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A family of linear time-invariant finite-dimensional plants 

is called robustly stabilizable if there exists a single controller 
that stabilizes each plant in the family. A condition for robust 

stabilizability is given that requires the plant transmission zeros 
to remain in the left-half complex plane and moreover imposes 

a restriction on the high-frequency behavior of the plant trans- 
fer matrix. 
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1. Introduction 

Currently there is considerable interest in the 
design of robust control systems, that is, control 
systems that retain their properties under plant 
perturbations. Some notable contributions in this 
area are the work of Wonham [l], Davison (see 
e.g. [2]), Safonov (see e.g. [3]) and Doyle [4,5]. 
Wonham and Davison studied control systems 
that retain disturbance rejecting and tracking 
properties under plant perturbations. Safonov in- 
vestigated the robustness of linear optimal state 
feedback control systems, while Doyle developed a 
criterion for the stability robustness of closed-loop 
systems. 

A crucial aspect of a control system is its stabil- 
ity. This property above all should be preserved 
under plant perturbations. We therefore investi- 
gate in this paper robust stabilizability. This prop- 
erty is enjoyed by a family of plants 9 if there 

Fig. 1. Control system configuration. 

A condition for robust stabilizability 

exists a single fixed controller such as in the con- 
figuration of Figure 1 that stabilizes the closed-loop 
system when the plant is any member of the family 
(? The problem of finding such a controller, termed I . 
the simultaneous stabilization problem, has been 
considered by Saeks and Murray [6]. As they point 
out, however, the solution they present is mathe- 
matical in nature and not intended for computa- 
tional implementation. In the present paper, a 
plausible and directly verifiable (sufficient) condi- 
tion for the existence of a solution to the simulta- 
neous stabilization problem is obtained. 

In this paper, all the plants in the family $? to 
be considered are assumed to be linear, time-in- 
variant and finite-dimensional, with the same 
number of inputs as outputs p. The transfer matrix 
of any plant in $? will be denoted as H(s). One 
special member of 9 will be referred to as the 
t~ominal plant; its transfer matrix is H,(s). The 
loop gain of the control system, which will always 
be assumed to be in the configuration of Figure 1, 
is L(s): = H(s)G(s), where G is the transfer ma- 
trix of the controller (which is also assumed to be 
linear and time-invariant). The control system 
sensitivity matrix is S(s): = [I + L(s)]-‘. The cor- 
responding quantities for the nominal plant are 
respectively L,, and S,,. 

2. Desensitization 

Recently. work has been done on the question 
how to achieve sensitivity reduction of multivaria- 
ble closed-loop systems. Zames [7] showed that for 
plants that have no transmission zeros in the 
right-half complex plane arbitrarily small sensitiv- 
ity may be obtained. Using quite different tech- 
niques, Kimura [8] obtained comparable results. 

In the next section it will be seen that such a 
system - naturally - also possesses a degree of 
robustness. Before proceeding to this topic we 
state and prove in the present section a result that 
is analogous to those of Zames and Kimura but 
put in a form in which it is needed in the sequel. 
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Theorem 1. Suppose that the nominal plant is stabi- 
lizable, detectable and invertible and has all its 
transmission zeros in the open left-half complex 
plane. Then for each E > 0 there exists an q, > 0 and 
a p0 > 0 such that for all p,, Z= p0 a stabilizing con- 
troller may be found with the property that the 
corresponding nominal sensitivity matrix satisfies 

IIS,(iw)ll d E 

for all real o with 1 w 1 G wO, (1) 

lp&)- ( z+~M)-‘IpE 
forallJsl2o, with Re(s) 2 0. (2) 

Here M is an.): p X p real matrix with all its char- 

acteristic values in the open right-half complex plane. 

Proof. The proof is based on well-known proper- 
ties of the linear optimal regulator problem (see 
e.g. [9]). We represent the nominal plant by the 
state equations 

i(t) =Ax(r) +Bu(r). z(t) = Dx(t). 

and consider controllers that are the interconnec- 
tion of a full-order observer 

~(r)=Ai(t)+Bu(t)+K[z(r)-Di(t)] 

with a state feedback law u(t) = -F’i( t). The 
feedback gain F is chosen as F,: = aBTP,, where 
for each (I the matrix P,, is the unique nonne- 
gative-definite symmetric solution of the alge- 
braich Riccati equation 

O=A’PO+P,A+DTD-a’P,BB%. 

Here u is a positive scalar parameter. It is well 
known [9,10] that under the assumptions of invert- 
ibility of the plant and location of its transmission 
zeros in the left-half plane, the matrix P, ap- 
proaches the zero matrix as u - co. It then follows 
from the algebraic Riccati equation that as u - co, 
the gain F, behaves as urO D, where r, is some 
orthogonal matrix, in general dependent on u. This 
is to be understood in the sense that 

lim u-‘TO-‘F, = D. 
0-m 

In the observer/state feedback arrangement the 
controller transfer matrix is 

G(s)=[Z+F,(sI-A+KD)-‘B]-’ 

.F,(sZ- A + KD)-‘K. (3) 

This shows that as u-f 00 the controller transfer 
matrix approaches 

G(s):=[D(sl-A+KD)-‘B]-’ 

.D(sl-A+KD)-‘K, 

which may be rewritten as 

(4) 

c(s) =[ D(~I- A)-‘B]-‘D(~I- A)-‘K. (5) 

Consequently, the sensitivity matrix S,,(s) of the 
closed-loop system approaches 

=[I+D(~z-A)-‘K]-‘. (6) 

Since the closed-loop poles consist of the regulator 
poles (i.e. the eigenvalues of A - BF,), which by 
construction are in the open left-half complex 
plane, together with the observer poles (i.e. the 
eigenvalues of A - KD), which will also be placed 
in the open left-half complex plane, the conver- 
gence of S,(s) to g(s) is uniform in the closed 
right-half complex plane. 

We next choose the observer gain K as K,: = 
p&Di)-‘M. Here p is a positive scalar parame- 
ter. i is a constant matrix such that the system 

i(t)=Ax(t)+&(t), z(t) = Dx(r) 

has the same number of inputs as outputs p, is 
stabilizable and detectable and possesses n -p 
transmission zeros in the open left-half complex 
plane. These assumptions imply that Dh is square 
and nonsingular. Finally, M is the matrix occur- 
ring in the theorem statement; it is square and has 
all its eigenvalues in the open left-half complex 
plane. As p 4 03, n -p of the observer poles ap- 
proach the transmission zeros of 

a(r)=Ax(r)+&~(t), z(t) = Dx(r), 

while the remaining observer poles behave as the 
roots of det(sZ + PM). By the assumptions on the 
transmission zeros and on the eigenvalues of M 
the observer is stable for p large enough. The 
corresponding behavior of the asymptotic sensitiv- 
ity matrix Sis 

s(~)=[z+~D(~z-A)-‘i(~~j)-‘MI-‘. (7) 

This shows that when w is real, by choosing p large 
enough c(i,) can be made uniformly small for 
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1 w 1 G w,,, where w0 is any positive number. On the 
other hand, if w0 is sufficiently large, g(s) can be 
approximated by 

(z+;M)j’ 
for IsI )wO. 0 

3. A condition for robust stabilizability 

In this section we show that ‘desensitized’ con- 
trol systems as discussed in the preceding section 
are also robust. Under the assumption that the 
nominal plant is invertible one may define for 
each plant in the family $i’ with transfer matrix H 
the matrix function 

n(s):= H(s)H;‘(s), (8) 

where HO is the transfer matrix of the nominal 
plant. Since H(s) = II(s)H,(s), the function fI 
represents a multiplicative perturbation of the 
plant. We shall assume that for each plant in ~3 the 
limit 

l-I,:ynm II(s) (9) 

exists. 
The main result of the paper is the following. 

Theorem 2. Suppose that the family of plants 9 
satisfies the following assumptions. 

(a) Each plant in 2? is a nonsingular perturbation 
of the nominal plant, has the same number of trans- 
mission zeros as the nominal plant, and is stabiliz- 
able and detectable. 

(b) The transmission zeros of each plant a!1 lie in 
a bounded region in the open left-half complex plane. 

(c) There exists a fixed square matrix M with all 
its eigenvalues in the open right-half complex plane 
such that for each plant the matrix II, M has all its 
eigenvalues in a bounded region in the open right-half 
complex plane. 

Then there exists a single controller that stabilizes 
the control system for each plant in the family 9. 

Proof. We consider controllers that are con- 
structed as in the proof of Theorem 1, with the 
parameters u and p sufficiently large. We first 
recall that in the configuration of Figure 1, the 
characteristic polynomial of the closed-loop sys- 

tem I#+ is given by 

@ds)=d4s) det[Z+L(s)l. (10) 

Here 9 is the open-loop characteristic polynomial, 
i.e. the characteristic polynomial of the series con- 
nection of the controller and the plant. As before, 
L is the loop gain. Denoting by L, the nominal 
loop gain we have 

L(s) = H(s)G(s) 

= II(s)H,(s)G(s) = n(s)Lo(s) 

and obtain, omitting the argument s, 

(p,=(pdet(Z+IIL,) 

=+det(Z+L,) 

X~~~[(Z+L,)~‘+IIL,(Z+L,)-‘1 

=+det(Z+L,) det[S,,+If(Z-S,,)] 

=$I 2 det[S,+If(Z-S,)]. (11) 

Here (pCO is the nominal closed-loop characteristic 
polynomial, +a the nominal open-loop characteris- 
tic polynomial, and S, the nominal sensitivity ma- 
trix. 

Using Roucht’s theorem, we compare the 
closed-loop characteristic polynomial 

Xdet{%(s) + n(s>[z- &ds)]> 
to the rational function 

(12) 

&&>:=4d4 
4(s) det(sZ + pII,M) 

&(s) det( sZ + PM) det( n,) 

(13) 

on a Nyquist contour as indicated in Figure 2. 
Here \cI is the polynomial defined by 

q(s): = #J&S) det[H(s)], 

where +r, is the plant characteristic polynomial. 
The roots of \c, are the transmission zeros of the 
plant. Similarly, 

with $,a the characteristic polynomial of the nomi- 
nal plant. Since & is a polynomial, it is analytic on 
and inside the contour. By the assumptions that 
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Fig. 2. Nyquist contour, consisting of part of the imaginary axis 

and a semicircle with radius R. 

the nominal transmission zeros are in the left-half 
complex plane and that M has all its eigenvalues 
in the open right-half complex plane, the rational 
function &, is also analytic on and inside the 
Nyquist contour. Roucht’s theorem then states 
that if 

(14) 

on the Nyquist contour, &. and I#J, have the same 
number of zeros inside the contour. The inequality 
(14) may be proved by taking E small enough and 
wa large enough, and using the approximation (1) 
on the vertical part of the contour for 1 w 1 G o,, < R 
and the approximation (2) on the remaining part 
of the contour. Since the nominal closed-loop sys- 
tem is stable, and by the assumptions both the 
polynomial + and det(sl+ pII,M) have their 
roots in the open left-half complex plane, $J, and 
hence also +c has no roots inside the contour. Since 
this holds for any R that is large enough, we 
conclude that & has no roots in the right-half 
complex plane and hence the closed-loop system is 
stable. 0 

4. Discussion 

Theorem 2 shows that robust stabilization can 
be obtained for square linear time-invariant 
finite-dimensional plants, provided that under per- 
turbation all transmission zeros remain in the left- 
half complex plane and moreover a condition on 
the gain at infinite frequency is satisfied. 

In the single-input single-output case the in- 

finite-frequency condition takes a simpler form. 
Suppose that the transfer function of the plant is 
expressed as 

where $r, is the plant characteristic polynomial, x a 
manic polynomial and k a scalar constant. Then 
the infinite-frequency condition reduces to the re- 
quirement that for each plant in the family ~3 the 
constant k has the same sign. 

In the multi-input multi-output case a sufficient 
but not necessary condition for the high-frequency 
requirement is that for each plant the matrix II, 
has all its eigenvalues in the open right-half com- 
plex plane; the high-frequency condition then is 
met with M= I. 

Central in the conditions for the existence of a 
single stabilizing controller is the requirement that 
under perturbation the transmission zeros of the 
plant remain in the left-half complex plane. The 
condition of right-half plane transmission zeros 
appears very often in problems of control design 
and therefore is quite natural. It emerges for ins- 
tance, together with the infinite-frequency condi- 
tion as specialized to the single-input single-output 
case, in investigations of the stability of adaptive 
control schemes (see Morse [12] and Narendra, 
Lin and Valavani [ 131). This points to an interest- 
ing connection between adaptive and robust con- 
trol. 

It is clear that there are instances where trans- 
mission zeros cross over to the right-half complex 
plane due to plant perturbations. just as there are 
problems where there always are transmission zeros 
in the right-half complex plane. In such situations 
there are essential bounds on what can be achieved 
by feedback (see e.g. Zames [7]) and it may well be 
that there is no single controller that stabilizes all 
plants in the family 9. 

It is of interest to note that the theorem applies 
to families of plants whose members may all or in 
part be open-loop unstable. There is no veto on 
perturbations that make open-loop poles cross over 
into or out of the right-half complex plane. On the 
other hand, the theorem is restricted to plants that 
are nonsingular perturbations of a nominal plant 
and that also retain all their transmission zeros. It 
remains to be investigated whether the result can 
be extended to the interesting and practically im- 
portant case of singular perturbations. 
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Since the proof of the existence of a robustly 
stabilizing controller is constructive, it is in princi- 
ple clear how to design such controllers. It is still a 
partly open question, however, how to design 
robustly stabilizing controllers that at the same 
time satisfy other design objectives such as com- 
patibility with plant capacity and good response 
properties. 
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