Sensors and Actuators, 6 (1984) 201 - 213 201

THE INFLUENCE OF TENSILE FORCES ON THE DEFLECTION OF
CIRCULAR DIAPHRAGMS IN PRESSURE SENSORS

d A VOORTHUYZEN and P BERGVELD
Twente Uniwersity of Technology, PO Box 217, 7500 AE Enschede (The Netherlands)

(Recerved September 26, 1984, 1n revised form November 14, 1984 ,accepted November
23,1984)

Abstract

It 1s known that the deflection of a diaphragm 1s determined by two
mechanisms, bending moments or bending stress and tensile forces or mem-
brane stress

Usually the influence of tensile forces 1s not taken into account when
calculating the mechanical properties of thin diaphragms Hence the
mathematical description thus obtained will only be vahid if the deflection of
the diaphragm 1s small compared with 1ts thickness and 1if lateral stress is
absent

In this paper we will consider umiformly loaded circular diaphragms,
which are assumed to be 1sotropic, and present the results of a study on the
influence of bending stress and tensile stress, which together determine the
diaphragm deflection

Starting from theoretical considerations, a sunulation program 1is
developed of which several results are presented and discussed

1 Introduction

During recent years many papers have been presented concerning the
development of pressure-sensitive semiconductor devices [1-14] All elec-
tronic detection mechanisms are based on the measurement of the deflection
of a diaphragm as the result of a pressure difference across 1t In general this
measurement 1s piezoresistive or capacitive

Many mechanical as well as electronic aspects of pressure sensors have
been studied 1n detail [9, 11, 12] which has increased the understanding of
pressure-sensing mechanisms, but the nfluence of tensile forces on the
deflection of circular diaphragms has not been studied in such a manner

Several authors [2, 11, 13] have noted that packaging and thermal
expansion Introduce lateral forces which cause the deflection of a diaphragm
to deviate from the behaviour calculated by using the generally accepted
first-order theory, as for instance described by Timoshenko et al {15]

0250-6874/84/$3 00 © Elsevier Sequoia/Printed in The Netherlands



202

It 1s known that the deflection of a diaphragm s determined by two
mechanisms, normally described as bending moments or bending stress and
tensile forces or membrane stress

Usually no account 1s taken of the influence of tensile forces in cal-
culating the mechanical properties of thin diaphragms The mathematical
description thus obtained will only be vahd 1if the deflection of the
diaphragm 1s small compared with its thickness and if lateral stress 1s absent
[15]

Lee and Wise developed a rather complicated simulation program which
considers the influence of lateral stress due to thermal loading [9], but up to
now nobody has presented a more detailed study of these effects

It 1s 1interesting to note that Warren ef al have studied the deflection of
stretched circular polymer membranes, on which they found that 1n this case
the deflection 1s determuned by membrane stress and that the influence of
bending stress can be 1gnored [16,17]

So, for extreme cases, 1n which the influence of either bending stress or
tensile stress can be 1gnored, the deflection of a circular membrane or
diaphragm can be described 1n a rather simple way, as has been done 1n the
literature mentioned above

However, 1n many practical situations both mechanisms will affect the
deflection at the same time, 1n which case we have to use a generalized and
therefore more complicated mathematical description

In this paper we will consider uniformly loaded circular diaphragms,
which are assumed to be 1sotropic, and present the results of a study
concerning the influence of both bending and tensile stress, which together
determine the diaphragm deflection

It will be clear that for anisotropic materials, the mathematical descrip-
tion presented below will have to be modified, as was described by
Yasukawa et al [14] for example

In the following sections the mathematical description is presented and
the boundary conditions are given Using the finite-difference numerncal
method, a set of non-linear equations 1s obtained, which can be solved by
applying an iteration procedure

Starting from these considerations we have developed a simulation
program of which several results are presented and discussed

2 Mathematical description

In order to achieve a mathematical description of the diaphragm deflec-
tion as a function of tensile stress, we will follow the method presented and
discussed by Timoshenko et al [15] and will use the same notation

Here circular diaphragms will be considered having a radius a, a thick-
ness k, Polsson’s ratio ¥ and Young’s modulus E The coordinate centre O 1s
chosen at the centre of the undeflected circular diaphragm and the radial dis-
tance of a point in the middle plane of the plate from the coordinate centre
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1s denoted by r The displacement 1n the radial direction of a point located in
the middle plane of the diaphragm 1s written as # and in the dwection
perpendicular to the plane of the undeflected diaphragm as w, as shown m
Fig 1

The radial and tangential forces per umt length are written as N, and N,
respectively It will be clear that generally N, and N, are both functions of
the applied pressure p In the case of zero pressure p, they are both equal to
the initial tensile force per unit length which exists due to stretching of the
diaphragm, packaging stress, thermal loading and so on, and 1s denoted as N,

w i
—/

Fig 1 Cross section of a deflected circular diaphragm

In the case of small deflections or small nitial stress, N, and N, are
assumed to have hittle or no influence on the diaphragm deflection

Both forces and moments acting upon the diaphragm must be 1n
equilibrium, 1n which case 1t can be shown that [15]
d3w d*w dw N, dw L P

+ = _r 1
dr3  rdr? rdr D dr 2D (1)

r dN,

N, +

—N,=0 2
dr ¢ (2)
with p the applied pressure difference across the diaphragm and D the
flexural ngidity, which 1s determined by
3 E-n®

12(1 —v?)
Equations (1) and (2) comprise three unknowns, namely N,, N; and w,
hence we need a third equation to be able to solve the set of equations

In the case of zero mnitial stress such a relation has already been derived,
and relates membrane stresses and diaphragm deflections [15] Using the
same fundamental description as given 1n [15], 1t can be shown that this
relation can also be used for non-zero values of the mitial tensile force N,
per unit length The radial and tangential strain, which are functions of the
deformation of the diaphragm, are denoted as €, and €, respectively

For zero pressure p and non-zero values of the imitial tensile force N,
per unit length, €, and €, will be equal to the 1mitial stran ¢,

The radial strain €, also depends on the unit elongation in the radial
direction and therefore we can write [15]

(3)
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_ du N 1 (dw)2 4)
TG dr 2 \dr (

Analogously the tangential strain €, 1s a function of the unit elongation 1n
the tangential direction, and can be written as

€, —€, =ufr (5)
Applying Hooke’s law, the tangential and radial strains can be related to the
tangential and radial forces per unit length

€ = (N, —vN,)/h-E (6)
€; = (Ny —vN,)/h-E (7)

Using relations (2) and (4)-(7), we obtain an expression that relates
diaphragm deflections and tensile forces per unit length

r

d(N,+N,) hE | dw)?
e iR ( )=0 (8)

dr 2 E:

This result 1s also found for zero values of the 1nitial tensile force per unit
length [15]

For the sake of simplicity, the first derivative of the displacement w
will be written as

f=dw/dr (9)

Using this result, the order of eqn (1) 1s reduced If we substitute eqn (2)
into eqn (8) and also use eqn (9), f can be calculated by simultaneously
solving the following set of second-order differential equations

2 . .

v , o _f _Neef  per (10)
dr? redr r? D 2D

292 _

;"dN,_'F3rdN,f= hE-f2 a1
dr? dr 2

Considering the differential eqns (10) and (11), which are of the second
order, 1t can be concluded that they can be solved only if two boundary
conditions are known for N, as well as for f

If the edge of the circular diaphragm 1s clamped, the first derivative of
the displacement w 1s equal to zero at this edge

The displacement w 1s a symmetrical function of the radial distance r,
which means that the first derivative 1s also equal to zero at the centre of the
diaphragm The boundary conditions are therefore

f(0) = fta) = 0 (12)

Using relations (2), (5) and (7) the radial displacement u can be written
exclusively as a function of N,
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r

Eh

“o ((1 — V) (N.— N +r dN’) (13)
dr

Note that this result 1s obtained by making use of the fact that if the radial
and tangential forces per unit length are equal to the initial value N,, the
radial and tangential strains will be equal to the imitial value ¢,
It will be clear that the radial displacement « vanishes at the edge of the
diaphragm, and thus we obtain
dN (@) (1 —v)
dr

At the same time N, will be a symmetrical function of the radial distance r,
which implies that

dN,(0)/dr = 0 (15)
If f has been calculated using eqns (10) and (11) and boundary conditions
(12), (14) and (15), the displacement w can finally be found by integrat-
Ing f

* (N, — Ny(a)) (14)

w(r) = ——ff(r) dr (16)

assuming w 1s equal to zero at the edge of the diaphragm

3 Solution procedure

The non-linear character of eqns (10) and (11) makes 1t difficult to
find an analytical expression for the unknowns f and N,

For this reason we have decided to approach the solution of the differ-
ential equations by applying the finite difference numercal method, com-
bined with an iteration procedure

The interval [0,a] of the radial distance r 1s divided into n 1dentical
smaller intervals with length Ar = a/n

At every node corresponding to these intervals, the differential equa-
tions can be replaced by finite difference equations [18, 19] The approx-
mmated values of N, and f at the ith node are denoted as N.[:] and f[!]
respectively Using the Taylor series expansion and numbering the nodes
equivalent to the current value of r (r = i+ Ar), we obtain the following equa-
tions

2Ar2

(&2 —0)fli—1] + (—4:2—2—1\7,[:1- )-f[z] +

3 3
f@2+0)fl+1] = PLAT 17)
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—hEf[1]?

(lz— —3—t)'N[l—1] + (—21%) N, [1] +(12+ il)-N [:+1]=
2 j ' 2 ' 2

(18)

m which case 1t can be shown that the error of the approximated results
fli1] and N,[i] compared to the exact solutions will be proportional to the
square of the step-size Ar

Dealing with the boundary conditions as formulated above 1n an
analogous way to obtain eqns (17) and (18), we acquire two sets of non-
Iinear equations, which can be denoted in an abndged form as

A(N,)-f = B(p) (19)
C-N, = D(f) (20)

where A 1s a matrix whose elements, being a function of the radial force N,
per unit length, can be found by using the left side of eqn (17)

B 1s a vector that 1s a function of pressure p, as can be seen from the
right side of eqn (17), and f and N, are vectors that contain the elements
fl:] and N,[1] respectively

In the same way the elements of matrix C are obtained by using the left
side of eqn (18), while vector D, which 1s a function of f, can be denved
from the right side of this equation

To solve the non-linear eqns (19) and (20) we have used the following
1teration procedure

We have first chosen reasonable values for the elements of the vector
N,, after which the elements of matrix A can be calculated Using these
results the vector f can be found by solving eqn (19), after which the vector
N, can be calculated by eqn (20) Using these results the elements of matrix
A can be calculated and so on

If the values of N, and f in the kth step of the iteration procedure are
written as N* and f* respectively, the 1teration procedure can be described
by

A(NF) £5*1 = B(p) (21)
C-NE+1=pge+l (22)

It will be clear that the 1teration procedure must be stopped as soon as the
required accuracy has been achieved As an approximation of the error, the
relative difference € between two calculated results in succeeding steps of the
1iteration process 1s commonly used [20] For this reason the procedure can
be terminated 1f

fLi1"*t —fLe”
fl1**?
1n which case 1t must have a fixed value
Finally the deflection w of the diaphragm can be calculated by applying

a numerical integration method to approach the exact solution as defined by
eqn (16) We have used the trapezoidal rule, 1n which case we can write

<e (23)




207

A
wit] = wl +1] — —é'l(f[z +1] +fl1]) (24)

It can be shown that the error of the approximated results compared with
the exact solution will also be proportional to the square of the step-size Ar
[19]

4 Simulation results

Starting from the theory described above, we have developed a rather
simple simulation program which calculates the mechanical behaviour of
circular diaphragms and accounts for the influence of tensile forces

The results will be valid for mitially stretched membranes, as described
by Warren et al [16,17], as well as for strongly deflected diaphragms, which
up to now have not been discussed in detail in the hterature

In our simulations we have used cwrcular diaphragms with an outer
radius a of 1 mm and a thickness of 25 um, while Poisson’s ratio 1s assumed
to be equal to 03 The relative difference € between the results of two
succeeding 1teration steps, as defined by eqn (23) 1s chosen to be 1073,
which 1s sufficiently small for this study We have chosen the number of
Intervals n to be equal to 40, which corresponds to a step size Ar of 25 um

To solve the matrix equations we have applied standard subroutines of
the NAG-hbrary, which use the so-called LU-decomposition

Figure 2 shows the calculated centre deflection w(0), normalized to the
thickness i, as a function of the pressure p, normalized to Young’s modulus
E, with the imitial stress per unit length N, relative to E-h as a parameter

It can be shown that using these normalizations the presented results
will be valid for all different diaphragms with the same ratio between radius
a and thickness i, which 1n this case 1s 40

Curve A of Fig 2 describes the centre deflection of the diaphragm if
the influence of tensile forces 1s ignored, in which case the analytical solu-
tion of eqn (1) 1s given by

- P a2 a2
w(r) 640 (a r4) (25)
which result 1s commonly used in papers dealing with pressure sensors

Curve B 1s the calculated centre deflection obtamed by using a second-
order energy method approach [15], which gives more accurate resuits for
strongly deflected diaphragms, of course after assuming that the initial
tensile forces are equal to zero

Curves C to H represent the calculated centre deflection as a function
of pressure by applying the simulation program discussed above for N,/E-h
equalto 0,2 X104, 4 X 107*,10 X 1074, 20 X 1074, 40 X 107%, respectively

Note that for small deflections curves A, B and C comncide, which 1s 1n
accordance with the fact that in this case the influence of tensile forces can
be 1gnored
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Fig 2 Centre deflection as a function of pressure, with the 1nit:al tensile force per unit
length as a parameter, using conventional models (curve A, B) and the present model
under various conditions of initial tensile force (curve C to H)

Fig 3 Centre deflection as a function of 1nitial tensile force per unit length, with the
normalized pressure as a parameter, using the present model

Considering curves B and C we can conclude that the second-order
approach, as presented 1n the hiterature [15], describes the actual centre
deflection for zero 1nitial stress with an accuracy that 1s better than 95 per
cent for the given pressure range

It can be seen from curves C to H that the diaphragm deflection de-
creases for increasing values of the initial force per unit length, as can also be
seen from Fig 3

This Figure represents the centre deflection of the diaphragm as a func-
tion of the initial force per unit length N,, with the apphed pressure as a
parameter, using the same normahizations as in Fig 2

Considering the results presented in Fig 3 1t can be concluded that the
centre deflection varies by about a factor of two over the given range of the
initial force N, per unit length

An 1ndication of the practical meaning of these theoretical results can
be given by the following example

Let us assume that a diaphragm 1s mounted on a supporting backplate
and that the mismatch 1n thermal expansion coefficients between diaphragm
and support 1s equal to 107°°C, which 1s the case if an S1 diaphragm 1s
mounted on a piece of glass [10, 11] Using the theoretical considerations of
Section 2, 1t can be shown that the initial strain €, 1s a direct measure of the
normalized tensile force N,/E h

If the rigidity of the backplate 1s taken as infinite as compared to the
rigidity of the diaphragm, a temperature change of 100 °C will introduce a
strain of510 X 1075, which imphes a normalized tensile force N,/E+h of about
10 X 10~
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It will be clear that due to the presence of a supporting rim and the fact
that the rigidity of the supporting blackplate 1s not infinite, as discussed by
Yasukawa et al [14] for example, the actual value of N,/E-h will be smaller
than the value calculated above of 10 X 107° Considering this calculated
value and the simulation results presented in Fig 3, the temperature coeffi-
cient of diaphragm deflection 1s estimated to be 1000 ppm/°C, which corre-
sponds rather well with the value of 275 ppm/°C measured for a 24 um thick
square diaphragm [10]

Note that 1n the case of negative values of the lateral force, 1t 1s more
usual to talk about compressive forces rather than tensile forces In this
respect we have to pomnt out that the existence of compressive forces can
lead to mechanically unstable behaviour of the diaphragm [21]

For small negative values of N, a pressure difference across the
diaphragm will cause a small deflection, which disappears 1f this pressure 1s
removed However, increasing negative values of N, create a situation in
which a relatively small pressure difference produces a relatively large deflec-
tion, which remains when the pressure 15 diminished In the hterature an
expression has been derived for the critical value of N, above which unstable
behaviour, usually known as buckling, will occur [21]

14 68ER>
(N1)cnt 12(1 _ vz)az (26)
This implies that 1n our simulations the critical value of the normalized
parameter —N,/E-h 1s equal to 8 4 X 1074

Other simulations, which will not be presented here, have shown that
the calculated diaphragm deflection really does increase rapidly for values of
—N,/E-h above a value of 8 0 X 1074

Therefore we conclude that the simulation results presented in Fig 3,
with a maximum value of 4 0 X 10™%, are not influenced by buckling effects
In practice, however, 1t will be clear that we have to be aware that improper
mechanical handling of a pressure sensor can still involve buckling effects
which are fatal for sensor operation

In the rest of this paper we will not consider the case of compressive
forces and will restrict ourselves to the influence of tensile forces only

Warren et al [16,17] have studied the mechanical properties of
stretched polymeric membranes, which have a thermal expansion coefficient
of the order of 107%/°C It will be clear that 1n this case we can obtain much
higher values for the normahzed parameter N, /E-h

Figure 4 shows results obtained by using the simulation program for
higher values of N,/E-h

If we assume N, and N, to be constant and equal to N, and if we 1gnore
the influence of the third denvative of w, which means that the influence of
bending moments can be neglected, the solution of eqn (1) 1s given by

w(r) = 4—2— -(@>—r?) (27)

1
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Fig 4 Centre deflection as a function of large initial tensile forces, with the normahzed
pressure as a parameter, using eqn (27) (curve A)and the present model (curve B to F)

Fig 5 Diaphragm deflection as a function of the radial distance, with N,/E h as a param
eter and p/E = 10%, using the present model

This result 1s also used by Warren et al to calculate the deflection of
stretched membranes

The calculated centre deflection as a function of N,/E h by applying
eqn (27) 1s given by curve A of Fig 4 All other curves of Fig 4 are
obtained by using the simulation program

Considering these results, we can conclude that eqn (27) will be valid
only for very large values of N,/E-h

We also see that the deflection of the diaphragm strongly depends on
the mitial tensile forces for small values, and that this dependence 1s not
linear

It will be clear that for purposes of sensor design we are not only
interested 1n the centre deflection of the diaphragm, but also 1n the shape of
the deflected diaphragm, 1 e, 1n the deflection as a function of the radial
distance r

In Fig 5 the calculated deflection w(r), normalized to the centre deflec-
tion w(0), 1s presented for p/E equal to 107° and three different values of
N,/E-h, namely 0,4 X 10"3and 4 X 107! These results are obtained by using
the simulation program

Considering F1ig 5 we can say that the shape of the deflected diaphragm
for small values of N,/E-h and p/E behaves as a fourth-order expression like
eqgn (25), and for very large values of N,/E-h as a second-order expression
ke eqn (27)

Figure 6 depicts the diaphragm deflection, normalized to its thickness
h, as a function of the radial distance r for p/E equal to 107 and N,/E-h
equal to 4 X 1072

Curve A 1s obtamned by using the simulation program and curve B by
applying eqn (27) Note that for this value of N,/E-h the two curves A and
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Fig 6 Diaphragm deflection as a function of the radial distance, for p/E = 1076 and
N,JE h =4 X 1072, using the present model (curve A) and eqn (27) (curve B)

Fig 7 Ihaphragm deflection as a function of the radial distance, for p/E =5 X 10 %and
N,/JE h =0, using a second-order energy method approach (curve A) and the present
model (curve B)

B are almost parallel to each other At the centre of the diaphragm the
relative difference between the two curves 1s less than 10 per cent, but the
relative difference increases for larger values of r/a

In Fig 7 we have drawn the diaphragm deflection normalized to 1its
thickness h, as a function of the radial distance r for p/E equal to 5 X 10°¢
and N, /E-h equal to zerc

Curve A 1s achieved by using the second-order energy method approach
mentioned above [15], and curve B by using our simulation program
Considering these results we can conclude that in the case of zero initial
stress, the centre deflection as well as the shape of the diaphragm are very
well described by curve A Note that the value of p/E used 1s relatively large
for the pressure sensors described 1n the literature [1 - 4], which implies that
In many reasonable situations the differences between the two curves will be
smaller than 1s shown 1n Fag 7

5 Conclusions

Starting from the mathematical description presented in the hiterature,
we have developed a simulation program which accounts for the influence of
tensile forces on the mechanical properties of circular diaphragms

In this way 1t has been possible to calculate the behaviour of a strongly
deflected diaphragm and to study the influence of initial lateral forces on the
deflection

Using a realistic example, we have shown that because of these forces
the real deflection can differ by about a factor of two (Fig 3)
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The simulated results for extreme cases are 1n very good agreement with
the results presented 1n the hterature [15 - 17], which suggests the rehability
of the results obtained by using our simulation program
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