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Abstract 

It 1s known that the deflection of a diaphragm 1s determmed by two 
mechamsms, bendmg moments or bendmg stress and tensile forces or mem- 
brane stress 

Usually the influence of tensile forces 1s not taken mto account when 
calculating the mechamcal properties of thm diaphragms Hence the 
mathematical descrlptlon thus obtamed will only be valid if the deflection of 
the diaphragm is small compared with its thickness and if lateral stress is 
absent 

In this paper we will consider uniformly loaded circular diaphragms, 
which are assumed to be lsotroplc, and present the results of a study on the 
influence of bendmg stress and tensile stress, which together determine the 
diaphragm deflectlon 

Startmg from theoretical conslderatlons, a sunulatlon program 1s 
developed of which several results are presented and discussed 

1 Introduction 

Dunng recent years many papers have been presented concernmg the 
development of pressure-sensltlve semiconductor devices [l - 141 All elec- 
tronic detection mechanisms are based on the measurement of the deflection 
of a diaphragm as the result of a pressure difference across it In general this 
measurement is plezoreslstive or capacitive 

Many mechanical as well as electronic aspects of pressure sensors have 
been studied m detail [ 9, 11, 121 which has Increased the understandmg of 
pressure-sensing mechanisms, but the influence of tensile forces on the 
deflection of circular diaphragms has not been studied in such a manner 

Several authors [2, 11, 131 have noted that packagmg and thermal 
expansion introduce lateral forces which cause the deflectlon of a diaphragm 
to deviate from the behavlour calculated by using the generally accepted 
first-order theory, as for instance described by Tlmoshenko et al f15] 

0250-6874/84/$3 00 @ Elsevier Sequoia/Printed in The Netherlands 



202 

It IS known that the deflection of a diaphragm 1s determined by two 
mechanisms, normally described as bendmg moments or bending stress and 
tensile forces or membrane stress 

Usually no account IS taken of the mfluence of tensile forces In cal- 
culating the mechanical propertles of thin diaphragms The mathematical 
descrlptlon thus obtained will only be vahd If the deflectlon of the 
diaphragm is small compared with Its thickness and if lateral stress IS absent 

Lee and Wise developed a rather comphcated sunulatlon program which 
considers the influence of lateral stress due to thermal loadmg [ 91, but up to 
now nobody has presented a more detailed study of these effects 

It IS interesting to note that Warren et aE have studied the deflection of 
stretched circular polymer membranes, on which they found that m this case 
the deflectlon 1s determined by membrane stress and that the mfluence of 
bending stress can be ignored [ 16,171 

So, for extreme cases, m which the influence of either bending stress or 
tensile stress can be ignored, the deflectlon of a circular membrane or 
diaphragm can be described m a rather simple way, as has been done m the 
literature mentioned above 

However, m many practical sltuatlons both mechanisms ~111 affect the 
deflection at the same tune, m which case we have to use a generalized and 
therefore more complicated mathematical descnptlon 

In this paper we ml1 consider umformly loaded circular diaphragms, 
which are assumed to be lsotroplc, and present the results of a study 
concerning the influence of both bending and tensile stress, which together 
determme the diaphragm deflectlon 

It will be clear that for anisotropic materials, the mathematical descnp- 
tlon presented below will have to be modified, as was described by 
Yasukawa et al [ 141 for example 

In the followmg sections the mathematical descrlptlon 1s presented and 
the boundary condltlons are given Using the fmlteddference numerical 
method, a set of non-lmear equations IS obtained, which can be solved by 
applying an Iteration procedure 

Starting from these conslderatlons we have developed a slmulatlon 
program of which several results are presented and discussed 

2 Mathematical descnptlon 

In order to achieve a mathematical description of the diaphragm deflec- 
tlon as a function of tensile stress, we will follow the method presented and 
discussed by Tlmoshenko et al [ 151 and will use the same notation 

Here circular diaphragms vvlll be consldered havmg a radius a, a thlck- 
ness h, Poisson’s ratio v and Young’s modulus E The coordinate centre 0 IS 
chosen at the centre of the undeflected circular diaphragm and the radial dls- 
tance of a pomt m the m’lddle plane of the plate from the coordmate centre 
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1s denoted by r The displacement m the radial direction of a point located m 
the middle plane of the diaphragm 1s written as u and m the dlrectlon 
perpendicular to the plane of the undeflected diaphragm as w, as shown m 
Fig 1 

The radial and tangential forces per umt length are written as N, and Nt 
respectively It will be clear that generally N, and Nt are both functions of 
the applied pressure p In the case of zero pressure p, they are both equal to 
the mltlal tensile force per unrt length which exists due to stretching of the 
diaphragm, packagmg stress, thermal loading and so on, and 1s denoted as N, 

r i I 
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Fig 1 Cross section of a deflected cwcular diaphragm 

In the case of small deflections or small mltlal stress, N, and N, are 
assumed to have little or no influence on the diaphragm deflection 

Both forces and moments acting upon the diaphragm must be in 
equlllbrmm, m which case it can be shown that [15] 

djw + d*w dw IV,. dw p*r 
--- 

dr3 r dr* 
=-.-+- 

r*dr D dr W 
(1) 

rmr 
N, + - 

dr 
-N,=O (2) 

with p the applied pressure difference across the diaphragm and D the 
flexural rigidity, which 1s determined by 

* = E*h3 
12(1 - V2) 

Equations (1) and (2) comprise three unknowns, namely N,, Nt and w, 
hence we need a third equation to be able to solve the set of equations 

In the case of zero mltlal stress such a relation has already been derived, 
and relates membrane stresses and diaphragm deflections [ 151 Using the 
same fundamental description as given m [15], it can be shown that this 
relation can also be used for non-zero values of the mltlal tensile force N, 
per unit length The radial and tangential strain, which are functions of the 
deformation of the diaphragm, are denoted as E, and et respectively 

For zero pressure p and non-zero values of the mltlal tensile force N, 
per unit length, E, and e, will be equal to the mltlal strain E, 

The radial strain E, also depends on the unit elongation m the radial 
dlrectlon and therefore we can write [ 15] 
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Analogously the tangential strain et 1s a function of the unit elongation m 
the tangential direction, and can be wrltten as 

e, - f, = u/r (5) 

Applying Hooke’s law, the tangential and radial strains can be related to the 
tangential and radial forces per unit length 

E, = (N, - uNt)/h=E (6) 
et = (Nt - vNr)/h*E (7) 

Using relations (2) and (4) - (7), we obtain an expression that relates 
diaphragm deflections and tensile forces per unit length 

d(N, + Nt) hE 
r* 0 

dr 
(8) 

This result IS also found for zero values of the mltlal tensile force per unit 
length [15] 

For the sake of slmphclty, the first denvatlve of the displacement w 
~111 be wrltten as 

f = dw/dr (9) 

Using this result, the order of eqn (1) 1s reduced If we substitute eqn (2) 
into eqn (8) and also use eqn (9), f can be calculated by simultaneously 
solving the followmg set of second-order dlfferentlal equations 

dZf+ df f Nr- f p-r --- =- +- 
dr2 r l dr r* D 20 

r*d*N r + srcUV, -hE 

dr2 
.__._._=_.f2 

dr 2 

(10) 

(11) 

Consldermg the dlfferentlal eqns (10) and (ll), which are of the second 
order, it can be concluded that they can be solved only If two boundary 
condltlons are known for N, as well as for f 

If the edge of the circular diaphragm 1s clamped, the first derivative of 
the displacement w 1s equal to zero at this edge 

The displacement w 1s a symmetrlcal function of the radial distance r, 
which means that the frost derlvatlve 1s also equal to zero at the centre of the 
diaphragm The boundary condltlons are therefore 

f(O) = f(a) = 0 (12) 

Using relations (2), (5) and (7) the radial displacement u can be written 
exclusively as a function of N, 



u= -& ( fir 
(I-v)-(N,-N,)+rdr 1 
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(13) 

Note that this result 1s obtamed by making use of the fact that If the radial 
and tangential forces per unit length are equal to the mltlal value N,, the 
radial and tangential strains will be equal to the n-&la1 value e, 

It will be clear that the radial dlspiacement u vamshes at the edge of the 
diaphragm, and thus we obtain 

(14) 

At the same time N, ~111 be a symmetrical function of the radial distance r, 
which lmphes that 

dNJO)/dr = 0 (15) 

If f has been calculated using eqns (10) and (11) and boundary condltlons 
(12), (14) and (15), the displacement w can finally be found by mtegrat- 
mg f 

w(r) = - ‘f(r) dr _I- (16) 
a 

assuming w 1s equal to zero at the edge of the diaphragm 

3 Solution procedure 

The non-lmear character of eqns (10) and (11) makes it difficult to 
fmd an analytical expresslon for the unknowns f and N, 

For this reason we have decided to approach the solution of the dlffer- 
ential equations by applying the finite difference numerrcal method, com- 
bined with an iteration procedure 

The interval [0, a] of the radial distance r 1s dlvlded into n identical 
smaller intervals with length Ar = a/n 

At every node correspondmg to these mtervals, the dlfferentlal equa- 
tions can be replaced by finite difference equations [ 18, 191 The approx- 
imated values of N, and f at the zth node are denoted as N,[i] and f[z] 
respectively Using the Taylor series expansion and numbenng the nodes 
equivalent to the current value of r (r = 1. Ar), we obtain the followmg equa- 
tlons 

(2z2-z)*f[z-l] + -4~2-2-ZVN,[~]= F 
( 

l all + 

pz 3Ar3 
+ (2P+ z)*f[z + l] = - 

D 
(17) 
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(18) 
in which case it can be shown that the error of the approximated results 
f[z] and iVr[l] compared to the exact solutions will be proportional to the 
square of the step-size Ar 

Dealing with the boundary condltlons as formulated above m an 
analogous way to obtain eqns (17) and (18), we acquire two sets of non- 
linear equations, which can be denoted m an abndged form as 

A(N,).f = B(p) (19) 

C-N, = D(f) (20) 

where A 1s a matrix whose elements, bemg a function of the radial force N, 
per unit length, can be found by using the left side of eqn (17) 

B IS a vector that 1s a function of pressure p, as can be seen from the 
right side of eqn (17), and f and N, are vectors that contam the elements 
f[z] and N,[t] respectively 

In the same way the elements of matrix C are obtained by using the left 
srde of eqn (18), while vector D, which IS a function of f, can be denved 
from the right side of this equation 

To solve the non-linear eqns (19) and (20) we have used the following 
iteration procedure 

We have first chosen reasonable values for the elements of the vector 
N,, after which the elements of matrix A can be calculated Using these 
results the vector f can be found by solving eqn (19), after which the vector 
N, can be calculated by eqn (20) Using these results the elements of matrur. 
A can be calculated and so on 

If the values of N, and f m the kth step of the iteration procedure are 
written as Nk, and fk respectively, the lteratlon procedure can be described 

by 

A(N;) fk+l=B(P) (21) 

C-N;+l =D(fk+‘) (22) 

It will be clear that the iteration procedure must be stopped as soon as the 
required accuracy has been achieved As an approxlmatlon of the error, the 
relative difference E between two calculated results m succeedmg steps of the 
iteration process 1s commonly used [ZO] For this reason the procedure can 
be terminated if 

f[dk+l -mk 
f[dk+l I 

< E 
(23) 

m which case 1 must have a fixed value 
Finally the deflection w of the diaphragm can be calculated by applying 

a numerical mtegratlon method to approach the exact solution as defined by 
eqn (16) We have used the trapezoidal rule, m which case we can write 



Ar 
w[z] = w[z + 11 - $fb + 11 + flzl) 

It can be shown that the error of the approxunated results 
the exact solution will also be proportional to the square of 
[I91 
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(24) 

compared with 
the step-size Ar 

4 Simulation results 

Startmg from the theory described above, we have developed a rather 
simple slmulatlon program which calculates the mechanical behavlour of 
circular diaphragms and accounts for the mfluence of tensile forces 

The results ml1 be valid for mltlally stretched membranes, as described 
by Warren et al [ 16,17 1, as well as for strongly deflected diaphragms, which 
up to now have not been discussed m detail m the literature 

In our slmulatlons we have used circular diaphragms with an outer 
radius a of 1 mm and a thickness of 25 pm, while Poisson’s ratio IS assumed 
to be equal to 0 3 The relative difference f between the results of two 
succeeding iteration steps, as defined by eqn (23) IS chosen to be 10e3, 
which 1s sufflclently small for this study We have chosen the number of 
intervals n to be equal to 40, which corresponds to a step size Ar of 25 pm 

To solve the matrix equations we have appbed standard subroutines of 
the NAG-library, which use the socalled LU-decompowtlon 

Figure 2 shows the calculated centre deflection w(O), normalized to the 
thickness h, as a function of the pressure p, normahzed to Young’s modulus 
E, mth the mrtlal stress per umt length N,, relative to E* h as a parameter 

It can be shown that using these normalrzatlons the presented results 
will be valid for all different diaphragms with the same ratio between radius 
a and thickness h, which m this case 1s 40 

Curve A of Fig 2 describes the centre deflectlon of the diaphragm d 
the influence of tensile forces 1s ignored, m which case the analytical solu- 
tion of eqn (1) IS given by 

w(r) = - ’ .(a2-r2)2 
640 

which result IS commonly used m papers dealing with pressure sensors 
Curve B IS the calculated centre deflection obtained by using a second- 

order energy method approach [ 151, which gives more accurate results for 
strongly deflected diaphragms, of course after assummg that the mltlal 
tensile forces are equal to zero 

Curves C to H represent the calculated centre deflection as a function 
of pressure by applying the slmulatlon program discussed above for N,/E- h 
equal to 0,2 X 10p4, 4 X 10-4, 10 X 10e4, 20 X 10p4, 40 X 10-4, respectively 

Note that for small deflections curves A, B and C comclde, which 1s m 
accordance with the fact that m this case the mfluence of tensile forces can 
be ignored 
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Fig 2 Centre deflectlon as a function of pressure, with the lnltial tensile force per umt 
length as a parameter, usmg conventional models (curve A, B) and the present model 
under various condltlons of mrtlal tenslie force (curve C to H) 

Fzg 3 Centre deflection as a fun&Ion of lnttlal tenslle force per umt length, with the 
normalized pressure as a parameter, usmg the present model 

Consldermg curves B and C we can conclude that the second-order 
approach, as presented m the literature [ 151, describes the actual centre 
deflection for zero mltlal stress with an accuracy that 1s better than 95 per 
cent for the given pressure range 

It can be seen from curves C to H that the diaphragm deflection de- 
creases for mcreasmg values of the mltlal force per umt length, as can also be 
seen from Fig 3 

This Figure represents the centre deflection of the diaphragm as a func- 
tion of the mltlal force per unit length N,, Mrlth the applied pressure as a 
parameter, using the same normahzatlons as m Fig 2 

Consldermg the results presented m Fig 3 It can be concluded that the 
centre deflection varies by about a factor of two over the given range of the 
mltlal force N, per unit length 

An mdlcatlon of the practical meaning of these theoretical results can 
be given by the followmg example 

Let us assume that a diaphragm IS mounted on a supportmg backplate 
and that the mismatch m thermal expansion coefflclents between diaphragm 
and support 1s equal to foe6 “C, which 1s the case If an Sl diaphragm 1s 
mounted on a piece of glass [ 10, 111 Using the theoretical conslderatlons of 
Sectlon 2, it can be shown that the mltlal strain E, 1s a direct measure of the 
normalized tensile force N,/E h 

If the rigidity of the backplate 1s taken as mfmlte as compared to the 
rlgldlty of the diaphragm, a temperature change of 100 “C will introduce a 
strain of 10 X 10L5, which lmphes a normalized tensile force N,/E l h of about 
10 X 1o-5 
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It will be clear that due to the presence of a supportmg rim and the fact 
that the rigidity of the supportmg blackplate IS not mfmlte, as discussed by 
Yasukawa et al [ 141 for example, the actual value of N,/E- h will be smaller 
than the value calculated above of 10 X lo-’ Consldermg this calculated 
value and the slmulatlon results presented m Fig 3, the temperature coeffi- 
cient of diaphragm deflection 1s estimated to be 1000 ppm/“C, which corre- 
sponds rather well with the value of 275 ppm/“C measured for a 24 pm thick 
square diaphragm [lo] 

Note that m the case of negative values of the lateral force, it 1s more 
usual to talk about compressive forces rather than tensile forces In this 
respect we have to point out that the existence of compressive forces can 
lead to mechamcally unstable behavlour of the diaphragm [ 211 

For small negative values of N, a pressure difference across the 
diaphragm will cause a small deflectlon, which disappears if this pressure 1s 
removed However, increasing negative values of N, create a sltuatlon m 
which a relatively small pressure difference produces a relatively large deflec- 
tlon, which remains when the pressure 1s dlmmlshed In the literature an 
expression has been derived for the crltlcal value of N, above which unstable 
behavlour, usually known as buckling, will occur [ 211 

14 68Eh3 
-(N&t = 

12( 1 - v*)a* 
(26) 

This implies that m our slmulatlons the cntlcal value of the normalized 
parameter -N, /E - h 1s equal to 8 4 X 10e4 

Other slmulatlons, which will not be presented here, have shown that 
the calculated diaphragm deflectlon really does mcrease rapidly for values of 
-N,/E*h above a value of 8 0 X 10e4 

Therefore we conclude that the slmulatlon results presented m Fig 3, 
with a maximum value of 4 0 X 10P4, are not influenced by buckling effects 
In practice, however, it will be clear that we have to be aware that improper 
mechanical handling of a pressure sensor can still involve buckling effects 
which are fatal for sensor operation 

In the rest of this paper we will not consider the case of compressive 
forces and will restrict ourselves to the influence of tensile forces only 

Warren et al [16,17] have studied the mechanical properties of 
stretched polymeric membranes, which have a thermal expansion coefficient 
of the order of 10P4/“C It will be clear that in this case we can obtain much 
higher values for the normahzed parameter N,/E* h 

Figure 4 shows results obtained by using the slmulatlon program for 
higher values of N,/E* h 

If we assume N, and Nt to be constant and equal to N, and d we ignore 
the influence of the thud denvatlve of ~1, which means that the influence of 
bending moments can be neglected, the solution of eqn (1) 1s given by 

w(r) = & - (a* - r*) 
1 

(27) 
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Fig 4 Centre deflection as a function of large lnltlal tensile forces, with the normahzed 
pressure as a parameter, using eqn (27) (curve A) and the present model (curve B to F) 

Fig 5 Diaphragm deflectlon as a function of the radial distance, with NJE h as a param 
eter and p/E = 10m6, usmg the present model 

This result 1s also used by Warren et al to calculate the deflection of 
stretched membranes 

The calculated centre deflection as a function of N,/E h by applying 
eqn (27) 1s given by curve A of Fig 4 All other curves of Fzg 4 are 
obtamed by using the slmulatlon program 

Consldermg these results, we can conclude that eqn (27) urlll be valid 
only for very large values of N,/E-h 

We also see that the deflection of the diaphragm strongly depends on 
the mltlal tensile forces for small values, and that this dependence 1s not 
linear 

It will be clear that for purposes of sensor design we are not only 
rnterested m the centre deflection of the diaphragm, but also m the shape of 
the deflected diaphragm, z e , m the deflection as a function of the radial 
distance r 

In Frg 5 the calculated deflection w(r), normalized to the centre deflec- 
tion u)(O), 1s presented for p/E equal to IO-” and three different values of 
N,/E*h, namely 0,4 X lob3 and 4 X 10-l These results are obtained by using 
the slmulatlon program 

Consldermg Fig 5 we can say that the shape of the deflected diaphragm 
for small values of N,/E-h and p/E behaves as a fourth-order expresslon like 
eqn (25), and for very large values of N,/E-h as a second-order expression 
hke eqn (27) 

Figure 6 depicts the diaphragm deflectIon, normalized to Its thickness 
h, as a function of the radial distance r for p/E equal to lo@ and N,/E*h 
equal to 4 X lop2 

Curve A IS obtamed by using the slmulatlon program and curve B by 
applying eqn (27) Note that for this value of N,/E*h the two curves A and 
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Fig 6 Diaphragm deflectlon as a function of the radial distance, for p/E = 10m6 and 
NJE h = 4 X lo-‘, using the present model (curve A) and eqn (27) (curve B) 

Fig 7 Diaphragm deflectlon as a function of the radial distance, for p/E = 5 X 10P6 and 
NJE h = 0, using a second-order energy method approach (curve A) and the present 
model (curve B) 

B are almost parallel to each other At the centre of the diaphragm the 
relative difference between the two curves 1s less than 10 per cent, but the 
relative difference mcreases for larger values of r/u 

In Fig 7 we have drawn the diaphragm deflectlon normalized to Its 
thickness h, as a function of the radial distance r for p/E equal to 5 X 10e6 
and N, /E- h equal to zero 

Curve A 1s achieved by using the second-order energy method approach 
mentioned above [ 151, and curve B by using our sunulatlon program 
Consldermg these results we can conclude that m the case of zero mlt1a.l 
stress, the centre deflectlon as well as the shape of the diaphragm are very 
well described by curve A Note that the value of p/E used 1s relatively large 
for the pressure sensors described m the hterature [ 1 - 41, which implies that 
m many reasonable sltuatlons the differences between the two curves ~11 be 
smaller than 1s shown m Fig 7 

5 Conclusions 

Starting from the mathematical descrlptlon presented m the literature, 
we have developed a slmulatlon program which accounts for the influence of 
tensile forces on the mechamcal properties of circular diaphragms 

In this way It has been possible to calculate the behavlour of a strongly 
deflected diaphragm and to study the influence of mltlal lateral forces on the 
deflection 

Using a reahstlc example, we have shown that because of these forces 
the real deflection can differ by about a factor of two (Fig 3) 
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The simulated results for extreme cases are m very good agreement with 
the results presented m the literature [ 15 - 171, which suggests the rehablhty 
of the results obtained by using our slmulatlon program 
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