ½s�Þ

plays the same role that the gf Eq. (9) does in a

traditional statistical approach. The statistical

moments of random function rMðrÞ; referred to as

correlation functions, are found by variational differ-

entiation of the functional GWðr; ½s�Þ with respect to

the argument sðrÞ: Of prime importance is the two-

point correlator

xðr0 2 r00Þ ; krMðr0ÞrMðr00Þl ¼ rsðr00Þ
dGWðr0; ½s�Þ

dsðr00Þ

ð15Þ

where the angular brackets denote the averaging over

all conformations and configurations of polymer

molecules and r stands for the overall density of

units. Employing simple formulas connecting confor-

mational–configurational characteristics of randomly

branched polymers with the Fourier-transform of

correlation function (15), it is an easy matter to find

these characteristics. Noteworthy, such an approach

provides the opportunity to determine not only their z-

average values, but also number-average and weight-

average values.

The expressions (13) and (14) for the GF derived

from the Gibbs equilibrium distribution has a clear

probabilistic meaning in terms of the general branch-

ing processes [324], describing both the reproduction

of the particles and their diffusion in space. An ordinary

branching process is completely characterized by the

gfs of the probability distribution of a certain number

of descendants which a particle can give birth to in each

generation. As for a general branching process it is

exhaustively characterized by analogous GFs carrying

additional information on the probabilities of the

random walk of the descendants in space during their

lifetime. This universal approach works as well for the

statistical description of the products of equilibrium

ideal polycondensation when functional groups, bonds

and units are acted upon by inhomogeneous external

(e.g. electric) fields. Besides, this approach makes it

possible to take into account the physical interactions

among units and with the solvent [205].

Calculation of the statistical parameters of the

topological structure of a polymer network formed

under the conditions of the ideal model of polycon-

densation presents no fundamental difficulties. Once

Scanlan [325] and Case [326] introduced the elasti-

cally active node and chain concepts, Dobson and

Gordon [327] and later Hasa [328] demonstrated the

potential of the application of the theory of branching

processes for the calculation of these important

topological parameters of a polymer network for the

simplest polycondensation systems. The efficiency and

simplicity of this approach ensured it a wide appli-

cation under the theoretical prediction of the elasticity

of polycondensation gels [329,330]. Equally success-

ful is the recourse for this purpose to another variant of

the statistical method based on the recursive prob-

ability analysis for the calculation of a polymer

parameters by direct application of expectations and

probabilities [331]. This method provides the oppor-

tunity to calculate the density of elastically active
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nodes, fractions of elastically active and passive

chains, as well as their number-average and weight-

average lengths in polymer networks formed during

homopolycondensation of monomer RAf and alternat-

ing copolycondensation of monomers RAf þ SB2

[225,227,228,233]. Later, the most general equation

was derived to calculate the cyclic rank of a gel formed

in the course of ideal polycondensation of an arbitrary

mixture of monomers, with any number of functional

groups types [332]. Costa and Dias [333] proposed to

use a general kinetic analysis for the solution of such

problems. The practical utility of their work is due to

the fact that having started with comprehensive

theoretical consideration of polycondensation pro-

cesses, they completed their research by developing a

computer program permitting the calculation of many

statistical characteristics of sol and gel.

3.2.2. Continuous processes of polycondensation

Theoretical consideration of a linear homopoly-

condensation (see Section 2.5.2) leads to the con-

clusion that the transition from closed systems to open

ones might be responsible for a perceptible growth of

the polydispersity of the products. Moreover, the

MWD form in asymptotic limit l !1 was found to

change. A sophisticated theoretical treatment of the

ideal polycondensation of monomer RAf in a CSTR

revealed an analogous situation for a branched

polycondensation [196]. Thus, if the polycondensa-

tion of this monomer is conducted in a batch reactor,

i.e. in a closed system, the asymptotic formula for

MWD at l q 1 reads

fNðlÞ ,
dl

l5=2
;

where d ¼
ðf 2 1Þ f21

ðf 2 2Þf22
pð1 2 pÞ f22

ð16Þ

At p ¼ pp ¼ ðf 2 1Þ21 the value of d is unity, and

at this gel point the character of the MWD decay with

the growth of l changes qualitatively. Consequently,

prior to gelation ðp , ppÞ the weight MWD statistical

moments of all orders have finite values, whereas at

p ¼ pp they all become infinite. As the gel point is

approached an unlimited rise of the polydispersity

coefficient is observed

K ;
PW

PN

¼
ð2 2 fpÞð1 þ pÞ

2½1 2 ðf 2 1Þp�
ð17Þ

Expressions (16) and (17) are applicable, evi-

dently, for the description of the polydispersity of

products of continuous polycondensation of monomer

RAf obtained in a plug-flow continuous reactor.

The comparison of relationships (16) and (17) with

those derived for polycondensation in CSTR [196]

fNðlÞ ,
1

ln
; where n ¼

3 2
ffiffi
k

p

1 2
ffiffi
k

p ;

k ¼ 1 2
4ðf 2 2Þp

ð1 2 pÞ2
¼ 1 2

gp

g

ð18Þ

K ¼
ð22 fpÞ

ðf22Þ

fð12pÞ

12pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð12pÞ2 24ðf22Þp

p 21

" #

ð19Þ

is indicative of their qualitative distinction. The

polydispersity coefficient K given by Eq. (19) is

valid for p # pp; where pp ¼ ð
ffiffiffiffiffiffiffi
f 2 1

p
2

ffiffiffiffiffiffiffi
f 2 2

p
Þ2;

with K approaching ð2 2 fppÞðf 2 1Þ=ðf 2 2Þ as p

becomes arbitrarily close to p p : This occurs for a

value of the Damkehler parameter g equal to gp ¼

4ðf 2 2Þ [182,191]. If g , gp; the reactor will

necessarily contain gel. Two different stationary

regimes of branched polycondensation are possible

for g larger than the critical value gp: Gelation occurs

only under one of these regimes. Which of them is

realized in a CSTR depends, apart from g; on the

value of a parameter a; equal to the ratio of the initial

molar concentration of a monomer in the reactor to its

concentration in the input flow. A prerequisite to the

realization of the second regime, in which only finite

sol molecules with a MWD given by Eq. (18) are

formed, is the following inequality a , 2=ð1 2
ffiffi
k

p
Þ:

If the inverse inequality a . 2=ð1 2
ffiffi
k

p
Þ holds, the

reactor will attain the first stationary regime after

some time, with the polycondensation products

containing gel particles.

The comparison of the asymptotic expressions

Eqs. (16) and (18) for the MWD shows that the first

of these decays markedly faster than the second as

l !1: In other words, switching from a batch reactor

to a CSTR inevitably results in increased polydisper-

sity of the branched polymers, as also takes place for
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a linear polycondensation (see Section 2.5.2). This

inference is also supported by the comparison of K

calculated by formulas (17) and (19) at identical

values of monomer functionality f and conversion p:

In particular, the critical value pp of p for the

polycondensation of monomer RA3 in a batch reactor

and CSTR is equal to 0.50 and 0.18, respectively.

Attention should be paid to one more qualitative

distinction between distributions (16) and (18). This

lies in the fact that at the gel point all statistical

moments of the first of these MWDs with order two

and more turn simultaneously to infinity, whereas the

statistical moments of the second MWD of order three

and more already are infinite as p approaches its

critical value pp: Theoretical analysis of the poly-

condensation conducted in a cascade of several

CSTRs enabled investigation [196] of the effects of

hydrodynamic stirring in a reaction system on the

polydispersity of the homopolymer formed, as well as

on the value of the critical conversion at the gel point.

3.2.3. Multistage processes

Many commercial condensation polymers are

currently manufactured in two stages, in which

reactive oligomers synthesized first are subsequently

crosslinked due to the reactions between the func-

tional groups unreacted in the first stage [334].

Examples are epoxy resins and amine hardeners,

prereacted in the first stage and later cured in the

second stage. Since prepolymers may be manufac-

tured in more than one stage, theoretical consideration

of multistage polycondensation is a challenging task.

The first attempts of such an examination have been

undertaken nearly simultaneously by Kuchanov [335]

and Dusek et al. [336] who used, respectively, kinetic

and statistical approaches.

The general principles of the calculation of the

statistical characteristics of the polymers obtained by

the crosslinking of oligomers are outlined in the first

of the papers cited above, studying the one-stage

evolution of the distribution of polymer molecules for

size, composition and functionality (SCFD) [335].

The results reported in this work make it possible to

consider theoretically the curing stage of oligomer

resin with an arbitrary SCFD. Taking this distribution

as initial for the crosslinking stage and using the

expressions derived in paper [335], it is an easy

matter to find the SCFD of the products of curing.

The theoretical analysis yielded important general

conclusions concerning an ideal multistage polycon-

densation [335]. If the SCFD of polymers obtained for

the first stage is the ‘most probable’ then the SCFD of

those prepared in the second stage will belong to the

same class of distributions, but with other probability

parameters. The latter are expressed through the

stoichiometric parameters of the crosslinked polymer

and the concentrations of intramolecular bonds in its

molecules, easily obtained from the solution of the

kinetic equations for the concentration of functional

groups. Otherwise stated, the products prepared by

crosslinking any Gordonian polymer are also Gordo-

nian polymers. This fundamental ‘invariance prop-

erty’ is an intrinsic feature of an ideal

polycondensation, and shows up in homogeneous

processes carried out in any number of stages. This

property is retained even if the temperature and/or a

catalyst concentration arbitrarily changes in the

course of polycondensation. It is highly important

that the SCFD of the final polymer being controlled

exclusively by the parameters of its microstructure in

no way depends on the parameters for the prepoly-

mers at intermediate stages. This reduces the

calculation of the statistical characteristics of the

products of crosslinking of oligomers with a most

probable SCFD to ordinary problems of the ideal

polycondensation theory.

Under theoretical treatment of branched multistage

polycondensation, recourse was also made to the

statistical approach employing the theory of the

branching processes [336–338]. General ideas of

the transformation of the probability gfs, enabling one

to relate the statistical characteristics of the polymer at

the beginning and end of every polycondensation

stage, were exemplified for some systems [336]. In

particular, a multicomponent system was studied in

which monomers are converted into a final network

in several consecutive stages. For simplicity, the

authors [336] assumed that reactions possible at stage

i are no longer possible at stage ði þ 1Þ: Then the

process was examined for a network formation in six-

component, three-stage process [337–338]. Two

different modifications of the statistical method were

applied. In the first, the whole molecules obtained for

each stage were used as the building units for the

subsequent stage. In another modification, the system

was treated as a quasi-one-stage process
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and the original monomers were used as building

units, irrespective of the stage at which they react. The

two approaches give analytically identical results, but

along completely distinct derivations. This is an

argument in favor of the correctness of the results

achieved, important because a rigorous kinetic sub-

stantiation of the statistical approach employed is

missing in papers [336–338].

3.3. Models incorporating the substitution effects

3.3.1. Peculiarities of nonrandom polycondensation

The substitution effect inherent in a branched

polycondensation can be responsible for pronounced

discrepancy in the reactivity of isomers with identical

degrees of polymerization. This discrepancy is easier

to exemplify with the FSSE model for which the

reactivity of an arbitrary functional group is governed

solely by the number and the position of each type

reacted groups attached to the same monomeric unit.

Here, the reactivity of a polymer molecule is fully

prescribed by the number of its constituent mono-

meric units with different configurations. In view of

this, in terms of this model the molecules should be

differentiated solely by this attribute. The model for

the Second Shell Substitution Effect (SSSE) dis-

tinguishes polymer molecules by the number of pairs

of neighboring monomeric units with different

configuration. In treating nonrandom polycondensa-

tion it is customary to resort to the slightly modified

methods usually applied with ideal systems.

Gordon and Scantlebury [249] were the first to

calculate the configurational statistics of the branched

polycondensation products in the framework of the

FSSE model, using homopolycondensation of a

monomer RAf as an example. They proceeded from

certain branching process, but put forward a way

(other than that employed for ideal systems) to set the

probabilities for the reproduction of particles. This

approach suggests that the probability for each

particle to give birth to certain number of descendants

is controlled by the kind of a monomeric unit

corresponding to the particle. The theory was

designed to describe an arbitrary polycondensation

regime provided the probability parameters of the

branching process were related in an appropriate way

to the kinetic or thermodynamic parameters of the

system. They determined this relation for either

equilibrium or irreversible polycondensation, and ex-

pressed the number-average and the weight-average

molecular weights of a polymer and the conver-

sion at the gel point through the above parameters.

Later the statistical approach was applied for this

system to calculate some characteristics of the sol-

fraction [260], gel-fraction [339] and distribution of

polymer molecules for the number of different kind

monomeric units [340]. Such a system was suggested

to describe [262] by a branching process with the

same propagating particles as in paper [249], but with

other probabilities of their birth and death. In some

treatments, authors investigating a model of irrevers-

ible copolycondensation of various monomer mix-

tures formally resorted to either a direct probabilistic

examination [217,218,341–347] or to the formalism

of the theory of branching processes [261,265,339,

348]. To verify results achieved by the statistical

method, it is necessary to compare them with those

obtained using kinetic calculations.

Application of the kinetic method for the

calculation of the distribution for size, composition

and functionality of the products of branched

polycondensation of monomers with kinetically

dependent groups was pioneered in paper [49]. A

general algorithm formulated there enables deri-

vation of the corresponding kinetic equations for

the distribution described above. Analysis of the

solution of these equations for the homopolycon-

densation of monomer RAf revealed that the

configurational statistics of some systems in the

framework of the FSSE model may not be

amenable to description by any branching process

[12,48,349]. Systems for which the traditional

statistical method commonly employed for the

calculations of an ideal polycondensation does not

work are referred to as truly nonideal systems.

Along with these, there exist quasi-ideal systems,

for which the traditional method can yield correct

results. Unfortunately, consistent criteria to judge

whether a system described by the FSSE model

belongs to quasi-ideal are missing.

Rigorous thermodynamic examination shows that

polycondensation of an arbitrary monomer mixture

performed under equilibrium conditions is always

quasi-ideal [350]. An algorithm has also been

presented for the construction of a corresponding

branching process to describe the configurational
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statistics of a polymer molecule for any such a

system [350]. Upon the kinetic consideration of

nonequilibrium polycondensation for a wide range

of monomer mixtures it was conjectured [48] that a

sufficient condition for a system to be quasi-ideal is

that in any molecule every unit of a monomer with

dependent functional groups is connected exclu-

sively with the units containing independent

groups. For example, this condition is met in

systems for which the groups of one of the

monomers are independent [265,341–345], but is

not met for the homopolycondensation of monomer

RAf or the copolycondensation of monomers

RAf þ SB2 if both of them have dependent groups

[339,346–348]. The applicability of the statistical

methods for the description of polymers syn-

thesized by nonequilibrium polycondensation was

also covered in papers [295,351–352]. Authors

pointing out the analogy between the models of a

polycondensation and the build-up of biological

macromolecules arrived at virtually the same condition

[351–353] as that put forward in paper [48].

3.3.2. Equilibrium polycondensation

The elaboration of a quantitative theory of

equilibrium polycondensation in the framework of

the FSSE model is just slightly more complicated

than that for ideal systems. Thus, in the simplest

case of homopolycondensation of monomer RAf,

Gordon et al. [249,260], seeking to find MWD of

the products of the reactions by the statistical

method, recommended to make use of the Eqs.

(7)–(10) and (12) of the ideal model, with

probability parameters að0Þ
i differing from those

that occur in expression (11). These parameters,

coinciding with molar fractions li of monomeric

units of kind i; are governed only by the

equilibrium constants of the elementary reactions

between functional groups attached to units of

different kinds. The gf of the weight MWD in Eq.

(9) can be calculated by formula

GWðsÞ ¼ sFð0ÞðuÞ; where Fð0ÞðuÞ ¼
Xf

i¼0

liðtÞu
i ð20Þ

where the dependence of function u on the dummy

variable s is obtained from the solution of

the algebraic equation

u ¼ sFðuÞ;

where FðuÞ ¼
dFð0ÞðuÞ

du
=
dFð0ÞðuÞ

du

�����
u¼1

ð21Þ

The weight fraction vs ¼ GWð1Þ of sol may be

calculated from expressions

vs ¼ Fð0ÞðupÞ; up ¼ FðupÞ ð22Þ

where up stands for the least positive root of Eq. (22).

Among theoretical publications dealing with the

description of the products of the equilibrium FSSE

polycondensation, the quite elegant works by Whittle

merit special mention [354,355]. On the basis of an

original approach [356], he derived rather general

equations that permit the calculation of the MWD and

SCD, as well as the critical conversion at the gel point.

These results coincide with those ensuing from the

theory of branching processes for the homopolycon-

densation of monomer RAf [249]. It remains an open

question whether the relations reported [354,355] are

suitable for more complicated systems. The fact is

their derivation is based on the assessment of the

coefficients of certain kinetic equations, although only

equilibrium systems are addressed. Naturally, the

kinetic restriction used in papers [354,355] implying

that substitution effects are absent under degradation

reactions, is not necessarily presumed to be imposed

for these systems.

The thermodynamic method invoked [67,249,357,

358] to calculate the probability parameters of

branching processes describing the configurational

statistics of branched polymers is free from these

superfluous restrictions. As already noted in the

foregoing, the most general and rigorous solution of

this problem for an arbitrary equilibrium FSSE

polycondensation system has been provided [350],

in an algorithm for the construction of the correspond-

ing branching process, as well as that of the

calculation of its probability parameters. The reported

results embrace as particular cases all the systems

considered earlier, including the copolycondensation

of two monomers RAf þ SBg, each having indepen-

dent functional groups. Dusek presented without

derivation the expressions for the gfs of the corre-

sponding branching process for this system,
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and calculated from them the gel point position and

other parameters of the polymer network [359].

Mention should be also made of paper in which the

methods of the theory of random graphs are recruited

for the calculation of the configurational statistics of

the assembly of macromolecules formed in the course

of the build-up reactions of inorganic polymers [360].

With slight modifications, the results might be

employed to calculate the products of the equilibrium

polycondensation, with allowance for the different

order substitution effects.

The substitution effects of order m . 1 were

studied at m ¼ 2 for homopolycondensation of

monomer RAf [301,358,361]. Having introduced

this SSSE model, Gordon and Parker [361] advanced

the idea to resort to some branching process for the

description of the MWD in terms of this model.

However, since they provided no rigorous substantia-

tion for the system quasi-ideality, the meaning of the

probability parameters of this process and their

relation to the constants of the elementary reactions

of the model employed remains vague. Such a relation

was revealed for an equilibrium regime of polycon-

densation, and the number of the independent

thermodynamic parameters of this model was also

indicated [301,358].

The field theoretic formalism is the most efficient

method for the calculation of conformational charac-

teristics of the products of nonrandom equilibrium

polycondensation [205,321,362]. This makes possible

to extend the traditional statistical approach and to

formulate thermodynamic and scattering problems in

terms of a stochastic branching process, for which the

particles along with reproducing are also involved in

diffusion in three-dimensional space. Elaborated for

the description of the products of ideal polycondensa-

tion, after minor modifications [322] this approach

can be applied to an equilibrium polycondensation of

monomers showing FSSE.

3.3.3. Irreversible polycondensation

Unlike the configurational statistics of polymers

synthesized by ideal polycondensation, the statistics

of the products of nonrandom polycondensation are

dependent, generally speaking, on the regime of the

process performance. Qualitative distinctions in the

statistical characteristics of the molecular structure

of polymers prepared under equilibrium and

nonequilibrium regimes may show up if the poly-

condensation system is truly nonideal.

The simplest among these is the irreversible

homopolycondensation of monomer RAf with kineti-

cally dependent groups. Consideration of this system

within the framework of the FSSE model was

undertaken by a theoretical analysis proceeding

directly from the kinetic scheme of the reactions

between macromolecules [363–369], unlike several

other studies on this system [249,260,339,340,346,

347]. In line with the general concepts of the

statistical chemistry of polymers, it was rec-

ommended [12] that monomeric units of different

kinds be selected as kinetically independent units,

rather than functional groups, as for an ideal

polycondensation. Under this approach, every poly-

mer molecule was characterized by a vector l; with

components li ði ¼ 0;…; fÞ equal to the numbers of

such units [48]. Recourse to the extended Flory

principle [12,13] permits one to derive the equation

for the distribution of the concentration of molecules

with a given value of vector l; and reduce it to the

partial differential equation for the gf of this

distribution [48]. Unlike the case for an ideal

polycondensation, its exact analytical solution is

hardly obtainable. However it is an easy matter to

derive the ordinary differential equations for the

statistical moments of the MWD of polymer products

from this equation. The conversion pp at the gelation

moment can be calculated from the condition of the

divergence of these moments with order two. An

alternative independent approach based on the

bifurcation condition of the solution of the kinetic

equation at the gel point has been employed to

calculate pp: Comparison of the results obtained in

these two procedures revealed their nearly complete

agreement for a variety of kinetic parameters, within a

wide range of their values [363].

Monte Carlo computer simulations provide another

method for the gel point determination. Using this

method, Mikes and Dusek [364] found values pp for

the polycondensation of monomer RA3 in the frame-

work of the simplified version of the FSSE model, for

which the constant of elementary reaction kij between

groups attached to monomeric units of kinds i and j; is

known to factorize as kij ¼ kikj: Besides the depen-

dencies of the polydispersity coefficient and the

weight fraction of the gel on conversion were found
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at some values of the kinetic parameters ki: The

authors compared the results of their Monte Carlo

simulations with those obtained by Gordon’s

approach [249] (empirical for this truly nonideal

system), concluding that the values of the statistical

characteristics found in two ways are almost identical

except for a very few special cases. However, this

conclusion should be viewed with caution for two

reasons. On the one hand the authors [364] restricted

themselves to a monomer functionality f equal to

three, on the other the simulations were performed

exclusively in the framework of the simplified FSSE

model.

Kinetic equations have been presented under the

same restrictions for the concentrations of polymer

molecules with fixed numbers of units of different

kinds [365–367]. These equations are nothing but a

particular case of those derived earlier [48] in the

framework of the general kinetic theory of irreversible

FSSE polycondensation of monomer RAf. Compari-

son of the gel point position, as well as dependence of

number-average and z-average degree of polymeriz-

ation on conversion calculated by kinetic and

statistical methods shows minor discrepancy [366]

for several sets of the values of the elementary

reactions’ constants.

The acceptability of the statistical method for the

calculation of critical conversion pp; for the formation

of a polymer network in the course of nonrandom

polycondensation of monomer RAf, was scrutinized

by Kuchanov and Kholostiakov [368]. They

implemented the idea [301,369] formulated formerly

of the construction of a hierarchy of branching

processes for the approximate description of the

configurational statistics of polymers formed during a

truly nonideal polycondensation. The first in this

hierarchy is the ordinary branching Galton–Watson

process, in which all particles reproduce indepen-

dently [249]. The second approximation is the

nontraditional branching process, with a probability

for a particle to have a given number of ‘children’

depending on the number of its ‘brothers’. The

probability parameters of the first and the second

branching process are controlled, respectively, by the

fractions of monads and dyads presented in Fig. 2,

obtainable from the solution of closed sets of ordinary

differential equations. A set of such equations was

written down to describe the microstructure of

the products of polycondensation of monomer RAf

with arbitrary functionality f in the framework of the

complete FSSE model. The solution of this set at

different values of kinetic parameters resulted in

several conclusions about the applicability of the

Gordon statistical approach to the description of

the polycondensation system in hand. The following

are among the conclusions of prime importance [368].

There is an ample range of the reactivity ratios for

which this statistical method leads to values of pp

markedly differing from the exact ones. In some cases

such a distinction can be substantially lessened by

switching from the monad branching process to the

dyad one, but systems have been revealed for which

even this approximation produces error in pp that is

too large.

Given the solution of differential equations for

monads and dyads reported in paper [368], it is

possible to find the dependence on conversion of all

probability parameters of the dyad branching process

approximating the nonideal polycondensation of

monomer RAf. Since the expression for the gf of

this stochastic process is known (see Eq. (20) in

Ref. [301]), it is an easy matter to calculate not only pp

in this approximation, but any statistical characteristic

of the chemical structure of a polymer as well. Such

calculations have, in particular, been carried out for

the MWD of oligomer products being prepared for the

polycondensation of monomer RA3 [370]. The

authors of this work, having rederived equations for

the particular case f ¼ 3 of the more general dyad

branching process reported earlier [301,368], appear

to consider them as exact in the framework of the

FSSE model, as no mention was made of the

approximate character of their equations.

The kinetic equations for the fractions of dyads

being formed in the course of the irreversible RA3

polycondensation described by the FSSE model were

presented first in the Appendix to a paper by Macosko

et al. [371]. An algorithm has been put forward by

them intended to modify recursive relations tradition-

ally employed in the framework of the Miller–

Macosko statistical approach [224–227,331] for the

description of a polycondensation processes. The

results obtained on the basis of this algorithm

(referred to by the authors as the ‘bond distribution

model’) coincide with those achieved in the frame-

work of the dyad branching process. Hence, both of
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these approximations prove to be fully equivalent for

the calculation of the statistical characteristics of

branched polymers. Paying tribute to the valuable

contribution of paper [371] to the statistical theory of

polycondensation, it is hardly possible to agree with

their opinion that the dyad approximation is only

a marginal improvement over the monad approxi-

mation. Such a conclusion certainly ensues from

comparison of the values of the critical conversion at

the gel point pp calculated by them for several sets of

kinetic parameters of the simplified FSSE model.

However, even in the framework of this model, there

are values of these parameters for which switching

from the monad to the dyad approximation one can

reduce the error of calculated value pp tenfold [368].

Of crucial importance is the answer to the question

concerning the existence of a branching process

capable of providing an exact statistical description

of the chemical structure of the products of truly

nonideal polycondensation. A positive answer makes it

possible to easily calculate the topological character-

istics of a polymer network controlling its elasticity

properties. The rigorous prove of the existence of such

a branching process for the description of a nonrandom

homopolycondensation of monomer RAf is provided

only by the kinetic method. Its application provides an

expression for the gf of the weight MWD of polymer

molecules [61] that reads [13,372]

GWðsÞ ¼ sFð0Þ½u�;

uiðtÞ ¼ s
Xf21

j¼0

pijðtÞF jðt; ½u�Þ
ð23Þ

where the following designations are used

Fð0Þ½u� ¼
Xf

i¼0

ð
· · ·
ð

Piðt; t0;…; ti21Þ
Yi21

j¼0

ujðtjÞdtj

ð24Þ

F iðt; ½u�Þ ¼
dFð0Þ½u�

duiðtÞ
=
dFð0Þ½u�

duiðtÞ

�����
uðtÞ¼1

ð25Þ

dli

dt
¼ wi21li21 2 wili; lið0Þ ¼ di0 ð26Þ

pijðtÞ ¼
~kijljðtÞ

wiðtÞ
; wiðtÞ ¼ M

Xf21

j¼0

~kijljðtÞ;

~kij ¼ ðf 2 iÞðf 2 jÞkij

Here ~kij denotes the rate constant of the elementary

reaction between monads of kinds i and j while kij is

that of the reaction between functional groups entering

in this monads. The comparison of expressions (23)–

(26) and (20) and (21) points to a certain similarity

between them. If the FSSE polycondensation proceeds

under an equilibrium regime, it is described by a

branching process exhaustively characterized by the gf

Fð0ÞðuÞ of distribution liðtÞ of monads for number i of

their chemical bonds. For the irreversible polyconden-

sation the role of gf is played by Generating Functional

(GF) Fð0Þ½u� of the density of the distribution

Piðt; {tj}Þ of monads supplied with labels {tj} ¼

ðt0;…; ti21Þ that indicate the instant for the formation

of these bonds. Expression (25) relating GF F i with

Fð0Þ looks like Eq. (21), which relates gf F with Fð0Þ:

The distinction is that the role of the ordinary

derivative in Eq. (21) is played by a functional

derivative in Eq. (25). To get the gf of a polymer

weight MWD, it is necessary first to find the solution of

the set of the integral equation (23) for functions

u0ðtÞ;…; uf21ðtÞ; and to subsequently substitute this

solution into the expression for functional Fð0Þ½u� in

Eq. (24).1 The weight fraction of sol vs ¼ GW (1)

equals GF (24) taken at functions 0 # up
i ðtÞ , 1 ði ¼

0;…; f 2 1Þ that are the solution of the set of nonlinear

integral equations

up
i ðtÞ ¼

Xf21

j¼0

pijðtÞF jðt; ½u
p�Þ ð27Þ

Such a solution is always unique, and is easy to

determine by an iteration method. The calculation of

the dependence of the weight fraction of gel vg ¼

1 2 vs on conversion has been first exemplified by two

particular systems [13].

A thorough theoretical analysis has been per-

formed of the effect of the FSSE model kinetic

parameters on the character of the dependence on

conversion not only of the gel-fraction vg; but also of

the fraction vge of elastically effective material and

the cyclic rank R of the polymer network [372].

Special attention was paid to the study of responsible

1 Review [13] comprises integral equations (23) written down

erroneously due to an unfortunate misprint at the stage of the

manuscript preparation. The results of the calculations reported in

this review are certainly correct since these were obtained from the

solution of the undistorted set of Eqs. (23).
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gels which have a very small fraction of branching

monomeric units. They, being capable of absorbing

and retaining a great amount of solvent, find an ever

increasing application. Such critically branched

networks are formed at conversions just slightly

exceeding the critical one pp: Asymptotic methods

were found to be especially efficient in theoretical

examination of such networks synthesized in the very

vicinity of the gel point [372].

Relationships (23)– (25) admit an illustrative

probabilistic interpretation in terms of a branching

process giving a detailed account of the populations of

particles of two kinds [372]. A particle of every kind

is characterized here by two attributes, namely, by its

type i and label t: The first of these variables is

discrete, with values 0; 1;…; f 2 1; while the second

is a continuous variable, with values in the interval 0

to t: The first kind particle with type i and label t being

incapable of reproducing becomes, in the next

generation, an active particle retaining the same

label. The conditional probability for this particle of

the second kind to belong to type j is pijðtÞ: The latter

can give birth to 0 to f21 particles of the first kind,

each being characterized by its own type and label.

The density of the probability of various sets of these

labeled particles has a GF given by Eq. (25). Further,

the branching process follows the scenario described

above. Because generations of passive and active

particles regularly alternate when considering a

population propagation, it is reasonable to focus

exclusively on either even or odd generations. Such a

treatment leads to a reduced branching process with

particles of a single kind. Expressions (23) describe

this process of the development of the populations of

passive particles. It was found that there is no need to

distinguish them by types, provided the simplified

FSSE model is used. In such a model the constants of

elementary reactions factorize, kij ¼ kikj; so that the

probability pijðtÞ (26) is independent of the first

index. In this case the set of f Eq. (23) for the

components uiðtÞ of vector-function uðtÞ reduces to

the single equation for scalar function uðtÞ:

The results discussed, obtained for the first time in

papers [13,372], enabled a rigorous justification of the

statistical method for the calculation of sol and gel

being formed in the course of the irreversible FSSE

homopolycondensation of monomer RAf. In this

connection, the remarkable paper by Sarmoria and

Miller [373] extending the probability recursive

approach [331] to the description of the above

system is worthy of attention. This variant of the

statistical method, with origins in the Combined

Kinetic–Markovian (CKM) analysis, implies that the

molecules of the polycondensation products may be

viewed as built out of some superspecies. By this term

are meant certain small fragments of these polymer

molecules that characterize their microstructure

[373]. In accordance with the CKM analysis, they

considered a conventional two-stage process to obtain

polymer molecules. Having found the fractions of

superspecies by solving the corresponding kinetic

equations in the first stage, the authors [373] combine

these building blocks at random during the second

stage to get the true final product, referring to the

random combination in the second modeling stage as

‘Markovian’. To analyze the Markovian structure

statistically, they suggested using the probabilistic

recursive technique [331] discretizing the conversion

into a number of small intervals.

Sarmoria and Miller [373] proposed to take

chemical bonds as superspecies, distinguishing them

by the moment of their formation, as well as by the

kinds of functional groups which for their reaction

formed the intramolecular bond under examination.

(The kind of a functional group coincides with that of

a monomeric unit to which this group is attached).

Having chosen these superspecies, these researchers

claimed that their CKM version of the statistical

method ensured an exact description of the FSSE

homopolymerization of monomer RAf. Their only

argument lending support to this claim was the

negligibility of the deviation of the values they

obtained for the conversion at the gel point from

those found earlier by their predecessors by both the

rigorous kinetic examination [366] and the Monte

Carlo method [364]. This argument hardly seems able

to replace a rigorous substantiation of the equivalence

of the CKM and the kinetic approaches. This concern

is not unreasonable, especially bearing in mind that

comparison of values pp calculated using these

approaches was only accomplished for the polycon-

densation of three-functional monomer and, more-

over, was done only in the framework of the

simplified FSSE model. However, there are strong

grounds to believe that the variant of the stochastic

method which Sarmoria and Miller [373] put forward
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from intuitive reasoning is correct. Its comparison

with the other variant of the statistical method

[13,372] employing the formalism of the theory of

branching processes reveals two drawbacks of the

former. Among these is the conversion discretization

procedure and the difficulties that might emerge when

extending this approach to the copolycondensation of

several monomers. The second variant of the

statistical approach, being free of these shortcomings,

enables the extension of the results of publications [13,

372] to the general case of irreversible FSSE poly-

condensation of an arbitrary monomer mixture [374].

Turning from homopolycondensation to copoly-

condensation it is worth noting that only a limited

number of publications are devoted to the theoretical

study of truly nonideal systems. Among them mention

should be made of work by Galina et al. [366,375,376,

463], who explored the possibilities to employ the

traditional Gordon’s statistical approach in the

calculation of the gel point for an alternating

copolycondensation of three-functional and bifunc-

tional monomers, each having kinetically dependent

functional groups. Both of the systems RA3 þ SB2

[375] and RA2
1A2 þ SB2 [366,376], were calculated

only in the framework of the simplified FSSE model.

That is why it comes as no surprise that the values of

the critical conversion at the gel point found by the

Gordon statistical method and from the solution of

kinetic equations for the second order moments of

MWD turn out to be very close. Nevertheless, by

analogy with homopolymerization [368] there is

serious reason to expect that the transition from the

simplified FSSE model to the normal one will

appreciably extend the range of the kinetic parameters

over which the traditional statistical approach is a

poor approximation for the calculation of the gel

point.

This approach, referred to by different names [294,

331,368,377,378], is strictly valid for the alternating

copolycondensation of two monomers, provided the

functional groups of at least one of them are

kinetically independent. The best-studied among

such quasi-ideal systems is the curing of diepoxides

with diamines [330], for which the functional groups

of the diepoxides are presumed to be independent

[379–393]. A diamine molecule comprises a pair of

amino-groups, each involving two primary amino

hydrogens. When one of them reacts with diepoxide,

the reactivity of the remaining hydrogen changes

markedly [379–381]. This substitution effect can be

termed local, since taking account of the distinctions

between primary and secondary amino hydrogens, it

does not embrace another amino group attached to the

monomeric unit. Formally, this curing process may be

viewed as copolycondensation of monomers

RA2 þ SB2B2, characterized by two kinetic par-

ameters that are the constants k1 and k2 of the reaction

of primary and secondary amine hydrogens with an

oxirane A. Theoretical treatment of such a quasi-ideal

system has been carried out by both statistical [382]

and kinetic [383,384] methods. In the first case, use

was made of the theory of branching processes,

whereas in the second case the solution was found for

the difference-differential equation for molar concen-

trations of molecules Cði; j; kÞ formed from i tetra-

functional monomeric units S and j bifunctional chain

links R that contain k unreacted primary amine

hydrogens.

The simple kinetic model of the synthesis of amine

cured epoxy resins given above suffers from the

shortcoming that it disregards polyetherification

reaction normally occurring in the course of a curing

process [380,381]. Bokare and Gandi [385] seem to be

the first who incorporated this reaction in the kinetic

scheme of amine-epoxy network formation. Later, a

number of theoretical works appeared [386–392] in

which, along with the substitution effect in diamine,

allowance was also made for competing amidization

and etherization reactions. The severity of the

problem of the quantitative description of such a

system is that whereas the first of these reactions

proceeds by the stepwise mechanism, the second one

goes by a chainwise mechanism. This may be one of

the reasons for the variety of models, leading some-

times to results differing by several hundred percent.

A critical analysis of five of such models brought

Gupta and Macokco [393] to the conclusion that only

one of them is exact, the ‘combined model’ [385].

They also elucidated the nature of the approximation

in Dusek’s model [387], and extended the combined

model to postgel analysis.

A variant of the kinetic approach put forward by

Cheng and Chiu can be used to calculate the average

molecular weight of the products of curing reactions

of epoxy resins with amines [394]. This approach is

rather general, and even claims to cover systems with
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multistage processes. Its authors resorted to the

formalism they developed earlier to treat the poly-

condensation of epoxy resins with primary amines,

taking into account the substitution effect and

etherification reaction [395]. The dependence of PN

and PW on epoxy conversion as well as its critical

value at the gel point found theoretically agree well

with those determined by other methods and

measured experimentally. Later, the extent to which

these statistical characteristics are influenced by a

monoepoxide added in the reaction system was

studied theoretically [396].

A specific process in which the substitution effect

plays a central part is the step-growth catalytic

polymerization of tetraethylorthosilicate (TEOS) con-

ducted in a water–ethanol solution [397]. The initial

monomer here is RB4, where R is a silicon atom and B

is an epoxy group. Its functional groups B transform

due to the hydrolysis into hydroxyl groups A, which

later enter into the condensation reaction A þ A to

form ether bonds. To describe such a polycondensa-

tion in the framework of the FSSE model, Macosko

et al. [397] suggested the use of monads Q
j
i differing in

numbers of reacted i and unreacted j hydroxyl groups

as kinetically independent fragments. The concen-

trations of these 15 superspecies satisfy a closed set of

kinetic equations, written down with allowance for

reversible hydrolysis and irreversible condensation

elementary reactions. No analytic results are reported

in paper [397] since it entirely deals with the

elaboration of an algorithm for the Monte Carlo

solution to the kinetic equations for the monads.

3.4. Cyclization in processes of branched

polycondensation

Intramolecular reactions known to proceed in the

course of branched polycondensation give rise to the

formation of macromolecules with a number of

different cycles. Molecular graphs corresponding to

them are also supposed to contain cyclic fragments.

The task of the identification of such cyclic graphs is

far more involved than that for the case of trees.

Nevertheless, its fulfillment is absolutely indispensa-

ble to furnish a comprehensive, physically adequate

description of intramolecular reactions, inasmuch as

the long-range effects should necessarily be taken into

account for the calculation, unlike the case for ideal

systems (as pointed out in Section 1).

First, let us dwell briefly on the factors capable of

exerting influence on the course of intramolecular

reactions during a branched polycondensation, and

then indicate possible approaches to their quantitative

description, as well as make an attempt to analyze the

premises underlying currently available models for

the calculation of the products of corresponding

processes. This is an especially intriguing subject,

bearing in mind that the physico-chemical substantia-

tion of the models discussed above was not the matter

of prime concern to their authors. In spite of the fact

that among all conceivable intramolecular transform-

ations we will entirely focus for simplicity on

condensation reactions in a homopolymer, the con-

sideration of analogous reactions in copolymers or

intramolecular exchange reactions does not qualitat-

ively change the general picture of a process.

3.4.1. Theoretical problems

The elementary act of an intramolecular conden-

sation reaction consists in the chemical interaction of

two terminal groups of a molecule, with subsequent

formation of a cyclic fragment. The probability of

such an interaction is prescribed by mutual spatial

arrangement of the reacting groups involved in the

reaction, which in turn is controlled by the confor-

mational–configurational structure of the molecule.

Depending on which pair of functional groups reacts,

one or another configurational isomer of the initial

molecule will form. Generally speaking, the inter-

action constants for every pair will be different. That

is why mutual transitions between isomers due to

intramolecular reactions have different probabilities.

On the other hand, proceeding from the configura-

tional structures of the initial and terminal isomers,

one can unambiguously reveal the reacted pair of

functional groups and, thus, determine the rate

constant of the corresponding intramolecular reaction

(or corresponding constant of equilibrium if that is the

case). Consequently, in order to elaborate a rigorous

theory of branched polycondensation involving cycli-

zation it is imperative, first, to identify in some way all

isomers and, second, to specify the probabilities of

mutual transitions between them. However, this

problem can hardly be solved in such a general

formulation.
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Hence, it would apparently be advisable to adhere

to a strategy implying the construction of less

general models, where the character of simplifying

assumptions is associated, however, with particular

physico-chemical peculiarities of the system under

examination. Just these peculiarities are supposed to

condition a particular choice of the values of the

constants of interaction between all possible pairs of

functional groups in every molecule. Owing to such

model assumptions, either the number of transitions

between configurational isomers due to intramole-

cular reactions may drastically decrease, or many

such transitions will become equilibrium.

Let us consider some of the factors concerning the

possible choice of these constants. Irrespective of

whether polycondensation is carried out under

equilibrium conditions or not, the probability of the

interaction of a pair of functional groups, e.g. ith and

jth, pertaining to a macromolecule of specified

configurational structure s is prescribed by the

effective concentration csij created by one of them in

the immediate vicinity of the other under different

conformation rearrangements of a macromolecule

they are involved in. One of the quantities character-

izing the mutual conformation of an arbitrary pair of

groups in a molecule is the number of chains joining

these groups. In a tree-like molecule any two

functional groups are connected by only one chain.

If the relative fraction of bonds involved in cyclic

fragments of a molecule (cyclic bonds) is small, then

the majority of its functional groups exhibit this

property. It is reasonable to assume that in this case

for every pair of such groups the value of csij is entirely

dependent on the statistics of possible conformations

of the chain which connects them. To have this

statistics determined one may resort, as in case of

linear molecules, either to the freely jointed chain

model or to the corresponding rotational isomeric

state model. Such an approximation means that only

short-range effects should be allowed for in the

calculation of a conformational structure, whereas

long-range (excluded volume) effects may be neg-

lected. With a growing number of cyclic bonds, the

fraction of functional groups connected by two and

more chains increases, and the calculation of the

values of their effective concentrations becomes far

more intricate. On the one hand, owing to the presence

of cycles corresponding macromolecular fragments

contract and become more condensed, which inevi-

tably results in the growth of csij : On the other hand,

these macromolecule fragments prove to be more

rigid due to the emergence of network structures

(skeleton) that prevents the formation of conformers

which favor the proceeding of intramolecular reac-

tions. In addition, the possibility of the occurrence of

loops and knots should also be taken into account.

3.4.2. Quantitative approaches

A rigorous quantitative theory of branched poly-

condensation with simultaneous cyclization is not yet

available. Several dozen publications are available

which attack the corresponding problem using a

variety of arbitrary assumptions. However, these

assumptions provide the possibility to obviate math-

ematical difficulties arising for the calculations, rather

than to adequately reflect physical picture of the

process of interest. Yet, any scientifically grounded

model is expected to a certain extent to take into

account physico-chemical peculiarities of a system.

Various approaches are used in theoretical con-

siderations of branched polycondensation. Along with

the distinction in the character of the assumptions

underlying models of the polycondensation systems,

authors of different papers used a variety of theoretical

methods. For example, Harris [398] and Hoeve [399]

took Stockmayer’s statistical method [242] as a basis,

while Kilb [400] and Stepto et al. [401,402] proceeded

from the Flory probabilistic approach [11]. The

formalism of the theory of branching processes has

been suggested for the description of cyclization [125,

249,360,348,403–409]. Further impetus for theoreti-

cal progress has been fertilized by the ideas of

statistical physics and field theory [205,300,

410–413].

The kinetic method has also been employed to

calculate polycondensation systems undergoing

intramolecular reactions. Since no exact analytical

solutions are achievable, approximate solutions are

normally obtained, resorting to either asymptotic

[269] or computational methods [414]. ‘Rate

theory’ [415–418], a variation of the kinetic

method, permits the formation of cycles of only

minimal size. This idea, consisting in the rigorous

account of the smallest size cycles, with neglect of

cycles of all other sizes, has been harnessed in

papers [127,419–421].
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An original statistical-kinetic approach to the

consideration of branched polycondensation was put

forward by Whittle [355,356,422–424]. Like Harris

[398], he applied the Flory principle to the description

of intramolecular reactions. Nevertheless, unlike

Harris, Whittle developed a quantitative theory,

without vague mathematical assumptions. Despite

the indisputably high mathematical level of Whittle’s

work, due to the formal nature of physico-chemical

model used, the results are of limited practical value.

Another statistical approach was proposed for use

in the theory of branched polycondensation. Accord-

ing to this, the gelation phenomenon is considered as a

percolation transition in the context of the theory of

critical phenomena and phase transitions [425–430].

Under this approach, emphasis is placed on finding the

so-called ‘critical indices’ characterizing the depen-

dence of some macroscopic quantities on the degree

of proximity Dp ¼ p 2 pp of the conversion p to the

gel point pp; rather than on the calculation of the gel

point itself. Detailed discussion of the percolation

approach to the description of branched polyconden-

sation can be found in reviews [429,205].

3.4.3. Models incorporating cyclization

The discussion of the physico-chemical

peculiarities of cyclization reactions in Section 3.4.1

introduced the important characteristic csij ; the effec-

tive concentration produced by one of the two reacting

functional groups of a molecule with configuration s

in the vicinity of another group. In this section, we

utilize csij to discuss the principal models available in

the literature for the quantitative description of the

products of branched polycondensation involving

cyclization. Specifying the conditions to be imposed

on possible values of csij in a particular model will

enable us to determine initial prerequisites underlying

each of them. First of all it should be stressed that on

setting csij ¼ 0 for all functional groups we will arrive

at the ideal polycondensation model provided, of

course, the Flory principle holds for intermolecular

reactions. This will be implicit in what follows.

To calculate an irreversible polycondensation of

monomer RAf with regard for intramolecular reactions,

Hoeve [399] extended the statistical method introduced

by Stockmayer [242], assuming that no monomeric unit

is involved in more than one cycle. In line with this,

homopolymer molecules differ not only in the degree of

polymerization, as in Stockmayer’s case [242], but also

by the fraction of monomeric units in cycles of different

size. The solution of the corresponding combinatorial

enumeration problem by Hoeve permitted him to find

the MWD up to the gel point and the critical conversion

pp: The supposition that no monomeric unit is in more

than one cycle is equivalent to the condition csij ¼ 0 for

all functional groups connected by two and more

chains. This condition is not expected to perceptibly

affect the results of the calculations provided the

number of such groups is comparatively small, i.e.

under moderate relative fraction of cyclic bonds.

However, recourse to a statistical method may be

substantiated only for equilibrium conditions of the

process mode. At the same time, for such a model the

statistical characteristics of the configurational struc-

ture of polymers for any functionality f of the monomer

will differ, depending on whether they were obtained

under equilibrium or its absence. Thus, the results

arrived at in paper [399] for irreversible process turn out

to be erroneous. Proceeding from these results it is

possible to conclude that in equilibrium the critical

conversion pp decreases as compared to its value for

corresponding ideal system. This decrease is the more

pronounced the smaller is the concentration of mono-

meric units, i.e. the reaction system is more dilute.

In order to reveal initial premises of other models,

it is convenient to consider the effective concentration

csi induced in the vicinity of a specific functional

group i of a macromolecule by all its other groups.

The value of csi prescribes the probability for a group i

to enter into any intramolecular cyclization reaction,

being dependent in general not only on the rigidity of

a molecule and its configuration s; but also on the

position of group i in the molecule.

The system addressed above [399] has also been

treated [269] by the kinetic method, and under other

model assumptions. When setting up the correspond-

ing kinetic equations for the concentrations of

macromolecules, the authors assumed that the prob-

ability for a molecule functional group to enter into a

cyclization reaction is proportional to the overall

number of groups in the molecule. The results did not

admit the gel point in its classical definition. Rather,

for a sufficiently low value of the parameter 1 (equal

to the ratio of the probabilities for a functional group

to enter intra- or intermolecular reactions, respect-

ively), gel formation is defined mathematically not
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as a point, but as a narrow interval of conversions.

Within this interval, which is the narrower the smaller

is 1; a dramatic change of the weight average degree

of polymerization occurs, although the latter nowhere

becomes infinite [269]. Such a model corresponds to

the assumption that the effective concentration csij for

any pair of functional groups in the reaction mixture is

identical irrespective, for example, of the number of

the chains connecting them and their lengths. Conse-

quently, this assumption completely ignores the

conformational structure of molecules. Important,

that the value of csi for all functional groups of

every macromolecule is not controlled by i; but rather

is proportional to the overall number of these groups

in a molecule.

Under an analogous model assumption this same

system, but under equilibrium, was studied by Whittle

[355,356] and Harris [398]. (In paper [398] one more

model was put forward which will be addressed later.)

The second of these publications used the statistical

Stockmayer method [242], with the only distinction

being that the molecules were distinguished not only

by the number l of monomeric units, but also by the

number s in them of intramolecular bonds, so that

the probability of any molecule was governed by the

values of numbers l and s: An arbitrary group was

deemed capable of forming without any restrictions an

intramolecular bond, including a cyclic one, with any

group of the system, i.e. no limitations on the set of

the configurations in hand were imposed. The

calculation reported by Whittle [355,356,422–424]

was accomplished by virtue of the detailed equili-

brium principle with the elements of a graph

enumeration theory. The weight average degree of

polymerization of the products was found to diverge

at arbitrarily small conversion, which qualitatively

disagrees with the corresponding result [269] for a

irreversible process. The absurdity of the value pp ¼ 0

was obvious to the authors [355,398], and was

apparently due to the total neglect of differences in

the conformational–configurational structure of mol-

ecules. The probability for any molecule with

particular values of l and s is proportional to the

number of all conceivable spatial configurations with

the given values of these quantities. This number

increases dramatically with the growth of l and s, and

for macromolecules having high a degree of polym-

erization becomes so high that the probability of a gel

macroscopic molecule is equal to zero at arbitrarily

small conversions.

Another model for the calculation of the products

of polycondensation of monomer RAf has been put

forward [407]. Here an intramolecular reaction was

considered as one possible variant of the chain

termination process, in the course of which any

functional group may, regardless of the other groups,

enter into a cyclization reaction with a specified

probability, loosing thereby the possibility of further

involvement in the process. In accordance with that

assumption, the calculation is supposed to be

performed by virtue of a special branching process.

To take account of intramolecular reactions proceed-

ing for this process, an additional type of particle was

virtually introduced, incapable of reproduction and

corresponding to the groups which had already

reacted with the formation of cyclic bonds. Such a

model corresponds to an ideal polycondensation of

the initial monomer in the presence of monofunctional

admixture, where a chain termination reaction

proceeds, thus, enabling one to calculate the statistical

characteristics of a polymer. Along with conversion,

among the parameters of this model is the probability

of cyclization, i.e. the probability for a reacted group

to enter into a cyclic bond. The critical conversion pp

calculated in such a way, increases with the growth of

this parameter. An attempt was made to calculate this

parameter, as well as to substantiate the model

advanced for the case when only groups connected

by a single chain are capable of entering into an

intramolecular reaction [408,409]. To this end, the

probability of the cyclization of an arbitrary group

should be thought of as a sum of probabilities for it to

enter into the reaction in order to form cycles of all

conceivable sizes. Calculation of these probabilities

generally resort to the conformational statistics of

freely jointed chain, as well as to the assumption that

the size of every cycle formed in the course of the

interaction of two groups equals the difference in the

number of the generations of the genealogical tree

(see Fig. 3) in which they are involved. However, such

an attempt to calculate the probability parameters

within the framework of the statistical method itself is

doomed to failure, inasmuch as two functional groups

belonging even to the same generation can be joined

together by an arbitrary length chain and, conse-

quently, the size of the cycle formed for their reaction
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may be arbitrary as well. In fact, the model proposed

by the authors [407–409] is based on the premise that

the effective concentration csi for any functional group

of the reaction system in every instant is independent

of the molecule to which this group pertains, and its

position on that molecule. Since this is equivalent to

application of the Flory principle for intramolecular

reactions, it follows that the statistical characteristics

of the products (the critical conversion being among

them) do not depend like in the case of ideal

polycondensation on whether the process is conducted

under equilibrium conditions or not.

In essence, similar supposition served as the

basis of an earlier publication by Kilb [400], in

which the critical conversions were calculated for

the systems RA2 þ SB f and RA2 þ S1B2 þ S2B f ;

with condensation reactions proceeding exclusively

between groups of different types. Noteworthy,

Kilb managed to perform calculation only for the

first system. Unlike the preceding authors, he made

use of the Flory statistical method, which is rather

cumbersome and inconvenient for calculations. He

extended it to the case for which every functional

group is capable with some probability of partici-

pating in a cyclization reaction. Despite being far

more involved technically than methods employed

in the papers discussed above [407–409] (causing

the underlying assumptions to be less apparent), the

final results for the two schemes are entirely

equivalent. Thus, all the conclusions and remarks

made above with respect to the initial premises of

the model introduced by the authors [407–409],

including those related to the calculation of the

probability of cyclization may be fully applied to

the results of work [400].

Stepto and co-workers [401,402] improved the

Kilb approach [400], freeing it from some of its

shortcomings. They presented an equation to deter-

mine the gel point for a copolycondensation

RA2 þ SBf [401], later refining their theoretical

treatment by extending it to copolycondensation in

the following systems [402]:

Xm
a¼1

RaAfa þ
Xn

b¼1

SbBgb
Xm
a¼1

RaAfa

The functionalities {fa} and {gb} of monomers, as

well as numbers of their types, m and n; may have any

values A considerable shortcoming of these treat-

ments developed to take into account the cyclization

consists in the absence of a rigorous substantiation of

the approximations employed. This shortcoming,

however, seems to be significantly redeemed by the

simplicity of the final formulas, an indisputable

advantage when using them for the treatment of

experimental data. Their comparison with theoretical

results for a variety of particular polycondensation

systems can be found in review articles by Stepto

[128,416,431–437].

Another model for the calculation of equilibrium

polycondensation of monomer RAf with cyclization,

with similar initial assumptions to those discussed in

the preceding, was put forward by Harris [398], in

order to obtain more plausible results than those

ensuing from his first model. Again he made a

recourse to the Stockmayer method, differentiating

molecules by the degree of polymerization and the

number of bonds, although this time he substantially

restricted the number of allowed spatial configur-

ations. To this end, Harris assumed each functional

group of a molecule exhibiting a configurational tree-

like structure to be capable of forming a cyclic bond

with specified number of other groups of the molecule

(not with all of them, as in the first model), not

controlled by its degree of polymerization. As the

number of cyclic bonds in a molecule increases, the

number of the groups remaining in it decreases, and

the number of groups capable of forming a bond with

the given one diminishes proportionally. Proceeding

from such suppositions, Harris managed to calculate

completely only the system gel point, finding it to

increase with dilution of the reaction system, until a

dilution is reached beyond which gel formation is no

longer possible. The initial assumptions of the Harris

model are as follows: the Flory principle is valid for

intramolecular reactions of functional groups of the

tree-like molecules, i.e. for them the concentrations csi
are not controlled by i and s; and for groups of other

molecules, the values of csi are governed only by s

and decrease with increasing number of cyclic bonds,

in proportion to the number of terminal groups

remaining in molecules.

Finally, let us address the calculation scheme

proposed by Gordon and co-workers [125,249,357,

403,406]. This scheme provides the possibility to

calculate statistical characteristics of the products of
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polycondensation with cyclization of one or several

monomers. Moreover, it permits one to determine

them either before or after the gel point, and to find the

critical conversion even in the presence of the

substitution effect. With this aim in view, the authors

[125,249,357,403,406] suggested resort to a branching

process, with an additional type of particles corre-

sponding to functional groups already reacted to form

cyclic bonds. However, as distinct from the treatments

[407–409], Gordon and Scantlebury presumed [249]

that the probability for an arbitrary particle to give birth

to a particular number of other particles in the

subsequent generation is prescribed, as in the case of

the FSSE model only, by the number of the reacted

functional groups involved in a monomeric unit

corresponding to the particle. Gordon et al. were of

the opinion that their calculation scheme would

provide a plausible picture of any branched poly-

condensation with intramolecular reactions, regardless

of whether or not it is conducted under equilibrium

conditions, provided the probability parameters of

corresponding branching process are properly set [125,

249,357,403,406]. They also endeavored to substanti-

ate their model for the case when only functional

groups connected by a single chain may enter into

cyclization reaction, so that every bond of a molecular

graph may be involved in not more than one cycle.

Conventionally, cutting any bond in every cycle it is

possible to reduce the set of such cyclic graphs to

corresponding set of trees. Such a procedure underlies

the ‘spanning-tree’ model, which owes its name to the

graph theory for which trees obtained in such a way are

referred to as spanning trees. For this procedure, one

more type of pending sites is added, known as cyclic

ones, appearing in pairs as a result of every cutting.

These trees, depicted as root trees, are presumed to be

realizations of a branching process.

However, such an interpretation, not substantiated

kinetically, can hardly be accepted as correct. In fact,

let us admit that cutting a certain bond results in the

appearance of two cyclic sites divided by a length n

trail. If one of them belongs to some generation of the

genealogical tree, the other should necessarily be

involved in one of the nearest n generations. But the

point is that such a mandatory appearance of particles

of a specified type can, in principle, be described by

no branching process for which particles indepen-

dently give birth to other particles in every generation.

The ‘spanning-tree’ model utilizes the assumption

that the value of csi of an arbitrary functional group is

controlled solely by the number of groups on the same

monomeric unit already reacted, and is proportional to

this number, i.e. this model proves to be based on one

of the modifications of the extended Flory principle

for cyclization reactions. However the relevance of

this principle is by no means justified in this particular

case, unlike its application with the FSSE model.

Despite its formal character, the spanning-tree

approximation model looks rather appealing to theor-

ists as a means to furnish a quantitative description of

branched polycondensation with intramolecular reac-

tions, regardless of the size of the rings formed.

Recently, Sarmoria and Miller [438] presented a

modification of such a model that uses more accurate

internal estimates of the probabilities of cyclization.

This requires limited Monte Carlo simulations of some

molecular structures, resulting in a hybrid probability

approach, combining analytic and Monte Carlo

approaches. They suggested three possible extensions

of the spanning-tree model of varying degrees of

complexity, and calculated for the RAf homopolycon-

densation such characteristics as intramolecular con-

version, the gel point, the fraction of the sol, and

weight-average molecular weight of its molecules.

Recourse to the kinetic–recursive approach [224,

331] turns out to be highly efficient for a quantitative

description of the polycondensation for which the

formation of the smallest possible rings is prevalent.

Using that formalism, a rigorous theoretical consider-

ation has been performed of systems ðRA3 þ SB2Þ

[127], ðRA2
1A2 þ SB2Þ and ðRA3 þ SB1B2Þ [421], in

which the formation of only those cycles is admissible

that involve just two monomeric units. The gel point

has been calculated in the framework of this

approximation, as well as the dependence on conver-

sion of the average degree of polymerization and

weight fractions of gel, elastically effective material

and pendant material of a polymer network. These

characteristics have been calculated by the statistical-

recursive method, proceeding from equations whose

probability parameters are determined through the

fractions of superspecies comprising one or several

monomer fragments. The evolution of their concen-

trations has been found from the solution of kinetic

equations derived under the Flory principle. It is

worth noting that all the results reported in papers
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[127,421] are fully accurate for the physico-chemical

model of polycondensation employed.

Models of this sort are, apparently, most appro-

priate for the description of condensation processes of

the formation of inorganic polymer networks. The

sol–gel polymerization of Si-based materials has

been among the most studied, and has been shown to

be highly nonideal [439]. Evidence of this nonideality

is, for example, the extraordinarily high conversion at

the gel point ðpp < 0:8Þ for tetraethoxysilane (TEOS),

compared with the ideal value pp < 0:33: Such a

pronounced difference in value of pp cannot be

accounted for in the FSSE model because the

maximum gel conversion does not exceed 0.50 for

polycondensation of monomer RA4 described by this

model [397]. The value pp ¼ 0:375 predicted from the

percolation model signals that the random cyclization

leads only to a slight increase in gel conversion as

compared to the ideal model (even with allowance for

the long range excluded volume effect) [440]. To

resolve the large difference between theory and

experimental observation, it has been proposed to

describe the sol–gel polymerization of TEOS by

means of models where cyclization reaction between

silicon sites separated by only several siloxane

bridges is considered as preferred [440]. This type

of cyclization is evidently not amenable to description

by a percolation theory, in which loops of various

sizes are formed randomly. Macosko et al. [441,371]

harnessed one such ‘preferred cyclization’ (PC)

model, for which loops can only form as the result

of an intramolecular reaction in trimers and linear

tetramers. In parallel with cyclization, FSSE for the

simplified kinetic model (with factorable constants of

elementary reactions of condensation) was also taken

into account. The dependence of PW on conversion up

to the gel point has been calculated in the monad

approximation of the FSSE model, using the kinetic–

recursive approach.

The model employed in papers [441,371], demon-

strating that the combined effects of PC and FSSE can

have a significant impact on the gel conversion, fails,

however, to quantitatively describe the acid-catalyzed

sol–gel polymerization of TEOS. This conclusion

ensues, for instance, from the fact that at values of the

rate constants of TEOS polymerization, the theory

predicts a gel conversion pp ¼ 0:51:Hence, the limited

cyclization allowed in these papers is completely

insufficient to explain the value pp ¼ 0:83 ^ 0:02

experimentally observed for a wide range of reagent

concentrations. This circumstance points to a highly

nonrandom character of cyclization reactions, as well

as to the presence in the reaction system of compact

three-dimensional cagelike intermediates [440]. These

form in the course of the first (rapid) stage of the TEOS

polymerization, to connect with each other as new

precursors, eventually forming a gel during the second

(slow) stage. A diversity of experimental data supports

the plausibility of such a scenario, for which primary

units of nanometer length scale (cubes, prismatic

hexamers, etc.) are first formed by nonrandom

cyclization, to be involved later in gelation as

‘monomers’. Assuming the second stage to be

described by the ideal model, one can easily estimate

a value of pp;which turns out equal to 0.75–0.80 [440].

Quantitative theoretical consideration of the moderate

negative substitution effect, observed for the TEOS

polycondensation [371], will certainly provide a good

fit of the conversion calculated at the gel point with the

pp ¼ 0:83 found experimentally. This fit is a necessary,

but not sufficient, condition for a physico-chemical

model to be adequate for providing an exhaustive

quantitative description of alkoxysilane polyconden-

sation. Such a model is supposed to describe correctly

the kinetic peculiarities of this process, as well as

molecular-weight and structure characteristics of

polymer products formed. A paper [442] whose

authors took a first step toward unified modeling of

the kinetics and structure of silica gelation merits

special mention. They developed dynamic Monte

Carlo simulations, incorporating such well-established

kinetic trends as hydrolysis, FSSE and nonrandom

cyclization. As distinct from earlier simulations [371],

the new ones allowed unlimited formation of three-site

rings. Though the majority are not found in real

silicates (where four-site rings dominate), the basic

qualitative features of sol and gel structures are most

likely to be captured properly by the model used in

paper [442]. It predicts a broader range of gelation

behavior than prior kinetic models, as well as the

feasibility of a polycondensation regime in which

gelation is preceded by the formation of an assembly of

different three-dimensional cagelike cyclic molecules,

each comprising several Si units.

In closing this section it is possible to make the

following conclusions. Despite a variety of models
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put forward, a rigorous quantitative description of the

processes of branched polycondensation with allow-

ance for intramolecular reactions is not available.

Almost all currently available mathematical models

are based on arbitrary assumptions, which in our

opinion, are not related to the physico-chemical

peculiarities of the systems of interest. Specifically,

the application of the Flory principle for intramole-

cular reactions, unlike for intermolecular ones, has not

provided an adequate physico-chemical substantia-

tion. The only means enabling a researcher to verify

the adequacy of some of the models discussed in the

foregoing is comparison of the results of calculations

with experimental data obtained for a particular

process. However, the available body of experimental

findings does not provide sufficient information to

guide a solution for the majority of the systems

considered in the papers cited above. As a rule, the

extent to which intramolecular reactions contribute to

the deviation of these systems from the ideal ones

remains unclear.

3.5. Hyperbranched polymers

One of the major challenges for macromolecular

chemistry is the synthesis of polymers with well-

controlled and novel architectures. Dendrimers,

which are highly symmetric and monodisperse

branched polymers, perform leading role among

them [443,444]. They are an assembly of identical

perfect macromolecules, with chains emanating from

a central core, and with a branch point at each repeat

monomeric unit. Their content in each successive

level (generation) of such units with degree of

branching fþ 1 is f times more than that in the

preceding generation. Although dendrimers show

some valuable properties, unusual for other polymers,

their synthesis is normally quite a long and tedious

multistage procedure. The search for simpler methods

to prepare dendrimer-like polymers resulted in the

design of hyperbranched polymers [443,445–448].

Unlike dendrimers, they are polydisperse in molecular

weight and degree of branching, but contrary to

dendrimers, hyperbranched polymers can be prepared

in a one-pot reaction.

Polycondensation is one of the most widespread

methods for the synthesis of hyperbranched polymers.

The processes of their preparation, being amenable to

all regularities of a branched polycondensation,

exhibit, however, a number of special features, the

most important of which are described in the

following. An infinite polymer network cannot

develop at any level of functional groups conversion.

Molecules formed during the synthesis are either of

tree-like architecture or contain a single cycle. The

above peculiarities substantially facilitate the theor-

etical consideration of hyperbranched polymers in

comparison with other condensation polymers, that

makes it appropriate to address them in a separate

section.

In the field of statistical chemistry of hyperbranched

polymers Flory [207] was the first to derive by a

statistical method an expression for the MWD and its

statistical moments for the products of ideal homo-

polycondensation of monomer RABf, where only

groups of different types may react. All arborescent

molecules formed here contain a single A group at the

root of a tree. Such dendrimer molecules are distinct in

both the number of generations and number of units in

each of them. Erlander and French [208] extended

Flory’s results [207], theoretically considering the

homopolycondensation of monomer RAB1B2· · ·Bf ;

for which all B-type groups differ in reactivity. A

particular case of this process at f¼ 2 has been

independently examined by Allen [209]. Proceeding

from the ideal model of polycondensation, the authors

of both papers [208] and [209] derived expressions for

MWD and the distribution of molecules for the number

of chemical bonds {bi} formed as a result of the

reaction between groups A and Bi: The kinetic method

was also employed to find the MWD of ideal

polycondensation of monomer RAB2 [277,449].

Given the statistical moments of the MWD, it is

possible to calculate the number average PN; weight

average PW and z-average PZ degree of polymerization

of macromolecules, expressions for which are derived

in the above cited works.

It is common practice to estimate the inhomogen-

eity of molecules of hyperbranched polymers (as well

as that of any other homopolymers) using the

polydispersity coefficient K ¼ PW=PN: The closer

this is to unity, the closer is the polymer to a

dendrimer, for which K ¼ 1:

Molecules of hyperbranched polymers differ not

only in the number of constituent monomeric units but

also in pattern of their arrangement. This circumstance
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stipulates the existence of a variety topological isomers

similar to those depicted in Fig. 1. The easiest way to

characterize these isomers is by the numbers of their

different monads, i.e. monomeric units of different

kinds. In the simplest case of polycondensation of

monomer RAB2 there will be five such kinds. Two of

them, corresponding to monomer and rooted unit,

might well be ruled out of consideration since their

fraction in the products of high-conversion polycon-

densation is small. Only the remaining three kinds of

monads are actually interesting, because molecules

formed at low conversions are oligomers, consisting

basically of few units. Thus, ignoring units with

unreacted groups A, they normally consider units of

only three kinds, i.e. terminal, linear and dendritic.

These units with 2, 1 and 0 groups B attached

correspond, respectively, to monads of kinds 1, 2 and

3 in Fig. 2. The fractions of these monads, T ¼ l1;

L ¼ l2; D ¼ l3; can be found by NMR-spectroscopy,

permitting an evaluation of the degree of branching of

the polymers. Its quantitative characterization can be

performed by means of different parameters, the

simplest of which, DB ¼ ðT þ DÞ=ðT þ L þ DÞ [450].

The larger is DB, the less pronounced is the distinction

between a sample of hyperbranched polymer and

perfect dendrimer, for which DB ¼ 1. This parameter

has been employed by several researchers to evaluate

the degree of branching from NMR-spectroscopy data.

Later, another definition of the degree of branching

DB ¼ 2D=ð2D þ LÞ was suggested for use as more

appropriate for the description of low-molecular

weight polymers [451]. As the molecular weight

increases the difference between these two definitions

of DB disappears because the difference between the

values of quantities D and L becomes progressively

less pronounced. For the description of the micro-

structure of hyperbranched molecules one more

parameter, ANB ¼ D=ðD þ LÞ (Average Number of

Branches deviated from linear direction per nonterm-

inal unit), was defined [451]. This parameter is

convenient when comparing the degree of branching

of polymers obtained by polycondensation of mono-

mers RABf with an arbitrary number f of groups

B. Since the number of types of different monads in

molecules of such polymers can exceed three, the

characterization of their microstructure in terms of T ;L

and D turns out to be insufficient. This motivates the

extension [451] of the definition of structure

parameters DB and ANB. As the topological structure

of molecules changes from linear to perfectly

branched, these parameters grow from 0 to 1 for DB

and to ðf 2 1Þ for ANB. For example, their limiting

values at PN !1 for the ideal model of polyconden-

sation of monomers RABf are as follows [451]:

DB ¼
f 2 1

f

� �f21

ANB ¼
f

f 2 1

� �f

21

" #21
ð28Þ

With functionality of a monomer increasing from

f¼ 2 to 1 the first of these parameters decreases

from 1/2 to 1=e < 0:37; whereas the second one grows

from 1=3 < 0:33 to 1=ðe 2 1Þ < 0:58: The dependence

of parameters DB and ANB on the conversion of

groups A was calculated for values f¼ 2;…; 6 [452].

A more detailed description of the configuration

structure of hyperbranched polymers was realized by

Moller et al. [453]. They have calculated the

distribution function of molecules for the number of

different monads D for products of the ideal

polycondensation of monomer RAB2, and have

compared DB values obtained for the two definitions

put forward in earlier work [450] and [451].

One way to increase DB of the random poly-

condensation products is to employ perfectly

branched dendrons instead of monomers. The formula

for DB derived in this case [452] provides a limiting

value that substantially exceeds that which may be

obtained from expression (28).

Another option to increase parameter DB is the use

of a monomer RAB2 with kinetically dependent

groups B. All theoretical papers excluding [454]

addressed only the simplified FSSE model of poly-

condensation, for which the reactivity of any B-group

is the same, irrespective of whether it is a constituent

of a monomer or polymer. This model comprises just

two parameters, kT and kL; equal to the rate constants

of the elementary reactions of group A with group B,

which enters into monads T and L; respectively.

Evidently, as the reactivity ratio x ¼ kL=kT increases,

the formation of hyperbranched molecules will take

place with a lower fraction of monads L than obtained

from the random one-pot polycondensation, thus

leading to higher than 1=2 values for DB. Holter
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and Frey [452] substantiated this conclusion quanti-

tatively, calculating the theoretical dependence of

parameters DB and ANB on conversion pA for A

groups at various x; as well as the dependence on x at

pA ¼ 1: Subsequently, the profiles of PN;K and DB

with the conversion pA were calculated for the same

system [455,456]. An increase of parameter x leading

to the growth of DB value was found to be

simultaneously responsible for widening of the

MWD of the polycondensation products.

To authors’ knowledge, the kinetics of the

formation of hyperbranched polymers has been

considered in the framework of the complete FSSE

model in only one paper [454], marking that as

particularly important for the theory of the process.

The most thorough theoretical analysis in this respect

was performed for polycondensation of monomer

RAB2 characterized, in the model by 12 constants of

elementary reactions, between six kinds of different

monads. A set of differential equations for their

fractions was suggested in a matrix form, making it

possible to easily extend this treatment to other

systems. Analysis of the solutions of these equations

shows [454] that the ‘substitution effect’ might

sometimes be responsible for an appreciable distinc-

tion in microstructure exhibited by hyperbranched

polymers and those synthesized by an ideal poly-

condensation. In an attempt to describe this micro-

structure in more detail, authors calculated the

fractions of various dyads [454]. However, instead

of finding them from the solution of kinetic equations,

they proceeded from the arbitrary assumption that the

probability of a dyad is proportional to the product of

probabilities of the constituent monads. An elegant

algorithm for deriving a set of kinetic equations for

monads was also employed in the consideration of

homopolycondensation of monomer RAB3, as well as

that of monomer RABC, with groups B and C that do

not react one with each other.

All of the kinetic models discussed above for the

synthesis of hyperbranched polymers ignore intramo-

lecular reactions. Accounting for them makes the

theoretical consideration more complicated, though

not to the same extent as for the processes of polymer

network formation. The reason is that no hyper-

branched polymer molecule can contain more than

one cyclic fragment. Nevertheless, even here

the problem of finding the rate constant kcðlÞ of

the cyclization reaction for molecules with l mono-

meric units remains unsolved. This constant is equal

to the product of the rate constant k of elementary

reaction between groups A and B and effective local

concentration cABðlÞ of groups B in the vicinity of

group A in an l-mer. In order to find an expression for

cABðlÞ; it is necessary to average over all configur-

ations s of rooted molecular trees with l units. Instead

of such an averaging, Dusek et al. [457] suggested to

take as effective concentration cABðlÞ the arithmetic

mean of the values of the effective concentration

clin
ABðlÞ and cden

ABðlÞ in l-mers which have linear and

dendritic configurations, respectively. The accuracy

of the results obtained under such an assumption

remains uncertain. This uncertainty is even greater for

treatments such as those [449,456] in which cABðlÞ is

assumed to be proportional to the number of groups B

present in a molecule of an l-mer. In this model,

cABðlÞ ¼ ðl þ 1Þl; with volume 1=l of a polymer

molecule that proves to be independent of number of

its units. Such an assumption is, obviously, physically

inconsistent and, consequently, appears to be incor-

rect. Moreover, this model, being physically sense-

less, is hardly appropriate for practical calculations

leading to an unclosed set of equations for statistical

moments of the MWD [449,456]. Just the same

deficiency is inherent in the kinetic model proposed in

paper [457].

One of the main distinctions of hyperbranched

polymers from dendrimers is their more pronounced

polydispersity. It might be substantially reduced if

polycondensation of monomer RABf is conducted in

the presence of a certain amount of multifunctional

core molecules SCg whose functional groups C react

exclusively with group A. The theoretical examin-

ation of such polycondensation systems is undertaken

in several recent publications [452,458–461]. The

limiting values of the degree of branching of polymers

formed turn out to be the same (28) as in the absence

of core molecules [452], but the MWD of these

polymers becomes noticeably narrower when a

compound SCg is involved.

Yan and Zhou [458] studied the ideal polyconden-

sation of monomer RAB2 in the presence of molecules

SBg with an arbitrary number g of groups B. They

wrote down a set of kinetic equations for the

concentrations of l-mers of different architectures

present in the reaction system. This attribute was
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chosen to distinguish molecules having the topology

of free tree with A-group as a root and the topology of

a core molecule with n ¼ 1;…; g trees growing from

it. The exact analytical solution of the kinetic

equations provides explicit expressions for the

distribution for number of units in molecules of any

mentioned topological structure, as well as the MWD

and its statistical moments [458]. As ensues from

these equations, in the course of the polycondensation

the MWD first broadens, and then abruptly narrows as

the reaction approaches completion. The greater the

number g of groups in the core moiety, the narrower

the final MWD of the hyperbranched polymer. These

conclusions remain true when monomers of an

arbitrary functionality are employed [459]. Theoreti-

cal consideration of ideal polycondensation RABf þ

SBg revealed [459] that when the process approaches

completion, the MWD of the resultant polymers is

found to broaden with increasing f and becomes more

narrow with increasing g.

Since the reactivity of functional groups C in a core

molecule is, generally speaking, different from those

B in the monomer, it is of specific interest to examine

the effect of this distinction on the polydispersity of

hyperbranched polymers. With this in mind Cheng

and Young [460] considered the ideal polycondensa-

tion RAB2 þ SC3 theoretically. Unlike their precur-

sors [458,459] they failed to obtain analytic

expressions for the MWD and its statistical moments.

However, they succeeded in deriving differential

equations for the calculation of the dependence on

conversion (or time) of such statistical characteristics

as PN; K and DP. The solution of these equations

enabled them to investigate the effect of stoichio-

metric and kinetic parameters of the system on

molecular weight, polydispersity and the degree of

branching [460]. These parameters are the ratio of

molar fractions of core molecules and monomers and

the ratio of the reactivities of functional groups C and

B in their reaction with A groups.

In an effort to elucidate the effects of violation of

the Flory principle on the statistical characteristics of

hyperbranched polymers synthesized in the presence

of core molecules, Galina et al. [461] studied the

polycondensation RAB2 þ SB3 in the framework of

the simplified FSSE model. This follows from the

complete FSSE model under two assumptions: first,

that the B group reactivity is exclusively dependent on

how many neighboring B groups have reacted, and is

unaffected by whether or not a neighboring A group

has reacted; and second, that the substitution effect is

identical in both molecules, RAB2 and SB3. Such a

kinetic model of polycondensation is completely

specified by the three rate constants of elementary

reactions between a group A and groups B belonging

to molecule SB3, monad T ; or monad L: When using

the kinetic method, every molecule in the reaction

system may be characterized by its number of monads

T and L: Ordinary differential equations have been

derived [461] for the statistical moments of the two-

dimensional distribution of molecules for these

numbers. The numerical solution of these equations

enabled the authors of this paper to compute PN; K

and DP versus group A conversion, which they

presented graphically for different values of the

parameters of the kinetic model.

Evidently, the positive substitution effect (when

group B reactivities in a monad of monomer RAB2

increases as soon as neighboring B group enters the

reaction) leads to an increase in DB. The same effect

may be achieved if to the solution of core molecules one

adds the monomer with the rate markedly lesser than

that of the reaction between functional groups. When

the ratio of these rates tends to zero the reaction of

single RAB2 monomer with T or L monad of polymer

molecule remains the only reaction occurring in the

system. In this limiting case, the reaction between

monomers might be, obviously, neglected because their

concentration tends to zero. The number of polymer

molecules under this approximation coincides with the

number of core molecules, whereas the process of the

formation of hyperbranched polymers resembles a

‘living’ chain polymerization more than a step-growth

one. In such a regime of ideal polycondensation of

monomer RAB2 the limiting values of parameters DB

and ANB will be, respectively, 2/3 and 1/2, markedly

larger than their values 1/2 and 1/3 for the same

polymer prepared under a traditional regime. This

inference remains true for polycondensation of mono-

mer RABf with an arbitrary functionality f. This ensues

from the comparison of the expressions [452]

DB ¼
f

2f 2 1
ANB ¼

f 2 1

f
ð29Þ

for the structure parameters of a polymer synthesized

in semi-open system with slow monomer feeding, with
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expression (28) for the same parameters for the

products of polycondensation obtained in a closed

system.

Hyperbranched polymer with microstructure most

closely resembling that peculiar to dendrimers can be

synthesized by slowly adding to core molecules the

monomer RAB2 with kinetically dependent functional

groups showing a positive substitution effect. In this

case expressions for structure parameters look as

follows [452]

DB ¼ 4 3 þ

ffiffiffiffiffiffiffiffi
x þ 8

x

r !
21

ANB ¼ 2 1 þ

ffiffiffiffiffiffiffiffi
x þ 8

x

r !21
ð30Þ

where x ¼ kL=kT represents the ratio of the constants

of elementary reactions of condensation of group A

with B group, constituent of monads L and T. It is

clear from formulas (30) that by increasing the value

of the reactivity ratio x; one can synthesize hyper-

branched polymers whose structure parameters will

differ to progressively smaller extent from those

characterizing dendrimers.

Calculation of the geometric sizes of the mol-

ecules and the scattering behavior of their solutions

has a particular place in the theory of hyperbranched

polymers. To solve these problems, it is necessary to

perform averaging over both the configurations and

conformations of the polymer molecules. The

mathematical apparatus of the theory of branching

stochastic processes is normally employed for this

purpose [320]. Using this approach, Burchard

derived expressions for the average square radius of

gyration of molecules and scattering factor for

hyperbranched polymers obtained for processes of

ideal homopolycondensation of monomers RAB2

[306] and RABC [311]. Interestingly, the curves of

angular dependencies of the amplitude of scattering

of these two polymers have qualitatively distinct

appearance, differing from the analogous curve that

describes the products of a random polycondensation

of monomer RA3.

Concluding this section, let us note that the theory

of hyperbranched condensation polymers containing

monomeric units of several types is virtually missing.

To the authors’ knowledge, only one paper [462] has

been published on this subject, in which the degree of

branching of copolymers obtained by ideal polycon-

densation of monomers RABf þ SABg was theoreti-

cally scrutinized. Extending their approach introduced

earlier for homopolymers [451,452] to copolymers,

the authors presented expressions for parameters DB

and ANB at different values of the functionality f and

g of monomers of interest.

4. Conclusion

The material outlined in this review portrays the

progress in the theoretical approaches commonly

applied for the quantitative description of polycon-

densation processes. Preparing this publication, the

authors sought to embrace a voluminous literature on

this subject, reflected in an impressive list of

references. When discussing each of the papers

surveyed, particular attention was given to the

following aspects.

1. Type of a polycondensation system considered

2. Polymer statistical characteristics being calculated

3. Kinetic model chosen for the description of the

system in hand

4. Theoretical methods being used

5. The results achieved.

Summarizing the results reported in the reviewed

papers it is possible to make the following general

conclusions about the current state of the quantitative

theory of polycondensation. The theory is complete

for systems described by the ideal model. General

relationships have been derived for such systems that

enable one to find any configurational or confor-

mational characteristics of the products of a poly-

condensation, provided the stoichiometric and kinetic

parameters of the model are known. Using these

relationships it is possible to calculate any statistical

characteristic for the products of polycondensation of

an arbitrary mixture of monomers, each having an

arbitrary set of functional groups. Consequently, there

is, obviously, no need to rederive each time the

theoretical equations, provided a particular system is

examined in the framework of the ideal model.

The quantitative theory of nonideal polycondensa-

tion is far short of completion. Such a theory has
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progressed substantially only for the systems for

which cyclization is negligible and the violation of the

Flory principle is exclusively due to short-range

effects. These systems, according to contemporary

concepts, can be exhaustively described theoretically

provided use is made of a more general version of the

Flory principle, rather than the traditional version. In

the extended Flory principle, the reactivity of a

functional group in a polymer molecule is supposed to

be governed exclusively by the microstructure of

adjacent fragment of the molecule. It is assumed that

the reactivity of a given group alters in the course of

the process, as this fragment undergoes changes

caused by the reactions of neighboring groups. In

the framework of models allowing for this ‘substi-

tution effect’, kinetically independent units are not

functional groups (as for the ideal model), but small

fragments of a polymer molecule comprising several

such groups. Rigorous analysis proved the applica-

bility of the statistical method in calculating the

characteristics of the chemical structure of the

products of nonideal polycondensation obeying the

extended Flory principle. Though, unlike for ideal

polycondensation, general expressions for such cal-

culations have not been derived so far, the algorithm

of their performance is perfectly clear for any

particular system. This means that today there are

no fundamental difficulties for creating the compre-

hensive quantitative theory of polycondensation

taking into account ‘substitution effects’.

A correct account of cyclization reactions in the

theory of polycondensation is a far more complicated

task than that for substitution effects. The reason has

to do with the necessity to consider along with

configurations of molecules, their conformations as

well. Hence, under a rigorous theoretical approach,

the description of a polycondensation in the frame-

work of any kinetic model admitting intramolecular

reactions a need generally arises for a double

averaging over both conformations and configurations

of polymer molecules. The only exception here is a

linear polycondensation, for which the necessity of

the second averaging falls away. In condensation

processes of the synthesis of hyperbranched polymers,

the algorithm of configurational averaging is simple

enough, because macromolecules of such polymers

can not contain more than one cycle, which is the

trivial one (with a cyclic rank of unity).

Evaluating the prospects of the elaboration of a

general theory of the branched polycondensation

allowing for intramolecular reactions in molecules

of finite sizes, one must admit that they are rather

vague. In this respect, more realistic theoretical

approaches are based on some approximation

suggesting the formation of only selected cyclic

fragments. Two such approaches are presently the

best known. The first admits any cycles of small size,

whereas the second permits cycles of any size,

provided they have the simplest topology, with

minimal cyclic rank.

Closer inspection of a vast literature on the

quantitative theory of polycondensation inevitably

has brought us to the conclusion that many papers

have independently rederived equations already

reported in literature. The reason, apparently, is that

these authors were not properly familiar with

preceding publications. The authors of this review

hope that it might contribute to making up this

deficiency.

Acknowledgements

Authors are indebted to Jacques Joosten for an ever

encouraging attitude throughout the process of work

on this review.

References

[1] Korshak VV, Frunze TM. Synthetic heterochain polyamides.

Moscow: Nauka; 1962.

[2] Schnell H. Chemistry and physics of polycarbonates. New

York: Interscience; 1964.

[3] Korshak VV, Vinogradova SV. Polyesters. New York:

Pergamon Press; 1965.

[4] Morgan PM. Condensation polymers by interfacial and

solution methods. New York: Interscience; 1965.

[5] Sokolov LB. Polycondensation method of polymer synthesis.

Moscow: Khimia; 1966.

[6] Korshak VV, Vinogradova SV. Equilibrium polycondensa-

tion. Moscow: Nauka; 1968.

[7] Korshak VV, Vinogradova SV. Non-equilibrium polycon-

densation. Moscow: Nauka; 1972.

[8] Sokolov LB. Fundamentals of the synthesis of polymers by

polycondensation method. Moscow: Khimia; 1979.

[9] Allen G, editor. Step polymerization, vol. 5. Comprehensive

polymer science. Oxford: Pergamon Press; 1988.

S. Kuchanov et al. / Prog. Polym. Sci. 29 (2004) 563–633620



[10] Vinogradova SV, Vasnev VA. Polycondensation processes

and polymers. Moscow: Nauka; 2000.

[11] Flory PJ. Principles of polymer chemistry. Ithaca, NY:

Cornell University Press; 1953.

[12] Kuchanov SI. Methods of kinetic calculations in polymer

chemistry. Moscow: Khimia; 1978.

[13] Kuchanov SI. Principles of quantitative description of

chemical structure of synthetic polymers. Adv Polym Sci

2000;152:157–202.

[14] Peebles LH. Molecular weight distribution in polymers. New

York: Wiley; 1971.

[15] Flory PJ. Molecular size distribution in linear condensation

polymers. J Am Chem Soc 1936;58:1877–85.

[16] Schulz GV. Die bildung polymerer stoffe durch kondensa-

tionsgleichgewichte. I. Mitteilung uber hochpolymere ver-

bindungen. Z Phys Chem, Ser A 1938;182(2):127–44.

[17] Grathlein HE. Exact weight fraction distribution in linear

condensation polymerization. Ind Engng Chem (Fundam)

1969;8:206–10.

[18] Huglin MB. Comments on chain length distribution in linear

step growth oligomers. Eur Polym J 1991;27(9):875–6.

[19] Elias HG. Polycondensations as multiple equilibria.

J Macromol Sci, Ser A 1978;12(1):183–90.

[20] Meggy AB. The free energy of formation of the amide bond

in polyamides. J Appl Chem 1954;4(4):154–9.

[21] Flory PJ. Random reorganization of molecular weight

distribution in linear condensation polymers. J Am Chem

Soc 1942;64:2205–12.

[22] Carmichael JB. Derivation of the molecular weight distri-

bution for random condensation polymerization as a special

case of the binomial distribution. J Macromol Sci, Ser A

1969;3(5):1021–5.

[23] Turner JCR. On molecular weight distribution in conden-

sation polymerization. Polymer 1973;14(9):462–3.

[24] Goodrich FC. Numerical analysis and kinetic treatment of

experimental data on molecular weight distribution. In:

Cantow MJR, editor. Polymer fractionation. New York:

Academic Press; 1967. p. 363–400 [chapter 14].

[25] Blatz PJ, Tobolsky AV. Note on the kinetics of systems

manifesting simultaneous polymerization–depolymerization

phenomena. J Phys Chem 1945;49(2):77–80.

[26] Mellichamp DA. Reversible polycondensation in a semi-

batch reactor. Chem Engng Sci 1969;24(1):125–39.

[27] Watterson JG, Stafford IW. Molecular weight distributions in

polycondensation. J Macromol Sci, Ser A 1971;5(4):679–85.

[28] Gupta SK, Kumar A, Tandon P, Naik CD. Molecular weight

distributions for reversible nylon-6 polymerizations in batch

reactors. Polymer 1981;22(4):481–7.

[29] Derk H. Flory–Schulz distribution does hold for reversible

polycondensation. Polymer 1981;22(12):1758–60.

[30] Slonimsky GL, Slonimsky GL. Discussion of paper Griehl

W, Luckert H: Kritische Betrachtungen zur Bestimmung der

Uneinheitlichkeit von Polyamiden. J Polym Sci 1958;

30(121):409–10.

[31] Hermans JJ. Chain length distribution in a polymer in which

chain ends react at random with all monomer units. J Polym

Sci, Ser C 1966;(12):345–51.

[32] Kuchanov SI, Pis’men LM. Calculation of homopolycon-

densation of bifunctional monomers. Vysokomol Soedin, Ser

A 1971;13(3):689–95.

[33] Khokhlov AR, Kuchanov SI. Lectures on physical chemistry

of polymers. Moscow: Mir; 2000.

[34] Case LC. Molecular weight distribution in polycondensation

involving unlike reactions. 2. Linear distributions. J Polym

Sci 1958;29(120):455–95.

[35] Kilkson H. Effect of reaction path and initial distribution on

molecular weight distribution of irreversible condensation

polymers. Ind Eng Chem (Fundam) 1964;3(4):281–93.

[36] Sokolov LB, Sharikov YuV, Kotlova RP. Molelcular weight

of polymers obtained during irreversible polycondensation

processes. Vysokomol Soedin, Ser A 1970;12(9):1934–42.

[37] Nekrasov IK, Frenkel SY. Molecular weight distribution in

processes of linear irreversible polycondensation with termin-

ation reactions. Dokl Akad Nauk SSSR 1972;203(6):1354–7.

[38] Nekrasov IK, Frenkel SY. On the theory of linear irreversible

polycondensation. Vysokomol Soedin, Ser A 1975;17(11):

2446–53.

[39] Tang A-C, Kiang J-S. A mathematical analysis of the kinetics

of polycondensation–depolycondensation reactions. Acta

Chim Sin 1956;22(4):286–90.

[40] Kuchanov SI, Pis’men LM. Calculation of polycondensation

of monomers containing functional groups with varied

chemical reactivity. Vysokomol Soedin, Ser A 1972;14(1):

131–42.

[41] Gandhi KS, Babu SV. Kinetics of step polymerization with

unequal reactivities. Am Inst Chem Engng J 1979;25(2):

266–72.

[42] Ozizmir E, Odian G. Kinetics of step polymerization with

reactant of unequal functional group reactivity. J Polym Sci,

Polym Chem Ed 1980;18(3):1089–97.

[43] Costa MRN, Villermaux J. Mathematical and experimental

foundations of linear polycondensation modeling. 1. Model-

ing and simulation of linear, irreversible polycondensation.

Ind Engng Chem (Res) 1988;27(3):421–9.

[44] Costa MRN, Villermaux J. Mathematical and experimental

foundations of linear polycondensation modeling. 2. Com-

putational aspects of the evaluation of chain-length distri-

butions and average degrees of polymerization for linear

reversible polycondensation. Ind Engng Chem (Res) 1989;

28(6):702–10.

[45] Costa MRN, Villermaux J. Experimental study of catalyzed

polyesterification of adipic acid and triethylene glycol:

equilibrium and kinetics. Ind Engng Chem (Res) 1989;

28(6):711–9.

[46] Howard GJ. In: Robb JC, Peaker FW, editors. The molecular

weight distribution of condensation polymers. Prog High

Polym, vol. I. London: Heywood; 1961. p. 187–231.

[47] Orlova TM. Molecular weight distribution of polymers formed

in thecourseof linearpolycondensation. Progress inscienceand

technology, Ser, Chemistry and technology of high-molecular

compounds, vol. 12. Moscow: VINITI; 1978. p. 5–46.

[48] Kuchanov SI. On the substitution effect in the theory of

polycondensation processes. Dokl Akad Nauk SSSR 1979;

249(4):899–903.

S. Kuchanov et al. / Prog. Polym. Sci. 29 (2004) 563–633 621



[49] Kuchanov SI, Pis’men LM. Calculation of polycondensation

of monomers containing functional groups with changing

reactivity. Vysokomol Soedin, Ser A 1972;14(4):886–93.

[50] Gandhi KS, Babu SV. Step polymerization with unequal

reactivities of functional groups. Macromolecules 1980;

13(4):791–8.

[51] Spirin YL. Molecular weight distribution of prepolymers.

Synthesis and physico-chemistry of polymers, issue 20, Kiev:

Naukova Dumka; 1977. p. 3–6.

[52] Sokolov LB, Nikonov VZ, Fedotova MI. On a specific type

of polycondensation processes. Vysokomol Soedin, Ser B

1971;13(6):459–62.

[53] Case LC. Molecular distributions in polycondensations

involving unlike reactants. VII. Treatment of reactants

involving nonindependent groups. J Polym Sci 1960;

48(150):27–35.

[54] Case LC. Molecular distributions in polyurethane conden-

sation. Proceedings of the International Symposium on

Macromolecular chemistry, Moscow, vol. 2.; 1960. p. 513–

520.

[55] Irzhak TF, Peregudov NI, Tai ML, Irzhak VI. Molecular

weight distribution of polymer chains formed for the process

of linear polycondensation with arbitrary values of kinetic

constants. Vysokomol Soedin, Ser A 1995;37(4):653–7.

[56] Galina H. A kinetic model of step-wise alternating

polymerization for two bi-functional monomers. Makromol

Theory Simul 1995;4(4):801–9.

[57] Goel R, Gupta SK, Kumar A. Rate of condensation

polymerization for monomers having reactivities different

from their polymers. Polymer 1977;18:851–2.

[58] Gupta SK, Kumar A, Bhargava A. Molecular weight

distribution and moments for condensation polymerization

of monomers having reactivity different from their homol-

ogues. Polymer 1979;20(3):305–10.

[59] Gupta SK, Kumar A, Bhargava A. Molecular weight

distributions and moments for condensation polymerizations

characterized by two rate constants. Eur Polym J 1979;15(6):

557–64.

[60] Ok Park O. Molecular weight distribution and moments for

condensation polymerization with variant reaction rate

constant depending on chain length. Macromolecules 1988;

21(3):732–6.

[61] Kuchanov SI, Povolotskaya ES. Calculation of molecular

weight distribution of products of non-equilibrium poly-

condensation with allowance for the substitution effect.

Vysokomol Soedin, Ser A 1982;24(10):2179–89.

[62] Irzhak TF, Peregudov NI, Tai ML, Irzhak VI. Description of

polycondensation kinetics in terms of the units’ blocks

concepts. Vysokomol Soedin, Ser A 1994;36(6):914–8.

[63] Irzhak VI, Tai ML, Peregudov NI, Irzhak TF. Concept of

bond blocks in theory of polycondensation. Colloid Polym

Sci 1994;272(3):523–37.

[64] Kumar A, Rajora P, Agarwall NL, Gupta SK. Reversible

polycondensation characterized by unequal reactivities of

functional groups. Polymer 1982;23(2):222–8.

[65] Gupta SK, Agarwall NL, Rajora P, Kumar A. Simulation of

reversible polycondensation with monomer having reactivity

different from that of higher homologs. J Polym Sci, Polym

Phys Ed 1982;20(6):933–45.

[66] Irzhak TF, Peregudov NI, Tai ML, Irzhak VI. Molecular

weight distribution of polymer chains formed during a

reversible process of linear polycondensation. Vysokomol

Soedin, Ser B 1995;37(12):2071–5.

[67] Brun EB, Kuchanov SI. Application of the principle of

detailed equilibrium to polycondensation processes with

allowance for the substitution effect. Vysokomol Soedin, Ser

A 1979;21(3):691–9.

[68] Flory PJ. Thermodynamics of heterogeneous polymers and

their solutions. J Chem Phys 1944;12(11):425–38.

[69] Tobolsky AV. Equilibrium distribution in sizes of linear

polymer molecules. J Chem Phys 1944;12(11):402–4.

[70] Harris FE. Equilibrium distribution of molecular weights in

noncyclic polymerizations. J Polym Sci 1955;18:351–7.

[71] Berlin AA, Sayadian AA, Enikolopian NS. Molecular weight

distribution of polymers and reactivity of macromolecules in

concentrated and dilute solutions. Vysokomol Soedin, Ser A

1969;11(9):1893–9.

[72] Berlin AA, Sayadian AA, Enikolopian NS. Phase transition

in dilute solution of a polymer with molecules undergoing

reversible intrachange reactions. Vysokomol Soedin, Ser A

1970;12(11):2572–81.

[73] Erukhimovich IYa. Equilibrium molecular weight distri-

bution deviation from the Flory distribution due to intrachain

interactions. Vysokomol Soedin, Ser A 1977;19(10):

2388–94.

[74] Gold L. Variable reaction rate theory of polymer size

distribution. J Chem Phys 1959;30(5):1284–6.

[75] Nanda VS, Jain SC. Effect of variation of the bimolecular

rate constant on the statistical character of condensation

polymers. J Chem Phys 1968;49(3):1318–20.

[76] Nanda VS, Jain SC. Statistical study of the effect of variation

of bimolecular rate constant in condensation polymerization.

J Polym Sci, Ser A1 1970;8:1871–85.

[77] Jain SC. A comparison of the statistical and kinetic approach

for the variation of the bimolecular rate constant with chain

length on the statistical character of condensation polymers.

J Polym Sci, Ser B 1970;8(9):639–42.

[78] Shaltuper GB. On the distribution of molecules for molecular

weights. Vysokomol Soedin, Ser A 1972;14(4):811–5.

[79] Shaltuper GB. Molecular weight distribution of linear

polymers. Vysokomol Soedin, Ser B 1973;15(2):126–31.

[80] Orlova TM, Dubrovina LV, Pavlova SA, Korshak VV.

Molecular weight distribution of condensation polymers.

Dokl Akad Nauk SSSR 1973;213(5):1128–31.

[81] Orlova TM, Pavlova SA, Dubrovina LV. Molecular weight

distribution of macromolecules in polycondensation linear

polymers. Vysokomol Soedin, Ser A 1976;18(4):916–9.

[82] Orlova TM, Pavlova SA, Dubrovina LV. Statistical approach

to molecular weight distribution of condensation polymers.

J Polym Sci, Polym Chem Ed 1979;17(7):2209–21.

[83] Jacobson H, Stockmayer WH. Intramolecular reactions in

polycondensations. I. The theory of linear systems. J Chem

Phys 1950;18(12):1600–6.

S. Kuchanov et al. / Prog. Polym. Sci. 29 (2004) 563–633622



[84] Volkenstein MV. Configurational statistics of polymer

chains. NewYork: Interscience; 1963.

[85] Birshtein TM, Ptitsin OV. Conformations of macromol-

ecules. Moscow: Nauka; 1964.

[86] Flory PJ. Statistical mechanics of chain molecules. New

York: Interscience; 1969.

[87] Takserman-Krozer R, Ziabicki A. Statistical theory of

contacts between the segments of chain macromolecules in

bulk and solutions. Polymer 1967;12:401–5.

[88] Berlin AA, Ivanov VV, Enikolopian NS. Cyclization of

polymers under chain transfer with degradation. Vysokomol

Soedin, Ser B 1967;9:61–4.

[89] Flory PJ, Semlyen JA. Macrocyclization equilibrium con-

stants and the statistical configuration of poly(dimethylsilox-

ane) chains. J Am Chem Soc 1966;88(14):3209–12.

[90] Flory PJ, Suter UW, Mutter M. Macrocyclization equilibria.

1. Theory. J Am Chem Soc 1976;98(19):5733–9.

[91] Carmichael JB, Kinsinger JB. A theoretical study of ring

closure: application to the cyclic-linear distribution in

polydimethylsiloxane. Can J Chem 1964;42(8):1996–2007.

[92] Carmichael JB, Winger R. Cyclic distribution in dimethylsi-

loxanes. J Polym Sci, Ser A 1965;3:971–84.

[93] Semlyen JA, Wright PV. Equilibrium ring concentrations and

the statistical conformation of polymer chains. I. Oligomeric

dimethylsiloxanes. Polymer 1969;10(7):543–52.

[94] Beevers MS, Semlyen JA. Equilibrium ring concentrations

and the statistical conformation of polymer chains. VIII.

Calculation of small ring concentrations in polydihydrogen-

siloxane and polydimethylsiloxane equilibrates. Polymer

1972;13(8):385–90.

[95] Cooper DR, Semlyen JA. Equilibrium ring concentrations

and the statistical conformations of polymer chains. IX.

Sodium metaphosphates in Graham’s salt. Polymer 1972;

13(9):414–8.

[96] Sisido M. Statistical treatment of the intramolecular reaction

between two functional groups connected by a polymethy-

lene chain. Macromolecules 1971;4(6):737–42.

[97] Yumoto H. Interpretation of chain-ring equilibria in the

polymerization of substituted 1-caprolactam. J Chem Phys

1958;29(6):1234–9.

[98] Fluendy MAD. Calculation of cyclization probabilities and

other configuration properties of alkane-type chains by a

Monte Carlo method. Trans Faraday Soc 1963;59:1681–94.

[99] Winnik MA, Trueman RF, Jackowski G, Sounders DS,

Whittington SG. Computer simulation of intramolecular

hydrogen abstraction in the photochemistry of p-benzophe-

none-carboxylate esters. J Am Chem Soc 1974;96(15):

4843–8.

[100] Sisido M, Imanischi Y. Intrachain reaction of a pair of

reactive groups attached to polymer ends. II. Monte Carlo

study on the intrachain reaction. Macromolecules 1976;9(2):

320–4.

[101] Frazer SJ, Winnik MA. Monte Carlo simulation of a lattice

model of intramolecular exciplex formation. J Chem Phys

1981;75(9):4683–95.

[102] Semlyen JA. Ring–chain equilibria and the conformations of

polymer chains. Adv Polym Sci 1976;21:43–75.

[103] Khalatur PG, Stepanian AE. On the character of the

dependence of equilibrium macrocyclization constants on

chain length. Vysokomol Soedin, Ser B 1977;19(10):754–5.

[104] Khalatur PG. Conformations of cyclic aliphatic polyesters.

Vysokomol Soedin, Ser B 1978;20(4):305–7.

[105] Khalatur PG, Stepanian AE, Papulov YuG. Conformational

statistics of macromolecules of polyethylene terephthalate.

Vysokomol Soedin, Ser A 1978;20(4):832–8.

[106] Khalatur PG, Bragina VV. Conformations of cyclic and

linear macromolecules of poly-1,3 dioxolane. Vysokomol

Soedin, Ser A 1979;21(3):573–80.

[107] Khalatur PG. Conformational statistics of macrocycles of

polycaprolaktone. Vysokomol Soedin, Ser B 1979;21(8):

605–8.

[108] Khalatur PG, Pletneva SG, Papulov YG. On the equilibrium

between cyclic and linear molecules of polyethers. Vysoko-

mol Soedin, Ser B 1980;22(2):144–6.

[109] Khalatur PG, Stepanian AE. Conformational characteristics

of polymethylene glycol terephthalates. Vysokomol Soedin,

Ser A 1980;22(5):1122–30.

[110] Khalatur PG. Theoretical examination of ring–chain equili-

brium in concentrated solution of poly-1,3,6,9,12,15-hex-

aoxiheptadecane. Vysokomol Soedin, Ser B 1981;23(2):

144–7.

[111] Levy RM, VanWazer JR. Molecular distribution at equili-

brium. V. Statistical–mechanical treatment of ring–chain

equilibria. J Chem Phys 1966;45(5):1824–7.

[112] Yamakawa H, Stockmayer WH. Statistical mechanics of

wormlike chains. II. Excluded volume effects. J Chem Phys

1972;57(7):2843–54.

[113] des Cloizeaux J. Short range correlation between elements of

a long polymer in a good solvent. J Phys 1980;41(3):223–35.

[114] Domb C. Self-avoiding walkes on lattices. Adv Chem Phys

1969;15:229–60.

[115] Mazur J. Non-self-intersecting random walks in lattices with

nearest-neighbor interactions. Adv Chem Phys 1969;15:

261–80.

[116] Dashevski VG. Computer experiments in conformational

statistics of oligomers and polymers. Itogi nauki i techniki,

Ser Organic chemistry, vol. 1. Moscow: VINITI; 1975.

p. 5–99.

[117] McKenzie DS. Polymers and scaling. Phys Rep, Ser C 1976;

27(2):35–88.

[118] Erukhimovich IYa. Equilibrium molecular weight distri-

bution of dilute solution of a polymer in a good solvent.

Vysokomol Soedin, Ser B 1978;20(6):437–8.

[119] Morawetz H, Goodman N. Derivation of the ring closure

probability from the distribution of reaction products when

reagents undergo simultaneous cyclization and polyconden-

sation. Macromolecules 1970;3(5):699–700.

[120] Gordon M, Temple WB. Ring–chain competition kinetics in

linear polymers. Makromol Chem 1972;152:277–89.

[121] Ercolani G, Mandolini L, Mencarelly P. Kinetic treatment of

irreversible cyclooligomerization of bifunctional chains and

its relevance to the synthesis of many-membered rings.

Macromolecules 1988;21(5):1241–6.

S. Kuchanov et al. / Prog. Polym. Sci. 29 (2004) 563–633 623



[122] Rolando RJ, Macosko CW. Ring formation in linear stepwise

polymerization. Macromolecules 1987;20(11):2707–13.

[123] Irzhak TF, Peregudov NI, Irzhak VI, Rozenberg BA. Kinetics

of cyclization in the processes of irreversible linear

polycondensation. Vysokomol Soedin, Ser B 1993;35(7):

905–8.

[124] Irzhak TF, Peregudov NI, Irzhak VI, Rozenberg BA. MWD

of the cycles under irreversible linear polycondensation.

Vysokomol Soedin, Ser B 1993;35(9):1545–9.

[125] Gordon M, Temple WB. The graph-like state of molecules.

III. Ring–chain competition kinetics in linear polymerization

reaction. Makromol Chem 1972;160:263–76.

[126] Stanford YL, Stepto RFT, Waywall DR. Rate theory of

irreversible linear random polymerization. II. Application

to intramolecular reaction in A–A þ B–B type polym-

erization. J Chem Soc, Faraday Trans I 1975;71(6):

1308–26.

[127] Sarmoria C, Valles EM, Miller DR. Ring–chain competition

kinetic models for linear and nonlinear step-reaction

copolymerization. Macromol Chem, Macromol Symp 1986;

2:69–87.

[128] Stepto RFT. In: Haward RN, editor. Intra-molecular reaction

and gelation in condensation or random polymerization.

Developments in polymerization, vol. 3. Barking: Applied

Science; 1982. p. 81–141. [chapter 3].

[129] Sarmoria C, Valles EM, Miller DR. Validity of some

approximations used to model intramolecular reaction in

irreversible polymerization. Macromolecules 1990;23(2):

580–9.

[130] Wilemski G, Fixman MJ. Diffusion-controlled intrachain

reactions of polymers. I. Theory. J Chem Phys 1974;866–77.

Wilemski G, Fixman MJ. Diffusion-controlled intrachain

reactions of polymers. II. Results for a pair of terminal

reactive groups. J Chem Phys 1974;878–90.

[131] Doi M. Diffusion-controlled reaction of polymers. Chem

Phys 1975;9:455–66.

[132] Perico A, Cunberti C. Dynamics of chain molecules

Intramolecular diffusion controlled reactions for a pair of

terminal reactive groups. J Polym Sci, Polym Phys Ed 1977;

15(8):1435–50.

[133] Cuniberti C, Perico A. Intramolecular diffusion-controlled

reactions and polymer dynamics. Prog Polym Sci 1984;

10(4):271–316.

[134] Winnik MA. Cyclization reaction of terminal groups in linear

polymers. In: Semleyn AJ, editor. Cyclic polymers. London:

Elsevier; 1986. p. 135–52.

[135] Vasnev VA, Kuchanov SI. Nonequilibrium copolycondensa-

tion in homogeneous systems. Uspekhi Khimii 1973;42(12):

2194–221.

[136] Korshak VV, Vinogradova SV, Kuchanov SI, Vasnev VA.

Nonequilibrium copolycondensation in homogeneous sys-

tems. J Macromol Sci, Rev Macromol Chem, Ser C 1976;

14(1):27–63.

[137] Vasnev VA, Kuchanov SI. Synthesis of polycondensation

polymers of predetermined structure. In: Korshak VV, editor.

Advances in polymer chemistry. Moscow: MIR; 1986.

p. 117–58. [chapter 4].

[138] Gentile FT, Suter UW. In: Allen G, editor. Constitutional

regularity in linear condensation polymers. Comprehensive

polymer science, vol. 5. London: Pergamon Press; 1989. p.

97–115. [chapter 5].

[139] Marechal E, Fradet A. Step copolymerization. In: Allen G,

editor. Comprehensive polymer science, vol. 5. London:

Pergamon Press; 1989. p. 251–73. [chapter 16].

[140] Kuchanov SI. Monomer sequence distribution problem for

condensation polymers. Proceedings of International Sym-

posium ‘Polycondensation’ 96, Paris 1996;129–31.

[141] Kuchanov SI. Principles of theoretical description of

microstructure of linear condensation polymers. Macromol

Symp 1997;122:203–8.

[142] Shtraikhman GA. On the mechanism of copolycondensation

processes. Zhurnal Prikladnoi Khimii 1959;32(3):673–6.

[143] Tyuzyo K. Copolymer composition in condensation copoly-

merization. J Polym Sci, Ser A 1965;3(10):3654–8.

[144] Turska E, Boryniec S, Pietrzak L. Kinetic studies on

copolycondensation process. I. Kinetic equation of copoly-

condensation in solution. J Appl Polym Sci 1974;18(3):

667–70.

[145] Turska E, Boryniec S, Sulkovski V. Some structure–

chemical aspects of polycondensation. Uspekhi Khimii

1979;48(1):51–74.

[146] Beste LF. Distribution of components in condensation

interpolymers. J Polym Sci 1959;36(130):313–23.

[147] Lavalou PM. Preparation et polycondensation des acides

amino-II undecanoiques N-substitues. Ann Chim (Fr) 1961;

6(7/8):835–92.

[148] Nikonov VZ, Sokolov LB, Babur GV, Sharikov YV, Emelin

EA. Calculation of the reactivities of monomers participating

in irreversible copolycondensation of complex systems.

Vysokomol Soedin, Ser A 1969;11(4):739–49.

[149] Lopez-Serrano F, Castro JM, Macosko CW, Tirrell M.

Recursive approach to copolymerization statistics. Polymer

1980;21(3):263–73.

[150] Ozizmir E, Odian G. Effect of unequal functional group

reactivity and monomer masses on the polydispersity index

in linear step polymerization. J Polym Sci, Polym Chem Ed

1980;18(7):2281–91.

[151] Kuchanov SI. Sequence distribution in products of homo-

geneous irreversible copolycondensation. Vysokomol Soe-

din, Ser A 1973;15(9):2140–51.

[152] Kuchanov SI. Theoretical consideration of microheterogene-

ity of polycondensation copolymers. Vysokomol Soedin, Ser

A 1974;16(5):1125–32.

[153] Mackay JH, Pattison VA, Pawlak JA. Diol sequencing in

copolyesters. J Polym Sci, Polym Chem Ed 1978;16(11):

2849–63.

[154] Kuchanov SI, Brun EB. On the theory of equilibrium

copolycondensation. Vysokomol Soedin, Ser A 1979;21(3):

700–9.

[155] Sawada H. Thermochemistry of interchange reactions in

condensation copolymerization. J Polym Sci, Ser B 1963;

1(12):659–62.

[156] Sawada H. Thermochemistry of condensation copolymeriza-

tion. J Polym Sci, Ser B 1964;2(5):507–10.

S. Kuchanov et al. / Prog. Polym. Sci. 29 (2004) 563–633624



[157] Korolev SV, Kuchanov SI. Calculation of the sequence

distribution in multicomponent polycondensation copoly-

mers. Vysokomol Soedin, Ser A 1986;28(5):1006–13.

[158] Frensdorf HK. Block-frequency distribution of copolymers.

Macromolecules 1971;4(4):369–75.

[159] Sorta E, Melis A. Block-length distribution in finite

polycondensation copolymers. Polymer 1978;19(10):

1153–6.

[160] Gritsenko TM. On the microstructure of copolymer chains

obtained by heterocopolycondensation. Dokl Akad Nauk

SSSR 1974;215(5):1121–4.

[161] Gritsenko TM. On the microstructure of copolymer chains

obtained by linear heterocopolycondensation. J Macromol

Sci, Rev Macromol Chem, Ser A 1975;9(3):357–71.

[162] Peebles LH. Sequence length distribution in segmented block

copolymers. Macromolecules 1974;7(6):872–82.

[163] Irzhak TF, Peregudov NI, Tai ML, Irzhak VI. Blocks of

bonds for polycondensation copolymers. Vysokomol Soedin,

Ser B 1996;38(11):1921–4.

[164] Kuchanov SI. Essentials of quantitative theory of homo-

geneous irreversible copolycondensation. Dokl Akad Nauk

SSSR 1976;229(1):135–8.

[165] Korolev SV, Brun EB, Kuchanov SI. Some problems of

configurational statistics of linear copolymers in the frame-

work of the substitution effect model. Mathematical methods

for the investigation of polymers, Pushino; 1982. p. 63–70.

[166] Kuchanov SI. On the theory of homogeneous irreversible

copolycondensation. Vysokomol Soedin, Ser A 1976;18(8):

1878–84.

[167] Durand D, Bruneau C-M. Theory of Markov chains and

molecular distribution in linear copolycondensates.

I. Mathematical model and systems of order 1. Makromol

Chem 1979;180(12):2947–69.

[168] Durand D, Bruneau C-M. Theory of Markov chains and

molecular distribution of linear copolycondensates. II.

Systems of order II. Makromol Chem 1980;181(2):

421–52.

[169] Durand D, Bruneau C-M. Theory of Markov chains and

molecular distribution of linear copolycondensates. III.

Systems having n states. Makromol Chem 1980;181(8):

1673–84.

[170] Durand D, Bruneau C-M. Reactivity and molecular distri-

bution in linear copolycondensation. I. Characteristic reac-

tivity. Eur Polym J 1981;17(7):707–14.

[171] Durand D, Bruneau C-M. Reactivity and molecular distri-

bution in linear copolycondensation. II. Effect of the

substituent. Eur Polym J 1981;17(7):715–21.

[172] Guillot J. Simulation of polycondensation monomers of

unlike functionality by the Monte Carlo method: application

to polyurethanes. Makromol Chem, Rapid Commun 1983;

4(2):75–80.

[173] Johnson AF, O’Driscoll KF. Monte Carlo simulation of

sequence distributions in step growth copolymerization. Eur

Polym J 1984;20(10):979–83.

[174] Chaumont P, Gnanou Y, Hild G, Rempp P. Study and

simulation of polycondensation reactions by the Monte

Carlo. Makromol Chem 1985;186(11):2321–35.

[175] Miller JA, Speckhard TA, Cooper SL. Monte Carlo

simulation study of the polymerization of polyurethane

block copolymers. 2. Modeling of premature phase separ-

ation during reaction using the two-phase ideal reaction

model. Macromolecules 1986;19(6):1568–74.

[176] Luckasheva NV. Simulation of copolymer chains obtained

under nonequilibrium copolycondensation by Monte Carlo

method. Vysokomol Soedin, Ser A 1992;34(6):97–105.

[177] Po R, Occhiello E, Garbassi F. Computer simulation of non-

equilibrium step-growth copolymerization processes. Eur

Polym J 1992;38(1):79–84.

[178] Korshak VV, Vinogradova SV, Kuchanov SI, Vasnev VA,

Markova GD. On the structure of polycondensation polymers

obtained from monomers with nonsymmetrically positioned

functional groups. Vysokomol Soedin, Ser A 1974;16(9):

1992–5.

[179] Suter UW, Pino P. Structural isomerism in polycondensates.

2. Aspects for monomers with independent functional

groups. Macromolecules 1984;17(11):2248–55.

[180] Gentile F, Suter UW. Constitutional isomerism in step-

growth polymers: theoretical aspects of systems with two

nonsymmetric monomers. Makromol Chem 1991;192:

663–71.

[181] Gentile FT, Meyer WR, Suter UW. Constitutional isomerism

in step-growth polymers: theoretical aspects of systems with

chemical induction. Macromolecules 1991;24(3):633–41.

[182] Levenspiel O. Chemical reaction engineering. New York:

Wiley; 1972.

[183] Kuchanov SI. Calculation of the effect of the mode of

monomers’ addition on molecular weight distribution of the

products of homogeneous irreversible polycondensation.

Vysokomol Soedin, Ser B 1974;16(2):137–40.

[184] Fedotov YuA, Il’in MI, Sokolov LB, Shapirovski YuA,

Cherniavski PA. A copolymer composition under nonstoi-

chiometric polycondensation. Vysokomol Soedin, Ser B

1982;24(5):383–6.

[185] Mellichamp DA. Reversible polycondensation in a semi-

batch reactor. Chem Engng Sci 1969;24(1):125–39.

[186] Abraham WH. The Flory–Shulz distribution in reversible

semi-batch polycondensation. Chem Engng Sci 1970;25(2):

331–5.

[187] Sandhu MS, Fields RD. Model for predicting the compo-

sition of copolyesters. J Polym Sci, Polym Chem Ed 1980;

18(4):1189–202.

[188] Han MJ. Elastic properties of well-characterized ethylene–

propylene copolymer networks. Macromolecules 1980;

13(4):1001–9.

[189] Han MJ. Kinetics of polycondensation and copolycondensa-

tion by amide-interchange reactions. Macromolecules 1982;

15(2):438–41.

[190] Han MJ, Kang HC, Choi KB. Kinetics of the copolyconden-

sation by aminolysis, alcoholysis, and interchange reactions

in the synthesis of poly(ester amide). Macromolecules 1986;

19(6):1649–52.

[191] Biesenberger JA, Sebastian DH. Principles of polymerization

engineering. New-York: Wiley–Interscience; 1983.

S. Kuchanov et al. / Prog. Polym. Sci. 29 (2004) 563–633 625



[192] Siling MI. Polycondensation. Physico-chemical aspects and

mathematical modeling, Moscow: Khimia; 1988.

[193] Biesenberger JA. Yield and molecular weight distribution in

batch and continuous linear condensation polymerization.

Am Inst Chem Engng J 1965;11:369–78.

[194] Smith NH, Sather GA. Polycondensation in a continuous

stirred tank reactors. Chem Engng Sci 1965;20(1):15–23.

[195] Abraham WH. Transient polycondensation: an analytical

solution. Chem Engng Sci 1966;21(4):327–36.

[196] Kuchanov SI. On the effect of hydrodynamic stirring on

molecular inhomogeneity of the products of continuous

polycondensation. Theor Fundam Chem Tekhnol 1981;

15(6):855–66.

[197] Tadmor Z, Biesenberger JA. Influence of segregation on

molecular weight distribution in continuous linear polym-

erizations. Ind Engng Chem (Fundam) 1966;5(3):336–43.

[198] Sen Gupta A, Kumar A, Gupta SK. Condensation polym-

erization with unequal reactivity in segregated continuous-

flow stirred tank reactor. Br Polym J 1981;13(2):76–81.

[199] Fastrez J. Macrocyclization versus polymerization in poly-

condensation reactions under high-dilution conditions: a

theoretical study. J Phys Chem 1989;93(6):2635–42.

[200] Irzhak TF, Peregudov NI, Irzhak VI. Kinetics of cyclization

under continuous process of linear polycondensation.

Vysokomol Soedin, Ser B 1995;37(3):518–22.

[201] Korshak VV. Dependence of polymer structure on monomer

functionality. Acta Polym 1983;34(10):603–11.

[202] Bobalek E, Moore E, Levy S, Lee C. Some implications of

the gel point-concept to the chemistry of alkyd resins. J Appl

Polym Sci 1964;8:625–57.

[203] Flory PJ. Molecular size distribution in three-dimensional

polymers. I. Gelation. J Am Chem Soc 1941;63(11):

3083–90. Flory PJ. Molecular size distribution in three-

dimensional polymers. II. Trifunctional branching units. J Am

Chem Soc 1941;63(11):3091–6. Flory PJ. Molecular size

distribution in three-dimensional polymers. III. Tetrafunc-

tional branching units. J Am Chem Soc 1941;63(11):

3096–100.

[204] Flory PJ. Fundamental principles of condensation polym-

erization. Chem Rev 1946;39:137–95.

[205] Kuchanov SI, Korolev SV, Panyukov SV. Graphs in

chemical physics of polymers. Adv Chem Phys 1988;72:

115–326.

[206] Schaefgen JR, Flory PJ. Synthesis of multichain polymers

and investigation of their viscosities. J Am Chem Soc 1948;

70(8):2709–18.

[207] Flory PJ. Molecular size distribution in three dimensional

polymers. VI. Branched polymers containing A–R–Bf21

type units. J Am Chem Soc 1952;74(11):2718–23.

[208] Erlander S, French D. A statistical model for amylopectin

and glycogen The condensation of A–R–Bf21 units. J Polym

Sci 1956;20(94):7–28.

[209] Allen ES. A probability theory for the condensation of

A–R–B2 units. J Polym Sci 1956;21(98):349–52.

[210] Tang A-C. Theoretical treatment of branched polycondensa-

tion. 1. Two types of monomer functional groups. Sci Rec

(China) 1958;2(3):110–3.

[211] Tang A-C. Theoretical treatment of branched polycondensa-

tion. 2. Three and more types of monomer functional groups.

Sci Rec (China) 1959;3(10):477–82.

[212] Kahn A. Critical conditions for the formation of infinite

networks. J Polym Sci 1961;49(152):283–6.

[213] Tanaka Y, Kakiuchi H. Critical conditions for formation of

infinite networks in branched-chain polymers. J Polym Sci,

Ser A 1965;3(9):3279–300.

[214] Yoshida T. Role of monofunctional compounds in the

formation of molecular weight distribution of branched

polycondensation polymers. Chem High Polym (Jpn) 1966;

23:107–13.

[215] Fogiel AW, Stewart CW. Effect of monofunctional reactants

on gel point in polycondensation reactions. J Polym Sci, Ser

A2 1969;7(6):1116–7.

[216] March HE. Gelation studies. II. complex trifunctional

systems. Polym Prepr 1971;12(1):598–605.

[217] Case LC. Molecular distribution in polycondensations

involving unlike reactant. I. Gelation. J Polym Sci 1957;

26(114):333–50.

[218] Jonason M. The gelation point of alkyd resins. J Appl Polym

Sci 1960;4(11):129–46.

[219] Giacomo A. Size distribution and gelation in condensation

polymers with one unsymmetric reactant. J Polym Sci 1960;

47(149):435–40.

[220] Zabrodin VB, Zikov VI, Chuy GN, Zhabenko VA, Lagutin

MA, Morozov BA. Gelation in systems with different

reactivities of functional groups. Vysokomol Soedin, Ser A

1974;16(7):1551–4.

[221] Zikov VI, Zabrodin VB, Borisov EV. The conditions of the

gelation in systems with different reactivity of functional

groups. Vysokomol Soedin, Ser A 1977;19(8):1787–94.

[222] Durand D, Bruneau C-M. Influence of a dependence in

reactivity between primary and secondary hydroxyls on the

gelation of polyol þ polyacid systems. Makromol Chem

1978;179(1):147–57.

[223] Joshi MG. Effect of competing reactions on the feasibility of

gelation in polycondensation. Polym Commun 1986;27(11):

324–7.

[224] Macosko CW, Miller DR. A new derivation of average

molecular weights of nonlinear polymers. Macromolecules

1976;9(2):199–206.

[225] Miller DR, Macosko ChW. A new derivation of post gel

properties of network polymers. Macromolecules 1976;9(2):

206–11.

[226] Miller DR, Macosko CW. Average property relations for

nonlinear polymerization with unequal reactivity. Macro-

molecules 1978;11(4):656–62.

[227] Miller DR, Valles EM, Macosko CW. Calculation of

molecular parameters for stepwise polyfunctional polym-

erization. Polym Engng Sci 1979;19(4):272–83.

[228] Bibbo MA, Valles EM. Calculation of average properties of

the pendant chains in a network. Macromolecules 1982;

15(5):1293–300.

[229] Durand D, Bruneau C-M. General expressions of average

molecular weights in condensation polymerization of poly-

functional monomers. Br Polym J 1979;11:194–8.

S. Kuchanov et al. / Prog. Polym. Sci. 29 (2004) 563–633626



[230] Durand D, Bruneau C-M. Reactivity and gelation.

I. Intrinsic reactivity. J Polym Sci, Polym Phys Ed 1979;

17(2):273–94.

[231] Durand D, Bruneau C-M. General expressions of average

molecular weights in polycondensation of polyfunctional

monomers involving condensation by-product. Br Polym J

1981;13(1):33–40.

[232] Durand D, Bruneau C-M. Average functionalities of

macromolecules in stepwise polyfunctional polymerization.

Polymer 1982;23(1):69–72.

[233] Durand D, Bruneau C-M. Statistics of random macromol-

ecular networks. 1. Stepwise polymerization of polyfunc-

tional monomers bearing identical reactive groups.

Makromol Chem 1982;183(4):1007–20.

[234] Durand D, Bruneau C-M. Intrinsic unequal reactivity and

average molecular weights in non-linear stepwise polym-

erization. Polymer 1983;24(5):587–91.

[235] Whiteway SG, Smith JB, Masson GR. Theory of molecular

size distribution in multichain polymers. Can J Chem 1970;

48:33–45.

[236] Gordon M, Judd M. Statistical mechanics and the critically

branched state. Nature 1971;234:96–8.

[237] Masson GR, Smith JB, Whiteway SG. Reply to Gordon and

Judd. Nature 1971;234:97–8.

[238] Gordon M, Temple WB. Chemical combinatorics. III.

Stereochemical invariance law and statistical mechanics of

flexible molecules. J Chem Soc, Faraday Trans II 1973;69:

282–97.

[239] Casassa EF. Molecular mass distributions in self-conden-

sation of a trifunctional monomer. J Polym Sci, Polym Phys

Ed 1974;12(4):809–21.

[240] Stepto RFT. Comment: On the Whiteway–Smith–Masson

and Flory–Stockmayer theories of polymerizations. Can J

Chem 1974;52:1188–9.

[241] Masson GR, Whiteway SG. Reply to comment: on the

Whiteway–Smith–Masson and Flory–Stockmayer theories

of polymerizations. Can J Chem 1974;52(7):1190–1.

[242] Stockmayer WH. Theory of molecular size distribution and

gel formation in branched-chain polymers. J Chem Phys

1943;11(2):45–55.

[243] Stockmayer WH. Molecular distribution in condensation

polymers. J Polym Sci 1952;9(1):69–71.

[244] Stockmayer WH. Molecular distribution in condensation

polymers. J Polym Sci 1953;11(5):424–4.

[245] Cohen C, Gibbs JH, Flaming PD. Condensation and gelation:

clarification of Stockmayer’s analogy. J Chem Phys 1973;

59(10):5511–6.

[246] Gordon M. Combinatorics and graph theory of abundance

and stability of chemical species. In: Bolyai J, editor.

Combinatorial theory and its applications II, vol. 4.

Budapest: Ser Colloquia Mathematica Soc; 1970. p.

511–23.

[247] Gordon M, Temple WB. Chemical combinatorics. Part

I. Chemical kinetics, graph theory, combinatorial entropy.

J Chem Soc, Ser A 1970;(5):729–37.

[248] Gordon M. Chemical combinatorics. Part II. On the third law

of thermodynamics. J Chem Soc, Ser A 1970;5:737–40.

[249] Gordon M, Scantlebury GR. Non-random polycondensation:

statistical theory of the substitution effect. Trans Faraday Soc

1964;60:604–14.

[250] Gordon M, Kennedy JW. The graph-like state of matter. II.

LCGI schemes for the thermodynamics of alkanes and the

theory of inductive inference. J Chem Soc, Faraday Trans II

1973;69:484–504.

[251] Essam JW, Kennedy JW, Gordon M, Whittle P. Graph-like

state of matter. VIII. LCGI schemes and the statistical

analysis of experimental data. J Chem Soc, Faraday Trans II

1977;73(9):1289–307.

[252] Gordon M, Temple WB. The graph-like state of matter and

polymer science. In: Balaban AT, editor. Chemical appli-

cations of graph theory. 1976. p. 300–32. [chapter 10].

[253] Good IJ. The generalization of Lagrange expansion and the

enumeration of trees. Proc Cambridge Philos Soc 1965;61:

499–517.

[254] Gordon M, Parker TG, Temple WB. On the number of

distinct ordering of a vertex-labeled graph when rooted

on different vertices. J Comb Theory, Ser B 1971;11:

142–56.

[255] Gordon M, Torkington JA. Enumeration of coloured plane

trees with a given type partition. Discrete Appl Math 1980;2:

207–23.

[256] Durand D, Bruneau C-M. Graph theory and molecular

distribution. I. Copolycondensation of polyfunctional mono-

mers bearing identical reactive groups. Discrete Appl Math

1981;3(2):79–91.

[257] Durand D, Bruneau C-M. Graph theory and molecular

distribution. II. Copolycondensation of A-group polyfunc-

tional monomers with B-group polyfunctional monomers.

Macromolecules 1979;12(6):1216–22.

[258] Gordon M. Good’s theory of cascade process applied to the

statistics of polymer distributions. Proc R Soc (Lond), Ser A

1962;268:240–59.

[259] Good IJ. Cascade theory and the molecular weight averages

of the sol fraction. Proc R Soc (Lond), Ser A 1963;272:54–9.

[260] Dobson G, Gordon M. Configurational statistics of highly

branched polymer systems. J Chem Phys 1964;41(8):

2389–98.

[261] Malcolm GN, Gordon M. Configurational statistics of

copolymer systems. Proc R Soc (Lond), Ser A 1966;295:

29–54.

[262] Irzhak VI, Rozenberg BA, Enikolopian NS. Network

polymers. Moscow: Nauka; 1979.

[263] Konshtein SE, Pis’men LM. Composition distribution and

the conditions of the gel formation in the processes of

multifunctional polycondensation. Dokl Akad Nauk SSSR

1971;196(4):858–61.

[264] Irzhak VI. Statistical theory of the gelation. Sol fraction.

Vysokomol Soedin, Ser A 1975;17(3):535–45.

[265] Irzhak VI. Kinetics of polycondensation processes. Vysoko-

mol Soedin, Ser B 1975;17(1):42–5.

[266] Bruneau C-M. Theorie des graphes stochastiques appliquee a

la synthese et a la degradation aleatoires des composes

macromolecelaires multifonctionnels. Ann Chem 1966;1

(1-2):271–302.

S. Kuchanov et al. / Prog. Polym. Sci. 29 (2004) 563–633 627



[267] Bruneau C-M. Sur une incosequence formelle deduite

du concept de gelification des composes macromolecu-

laires multifonctionnels selon la theorie classique.

Nouvelle interpretation du phenomene de gelification.

Comptes Rendus Acad SC (Paris), Ser C 1967;264(14):

1168–71.

[268] Bruneau C-M. La reticulation: un aspect particulier de la

gelification selon la theorie des graphes stochastiques.

J Polym Sci, Ser C 1968;16:4113–20.

[269] Pis’men LM, Kuchanov SI. Multifunctional polycondensa-

tion and gelation. Vysokomol Soedin, Ser A 1971;13(4):

791–802.

[270] Cohen RJ, Benedek GB. Equilibrium and kinetic theory of

polymerization and the sol–gel transition. J Phys Chem

1982;86(19):3696–714.

[271] Saito O. Statistical aspects of infinite network formation.

Polym Engng Sci 1979;19(4):234–45.

[272] Stafford JW. Multifunctional polycondensation and gelation:

a kinetic approach. J Polym Sci, Polym Chem Ed 1981;

19(12):3219–36.

[273] Durand D, Riviere M, Bruneau C-M. Comments on a kinetic

approach of multifunctional polycondensation and gelation

by JW Stafford. J Polym Sci 1983;21(10):2945–6.

[274] Stafford JW. Reply to the comments of Professor D Durand

et al. J Polym Sci 1983;21(10):2946–7.

[275] Stafford JW. Distributions in nonself-condensing polycon-

densations: a kinetic approach. J Polym Sci, Polym Chem Ed

1983;21(6):1627–42.

[276] Stafford JW. Multifunctional polycondensation distributions:

a kinetic approach to mixed monomer systems. J Polym Sci

1984;22(2):365–81.

[277] Ziff RM. Kinetics of polymerization. J Stat Phys 1980;23(2):

241–63.

[278] Ziff RM, Stell G. Kinetics of polymer gelation. J Chem Phys

1980;73(7):3492–9.

[279] Whittle P. Statistics and critical points of polymerization

processes. Adv Appl Prob Suppl 1972;2293:199–215.

[280] Gordon M, Ross-Murphy SB. The structure and properties of

molecular trees and networks. Pure Appl Chem 1975;43(1):

1–26.

[281] Luby P. Postgelation relationships for number fraction

distribution under polyfunctional polymerization. J Polym

Sci, Ser C 1975;53:23–8.

[282] Falk M, Thomas RE. Molecular size distribution in random

polyfunctional condensation with or without ring formation:

computer simulation. Can J Chem 1974;52:3285–95.

[283] Madhavan NS, Sukumaran CG, Swaminathan V. A simu-

lation model for the determination of Flory’s branching

coefficient in infinite network systems. Angew Makromol

Chem 1981;93:19–25.

[284] Swaminathan V, Madhavan NS, Nair C, Sukumaran G. A

generalized computer simulation model for obtaining sol–

gel distributions in infinite polymeric networks. Angew

Makromol Chem 1982;103:135–42.

[285] Stafford JW. Trifunctional polycondensation: a cumulative

distribution function. J Polym Sci, Polym Chem Ed 1979;

17(10):3375–86.

[286] Ziegel KD, Fogiel AW, Pariser R. Prediction of molecular

weights for condensation polymerization of polyfunctional

monomers. Macromolecules 1972;5(1):95–8.

[287] Tang A-C, Li Z-S, Sun C-C, Tang X-Y. Curing theory and

scaling study: crosslinking reaction of the Af- type.

J Macromol Sci: Chem, Ser A 1988;25(1):41–54.

[288] Tang A-C, Li Z-S, Sun C-C, Tang X-Y. On the curing theory

and the scaling study of the polycondensation reaction of

(A1
a1· · ·AS

as þ B1
b1· · ·Bt

bt)-type. Macromolecules 1988;21(3):

797–804.

[289] Tang A-C, Li Z-S, Sun C-C, Tang X-Y. On the poly-

condensation reaction of (Aa þ BbCc)-type. Polym Bull

1991;25(2):225–9.

[290] Xiao X-C, Li Z-S, Sun C-C, Tang A-C. Intrinsic symmetry of

the (AaBb)-type distribution. Macromol Theory Simul 1994;

3(3):601–6.

[291] Xiao X-C, Li Z-S, Sun C-C, Tang A-C. Invariant property of

the distribution of (Aa1,· · ·,Aas þ Bb1,· · ·,Bbt)-type ideal pol-

ymerization. Macromolecules 1995;28(8):2738–44.

[292] Family F, Landau DP. Kinetics of aggregation and gelation.

New York: Elsevier; 1984.

[293] Pietronero L, Tosatti E. Fractals in physics. Amsterdam:

North-Holland; 1986.

[294] Galina H, Lechowicz JB. Mean-field kinetic modeling of

polymerization: the Smoluchowski coagulation equation.

Adv Polym Sci 1998;137:135–72.

[295] Irzhak VI. On correspondence of kinetic and statistical

approaches for description of process of formation of

network polymers. Vysokomol Soedin, Ser B 1978;20(8):

606–9.

[296] Dusek K. Correspondence between the theory of branching

processes and the kinetic theory for random crosslinking in

the post-gel stage. Polym Bull 1979;1(8):523–8.

[297] Korolev SV, Kuchanov SI, Slin’ko MG. On correlation

between kinetic and statistical methods of calculation of

products of ideal irreversible copolycondensation. Dokl

Akad Nauk SSSR 1981;258(5):1157–61.

[298] Korolev SV, Kuchanov SI, Slin’ko MG. On correlation

between thermodynamic and statistical methods of calcu-

lation of products of ideal equilibrium polycondensation.

Dokl Akad Nauk SSSR 1982;263(3):633–7.

[299] Faliagas AC. Nonequilibrium stochastic theory of polym-

erization processes. Macromolecules 1993;26(15):3838–45.

[300] Kuchanov SI, Korolev SV, Slin’ko MG. Graph theory for a

description of the configurational statistics of branched

polycondensate polymers. Polym J 1983;15(11):775–84.

[301] Korolev SV, Kuchanov SI, Slin’ko MG. Theory of the

branching processes for a description of configurational

statistics of branched polycondensate polymers. Polym J

1983;15(11):785–95.

[302] Kuchanov SI, Korolev SV, Slin’ko MG. Configurational

statistics of branched polycondensate polymers. Vysokomol

Soedin, Ser A 1984;26(2):263–70.

[303] Kajiwara K, Burchard W, Gordon M. Angular distribution of

Rayleigh scattering from randomly branched polyconden-

sates. Br Polym J 1970;2(3):110–9.

S. Kuchanov et al. / Prog. Polym. Sci. 29 (2004) 563–633628



[304] Kajiwara K. Statistics of randomly branched polyconden-

sates. J Chem Phys 1971;54(1):296–300.

[305] Kajiwara K. Statistics of randomly branched polyconden-

sates. 2. The application of Lagrange’s expansion method to

homodisperse fractions. Polymer 1971;12(1):57–66.

[306] Burchard W. Angular distribution of Rayleigh scattering

from branched polycondensates. Macromolecules 1972;5(5):

604–10.

[307] Burchard W, Kajiwara K, Gordon M. Rayleigh scattering

from solutions of critically branched polycondensates.

Macromolecules 1973;6(4):642–9.

[308] Burchard W, Ullisch B, Wolf Ch. Branched polycondensa-

tion of the monomer with three different functional groups.

Faraday Discuss Chem Soc 1974;57:56–62.

[309] Gordon M, Kajiwara K, Peniche-Covas L, Ross-Murphy SB.

Dilute solution properties of critically branched systems.

Makromol Chem 1975;176(8):2413–35.

[310] Burchard W. Solution properties of branched macromol-

ecules. Adv Polym Sci 1999;143:113–94.

[311] Burchard W. Particle scattering factors of some branched

polymers. Macromolecules 1977;10(5):919–26.

[312] Franken I, Burchard W. Statistics of star-shaped molecules.

III. Stars with branched nuclei. Br Polym J 1977;9(2):

103–16.

[313] Burchard W. Application of cascade theory to calculation of

quasielastic scattering functions. 1. Polydisperse, ideal, linear

chains in dilute solutions. Macromolecules 1978;11(3):

455–9.

[314] Schmidt M, Burchard W. Application of cascade theory to

calculation of quasi-elastic scattering functions. 2. Poly-

disperse branched molecules in dilute solutions. Macromol-

ecules 1978;11(3):460–5.

[315] Muller M, Burchard W. Statistics of polyfunctional poly-

condensates formed under restrictions. Makromol Chem

1978;179(7):1821–35.

[316] Burchard W, Schmidt M, Stockmayer WH. Information on

polydispersity and branching from combined quasi-elastic

and integrated scattering. Macromolecules 1980;13(5):

1265–75.

[317] Burchard W, Bantle S, Zahir SA. Branching in high

molecular weight polyhydroxyethers based on bisphenol A.

Makromol Chem 1981;182:145–63.

[318] Sun C-C, Li Z-S, Ba X-W, Tang A-C. Flory–Stockmayer

distribution and scaling study. Macromol Rep, Ser A 1991;

28(2):137–42.

[319] Li Z-S, Ba X-W, Sun C-C, Tang X-Y, Tang A-C. AaBb-type

Stockmayer distribution and scaling study. Macromolecules

1991;24(12):3696–9.

[320] Burchard W. Static and dynamic light scattering from

branched polymers and biopolymers. Adv Polym Sci 1983;

48:1–124.

[321] Kuchanov SI, Korolev SV. New approaches to the statistical

theory of polymer networks formation. Preprints Inter-

national Conference ‘Rubber-84’, Moscow; 1984. Sec A184.

[322] Kuchanov SI. General statistical approach to description of

branched polymers. Dokl Akad Nauk SSSR 1987;294(3):

633–7.

[323] Kuchanov SI, Korolev SV. Theoretical consideration of

conformational statistics of branched condensate polymers.

Vysokomol Soedin, Ser A 1987;29(11):2309–15.

[324] Harris TE. The theory of branching processes. Berlin:

Springer; 1963.

[325] Scanlan J. The effect of network flaws on the elastic

properties of vulcanizates. J Polym Sci 1960;43(142):501–8.

[326] Case LC. Branching in polymers. I. Network defects. J Polym

Sci 1960;45(146):397–404.

[327] Dobson G, Gordon M. Theory of branching processes and

statistics of rubber elasticity. J Chem Phys 1965;43(2):

705–13.

[328] Hasa J. Statistical parameters of a network formed by random

copolycondensation of a bifunctional and tetrafunctional

monomer and networks formed by random crosslinging.

Collect Czeck Chem Commun 1971;36(5):1807–16.

[329] Dusek K, Prins W. Structure and elasticity of non-crystalline

polymer networks. Adv Polym Sci 1969;6:1–102.

[330] Dusek K. Network formation in curing of epoxy resins. Adv

Polym Sci 1986;78:1–59.

[331] Miller DR, Sarmoria C. In-Out recursive probability model-

ing of branched step-growth polymerizations. Polym Engng

Sci 1998;38(4):535–57.

[332] Kuchanov SI. Generalized Potts model for the description of

polymer statistics. Sov Phys Dokl 1987;32(5):392–4.

[333] Costa MRP, Dias RCS. A general kinetic analysis of non-

linear irreversible copolymerization. Chem Engng Sci 1994;

49(4):491–516.

[334] Entelis SG, Evreinov VV, Kuzaev AI. Reactive oligomers.

Moscow: Khimia; 1985.

[335] Kuchanov SI. Principles of calculation of statistical charac-

teristics of products of oligomers’ cross-linking. Vysokomol

Soedin, Ser B 1987;29(9):671–3.

[336] Dusek K, Scholtens BJR, Tiemersma-Thoone GPJM. Theor-

etical treatment of network formation by a multistage

process. Polym Bull 1987;17(3):239–45.

[337] Tiemersma-Thoone GPJM, Scholtens BJR, Dusek K. A

stochastic description of copolymerization and network

formation in a tree-stage process. In: van der Burh AHP,

Mattheij RMM, editors. Proceedings ICIAM 87, Paris-

Lavillete. 1987. p. 295–321.

[338] Tiemersma-Thoone GPJM, Scholtens BJR, Dusek K, Gordon

M. Theories for network formation in multistage processes.

J Polym Sci, Ser B 1991;29(4):463–82.

[339] Dusek K. Parameters of the swelling equation and network

structure. Faraday Chem Discuss Soc 1974;57:101–9.

[340] Luby P. Contribution to the statistical theory of polyfunc-

tional polymerization. J Phys Chem 1974;78(11):1083–5.

[341] Uragami T, Oiwa M. Studies on formaldehyde-condensation

resins. XV. Gelation theory for phenolic resins. Makromol

Chem 1972;153:255–67.

[342] Durand D, Bruneau C-M. Study of gelation in system: triol,

diacid, multiacid with allowance for the substitution effect in

triol. Makromol Chem 1977;178(12):3237–48.

[343] Durand D, Bruneau C-M. Reactivity and gelation. II.

Substitution effect. J Polym Sci, Polym Phys Ed 1979;

17(2):295–304.

S. Kuchanov et al. / Prog. Polym. Sci. 29 (2004) 563–633 629



[344] Durand D, Bruneau C-M. Substitution effects and average

molecular weights in non-linear stepwise polymerization.

Polymer 1983;24(5):592–5.

[345] Miller DR, Macosko CW. Substitution effects in property

relations for stepwise polyfunctional polymerization. Macro-

molecules 1980;13(5):1063–9.

[346] Kochetov DP, Spirin YuL. Gelation and network formation

during polyaddition reactions. Vysokomol Soedin, Ser A

1981;23(8):1883–97.

[347] Kochetov DP. On the applicability of the theory of cascade

processes to the statistics of three-dimensional non-random

polymerization. Vysokomol Soedin, Ser B 1984;26(10):

756–7.

[348] Gordon M, Scantlebury GR. Statistical kinetics of polyester-

ification of adipic acid with pentaerythritol or trimethylol

ethane. J Chem Soc, Ser B 1967;1:1–13.

[349] Kuchanov SI. On the modification of the Flory principle in

the polycondensation process theory. Abstracts of papers

presented at IUPAC Symposium on macromolecular chem-

istry, Tashkent, USSR, ’78, vol. 3. Moscow: Nauka; 1978. p.

50–1.

[350] Korolev SV, Kuchanov SI, Slin’ko MG. The theory of

equilibrium branched polycondensation with allowance for

the first-order substitution effect. Dokl Akad Nauk SSSR

1982;262(6):1422–7.

[351] Irzhak VI, Tai ML. On the statistical approach for the

description of nonequilibrium polycondensation. Dokl Akad

Nauk SSSR 1981;259(4):856–8.

[352] Irzhak VI, Tai ML. The applicability of the statistical

approach for the description of the processes of none-

quilibrium polycondensation. Vysokomol Soedin, Ser A

1983;25(11):2305–11.

[353] Irzhak TF, Irzhak VI. The concept of the bonds’ blocks in the

theory of copolycondensation. Vysokomol Soedin 1997;

39(12):2011–6.

[354] Whittle P. Statistical processes of aggregation and polym-

erization. Proc Cambridge Philos Soc 1965;61:475–95.

[355] Whittle P. The equilibrium statistics of a clustering process in

the uncondensed phase. Proc R Soc (Lond), Ser A 1965;285:

501–20.

[356] Whittle P. Systems in stochastic equilibrium. New York:

Wiley; 1986. p. 281–386; Part IV.

[357] Gordon M, Scantlebury GR. Theory of ring–chain equilibria

in branched non-random polycondensation systems. Proc R

Soc, Ser A 1966;292:380–402.

[358] Brun EB, Kuchanov SI. On the substitution effect in the

theory of branched equilibrium polycondensation. Vysoko-

mol Soedin, Ser A 1979;21(6):1393–401.

[359] Dusek K. Quasi-chemical approach to crosslinked polymer

solutions and the swelling equation for polycondensation

networks. J Polym Sci, Polym Phys Ed 1974;12:1089–107.

[360] Matula DW, Groenweghe LCD, Van Wazer JR. Molecular

distribution of equilibrium. I. Theory of equilibria in

scrambling reactions and interpretation of NMR spectra.

J Chem Phys 1964;41:3105–21.

[361] Gordon M, Parker TG. The graph-like state of matter.

I. Statistical effects of correlation due to substitution effects,

including steric hindrance, on polymer distribution. Proc R

Soc (Edinburg), Ser A 1971;69:181–98.

[362] Kuchanov SI, Panyukov SV. Comprehensive approach to the

theory of polymer networks. I. Molecular theory of gelation.

In: Dusek K, Kuchanov SI, editors. Polymer Networks’91,

Utrecht-Tokyo. 1992. p. 39–62.

[363] Kuchanov SI, Povolotskaya ES. The calculation of the gel-

point under nonequilibrium polycondensation with allow-

ance for the substitution effect. Vysokomol Soedin, Ser A

1982;24(10):2190–6.

[364] Mikes J, Dusek K. Simulation of polymer network

formation by the Monte Carlo method. Macromolecules

1982;15(1):93–9.

[365] Galina H. A Smoluchowski-type coagulation equation for

polymerization of an f-functional monomer with substitution

effect. Europhys Lett 1987;3(11):1155–9.

[366] Galina H, Szustalewicz A. A kinetic theory of stepwise cross-

linking polymerization with substitution effect. Macromol-

ecules 1989;22(7):3124–9.

[367] Galina H. A kinetic approach to non-linear polymerization.

Makromol Chem, Macromol Symp 1990;40:45–52.

[368] Kuchanov SI, Kholostiakov AG. On calculation of gel point

for processes of branched polycondensation. J Polym Sci, Ser

A 1999;37(13):2145–54.

[369] Kuchanov SI. Modern concepts of the statistical theory of

gelation. Processes of gelation in polymer systems, Saratov

University; 1985. Part 1; p. 61–77.

[370] Nakao T, Tanaka F, Kohjiya S. Cascade theory of

substitution effects in nonequilibrium polycondensation

systems. Macromolecules 2002;35(14):5649–56.

[371] Kasehagen LJ, Rankin SE, McCormick AV, Macosko CW.

Modeling of first shell substitution effects and preferred

cyclization in sol–gel polymerization. Macromolecules

1997;30(13):3921–9.

[372] Kuchanov SI, Zharnikov TV. Branching process for descrip-

tion of non-random irreversible homopolycondensation.

J Stat Phys 2003;111(5/6):1273–98.

[373] Sarmoria C, Miller DR. Models for the first shell substitution

effect in stepwise polymerization. Macromolecules 1991;

24(8):1833–45.

[374] Kuchanov SI., Statistical approach to description of non-

random irreversible copolycondensation, in preparation.

[375] Galina H, Szustalewich A. A kinetic approach to the network

formation in an alternating stepwise copolymerization.

Macromolecules 1990;23(16):3833–8.

[376] Galina H, Kaczmarski K, Para B, Sanecka B. A kinetic tree-

like model of non-linear alternating copolymerization of

monomers with non-equal reactivities of functional groups

and substitution effect. Makromol Chem, Theory Simul

1992;1(1):37–48.

[377] Dusek K, McKnight WJ. Cross-linking and structure

of polymer networks. In: Dickie RA, Labana SS, Bauer RS,

editors. Cross-linked polymers: Chemistry, properties and

applications. ACS Symp Ser. 367, 1.; 1988. p. 2–27.

[378] Irzhak VI. Methods of description of process of formation of

polycondensation polymers and their structure. Uspekhi

Khimii 1997;66(6):598–609.

S. Kuchanov et al. / Prog. Polym. Sci. 29 (2004) 563–633630



[379] Charlesworth JM. Structure of diepoxide-diamine network.

I. Average network properties. J Polym Sci, Ser B 1979;

17(9):1557–70. Charlesworth JM. Structure of diepoxide-

diamine network. II. Soluble chemical speciespolymers.

J Polym Sci, Ser B 1979;17(9):1571–80.

[380] Charlesworth JM. An analysis of the substitution effects

involved in diepoxide–diamine copolymerization reactions.

J Polym Sci, Ser A 1980;18(2):621–8.

[381] Rozenberg BA. Kinetics, thermodynamics and mechanism of

reactions of epoxy oligomers with amines. Adv Polym Sci

1986;75:113–65.

[382] Dusek K, Ilavsky M, Lunak S. Curing of epoxy resins.

I. Statistics of curing of diepoxides with diamines. J Polym

Sci, Ser C 1975;(53):29–44.

[383] Noureddini H, Zhang C-Q, Timm DC. Reaction kinetics

analysis of amino-cured epoxies: first-shell substitution

effect. Macromolecules 1994;27(8):2045–53.

[384] Robbins DJ, Timm DC. Kinetic reaction analysis of

gelation: first-shell substitution effects in step-growth

(A2–A2) þ B2 thermosets. Macromolecules 1998;31(13):

4319–34.

[385] Bokare UM, Gandhi KS. Effect of simultaneous polyaddition

reaction on the curing of epoxides. J Polym Sci, Ser A 1980;

18(3):857–70.

[386] Dusek K, Somvarsky J. Build-up of polymer networks by

initiated polyreactions. 1. Comparison of kinetic and

statistical approaches to the living polymerization type of

build-up. Polym Bull 1985;13(4):313–9.

[387] Dusek K. Build-up of polymer networks by initiated

polyreactions. 2. Theoretical treatment of polyetherification

released by polyamine–polyepoxide addition. Polym Bull

1985;13(4):321–8.

[388] Williams RJJ, Riccardi C, Dusek K. Build-up of polymer

networks by initiated polyreactions. 3. Analysis of the

fragment approach to the living polymerization type of

build-up. Polym Bull. 1987;17:515–21.

[389] Dusek K, Ilavsky M, Somvarsky J. Build-up of polymer

networks by initiated polyreactions. 4. Derivation of postgel

parameters for postetherification in diamine–diepoxide

curing. Polym Bull 1987;18:209–15.

[390] Riccardi CC, Williams RJ. A kinetic scheme for an amine-

epoxy reaction with simultaneous etherification. J Appl

Polym Sci 1986;32(2):3445–56.

[391] Riccardi CC, Williams RJ. Statistical structural model for the

build-up of epoxy-amine networks with simultaneous

etherification. Polymer 1986;27(6):913–20.

[392] Tsou AH, Peppas NA. Kinetic analysis of curing of

tetraepoxides and diamines in the presence of etherifica-

tion side reactions. J Polym Sci, Ser B 1988;26(10):

2043–60.

[393] Gupta AM, Macosko CW. Modeling strategy for systems

with both stepwise and chainwise chemistry: amine-epoxy

networks with etherification. J Polym Sci Ser B 1990;28(13):

2585–606.

[394] Cheng KC, Chiu WY. Kinetic approach of nonlinear

polymerization with a multistage process. Macromolecules

1993;26(17):4658–64.

[395] Cheng KC, Chiu WY. Kinetic models of pregelation stages

for epoxy resins cured with mixed amine systems. Macro-

molecules 1993;26(17):4665–9.

[396] Cheng KC. Kinetic model of diepoxides with reactive

diluents cured with amines. J Polym Sci, Ser B 1998;

36(13):2339–48.

[397] Hendrickson RC, Gupta AM, Macosko CW. Sol–gel

polymerization: Monte Carlo simulation of substitution

effects. Comput Polym Sci 1994;4(3/4):53–65.

[398] Harris FS. Ring formation and molecular weight distributions

in branched-chain polymers I. J Chem Phys 1955;23(8):

1518–25.

[399] Hoeve CAJ. Molecular weight distribution of thermally

polymerized triglyceride oils. II. Effect of intramolecular

reaction. J Polym Sci 1956;21(97):11–18.

[400] Kilb RW. Dilute gelling systems. The effect of ring formation

on gelation. J Phys Chem 1958;62(8):969–71.

[401] Ahmad Z, Stepto RFT. Approximate theories of gelation.

Colloid Polym Sci 1980;258(6):663–74.

[402] Rolfes H, Stepto RFT. A development of Ahmad–Stepto

gelation theory. Makromol Chem, Macromol Symp 1993;76:

1–12.

[403] Gordon M, Scantlebury GR. The theory of branching

processes and kinetically controlled ring–chain competition

processes. J Polym Sci, Ser C 1968;16:3933–42.

[404] Kadama Y, Temple WB, Ross-Murphy SB. Ring–chain

competition kinetics in the system glycerol þ adipic acid. Br

Polym J 1977;9(2):117–23.

[405] Dusek K, Gordon M, Ross-Murphy SB. Graph-like state of

matter. 10. Cyclization and concentration of elastically active

network chains in polymer networks. Macromolecules 1978;

11(1):236–45.

[406] Ross-Murphy SB. Ring–chain competition in a branched

polycondensation system. J Polym Sci, Ser C 1975;53:

11–22.

[407] Irzhak VI, Kuzub LI, Enikolopian NS. Cyclization in

network polymers. Dokl Akad Nauk SSSR 1971;201(6):

1382–4.

[408] Irzhak VI, Enikolopian NS. Theory of branching process as

applied to polymer systems. Vysokomol Soedin, Ser B 1974;

16(1):51–3.

[409] Irzhak VI. Reactions of the chain termination of the

development of three-dimensional network. Vysokomol

Soedin, Ser A 1975;17(3):529–34.

[410] Erukhimovich IY. On the statistical theory of branched

polymer systems showing weak cyclization. Mathematical

methods for the investigation of polymers, Pushino; 1982. p.

52–8.

[411] Kuchanov SI, Korolev SV, Slin’ko MG. Account of

cyclization in theory of equilibrium polycondensation.

Vysokomol Soedin, Ser A 1982;24(10):2160–9.

[412] Korolev SV, Kuchanov SI, Slin’ko MG. Calculation of gel-

point with allowance for cyclization reaction. Vysokomol

Soedin, Ser A 1982;24(10):2170–8.

[413] Kuchanov SI, Korolev SV, Slin’ko MG. Theory of branched

equilibrium polycondensation with allowance for cycles of

S. Kuchanov et al. / Prog. Polym. Sci. 29 (2004) 563–633 631



complex topology. Dokl Akad Nauk SSSR 1982;267(1):

122–7.

[414] Temple WB. The graph-like state of matter. IV. Ring–chain

competition kinetics of a branched polymerization reaction.

Makromol Chem 1972;160:277–89.

[415] Lloyd AC, Stepto RFT. Rate theory of random polymeriz-

ation: A3 polymerization. Br Polym J 1985;17(2):190–9.

[416] Stepto RFT. In: Dickie RA, Labana SS, Baner RS, editors.

Intramolelcular reactions. American chemical society, sym-

posium series 367, vol. 2; 1988. p. 28–47.

[417] Stepto RFT. Formation and properties of polymer networks.

Acta Polym 1988;39(1/2):61–6.

[418] Rolfes H, Stepto RFT. Rate theory of cyclization in the

course of branched polycondensation process. Comput

Polym Sci 1991;1:100–7.

[419] Noureddini H, Timm DC. Kinetic analysis of competing

intramolecular and intermolecular polymerization reactions.

Macromolecules 1992;25(6):1725–30.

[420] Liu B, Noureddini H, Dorsey JS, Timm DC. Reaction

kinetics analysis of urethane polymerization to gelation.

Macromolecules 1993;26(23):6155–63.

[421] Pereda S, Brandolin A, Valles EM, Sarmoria C. Copolymer-

ization between A3 and B2 with ring formation and different

intrinsic reactivities in one of monomers. Macromolecules

2001;34(13):4390–400.

[422] Whittle P. Polymerization process with intrapolymer bond-

ing. I. One type of unit. Adv Appl Probab 1980;12(1):

94–115.

[423] Whittle P. Polymerization processes with intrapolymer

bonding. II. Stratified processes. Adv Appl Probab 1980;

12(1):116–34.

[424] Whittle P. Polymerization processes with intrapolymer

bonding. III. Several types of units. Adv Appl Probab

1980;12(1):135–53.

[425] de Gennes PG. Critical dimensionality for a special

percolation problem. J Phys 1975;36(11):1049–54.

[426] Stauffer D. Gelation in concentrated critically branched

polymer solutions. J Chem Soc, Farad II 1976;72:1354–64.

[427] Coniglio A, Stanley HE, Klein W. Site-bond correlated

percolation problem: a statistical mechanical model of

polymer gelation. Phys Rev Lett 1979;42(8):518–22.

[428] Stauffer D. Can percolation theory be applied to critical

phenomenon at gel-points? Pure Appl Chem 1981;53(8):

1479–88.

[429] Stauffer D, Coniglio A, Adam M. Gelation and critical

phenomena. Adv Polym Sci 1982;44:103–58.

[430] Lairez D, Durand D, Emery JR. The chemical gelation

viewed through a percolation model. J Phys II (Fr) 1991;1:

977–93.

[431] Stanford JL, Stepto RFT. Experimental studies of the

formation and properties of polymer networks. Elastomers

and rubber elasticity. American chemical society symposium

series 193; 1982. p. 377–401.

[432] Stepto RFT. Intramolecular reactions and network proper-

ties. In: Lal J, Mark JE, editors. Advances in elastomers

and rubber elasticity. New York: Plenum Press; 1986.

p. 329–45.

[433] Stepto RFT. Fundamentals of the formation, structure and

properties of polymer networks. In: Allen G, editor.

Comprehensive polymer science (Suppl 1). 1992. p.

199–226. [chapter 10].

[434] Stepto RFT. Formation and properties of end-linked net-

works. Prog Rubb Plast Technol 1994;10(2):130–53.

[435] Ross-Murphy SB, Stepto RFT. Macromolecular cyclization.

In: Semleyn JA, editor. Large ring molecules. New York:

Wiley; 1996. p. 599–626 [chapter 16].

[436] Stepto RFT, Taylor DJR. Cyclization and the formation,

structure and properties of polymer networks. In: Semleyn

JA, editor. Cyclic polymers, 2nd ed. Boston: Kluwer; 2000.

p. 699–740. [chapter 15].

[437] Cail JI, Stepto RFT, Taylor DJR. Formation, structure and

properties of polymer networks: gel-point prediction in

endlinking polymerization. Macromol Symp 2001;171:

19–36.

[438] Sarmoria C, Miller DR. Spanning-tree models for Af

homopolymerizations with intramolecular reactions. Comput

Theor Polym Sci 2001;11(2):113–27.

[439] Brinker CJ, Scherer GW. Sol–gel science: the physics and

chemistry of sol–gel processing. Boston: Academic Press;

1990.

[440] Ng LV, Thompson P, Sanchez J, Macosko CW, McCornick

AV. Formation of cagelike intermediates from nonrandom

cyclization during acid-catalyzed sol–gel polymerization of

tetraethyl orthosilicate. Macromolecules 1995;28(19):

6471–6.

[441] Kasehagen LJ, Rankin SE, McCormick AV, Macosko CW.

Modeling of non-idealities in sol–gel polymerization. ACS

Polym Prepr 1996;75:356–7.

[442] Rankin SE, Kasehagen LJ, McCormick AV, Macosko CW.

Dynamic Monte Carlo simulation of gelation with

extensive cyclization. Macromolecules 2000;33(20):

7639–48.

[443] Frechet JM, Hawker CJ. Synthesis and properties of

dendrimers and hyperbranched polymers. In: Allen G, editor.

Comprehensive polymer science (Suppl 2). Oxford: Elsevier;

1996. p. 71–132 [chapter 3].

[444] Roovers J, Comanita B. Dendrimers and dendrimer–polymer

hybrids. Adv Polym Sci 1999;142:179–228.

[445] Malmstrom E, Hult A. Hyperbranched polymers: a review.

J Macromol Sci, Ser C 1997;37(3):555–79.

[446] Kim YH. Hyperbranched polymers 10 years after. J Polym

Sci: Part A, Polym Chem 1998;36(11):1685–9.

[447] Hult A, Johanson M, Malmstrom E. Hyperbranched poly-

mers. Adv Polym Sci 1999;143:1–34.

[448] Voit B. New developments in hyperbranched polymers.

J Polym Sci: Part A, Polym Chem 2000;38(14):2505–25.

[449] Galina H, Lechowicz JB, Kaczmarski K. Kinetic models of

the polymerization of an AB2 monomer. Macromol Theory

Simul 2001;10(3):174–8.

[450] Hawker CJ, Lee R, Frechet JMJ. One-step synthesis of

hyperbranched dendritic polyesters. J Am Chem Soc 1991;

113:4583–8.

[451] Holter D, Burgath A, Frey H. Degree of branching in

hyperbranched polymers. Acta Polym 1997;48(1):30–5.

S. Kuchanov et al. / Prog. Polym. Sci. 29 (2004) 563–633632



[452] Holter D, Frey H. Degree of branching in hyperbranched

polymers. 2. Enhancement of the DB: scope and limitations.

Acta Polym 1997;48(8):298–309.

[453] Beginn V, Drohmann C, Moller M. Conversion dependence

of the branching density for the polycondensation of ABn

monomers. Macromolecules 1997;30(14):4112–6.

[454] Schmaljohann D, Barratt JG, Komber H, Voit BI. Kinetics of

nonideal hyperbranched polymerization. 1. Numeric model-

ing of the structural units and the diads. Macromolecules

2002;33(17):6284–94.

[455] Cheng KC, Don TM, Guo W, Chuang TH. Kinetic model of

hyperbranched polymers formed by the polymerization of

AB2 monomer with a substitution effect. Polymer 2002;

43(23):6315–22.

[456] Galina H, Lechowicz JB, Walczk M. Kinetic modeling of

hyperbranched polymerization involving an AB2 monomer

reacting with substitution effect. Macromolecules 2002;

35(8):3253–60.

[457] Dusek K, Somvarsky J, Smrckova M, Simonsick WJ, Wilczek

L. Role of cyclization in the degree-of-polymerization

distribution of hyperbranched polymers. Polym Bull 1999;

42(4):489–96.

[458] Yan D, Zhou Z. Molecular weight distribution of hyper-

branched polymers generated from polycondensation of AB2

type monomers in the presence of multifunctional core

moieties. Macromolecules 1999;32(3):819–24.

[459] Zhou Z, Yan D. Kinetic analysis of the polycondensation of

ABg type monomer with a multifunctional core. Polymer

2000;41:4549–58.

[460] Cheng K-C, Wang LY. Kinetic model of hyperbranched

polymers formed in copolymerization of AB2 monomers and

multifunctional core molecules with various reactivities.

Macromolecules 2002;35(14):5657–64.

[461] Galina H, Lechowicz JB, Walczak M. Model of hyper-

branched polymerization involving AB2 monomer and B3

core molecules both reacting with substitution effect.

Macromolecules 2002;35(8):3261–5.

[462] Frey H, Holter D. Degree of branching in hyperbranched

polymers. 3. Copolymerization of ABm-monomers with AB

and ABn-monomers. Acta Polym 1999;50(2/3):67–76.

S. Kuchanov et al. / Prog. Polym. Sci. 29 (2004) 563–633 633


	Development of a quantitative theory of polycondensation
	Introduction
	Linear polycondensation
	Classification
	Ideal homo- and heteropolycondensation
	Models allowing for the violation of the Flory principle
	Linear copolycondensation
	Special modes of polycondensation conducting

	Branched polycondensation
	Distinctive features
	Ideal model of polycondensation
	Models incorporating the substitution effects
	Cyclization in processes of branched polycondensation
	Hyperbranched polymers

	Conclusion
	Acknowledgements
	References


