
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 24, 283-314 (1982) 

Simple Multi-Visit Attribute Grammars 

JOOST ENGELFRIET AND GILBERTO FILM 

Department of Applied Mathematics, Twente University of Technology, 
7500 AE Enschede, The Netherlands 

Received October 30. 1980 

An attribute grammar is simple multi-visit if each attribute of a nonterminal has a fixed 
visit-number associated with it such that, during attribute evaluation, the attributes of a node 
which have visit-number j are computed at the jth visit to the node. An attribute grammar is I- 
ordered if for each nonterminal a linear order of its attributes exists such that the attributes of 
a node can always be evaluated in that order (cf. the work of Kastens). 

An attribute grammar is simple multi-visit if and only if it is I-ordered. Every noncircular 
attribute grammar can be transformed into an equivalent simple multi-visit attribute grammar 
which uses the same semantic operations. 

For a given distribution of visit-numbers over the attributes, it can be decided in polynomial 
time whether the attributes can be evaluated according to these visit-numbers. The problem 
whether an attribute grammar is simple multi-visit is NP-complete. 

INTRODUCTION 

In [9] Kastens introduced the class of ordered attribute grammars. An attribute 
grammar (AG) G is ordered if for each nonterminal a linear order of its attributes 
exists with the property that for every node of a derivation tree of G its attributes can 
be evaluated in that order. The ordered AG are attractive because (1) they include 
naturally the multi-pass AG of [2,8], and (2) they have a simple attribute evaluation 
method. With regard to point (2), it is shown in [9, IO] that for every ordered AG a 
tree-walking attribute evaluator can be constructed with the following properties: (i) 
it does not store any information at the nodes of the tree (apart from the values of the 
attributes), (ii) it visits each node of the tree a bounded number of times, and, most 
importantly, (iii) it decides which attributes (of a node) to compute and which sons to 
visit (in what order) on the basis of the number of the current visit only (i.e., how 
many times the node has been visited plus one), and this number is passed as a 
parameter to the evaluation procedure. The ordered AG are a proper subclass of the 
absolutely noncircular AG of [ 1 I] for which a more complicated tree-walking 
evaluator is given in [ 1 I]; this evaluator stores information at the nodes of the tree 
and uses it to decide which attributes to compute and how to walk through the tree. 

In [9] a wrong proof was given to show that it takes polynomial time to decide 
whether an AG is ordered. To overcome this difficulty the notion of ordered AG was 
redefined in [lo] and called OAG; the class of OAG is a proper subclass of the 
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original class of ordered AG which we shall henceforth call I-ordered AG. It takes 
polynomial time to decide whether an attribute grammar is an OAG. In this paper we 
shall show that to the contrary, deciding whether an AG is l-ordered, is an NP- 
complete problem. 

As mentioned above, for each l-ordered AG there is a tree-walking evaluator which 
visits each node n a bounded number of times and computes a (fixed) subset A#) of 
the attributes of nonterminal F (labeling n) at theph visit of n. In this paper we shall 
give a precise definition of AG for which such a tree-walking attribute evaluation 
strategy exists, calling them simple multi-visit attribute grammars, and prove that 
they coincide with the l-ordered AG. 

Clearly, the simple multi-visit AG generalize the (simple) multi-pass AG of [2,8], 
for which the above tree-walking evaluator is restricted to perform left-to-right (or 
right-to-left) passes over the tree. The adjective simple was added by Alblas [ 1] to 
stress the fact that each attribute of a nonterminal has a fixed pass-number. This 
provided us with another motivation to introduce the simple multi-visit AG, in which 
each attribute has a fixed visit-number. Dropping the restriction of a fixed pass- (or 
visit-) number for each attribute, but keeping the bounds on the number of passes (or 
visits), the larger classes of pure multi-pass AG [ 1 ] and pure multi-visit AG are 
obtained. Concerning the complexity of deciding these properties of AG the following 
can be said: The pure multi-pass property is exponential-time complete [5]. The 
simple multi-pass property is decidable in polynomial time by the algorithm in [2]. 
The pure multi-visit property is exponential-time complete, because it coincides with 
the property of noncircularity [7]; in fact, for every noncircular AG there is a tree- 
walking evaluator which makes a bounded number of visits to any node of a 
derivation tree (cf. [ 13, 141). Finally, as previously said, we shall prove in this paper 
that the simple multi-visit property is NP-complete, even if the number of visits is 
restricted to two (the one-visit property can be decided in polynomial time, cf. [4]). 

The paper is organized as follows: Section 1 contains preliminary definitions. In 
Section 2 we shall define the notion of simple multi-visit AG and show that it can be 
decided in nondeterministic polynomial time. The way this is shown is as follows: We 
first prove that there is an algorithm which, given an AG G and a partition (A ,(F), 
A,(F),...,A,(F)) of the attributes of nonterminal F (for every F; where kmay depend 
on F), decides in deterministic polynomial time whether a tree-walking evaluator 
exists which always computes the attributes of Aj(F) at thejth visit of a node labeled 
F (and if so, the evaluator can also be constructed, in polynomial time and has 
properties (i)-(iii) mentioned above). The algorithm simply consists of checking 
whether there are no cycles in certain graphs, easily constructed from the semantic 
rules of G and the partitions Aj(F). Clearly, the simple multi-visit property can then 
be decided by guessing a partition for each nonterminal and checking whether it is 
correct in the above sense. We also discuss how to simplify a given (correct) set of 
partitions. We end the section by showing that every (noncircular) AG can be 
transformed into an equivalent simple multi-visit AG (using the same semantic rules). 

In Section 3 we shall define l-ordered AG and prove that an AG is l-ordered if and 
only if it is simple multi-visit. Finally in Section 4. we shall show that the simple 
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multi-visit (and the simple 2-visit) property is N&hard by reducing the satisfiability 
problem for Boolean formulas to it. 

1. PRELIMINARIES 

We denote by [n, m] the set of integers {i 1 n < i < m} and, if B is a finite set, we 
indicate with #B the number of its elements. 

We now recall the definition of attribute grammar (AG) [2, 121 and discuss some 
related concepts which will be useful in the following parts. 

DEFINITION 1.1. An attribute grammar G consists of (l)-(4) as follows: 

(1) G has a context-free grammar G, = (T, N, P, Z), called the underlying 
context-free grammar of G, consisting of terminals, nonterminals, productions, and 
initial nonterminal, respectively. We shall always denote production p E P of G, (or 
of G) as 

P: Fo+ W’, ~1 -a- w+,Fnp~np~ 

where Fi E N and wi E T*, for i E [0, nP] and nP > 0. When considering a derivation 
tree of G,, we assume its leaves to be labeled by terminals (or the empty string); a 
derivation tree is said to be complete if its root is labeled by 2. We assume the 
underlying context-free grammar to be reduced in the usual sense. 

(2) Each nonterminal F of G has two associated disjoint, finite sets, denoted 
S(F) and Z(F), of synthesized and inherited attributes, respectively (shortly s- and i- 
attributes). The initial nonterminal Z does not have any i-attribute and one of its s- 
attributes is designated to hold the translation of any complete derivation tree in G. 
We indicate the set of all attributes of nonterminal F of G with .4(F) = Z(F) U S(F) 
and, to avoid trivial cases, we assume that A(F) # 0 for all F. An attribute b E A(F) 
is also denoted with b(F). Note that terminals do not have attributes. 

(3) With each attribute a of G a set of possible values of a is associated, 
indicated with V(a). 

(4) With each production p E P of G is associated a set rp of semantic rules 
which have the following form: a,(F,,) = f(a,(Fi,),..., a,(Fim)), where ij E [0, np] and 
f is a mapping from V, X V, X . . . x V, to V,, where Vi = V(aj), for all j E [ 1, m]. 
We say that a,(FiO) depends on a,(Fil),..., a,(F,,) in p. When the identity of the 
nonterminals is not important we indicate a semantic rule simply by a, = f(al ,..., a,). 
We assume that the semantic rules in rp define all and only the attributes in S(F,) 
and Z(Fj) using as arguments only attributes in Z(F,) and S(Fj), j E [ 1, n,] (see [2], 
we shall refer to this assumption as Bochmann normal form). 1 

When considering a derivation tree t of an AG, we shall often identify a node n of 
t with the nonterminal labeling it. Therefore, if F is this nonterminal, we shall say 
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that n has a set of attributes and indicate this set with A(n) = A(F) and, similarly, for 
the i- and s-attributes Z(n) = Z(F) and S(n) = S(F). 

Working with AG, it is useful to visualize the dependencies among attributes by 
means of graphs. 

DEFINITION 1.2. Given an AG G, let production p of G be of the form F, + 
hF, WI *‘* %p-,Fnp~” * The production graph of p (denoted by pg(p)) is the graph 
having as nodes the a&ibutes of all nonterminals Fj of p, j E [0, nP], and in which 
there is an edge running from attribute a, to attribute a2 iff a2 depends on Q, inp (see 
also [ll, 121). 1 

Because of the obvious fact that derivation trees consist of productions pasted 
together, for each derivation tree t of a given AG G, we obtain, as usual, a depen- 
dency graph, called derivation tree graph oft (denoted by dtg(t)), by pasting together 
the pg(p)‘s of all the productions p used in t (see also [ 11, 121). 

An AG G is said to be noncircular (well formed in [ 121) if there is no derivation 
tree t in G such that dtg(t) contains an oriented cycle. 

2. THE SIMPLE MULTI-VISIT PROPERTY 

We start this section by giving an intuitive description of the concepts of attribute 
evaluation strategy and visit for AG, and, on this basis, we introduce the class of 
simple multi-visit AG as a natural extension of already known classes of AG. Then 
we give formal definitions of these concepts and we prove some results on the 
problem of testing whether an AG is simple multi-visit and its complexity. Finally, 
we describe an attribute evaluation algorithm for this class of AG and we show that 
any (noncircular) AG can be transformed into a simple multi-visit one defining the 
same translation. 

When talking about attribute evaluation strategy on a derivation tree t of an AG 
(cf. [4]), we have an intuitive idea of it which can be described as follows: starting 
from the root of t and going from node to node, semantic rules are evaluated and the 
values of the computed attributes are appended to the corresponding nodes, until all 
attributes have been computed and the root is reached again. Being a little more 
specific on the way nodes of t are traversed, we say that from a node n of t it is 
possible to go next to either a son of n, a brother of n, the father of n or stay in n 
itself. In our study of AG we want to have a way of precisely describing these actions 
of walking through a derivation tree computing attributes. There may be many ways 
to do so; we have chosen a particular one based on the following observations. 

In our definition of AG we have assumed to consider AG in Bochmann normal 
form. This assumption has an important consequence on the way information flows 
through a derivation tree during attribute evaluation. 

Consider Fig. 1. The i-attributes of F are defined in production p, and (possibly) 
used in pz, whereas for the s-attributes of F it is exactly the opposite. In other words, 



ATTRIBUTE GRAMMARS 287 

FIG. 1. Flow of information through node F of a derivation tree t. 

we can say that the i-attributes of F transmit information coming from the parts of t 
surrounding t’ (the context oft’) into t’, whereas the s-attributes of F take infor- 
mation concerning t’ into its context. Therefore, computing some i-attributes of F is 
sensible only if immediately afterwards their values are used, i.e., their information is 
passed down into t’ (t’ is entered). In the same way, computing some s-attributes of F 
is sensible only if their values are immediately passed up in the context of t’ (t’ is 
exited). By it is sensible we actually mean that, if this does not happen, then the 
computation of the attributes could be postponed. We capture this fact saying 
roughly that: 

F (and so t’) is entered if it is reached from above (context) and, in this 
case, we allow only i-attributes of F to be computed. 

F (and so t’) is exited if it is reached from below and, in this case, we 
allow only s-attributes of F to be computed. 

Being more precise, in the previous statements, above can be either the father of F or 
a brother of F (in pi) or F itself (when F is just exited), and below can be either a son 
of F (in p2) or F itself (when F is just entered). 

The idea is then to consider any attribute evaluation strategy as a sequence of 
actions of either entering or exiting a node. A sequence of actions corresponding to 
entering F, walking through t’ and then exiting F is called a visit to t’. Recursively, 
we say that a visit to t’ consists of entering F, a sequence of visits to the subtrees 
rooted in some of the sons of F and finally exiting F. This intuitive concept of visit is 
sufficient to introduce the classes of AG in which we are interested. 

In [2] some classes of AG are defined which allow particularly simple attribute 
evaluation strategies. The first class is that of one-pass, left-to-right evaluatable AG 
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(L-AG). We can say shortly that an AG G is L iff for each derivation tree t of G 
there is an attribute evaluation strategy computing all attributes and such that it 
traverses t from left to right visiting each subtree of t exactly once. Such a strategy is 
called a (left-to-right) pass. 

Also in [2] the concept of one-pass AG is extended to that of multi-pass AG and 
in [ 1 ] it is shown that this extension gives rise to two types of multipass AG, the pure 
and the simple multi-pass AG, defined as follows: 

An AG G is pure m-pass, m > 0, iff for each complete derivation tree t 
of G m (left-to-right) passes over t are sufficient to evaluate all its 
attributes, 

An AG G is simple m-pass, m > 0, iff there exists, for each nonterminal 
F of G, a partition A,(F),...,A,(F) of the set of attributes A(F) such that 
for any complete derivation tree t of G all the attributes of t can be 
evaluated in m (left-to-right) passes over t and in the jth pass all and only 
the attributes in AJF) are computed, j E [ 1, m]. 

Clearly an AG G is pure (simple) multi-pass iff it is pure (simple) m-pass for some 
m > 0. Note that the class of simple multi-pass AG is that actually considered in [2]. 

In [4] the concept of L-AG is extended to that of one-visit AG simply dropping 
from the above definition of L-AG the requirement that the traversal of the derivation 
tree must be from left-to-right. 

An AG G is one-visit iff, for every complete derivation tree t of G, there exists an 
attribute evaluation strategy computing all attributes of t and visiting each subtree of 
t at most once. 

In exactly the same way it is possible to extend to visits the simple and pure multi- 
pass properties. It is straightforward, in fact, to define the classes of pure multi-visit 
AG [ 141 and of simple multi-visit AG as follows: 

An AG G is pure m-visit, m > 0, iff for every complete derivation tree t 
of G, there is an attribute evaluation strategy which computes all 
attributes of t visiting each subtree of t at most m times. 

An AG G is simple m-visit, m > 0, iff for each nonterminal F of G, 
there exists a partition A,(F),..., A,(F) of the set of attributes A(F), where 
0 < k < m and k may depend on F, i.e., k = k(F), such that, for any 
complete derivation tree t of G, there exists an attribute evaluation 
strategy for t which, for every occurrence of F in t, computes all the 
attributes in A,(F) during the jth visit to the subtree rooted in F, for all 
jE [L k(F)]. 

Also in this case then an AG G is pure (simple) multi-visit iff it is pure (simple) m- 
visit for some m > 0. Whereas it has been shown in [ 141 that every noncircular AG 
is pure multi-visit, the same is not true for simple multi-visit AG. In Section 4 we 
shall give examples of noncircular AG which are not simple multi-visit. 

We now start giving the formal definitions, based on the intuitive description given 
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above. As we have already said, we shall view an attribute evaluation strategy as a 
sequence of actions of either entering or exiting a node. From this, it is clear that the 
computation performed by an attribute evaluation strategy on a derivation tree t can 
be described by means of a sequence of pairs of the form: (n, ZW) or (n, SW>, where 
n is a node of t, ZWcZ(n), and SWG S(n). The pair (n,ZFV) (or (n, SW)) 
corresponds to the action of entering (or exiting) node n computing the attributes in 
ZW (or SW, respectively). We call such action of the attribute evaluation strategy a 
basic action and the corresponding pair a basic action symbol (ba-symbol). In 
general, we indicate a ba-symbol with (n, Xw) where X stands for either Z or S. We 
now give a formal way of describing the computation of any attribute evaluation 
strategy (it is equivalent to the corresponding definition in [ 141). 

DEFINITION 2.1. Given an AG G and a complete derivation tree t of G, a 
computation sequence for t is a string h of ba-symbols (n, XW), where n is a nonter- 
minal node of t and, for X equal to Z or S, XW E X(n), such that the following four 
conditions hold: 

(1) Start-end condition. The first and the last ba-symbols of h correspond 
respectively to the basic actions of entering the root of t (i.e., (Z, 0) because 
Z(Z) = 0) and of exiting it (i.e., (Z, SW), where SW G S(Z)). 

(2) Sequentiality condition. For any two contiguous ba-symbols 
(n,, X, W,)(n,, X2 W,) in k n2 is either the father of n,, or a son of n,, or a brother 
of n, , or n, itself. Moreover, the following relationships hold among nl, n, , X, and 
x,: 

if n2 is the father of n, , then X, =S and X, =S, 
if n2 is a son of 4, then X, = Z and X, = Z, 
if n, is a brother of n, , then X, = S and X, =Z, 
if n, is equal to nlv then: 

either, X, = Z and X, = S (entering n and exiting it immediately), or, 
X, = S and X, = Z (exiting n and reentering it immediately). 

Conditions (1) and (2) imply that, if we consider a particular node n of t and all the 
ba-symbols of h concerning n, then h can be written as h = u,(n, ZW,) 
v,(n, SW,) u2 ... ukh ZW MT SW,) 4+ 1 y where, if t’ is the subtree of t rooted in 
n, each Uj is composed of ba-symbols concerning nodes of t outside t’ and each vj 
contains ba-symbols concerning only nodes of t’ (apart from its root n). 

(3) Feasibility condition. If h = (n,, X, W,)(n,, X, W,) ... (n,, X, W,), then 
no attribute in Xj Wj depends in some production p, used in t, on an attribute in 
XiW,, for i> jand i,jE [l,r]. 

(4) Completeness condition. For each node n of t, if (n, ZW,), (n, SW,),..., 
(n, ZW,), (n, SW,) is the sequence of ba-symbols of h concerning node n, then 
(ZW, u SW ,,..., ZW, U SW,) is a partition of A(n). I 
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The first two conditions of Definition 2.1 reflect very closely the intuitive 
description of an attribute evaluation strategy outlined initially. Condition (3) checks 
that the computation sequence represents an attribute evaluation strategy which can 
actually be executed. Finally, condition (4) guarantees that all the attributes of t are 
computed and only once. 

A computation sequence h for a complete derivation tree t represents an attribute 
evaluation strategy for t. Therefore, a visit of the attribute evaluation strategy to a 
subtree t’ of t, rooted in node n, is represented by a substring u of h which starts and 
ends with ba-symbols corresponding respectively to the basic actions of entering and 
exiting node n and in which all other ba-symbols concern nodes of t’ below its root n. 
We call such a string v a visit-truce of h for t’. If h contains m distinct visit-traces for 
t’, we say that it visits t’ m times. In the same way we say that h is an m-visit 
computation sequence for t if it visits each subtree of t at most m times. 

Note that the class of pure multi-visit AG [ 141, which we mentioned in the tirst 
part of this section, is the class of those AG for which, for some m > 0, there exists 
an m-visit computation sequence for every complete derivation tree. It is, instead, 
more complicated to define the class of simple multi-visit AG. We have already seen, 
informally, that an AG belongs to this class iff there exists, for every complete 
derivation tree, a computation sequence (attribute evaluation strategy) satisfying 
certain conditions on which attributes are computed, for a node n, during each visit 
to the subtree rooted in n, viz. the partition in the completeness condition, 
Definition 2.1(4), should only depend on the nonterminal labeling node II. 

We shall now make this definition precise. We need first to introduce the concept 
of a set 17 of partitions of the attributes for an AG. We shall use the concept of 
partition of a set A in a slightly different way than usual: it is a sequence (A 1 ,..., Ak) 
of mutually disjoint subsets of A whose union is A (thus an order is added to the 
usual concept). 

For an AG G we denote by IZ a set containing for each nonterminal F of G a 
partition ZZ(F) of ,4(F). The partition Z7(F) is indicated by (A,(F),..., A,(F)), k > 1, 
and for any j E [ 1, k], we denote by IA,(F) and &l,(F) the sets of the i- and s- 
attributes of Ai( respectively. It will always be understood that k may depend on 
F, i.e., k = k(F). We identify by max(I7) the maximum of all k(F). Note that Aj(F) 
may be empty and then IA/(F) = SAj(F) = 0, or it may contain only i- or only s- 
attributes in which case &Ii(F) or IA,(F), respectively, would be empty. 

The concept of computation sequence and that of set of partitions are now 
combined as follows: 

DEFINITION 2.2. Given an AG G, a set 17 of partitions for it, and a complete 
derivation tree t of G, a computation sequence h for t respects ZZ if the following 
condition holds for h: Let n be a node of t, t’ the subtree rooted in n and F the label 
of n. If n(F) = (A,(F),...,A,(F)), then h visits t’ k(F) times and in such a way that 
the jth visit-trace of h for t’ begins with the ba-symbol (n, IA,(F)) and ends with the 
ba-symbol (n, M,(F)), for all j E [ 1, k(F)]. # 
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Note that the condition we require for a computation sequence to respect l7 implies 
that it satisfies the completeness condition (Definition 2.1(4)). We are finally able to 
define formally the class of simple multi-visit AG. 

DEFINITION 2.3. (i) A set ZZ of partitions for AG G is simple multi-visit (smv) 
if for each complete derivation tree of G there is a computation sequence for it 
respecting I7. 

(ii) An AG G is simple multi-visit (smv) iff there exists an smv-set of partitions 
lI for G. 1 

Clearly, an AG G is simple m-visit iff there is an smv-set of partitions IZ for G such 
that max(n) < m. 

We shall now show that there is an easy way to test whether a given set of 
partitions is smv. The test is based on the noncircularity of graphs which represent 
the precedence-relations (among attribute sets) that are created by the partitions and 
by the actual dependencies in the semantic rules of G. These graphs are defined as 
follows: 

DEFINITION 2.4. Let G be an AG and Z7 a set of partitions for G with n(F) = 
(A,(F),..., A,(F)) for any nonterminal F of G. 

(i) The partition graph for nonterminal F (n(F)-graph) is the graph which has 
as nodes the sets IAj(F) and SAj(F), for j E [ 1, k(F)], and in which edges run, for 
every j E [ 1, k(F)], from IA/(F) to SA,(F) and, for every i E [ 1, k(F) - 11, from 
SA,(F) to IA,+,(F). 

(ii) Let production p in G be F, -+ woF, w, ..a w,,;,E;tp wUp; the partition graph 
for p (n(p)-graph) is the graph constructed by combmmg the 17(F,)-graphs, for i E 
[0, rzP], and adding to it edges as follows: an edge runs from node XAj(F,,) to node 
X’Ai(F,,,) iff (at least) one attribute of the second set depends on an attribute of the 
first in production p, where n and m E [0, n,], j E [ 1, k(F,,)], i E [ 1, k(F,J], and X, 
X’ E {I, S}. I 

We point out that the concept of brother graph, used in [4] to characterize the 
class of one-visit AG, can be viewed as a particular case of ZZ(p)-graph: the case in 
which the trivial partition is chosen for all nonterminals, i.e., n(F) = (A(F)). This 
clearly corresponds to the fact that one-visit AG are a particular case of smv-AG. 

In order to make the reader more comfortable with the last concepts introduced we 
give: 

EXAMPLE 2.1. An AG G consists of: nonterminals Z, A, and B; terminals a and 
b. The sets of attributes of each nonterminal are: I(Z) = 0, S(Z) = {s}; I(A) = {i, , i2}, 
S(A) = Is,, sz}, I(B) = { i,, iz}, S(B) = {si, sz}. The productions of G with their 
corresponding sets of semantic rules are as follows: 

Production 1. Z + AB, r, = {s(Z) = sz(A) s,(B), i*(B) = s,(A), i,(A) = s,(B), 
i,(A) = s,(B), i,(B) = I}. 

57 I /24/3-4 



292 ENGELFRIET AND FILi 

Z 
s 

A A B 

I1 i2 s1 =2 
it i2 St s2 

B1 

il i2 s1 s2 

A m 
i l I2 =1 =2 l1 i2 s1 =2 

(a) (b) 

il i2 s1 s2 
B 

b 

B2 

(cl Cd) 
FIG. 2.. In (a), (b), (c) and (d) are represented, respectively, the production graphs of Productions 1, 

2, 3, and 4 of the AG G of Example 2.1. 

Production 2. B, -+ AB, (the subscripts are added to distinguish the two 
occurrences ofB), t2 = {i,(A) = i,(B,), &(A) = sI(B2) s,(A), i,(B,) = s,(A), i,(B,) = 
i2(BA s,&) = s,(A), s2(BI) = UW. 

Production 3. A + a, r3 = {s,(A) = i,(A), s,(A) = i,(A)}. 

Production 4. B + a, r4 = (s,(B) = i*(B), s,(B) = i,(B)}. 

In Fig. 2 the production graphs for G are represented. 
Let us now consider the set IZ of partitions for G whose elements are as follows: 

n(z) = (IsI); WA)=({i,,s,J, IL szI); fl(B) = (Ii,, s,}, {L W. The 
corresponding partition graph of Production 1 of G is represented in Fig. 3 in which, 
because each node is labeled with a singleton, for simplicity we dropped the 
parentheses. I 

Using the concept of partition graph for a production we show the following 
important result: 

THEOREM 2.1. Given an AG G and a set If of partitions for G, lI is simple multi- 
visit lr none of the corresponding partition graphs for the productions of G contains 
an oriented cycle. 

Proof. (a) (n is smv =z- no cycles in the n(p)-graphs). Consider the partition 
graph for production p of G and any complete derivation tree t of G in which there is 
an occurrence of production p. Let h be a computation sequence for t which respects 
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FIG. 3. The partition graph of Production 1 of the AG G of Example 2.1. 

ZZ; we know that such an h exists because ZZ is an smv-set of partitions for G. There 
is clearly a correspondence between nodes of the partition graph ofp and ba-symbols 
of h. In fact, by Definition 2.2, for any Ai E ZZ(Fi), h contains the two ba-symbols 
(Fi, ZAi(Fi)) and (F,, SAI(Fi)) whereas, by Definition 2.4, IA/ and SAj(Fi) are 
nodes of the partition graph of p, i E [0, n,] and j E [ 1, k(F,)]. 

At this point it is sufficient to observe that, if in the partition graph for p there is 
an oriented path running from node XAJ(Fi) to node X’A,(F,), where i and r E 
[O, npl, j E [I, W,)], m E [ 1, k(F,)], X and X’ E {Z, S}, then, the ba-symbol of h 
corresponding to the first node must precede in h that corresponding to the second 
one. This is true because an oriented path in the partition graph for p may consist of: 

(i) edges which are part of the partition graph of some Fi (ZZ(Fi)-graph, see 
Definition 2.4(i)), i E [0, n,], and then the precedence relation in h is guaranteed by 
the fact that h respects 17; 

(ii) edges which represent dependencies between attributes in p. In this case it 
is clear that if we have one such edge from XAj(Fi) to X’A,(F,), then, by the 
feasibility condition (Definition 2.1), the ba-symbol corresponding to the first node 
must precede in h that corresponding to the second. 

This obviously shows that there cannot be an oriented cycle in the partition graph 
of p. 

(b) (no cycles in ZZ(p)-graphs * ZZ is smv). We want to show that if there are no 
cycles in the partition graphs for ZZ of the productions of G, then, for each complete 
derivation tree of G, there is a computation sequence respecting ZZ. We want to prove 
this using induction on the height of derivation trees and, therefore, we have to 
consider incomplete derivation trees and to define for them a concept analogous to 
that of computation sequence for complete derivation trees. In order to do this we 
first observe that a computation sequence h, respecting Z7, for a complete derivation 
tree t can be represented as h = h 1 -. . h,(,, , where Z7(Z) = (A l(Z),..., AJZ)) and hi is 
the ith visit-trace of h for the whole tree t, i E [ 1, k(Z)]. Second, we observe that in 
Definition 2.1 of computation sequence, the fact that only complete derivation trees 
are considered, is of importance only in the start-end and in the feasibility condition. 
If we extend the definition of computation sequence to incomplete derivation trees, 



294 ENGELFRIET AND FILI? 

then, clearly, the start-end condition must be changed allowing any nonterminal, and 
not only Z, as root of the tree. Again, since the root of an incomplete derivation tree 
t’ may be any nonterminal F, it may possess i-attributes which, because we assume 
AG to be in Bochmann normal form, would depend on attributes outside t’. Despite 
this fact, the feasibility condition of Definition 2.1 can still be used for incomplete 
derivation trees as it is. The only thing to notice is that for those ba-symbols which 
contain i-attributes of the root of t’ the feasibility condition is vacuous. Immediately 
after Definition 2.1 we observed that the feasibility condition guarantees that the 
attribute evaluation strategy, represented by a computation sequence, can actually be 
executed. In the same way, the feasibility condition of a computation sequence for an 
incomplete derivation tree t’ guarantees that the attribute evaluation strategy, 
represented by it, can actually be executed, once values for the i-attributes of the root 
are available. 

It is easy to see that also in Definition 2.2, of computation sequence respecting n, 
the fact that only complete derivation trees are considered is of no importance. 

For these reasons we extend the concept of computation sequence respecting 17 to 
incomplete derivation trees still using for it Definition 2.1 (with the change of the 
start-end condition mentioned above) and Definition 2.2 (see also the notion of an 
inside (n) computation sequence, Definition 4.2 of [ 141). 

In what follows a computation sequence respecting 17 for a possibly incomplete 
derivation tree t’ will be called a visit-truce tupfe for t’ and will be indicated, 
inserting, for notational convenience, markers # to separate different visit-traces, by 
v(t’) = v,(t’) # v*(t’) # ..e # vk(t’), where k = k(F), F is the root of t’ and vi(t’) is 
the ith visit-trace for t’ of the computation sequence. Notice that each v,(P) starts 
and ends with the ba-symbols (F, IAi(F)) and (F, &l,(F)), respectively, i E [ 1, k(F)]. 

Using induction we shall prove this part of the theorem by showing that for any 
derivation tree t of G there exists a visit-trace tuple v(t). This clearly proves what we 
want because complete derivation trees and computation sequences respecting n are 
special cases of derivation trees and visit-trace tuples, respectively. 

The proof is divided into two parts. First we construct for each production p of G 
a sequence 0, of the nodes of the partition graph for p with some markers inserted, 
called visit-sequence for p, and then we use these visit-sequences in the actual 
induction proof to construct visit-trace tuples. The construction of the visit-sequence 
0, is analogous to the corresponding construction in [lo]. 

Construction of the Visit-Sequence 0, for p 
Let production p of G be as usual F0 --) w,,F, wi . . . w,~-, F,,, wfP. From the way the 

partition graph of p (n(p)-graph) is defined and the fact that tt is acyclic, we can 
construct a visit sequence 0, = 24, # u2 # .a- # uk by linearly ordering the nodes of 
the partition graph ofp in such a way that the following conditions hold: 

(1) If in the n(p)-graph there is an edge from n to n’, then in 0, n precedes n’. 
(2) The first symbol of 0, is IA ,(F,,) and the last is SA,(F,), where k = 

WJ > 1. 
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(3) For all j E [ 1, n,] and i E [ 1, k(Fi)], the string IAi(Fj) SA,(F,) is in 0,. 
(4) For all i E [ 1, k(F,) - I], the string SAi(F,,) # IA,, ,(F,) is in 0,. 

All these conditions on 0, are possible for the following reasons, respectively: 

(1) the n(p)-graph is acyclic, 
(2) in the n(p)-graph, node ZA,(FJ has no incoming edges, 
(3) in the n(p)-graph, there is only one edge entering any node SAi(Fj) and 

this edge comes from node IA,( j E [ 1, nP], and i E [ 1, k(l;i)], 
(4) in the n(p)-graph there is only one edge entering any node ZAi+ i(F,,) and 

it comes from node SAi(FO), i E [ 1, k(F,,) - 11. 

From this it should be clear that 0, is actually a string of the form u, # u, # ... # uk, 
where each U, starts and ends with IA, and SAi(FO), respectively, and internally, 
it consists of couples ZA,(F,) SAJF,), where i E [ 1, k(F,,)], j E [ 1, n,], and m E 
[ 1, k(Fj)]. Notice that, in general, for a given production p, there may be many 
possible visit-sequences; we just choose one of them. We can view 0, as representing 
a visit-trace tuple for any derivation tree t with top production p. In fact, in the tirst 
place, the initial and final symbols of each ui clearly correspond to the initial and 
final ba-symbols of the ith component (visit-trace) of any visit-trace tuple for t. In the 
second place, an internal couple such as ZA,(FJ SA,(F,) (of ui) indicates that the 
mth component of a visit-trace tuple for the subtree rooted in Fj must be substituted 
for it in 0,. So, what we shall do in the induction proof, which follows, is to 
construct a visit-trace tuple for a derivation tree with top productionp by substituting 
components of the visit-trace tuples for the subtrees rooted in the Fis, in the 
appropriate positions of OP, j E [ 1, n,]. This process should be easy to understand 
from our previous observation that a visit to a derivation tree t, with root n, is 
nothing else than entering n, visiting its sons in some order and exiting n. 

Let us now do the induction proof. 

HYPOTHESIS. For any derivation tree t in G there is a visit-trace tuple, denoted 
v(t), for t. 

Base. Derivation trees of height 1. Consider a derivation tree t which consists of 
a terminal production p: F + w of G. For this production the visit-sequence 0, is 
particularly simple, in fact, each substring ui of O,, i E [ 1, k(F)] is just the string 
ZAi(F) SAi(F). Therefore, from each ui we construct immediately the ith visit-trace 
vi(t) of v(t) as follows: v,(t) = (F, ZA,(F))(F, SA,(F)), and then v(t) = VI(t) # . . . # 
UK(t). From its form it is easy to see that v(t) satisfies the start-end, the sequentiality 
and the completeness condition. The fact that 17 is respected is also obvious. Finally, 
point (1) of the construction of 0, guarantees that the feasibility is also respected. 
Hence v(t) is a visit-trace tuple for t. 

Step. Assume that the induction hypothesis holds for all derivation trees of G of 
height n - 1. Consider a derivation tree t of height n. Let the top production of t be 
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P: F,+ woF, ~1 -.a w,~-,F,~w~~, and let tj be the subtree rooted in Fj, j E [ 1, n,]. 
From the induction hypothesis we know that for each tj there is a visit-trace tuple 
u(tj)=ul(tj)# *-- # u,(t,), k = k(Fj). Let 0, be u1 # u2 # .a. # ukCF,) ; u(t) is 
constructed from 0, by performing in each r+, i E [ 1, k(F,)], the following 
substitutions: 

for the initial and final symbols of ui, IA,(F,,) and SAJF,), substitute 
the corresponding ba-symbols (F,, IA,( and (F,, , ,!?A i(F,J), respec- 
tively; 

for each pair IA, SA,(Fj) present in ui, substitute the mth 
component, u,(tj), of u(tj), where j E [ 1, n,] and m E [ 1, k(Fj)]. 

In order to prove that the u(t), constructed in this way, is actually a visit-trace 
tuple for t, we go through the required conditions and show that u(t) satisfies each of 
them, but before doing this, it is useful to make the following observations. 

OBSERVATION 1. A component u,(t) of u(t), i E [ 1, k(F,)], looks as follows: 

(Ft,, IA,( ..a (Fj,lA,(Fj)) *a* (Fj> sAm( 9.. (F,, fj’Ai(F,)) 

mth visit-trace for tj 

j E [ 1, nP] and m E [ 1, k(Fj)]. 

OBSERVATION 2. By point (1) of the construction of 0, and the way u(t) is 
constructed from O,, the following is true: forj E [ 1, n,,], if m and n E [ 1, k(Fj)], and 
m < n, then, due to the edges of the partition graph of Fj, in 0, the couple 
IA, SA,(F/) precedes the couple IA, SA,(F,) and, therefore, in u(t) the mth 
visit-trace of u(tj), um(t,), precedes the nth one, u,(t,). 

Finally we show that u(t) meets the required conditions. The fact that u(t) satisfies 
the start-end condition is clear from Observation 1. Also from Observation 1, we 
know that a component vi(t) of u(t), i E [ 1, k(F,)], represents the basic actions of 
entering Fo, visiting the subtrees rooted in some of the sons of F,, and finally exiting 
F,,. This fact plus the induction hypothesis implies that u(t) satisfies the sequentiality 
condition. 

In order to prove that the feasibility condition is satisfied, it is sufficient to prove 
the following two points: 

(a) Every ba-symbol (Fj, IA, )-beginning of the mth visit-trace for tj 
contained in u(t)-satisfies the feasibility condition, j E [ 1, n,] and m E [ 1, k(F,)]. It 
is easy to see that, if this is true, the induction hypothesis and Observation 2 
guarantee that also the remainder of the mth visit-trace for tj satisfies feasibility in 
40. 

(b) Every ba-symbol (F,,, SA,(F,,)) of u(t)-end of the ith visit-trace ur(t) of 
u(t)-satisfies the feasibility condition, i E [ 1, k(F,)]. 
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Clearly, if both points hold, then v(f) is feasible because they guarantee that all the 
ba-symbols of u(t) are feasible, apart from the ba-symbol (F,, IA,( of each vi(t), 
iE [l,k(J,Jl, f or which feasibility is vacuous (cf. earlier remark). For understanding 
that both, points (a) and (b), are satisfied, it is sufficient to recall point (1) of the 
construction of 0,: it shows that all the dependency relations among the nodes of the 
partition graph for p are respected in 0,. This immediately implies that points (a) 
and (b) are true. Finally we note that the fact that 17 is respected by u(t) can easily 
be shown from Observations 1 and 2 and the induction hypothesis (and this also 
implies the completeness condition). 

This ends our induction proof and thereby the proof of the theorem. 1 

Using Theorem 2.1 it is easy to see that the set of partitions ZZ we have chosen in 
Example 2.1 of the AG G is not an smv-set of partitions: the partition graph of 
Production 1 of G, represented in Fig. 3, contains an oriented cycle (concerning the 
nodes i,(A), s,(A), @), s2(W). H owever, G is an smv-AG. In what follows we shall 
give an smv-set of partitions for G with the corresponding (acyclic) partition graphs. 

EXAMPLE 2.2. Consider the AG G of Example 2.1. Represented in Fig. 4 are the 
partition graphs of the four productions of G for the set of partitions ZZ defined as 

i. s- i- s 

A 

B a 

il s1 i2 s2 

m 

(b) 
FIG. 4. The production graphs of G for the set of partitions 
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follows: n(Z)=({s)); H(A)=({i,,s,}, {iz,s2}); I7(B)=({i,,s,}, {i,,s,}). The fact 
that all these partition graphs are acyclic shows (by the preceding theorem) that G is 
an smv-AG (precisely, simple 2-visit). 1 

The fact that testing whether a given set of partitions 17 is smv is based on the 
noncircularity of the n(p)-graphs (Theorem 2.1), has an important consequence 
which allows us to restrict our attention to sets of partitions, which we call reduced, 
in which none of the partitions contains an empty set (cf. reduced computation 
sequence of [ 141). 

LEMMA 2.1. An AG G is smv 13 there exists a reduced smv-set of partitions 
for G. 

ProojI We shall prove that if G has an smv-set of partitions, then it also has a 
reduced smv-set of partitions. Assume ZZ is an smv-set of partitions for G and that it 
is not reduced, i.e., for some nonterminal F of G, A,(F) E n(F) is empty for some i E 
[ 1, k(F)]. We want to show that the set of partitions 17’, obtained from ZZ by 
eliminating Ai( i.e., n’(F) = (A,(F) ,..., AieI(F), Ai+ ,(F) ,..., AJF)), and D’(P) = 
n(P) for all the other nonterminals F’ of G, is an smv-set of partitions for G. In 
order to do this it is suffkient to construct the n(p)-graph of any production p of G 
which contains F. In this graph the situation of the two nodes IA,(F) and SAi(F), 
corresponding to Ai is represented in Fig. 5. It is important to notice that because 
the two nodes do not represent any attribute of F, those of Fig. 5 are the only edges 
entering and exiting them. From this, it is clear that the two nodes can be eliminated 
from the n(p)-graph and substituted with a direct connection from the preceding 
node (if any) M-,(F) to the successive one (if any) IAi+ I(F), without creating any 
cycles in the obtained graph. By Theorem 2.1, this proves that if n is smv, then the 
set of partitions Z7’ obtained from Z7 eliminating A,(F), is also smv. Clearly, by 
repeated applications of this process, one obtains a reduced smv-set of partitions 
for G. 1 

We now use the preceding results in order to show that the problem whether a 
given AG is smv (the smv-problem) can be answered in nondeterministic polynomial 
time (in the size of the AG). 

COROLLARY 2.1. The smv-problem is in NP. 

FIG. 5. Situation of two nodes, corresponding to empty sets, in the partition graph of p. 
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ProoJ We know that an AG G is smv iff there exists an smv-set of partitions for 
it. The nondeterministic algorithm for deciding whether G is smv is as follows: 

(i) Guess a reduced set Z7 of partitions for G. By Lemma 2.1 we can restrict 
our attention to such sets of partitions and it is clear that one of them can be guessed 
in polynomial time. 

(ii) Test whether n is smv. By Theorem 2.1 we know how to perform this test 
and it is easy to see that it takes only polynomial time in the size of G. 1 

In the rest of the section we do three things. First, we exploit the technique used in 
the induction proof of part (b) of Theorem 2.1 in order to describe an attribute 
evaluation algorithm for smv-AG. Second, we refine the result of Lemma 2.1 showing 
that an AG G is smv iff there is an smv-set of partitions for G such that in each 
partition n(F) = (Al(F),..., A,(F)) of n, when F is a nonterminal of G and k(F) > 2, 
A,(F) contains at least one s-attribute, Ak(F) at least one i-attribute and for every j E 
P, k(F) - 11, A/(F) contains both i- and s-attributes. We shall call such a lZ a good 
set ofpartitions. Finally, we show that every noncircular AG (pure multi-visit) can be 
transformed into an smv-AG without changing its semantic rules and the translation 
it defines. 

In part (b) of the proof of Theorem 2.1 we constructed, given an AG G and a set l7 
of partitions for G, for each production p of G a visit-sequence 0, which we used for 
constructing a visit-trace tuple respecting IIfor any derivation tree with top produc- 
tion p. Here, we exploit these OP’s in order to construct an attribute evaluation 
algorithm for G (cf. [IO]) such that its computation on any complete derivation tree t 
of G is described by a computation sequence for t which respects 17. We call this 
algorithm the smv-algorithm. 

Smv-Algorithm 

Let G be an smv-AG and I7 an smv-set of partitions for G. The smv-algorithm 
consists of a routine, VISIT TREE, which has two arguments: the node which is the 
root of the subtree to be visited and the number of the visit to be performed (bounded 
by max(l7)). In order to describe the routine in an understandable way we first fix the 
following notation: 

(i) production p of G, is, as usual, of the form FO + woF, w, ..a w”,-,F~~w~~, 

(ii) the visit-sequence 0, for p is 0, = u, # a2 # ... # z+(~~), where ui, i E 
[ 1, k(F,)], is as follows: 

where r > 0 and, for s E [ 1, r],j, E [ 1, n,] and m, E [ 1, k(Fj,)]. 
The fact that U, is as above has the important consequence that the smv-algorithm, 

when visiting any derivation tree with top production p for the ith time, i E [ 1, k(F,,)], 
always performs the following sequence of actions: 
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enter F0 computing IA,( 
pay r visits to the subtrees rooted in F,1,..., Fj,, 
exit F, computing SA,(F,). 

Let us see, then, how the routine VISIT TREE performs these actions. 

(*> 

procedure VISIT TREE (Fo, i); node F,, ; integer i; 
(we assume that production p is applied to node F, ; therefore, because the visit 
number is i, we shall use the component ui of 0, of point (ii)) 

begin 
compute all attributes in ZAJF,,); 
for k = 1 to r do 

(ba-symbol: (F,, ZAi(F,))) 

VISIT TREE (Fj,, m,J 
od; 

compute all attributes in SA,(F,,) (ba-symbol : (F, , SA i(F,,))) 
end. 

Attribute evaluation of a complete derivation tree t is then obtained by means of the 
following program: 

for j = 1 to k(Z) do VISIT TREE (Z, j) od, where Z is the root of t. 

From what we have said in Theorem 2.1(b) it should be easy for our readers to 
convince themselves that the smv-algorithm actually performs attribute evaluation for 
any complete derivation tree of G respecting the given smv-set of partitions 17. 

It should be clear that this routine VISIT TREE depends on two things: if node n 
is the first parameter, it depends on the number of the visit to be paid to the subtree 
rooted in n (2nd parameter) and the production used to expand n. In order to write a 
routine which would take care of all possibilities two case statements would be 
sufficient. The outer case statement would take care of which production is applied to 
n and the inner one would take care of which visit must be performed and would, 
therefore, consist of pieces of code like the one we have given above. A complete 
smv-algorithm for the AG of Examples 2.1 and 2.2 will be given after some further 
remarks on the algorithm in general. 

It is interesting to note that remark (*), we made above, implies that smv-AG 
actually satisfy an apparently more restricted definition than the one we gave (cf. the 
introduction, point (iii)). In fact, in Definition 2.3 we required only the existence of a 
computation sequence respecting ZZ for every complete derivation tree, allowing, 
therefore, the freedom of choosing, for a given visit number i E [ 1, k(F,)], different 
sequences of visits to the subtrees rooted in the F,‘s, j E [ 1, n,], for different 
occurrences of production p. Thus, the smv-algorithm shows that the freedom allowed 
in Definition 2.3 does not actually add any power. An analogous situation can be 
found in [4], where a dynamic definition of one-visit AG (similar to Definition 2.3) 
was proved to be equivalent to an apparently more restricted one (called static there) 
and which implied the existence of an attribute evaluation algorithm for one-visit AG 
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of which the smv-algorithm can be viewed as an extension (as smv-AG are an 
extension of one-visit AG). We finally note that, from an smv-set of partitions 17 for a 
given AG G an smv-algorithm can be constructed for G in deterministic polynomial 
time: construct the visit-sequences 0, from the partition graphs of the productions of 
G. Such a process is illustrated in 

EXAMPLE 2.3. Consider again the AG G of Example 2.1. We construct an smv- 
algorithm for G using the smv-set of partitions n for it, given in Example 2.2, which 
is as follows: n(Z) = ({s}), Z7(A) = ({i,, sl}, {i2, s2}), 17(B) = ({ii, sz}, {i2, sl}). 
First we must find for each production of G a corresponding visit-sequence. It is easy 
to see (looking at the partition graphs of the productions of G represented in Fig. 4) 
that the following visit-sequences are correct: 

# W%)fA4) s,(B,),li,(A)s,(A),s,(B,). 

0, = i,(A) s,(A) # i,(A) s,(A). 

0, = i,(B) s2(B) # i,(B) s,(B). 

The routine VISIT TREE for these visit-sequences is as follows: 

procedure VISIT TREE (n, i); node n; integer i; 
case production applied to n of 

prod. 1: skip; 
VISIT TREE (B, 1); VISIT TREE (A, 1); VISIT TREE (B, 2); 
VISIT TREE (A, 2); 
compute s(Z); 

prod. 2: case i of 
1: compute i,(B,); 

VISIT TREE (A, 1); VISIT TREE (B,, 1); 
compute s2(BI); 

2: compute i2(B,); 
VISIT TREE (Bz, 2); VISIT TREE (A, 2); 
compute s,(B,); 

esac; 

prod. 3: case i of 
1: compute i,(A); compute s,(A); 
2: compute &(A); compute s&4); 
esac: 
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prod. 4: case i of 
1: compute i,(B); compute s*(B); 
2: compute i,(B); compute s,(B); 
esac; 

esac. 

The main program is simply VISIT TREE (Z, 1). fl 

We turn now to improving the result of Lemma 2.1 as follows: 

THEOREM 2.2. An AG G is smv ifs there is a good smv-set of partitions for G. 

Proof. We shall prove that, given a reduced smv-set of partitions n for G, we can 
construct a good one which is also smv. First we need some notation. Consider a 
production p of G and its corresponding partition graph. We distinguish two types of 
edges in this graph: edges belonging to the partition graph of some nonterminal ofp, 
which we call precedence edges, and edges which represent actual dependencies 
among attributes in p, which we call dependency edges. In the same way we call a 
dependency path a path, in the partition graph of p, which contains at least one 
dependency edge. 

Assume that ll is not a good set of partitions. We distinguish two cases. 
Assume first that for some nonterminal F of G, Z7(F) has an element Aj(F) which 

contains only s-attributes, for j E [2, k(F)]. C onsider, then, any production p of G in 
which F occurs and construct the partition graph for it, corresponding to n. In Fig. 6 
we represent the situation of the two nodes corresponding to Aj(F) in the partition 
graph for p. It is easy to see that eliminating the empty node ZAj(F) and merging the 
two nodes SA,-,(F) and SAj(F), would give rise to a cycle in the obtained graph 
only if there were, in the partition graph of p, a dependency path from SA,-,(F) to 
SAj(F). To see that such a path does not exist, observe that it would have to pass 
through the empty node IA/(F) (by the assumption that G is in Bochmann normal 
form), but no dependency edge enters this node because it has no attributes. 
Therefore, the graph obtained by merging the two nodes is still acyclic. By 
Theorem 2.1, this proves that the set of partitions obtained from n by eliminating 
from ZZ(F) the set Ai and changing A,-,(F) into Aj-i(F)U A/(F) is still an smv- 
set of partitions for G. 

The second case, in which Aj(F) has only i-attributes, j E [ 1, k(F) - 11, is handled 
in the same way. Therefore, we say only that the transformation on n for eliminating 

SA. ,-I (F) IAj(F) = 0 SAj(F) 

c 
--p-- -. -a_ q- 

FIG. 6. Situation of two nodes, one of which corresponds to the empty set, in the partition graph 
of p. 



ATTRIBUTE GRAMMARS 303 

A,.(F) would be in this case: delete A,.(F) and change Aj+ ,(R’) into A,+,(F) U A,(F). It 
is clear that, applying a finite number of such transformations to the reduced smv-set 
of partitions n, we shall end up with a good smv-set of partitions for G. 1 

As we already said in this section, an AG is simple m-visit iff there is an smv-set 
of partitions n for G such that max(n) < m. The result of Theorem 2.2 can be used 
to determine the least m such that any AG G is simple multi-visit iff it is simple m- 
visit, i.e., the least upper bound on the number of visits needed by an smv-AG. It is 
easy to see that in any good smv-set of partitions Z7 for G the partition n(F) can 
have at most min(#I(I;), #S(F)) + 1 elements. Thus, G can be at most simple m-visit, 
where m = max,(min(#I(F), #S(F)) + 1). Note that there are smv-AG which 
actually need this number of visits. 

In what follows we shall show that any noncircular AG G can be transformed into 
an smv-AG G’ which defines the same string-to-value translation as G and has the 
same semantic rules as G (apart from different names of the attributes occurring in 
the rules). This means that the transformation is independent of the semantics (i.e., it 
is schematic as in the theory of program schemes). The string-to-value translation 
defined by an AG is the mapping which maps each string which is the yield of a 
complete derivation tree of G to the corresponding value of the designated s-attribute 
of its root (cf. Definition 1.1). 

The reasoning behind the construction is based on the following facts: In [ 141 it 
has been proved that every noncircular AG G is pure k-visit for some k which is 0 < 
k < max,(#A(F)), i.e., for every complete derivation tree t of G there is a k-visit 
computation sequence for t. The fact that a k-visit computation sequence for a 
complete derivation tree t determines, for the attributes of each node of t, a partition 
of at most k elements (i.e., the one mentioned in the completeness condition of 
Definition 2. l), and the fact that the number of such partitions, for any nonterminal F 
of G, is obviously finite, shows that the difference between simple and pure multi-visit 
AG can be viewed as follows: in the first, to each nonterminal is associated a unique 
partition of its attributes which must always be respected, whereas in the second, a 
finite set of possible partitions is associated to each nonterminal. 

It is also important to notice that if we consider the partitions of the attributes of 
every node of a complete derivation tree t, determined by a computation sequence h 
for t, and, using these partitions, we construct for any production p of t the 
corresponding partition graph, then this graph is acyclic. The intuitive reason for this 
is that h respects these partitions (cf. Definition 2.2). Formally, a proof of this can be 
given which is entirely analogous to part (a) of the proof of Theorem 2.1. 

The construction which, given a noncircular AG G, builds an smv-AG G’ which 
defines the same string-to-value translation of G and uses the same semantic rules, is 
as follows: 

(1) For each nonterminal F of G, G’ has as many nonterminals of the form 
(F, n(F)) as there are partitions n(F) of the attributes of F with at most #A(F) 
elements. Each nonterminal (F, n(F)) is given, in G’, the attribute set A(F). 
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(2) For each production p of G of the form F, + w,,F, W, . . . wnP- i FMPwnp, G’ 
has as many productions 
W, 1) w, 3 

p’: (F,,, n(F,,)) + wO(F,, n(F,)) w, .e. w,,-~(F,~, 
as there are combinations of the partitions II( i E [0, nP], such that 

the I%low!ng condition holds: the partition graph of p, constructed using the 
partitions lZ(F,), is acyclic. Each such production p’ of G’ is given the same set of 
semantic rules as that of p in G, where, of course, the names of the nonterminals are 
appropriately changed. This ends the construction. 

It is easy to see that the AG G’, produced in this way, is smv: the set of partitions 
for G’ defined by taking for each nonterminal (F, n(F)) the partition n(F) is an smv- 
set of partitions (immediate from Theorem 2.1 and point (2) of the construction 
of G’). 

To prove that G’ defines the same string-to-value translation as G, we say that t 
and t’ are corresponding derivation trees (of G and G’, respectively) if t is obtained 
from t’ by replacing each nonterminal (F, L’(F)) by nonterminal F. Clearly, every 
derivation tree t’ of G has a corresponding derivation tree t in G (by the construction 
of G’). Also, vice versa, every derivation tree t of G has a corresponding one in G’ 
for every k-visit computation sequence h for t, where 0 < k < max,(#A(F)). This can 
be shown as follows: Let t’ be the result of replacing the label of every node of t, 
assume it to be F, by (F, ZZ(F)), w h ere II(F) is the partition of the attributes of node 
F determined by the computation sequence h (fort). As we observed before all the 
partition graphs of the productions in t, constructed by using the partitions deter- 
mined for each node of t by h, are acyclic. Therefore by point (2) of the construction, 
t’ is a derivation tree of G’. 

Since corresponding (complete) derivation trees translate the same string into the 
same value (because the semantic rules of G and G’ are the same), this shows that G 
and G’ define the same translation. This proves 

THEOREM 2.3. For every noncircular AG G there exists a simple multi-visit 
AG G’ such that G’ defines the same string-to-value translation as G and uses the 
same semantic rules as G (apart from attribute names). 1 

3. THE I-ORDERED PROPERTY 

As we mentioned in the introduction, the class of smv-AG is equal to the class of l- 
ordered AG [9, lo], where an AG G is l-ordered if, for each nonterminal F of G, 
there exists a linear order of its attributes such that, for every occurrence of F in any 
derivation tree of G, its attributes can be evaluated in that order. 

In this section we give a formal definition of l-ordered AG and prove their 
equivalence with smv-AG. (For dtg(t), recall Section 1.) 

DEFINITION 3.1. An AG G is l-ordered iff there exists a set 0, containing, for 
each nonterminal F of G, a linear order 0, of the attributes of F, such that, for every 
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complete derivation tree t of G, there exists a linear order 0, of the nodes of dtg(t) 
such that the following two conditions hold: 

(i) if a and b are two attributes of a production p of G, which occurs in t, and 
b depends on a in p, then a < b in 0, (feasibility); 

(ii) if a and b are attributes of nonterminal F, which occurs in t, and a < b in 
O,, then a < b also in 0, (0, is respected). m 

In what follows we call a set 0, which satisfies Definition 3.1 a correct set of I- 
orders for G. 

In order to intuitively see why the class of Z-ordered and smv-AG coincide we 
observe that it is possible to define smv-AG by means of an apparently less restrictive 
concept than that of computation sequence respecting ZZ for every complete 
derivation tree. This concept is that of an (ordered) partition, respecting n, of the 
attributes of a complete derivation tree and is defined as follows: Given an AG G, a 
set ZZ of partitions for G and a complete derivation tree t of G, if we view the 
attributes of each node F of t as partitioned in the subsets IA ,(F), SA ,(F),..., IA,(F), 
SA,(F) as specified by Z7(F) of ZI, then a partition ZZ(t) of all the attributes of t is a 
linear order of the subsets of attributes of all the nodes of t such that the following 
conditions hold: 

(i) ZZ(t) is feasible (as in Definition 2.1), 

(ii) for each node F of t, if i and j E [ 1, k(F)] and i < j, then in ZZ(t), IA,(F) < 
SAi(F) < ZAj(F) < SA,(F). 

Using this concept, we define the class of smv-AG as follows: an AG G is smv iff 
there exists a set of partitions n for G such that for each complete derivation tree t of 
G there is a ZZ(t) respecting 17. 

The fact that even though this definition seems more free than the one we have 
given, the class of AG is still the same can be understood by means of the following 
two observations: 

(1) The concept of partition of the attributes of a derivation tree corresponds 
to that of computation sequence in which the sequentiality and the start-end 
conditions have been dropped, or, in other words, a computation sequence in which 
jumping from a node to another in the derivation tree is allowed. 

(2) From the fact that any jump can be simulated by sequentially walking 
through the tree, it is clear that from any partition of the attributes of a derivation 
tree t which respects n we can construct a computation sequence h for t such that the 
partition of the attributes of any node F of t, defined by h, contains all the elements 
of 17(F) (in the same order) plus some empty sets. Thus, using the same technique as 
in Lemma 2.1, these empty sets can be eliminated obtaining a computation sequence 
for I which respects l7. 
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Observe now that this definition of smv-AG, we have just given, is very close to 
Definition 3.1 of Z-ordered AG: the partition ZZ(t) of the attributes of t is an extension 
of the linear order 0, of the nodes of dtg(t) we used there. 

This argument should be sufficient as an intuitive explanation of the fact that I- 
ordered and smv-AG are equivalent (which is proved in Theorem 3.1) and it also 
shows that, although the concept of Z-ordered AG is probably easier to grasp and to 
define formally than that of smv-AG, this last is more strictly connected with the 
existence of a natural attribute evaluation algorithm (the smv-algorithm) which walks 
through the derivation tree. Note that, while now we have loosened the definition of 
smv-AG to get closer to that of Z-ordered AG, it would also be possible to further 
restrict it so as to get even closer to the smv-algorithm (cf. the discussion after the 
smv-algorithm). 

THEOREM 3.1. An AG is l-ordered ly it is simple multi-visit. 

Proof: (a) (smv * Z-ordered). This direction is easy. Let G be an smv-AG and 
17 an smv-set of partitions for it. We want to show that from ZZ we can construct a 
correct set of Z-orders 0, for G. For each nonterminal F of G, 0, E 0, is constructed 
from 17(F) E ZZ as follows: 

(1) for each i E [ 1, k(F)], f ix any linear orders O(ZA,(F)) of the i-attributes in 
A,(F) and O(SAi(F)) of the s-attributes in Ai( 

(2) 0, is obtained from these linear orders by concatenating them as follows: 
0, = O(ZA,(F)) O(SA,(F)) .e. O(ZA,(F)) O(SA,(F)). 

The fact that the set O,, constructed in this way, is a correct set of Z-orders for G 
can be easily understood. Let t be a complete derivation tree of G and h a 
computation sequence for t respecting ZZ. From h we can build a linear order 0, of 
the nodes of dtg(t), which satisfies the two conditions of Definition 3.1, simply 
substituting in h for each ba-symbol (F, XA,(F)) the linear order O(XA,(F)) of point 
(l), i E [ 1, k(F)] and XE {Z, S}. 

(b) (Z-ordered 3 smv). Let G be an l-ordered AG and 0, a correct set of l-orders 
for G. From 0, we construct a set of partitions ZZ for G. For each nonterminal F of 
G, let 0,E 0, be a, < a, < ... < a,, then ZZ(F)= ({a,}, (a2} ,..., {a,)) is inZZ. 

We want to show that this set of partitions ZZ is smv for G, i.e., by Theorem 2.1, no 
cycles are contained in the partition graphs of the productions of G, constructed 
from ZZ. This is shown by-using a very similar argument to that of Theorem 2.1 (a). 

First we notice that, with such a Z7, the partition graphs of the productions of G 
have nodes corresponding to either one or no attribute. We call nodes of the first type 
attribute nodes. Consider now a complete derivation tree t of G containing production 
p and a linear order 0, of the nodes of dtg(t) which satisfies Definition 3.1. It is easy 
to see that, if in the partition graph of p there is an oriented path from attribute node 
{a} to attribute node (b}, then a < b in 0,. Thus, from the obvious fact that any cycle 
in the partition graph of p contains at least one attribute node, it is clear that no cycle 
can be present in it and, therefore, Z7 is an smv-set of partitions for G. 1 
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Observe that in Theorem 3.1(b) we could use Theorem 2.2 in order to transform 
the smv-set of partitions n into a good set of partitions. For a given I-order 0,: u, < 
a2 < -.. < a,, this would produce the partition n(P);>, obtained by cutting 0, into 
maximal pieces of i-attributes followed by s-attributes. As an example, if 0, is i, < 
i2<s,<s2<s3<i3<s4<i4,thenZZ(F)=({i,,i,,s,,s,,s,}, {i3,s4}, {i4}). 

4. NP-COMPLETENESS 

In this section we show that it is NP-hard to decide whether an attribute grammar 
is simple multi-visit (and hence NP-complete by Corollary 2.1). To prove this the 
equivalent concept of Z-ordered AG (Section 3) is easier to handle. Before giving the 
formal proof, let us first try to see intuitively why the l-ordered property is hard to 
decide (see [9, lo]). 

In any AG G some (partial) order between the attributes of a nonterminal is forced 
by the dependencies as given by the semantic rules of G. If, e.g., there is a path from 
a to b (attributes of a node) in some derivation tree graph (see Section l), then a is 
before b in any correct set of I-orders for G; moreover, this order between a and b 
may be viewed as an additional dependency and hence force an order between other 
attributes, and so on. More precisely, cf. [IO], one can (recursively) define a is forced 
before b (where a, b E A(P) for some nonterminal F) if there is a production p and a 
sequence a,, a2 ,..., ak of attributes in p such that k > 2, a, = a, ak = b and for all i 
(1 &i<k- 1) either a,+i depends on a, in p or a, is forced before a,, 1 (or both). It 
is not difficult to see that the relation forced before can be computed in polynomial 
time (the computation is similar to the computation of i/o graphs in [ 111, where only 
forced order between i- and s-attributes is considered). Clearly, if a is forced before b, 
then a is before b in any correct set of I-orders for G. Hence if a cycle is detected 
(i.e., b is forced before b, for some attribute b), then the grammar is not Z-ordered. In 
Example 2.1, i, < s, < i, < s2 is forced for A and i, < s2 < i, < s, is forced for B; no 
cycle exists and precisely one correct set of I-orders is forced. In general, the absence 
of cycles in the relation forced before is unfortunately not sufficient to ensure the 
existence of a correct set of I-orders; the reason is that not every linear order which is 
compatible with forced before is correct: the attribute dependencies may also 
influence the possible orderings of dzJ%rent nonterminals, i.e., the linear orders 
associated to different nonterminals are not independent. The easiest example of this 
situation is given in Fig. 7, where the production graph (Definition 1.2) of a 

i s i s 
FIG. 7. Cycle with holes. 

573/24/3-5 
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production A -+ BC is shown with the semantic rules i(B) = s(C) and i(C) = s(B); this 
production graph might be called a cycle with two holes. Clearly, the dependencies in 
Fig. 7 exclude linear orders in which i(B) is before s(B) and simultaneously i(C) is 
before s(C), i.e., for which the holes of the cycle are closed, but allows all others. 
Thus (assuming that, for B and C, no order is forced between i and s by the other 
productions) B and C each have two possible orders, but together only three 
combinations are possible: those which satisfy the Boolean formula B or C, where 
s(B) is before i(B) is interpreted as B = true and i(B) is before s(B) as B =false, and 
similarly for C. In the proof of Theorem 4.1 we shall show how we can simulate in 
this way the satisfiability problem for Boolean formulas. For all unexplained notions 
see, e.g., [6]. 

THEOREM 4.1. The following problems are NP-complete: 

(i) whether an arbitrary AG is simple multi-visit (i.e., l-ordered), 

(ii) whether an arbitrary AG is simple 2-visit. 

Proof By Corollary 2.1 these problems are in NP (note that in the 2-visit case it 
suffices to guess a set ZZ of partitions with max(l7) < 2). To prove NP-hardness we 
shall show that the satisfiability problem for Boolean formulas is reducible (in 
polynomial time) to the l-ordering problem for attribute grammars (and the simple 2- 
visit problem) by constructing for every Boolean formula F, an AG G(F,) such that 
F, is satisfiable iff G(F,) is l-ordered iff G(F,) is simple 2-visit. 

Thus, let FO be a Boolean formula, built from literals by the operations and and or, 
where a literal is either P or not P for some Boolean variable P (we may even assume 
that F,, is in conjunctive normal form). The AG G(F,) is constructed as follows: For 
every Boolean variable P occurring in F,, G(F,) has a corresponding nonterminal P 
with I(P) = {i, i, }, S(P) = {s, si } and a production P -+ L (where il is the empty 
string) with semantic rules s,(P) = i(P) and s(P) = iI( i.e., the production graph of 
Fig. 8a. Furthermore, for every subformula Fj of I;,, G(F,) has a corresponding 
nonterminal Fj with I(Fj) = {i) and S(Fj) = {s], and the following productions: if 
Fj = P for some Boolean variable P, then Fj -+ P; if Fj = not P, then Fj -+ not P; if 
Fj = F, and F, , then Fj + F, and F, ; and if Fj = Fk or F,, then Fj -+ F, or F, ; the 
production graphs of these productions are given in Figs. 8c-f, respectively (the 
dotted lines in Figs. 8c,d are only added to help the intuition: they are the depen- 
dencies of Fig. 8a). Finally, G(F,,) has the initial nonterminal Z without attributes, and 
the production Z + F, with the semantic rule i(FO) = s(F,), see Fig. 8b, where F, is, 
of course, the nonterminal corresponding to the whole formula. This ends the 
construction of G(F,). Note that there is exactly one production for each nonter- 
minal, and so G(F,) has only one complete derivation tree (of which the structure 
corresponds precisely to the Boolean formula F,). 

As an example, the AG corresponding to F, = (P or (not Q)) and ((not P) or Q) 
has productions Z --) F,, F, + F, and F,, F, + F, or F,, F, + F, or F,, F, + P, F, + 
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FIG. 8. Production graphs of G(F,,). 

note, F,+notP, F6-+Q, P-A and Q -+ A. The complete derivation tree of G(F,) is 
given in Fig. 9 together with its derivation tree graph. This ends the example. 

It should be clear that G(F,) can be constructed from F, in deterministic 
polynomial time. We now have to prove that G(F,) is Z-ordered (simple 2-visit) iff FO 
is satisfiable. 

Intuitively, we shall take false to correspond to f-orders with i < s and true to Z- 
orders with s < i (cf. the example of Fig. 7). The fact that the order has to be correct 
for all occurrences of the same nonterminal ensures that all occurrences of the same 
Boolean variable will receive the same truth value. Note that Fig. 9 may be viewed as 
a combination of two cycles with holes, i.e., two times Fig. 7, one cycle corresponding 
to F, and one to F, , with the edge of Z -+ F, in common; if P is false and Q is true 
then the F,-cycle will be closed, and similarly, if P is true and Q is false, the F,-cycle; 
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FIG. 9. Derivation tree graph for (P or (not Q)) and ((nor P) or Q). 

thus only I-orders for which P and Q have the same truth value will be allowed. In 
general, if F, is in conjunctive normal form, then each or-clause corresponds to such 
a cycle with holes (called indirect cycle in [9]). 

We first show that if G(F,,) is l-ordered, then P, is satisfiable. To do this we need 
some terminology and a few facts. For a truth assignment a of the Boolean variables 
and for a Boolean formula F, we denote by a(F) the truth value of F under the 
assignment a. For a derivation tree graph g of G(F,,) and a truth assignment a, we 
define a(g) to be the graph obtained from g by adding edges as follows: for every 
Boolean variable P, if a(P) = true, then an edge from s(P) to i(P) is added for each 
occurrence of P in g, and similarly an edge from i(P) to s(P) is added in case 
a(P) = false. The following two statements now hold for any truth assignment a: 

(1) For every subformula Fj of F,, a(Fj) = false iff there is a path from i(Fj) to 
s(Fj) in a( gj), where gj is the derivation tree graph of the (unique) derivation tree 
with root Fj. 

(2) a(F,)=f I a se iff there is a cycle in a(g), where g is the derivation tree 
graph of the (unique) complete derivation tree of G(E;,). 

Statement (1) can easily be shown by induction on the structure of Fj using the 
production graphs of Fig. 8c-f. Note in particular that, in Fig. 8c, if i(P) is connected 
to s(P), then so is i(F,) to s(F,), whereas in Fig. 8d, if s(P) is connected to i(P), then 
so is i(F]) to s(FJ, using the dotted lines; in the other cases, there is no path from 
i(Fj) to s(Fj). From statement (1), statement (2) follows because every cycle in a(g) 
includes the edge in the production graph of 2 -+ F, (Fig. 8b). 

Assume now that G(F,) is l-ordered. Let a be the truth assignment such that 
a(P) = true iff s(P) is before i(P) in the linear order for P. By Definition 3.1 there 
exists an order 0, of the nodes of g (where t is the complete derivation tree) which 
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respects the linear order and all dependencies and, therefore, respects all edges in 
a(g) in the sense that if there is an edge from a to b in a(g), then a precedes b in 0,. 
Hence a(g) has to be acyclic and so, by statement (2), a@,,) = true. This proves that 
F,, is satisfiable. 

We now prove that if F0 is satisfiable, then G(I;,) is simple 2-visit (and hence l- 
ordered by Theorem 3.1). Assume therefore that F0 is satisfiable and let a be the truth 
assignment such that a(F,) = true. Using the criterion of Theorem 2.1 it can be 
checked that the set n of partitions defined as follows is simple multi-visit, and hence 
G(F,,) is simple 2-visit (max(n) = 2). 

a(Fj) = false -+ ZI(Fj) = ((i, s}), 

Cf(Fj) = tIUe -+ 17(Fj) = ({S}, {i}), 

a(P) = false-i n(P) = ({i, s,}, (i,, s)), 

a(P)=true + n(P)=({i,,s}, {i,sl}). 

As an example, if Fj = Fk or F,,,, a(Fj) = a(F,J = true and a(F,) = false, then the 
corresponding partition graph is given in Fig. 10 and the corresponding part of the 
smv-algorithm (see Section 2) looks as follows: 

procedure VISIT TREE (Fj, x); node Fj ; integer x; 
case x of 
1: begin skip 

VISIT TREE (Fk, 1); VISIT TREE (F,,,, 1); 
compute s(Fj) 

end; 
2: begin compute i(Fj); 

VISIT TREE (Fk, 2); 
skip 

end 
esac. 

This proves the theorem. 1 

Thus the only way to decide the smv-property is to guess a set of partitions and 
check whether it is smv. Note that in the simple multi-pass case one need not guess a 

FIG. 10. A partition graph for G(F,,). 
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partition due to the existence of a best partition in which each attribute has its earliest 
possible pass number ([2, 11). 

Note that for every Boolean formula F, which is not satisfiable, the construction in 
the proof of Theorem 4.1 produces an AG G(F,) which is not smv, but which is pure 
multi-pass (because it has only one derivation tree) and also absolutely noncircular 
(see [ 111; it is easy to see that the i/o graph of P looks like Fig. 8a, whereas all other 
i/o graphs are empty). 

We end this section with a few remarks on the OAG (ordered attribute grammars) 
of [lo]. In our terminology, an AG G is an OAG if (i) for no attribute b, b is forced 
before b (cf. the introduction of this section), and (ii) UC is an smv-set of partitions, 
where l7, is a particular set of partitions compatible with the relation forced before 
(see [ 10, Definition 4] for the definition of ZZ,, denoted A there). Since the relation 
forced before (called IDS in [lo]) is computable in polynomial time and it can also 
be checked in polynomial time whether 17, is smv (cf. Theorem 2. l), it takes 
polynomial time to decide whether G is an OAG, as shown in [lo] (the partition 
graphs for & correspond to EDP in that paper). Clearly, the OAG are a (proper) 
subclass of the l-ordered AG. An AG is l-ordered if (dummy) dependencies can be 
added to it such that the resulting AG is an OAG, i.e., in the terminology of [lo], G 
is arranged orderly by the augmenting dependencies. Note that all (simple) multi-pass 
AG are l-ordered, but not necessarily OAG. 

CONCLUSION 

We conclude this paper by taking together a number of decidability results on 
properties of AG concerning visits and passes (cf. the introduction). Fig. 11 shows an 
inclusion diagram for seven classes of AG, where V = visit, Pa = pass, M = multi, 
1 = one, S = simple, P = pure, and ANC = absolutely noncircular. The distinction 
between pure and simple is taken from [ 11. As indicated in Fig. 11, PMV is equal to 
the class of all noncircular AG [ 141, SMV equals the class of f-ordered AG (proved 
in this paper), and the l-ordered AG are included in ANC, cf. [lo]. Deciding whether 

PMV = all noncircular AG 

/\ 
ANC PMPa 

/ 
/ 

&-ordered = SMV 

/ 
SMPa 

lPa(=L) 

FIG. 11. Classes of multi-visit and multi-pass AG. 
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an arbitrary, i.e., possibly circular, AG is in these classes takes time, as follows (we 
also discuss the k-pass and k-visit cases for fixed k): 

1Pa (usually called L): polynomial [2]. 
SMPa: polynomial [2], see [l] for an alternative algorithm; the simple k-pass 

property is also polynomial. 
PMPa: exponential (inherently); the pure k-pass property is polynomial [ 51. 
1v: polynomial [4]. 
SMV: NP-complete, even for fixed k > 2 (shown in this paper). 
PMV: exponential (inherently) [7]; the pure k-visit property is decidable [ 141, but 

the precise complexity is not known (the algorithm in [ 141 is at least double 
exponential). 

ANC : polynomial [ 111. 

In case all AG are assumed to be noncircular, the PMV-property becomes trivial 
(always true), whereas all other results stay the same. 

It is not clear whether a natural characterization of the ANC attribute grammars is 
possible in terms of restrictions on the attribute evaluation strategy (i.e., on 
computation sequences), and whether a similar concept would apply to passes, giving 
rise to a class of AG between SMPa and PMPa. 

The translations and output sets of the above types of AG have been investigated 
formally in, e.g., [3, 4, 13, 141, but more research is needed to characterize their 
structure and complexity, and to link them to more classical types of tree 
manipulating systems. 
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